WorldWideScience

Sample records for repair deficiency cells

  1. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Rashda [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Efferth, Thomas [Institute of Pharmacy und Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Kuhmann, Christine [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Opatz, Till [Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz (Germany); Hao, Xiaojiang [Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 (China); Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol was the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy

  2. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells

    DEFF Research Database (Denmark)

    Björkman, Andrea; Qvist, Per; Du, Likun

    2015-01-01

    Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the se......Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement...... of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast...... cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism...

  3. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  4. Increased susceptibility to delayed genetic effects of low dose X-irradiation in DNA repair deficient cells.

    Science.gov (United States)

    Kashino, Genro; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami; Prise, Kevin M

    2013-04-01

    To examine whether the levels of micronuclei induction, as a marker for genomic instability in the progeny of X-irradiated cells, correlates with DNA repair function. Two repair deficient cell lines (X-ray repair cross-complementing 1 [XRCC1] deficient cell line [EM9] and X-ray repair cross complementing 5 [XRCC5; Ku80] deficient X-ray sensitive Chinese hamster ovary [CHO] cell line [xrs5]) were used in addition to wild-type CHO cells. These cells were irradiated with low doses of X-rays (up to 1 Gy). Seven days after irradiation, micronuclei formed in binucleated cells were counted. To assess the contribution of the bystander effect micronuclei induction was measured in progeny of non-irradiated cells co-cultured with cells that had been irradiated with 1Gy. The delayed induction of micronuclei in 1 Gy-irradiated cells was observed in normal CHO and EM9 but not in xrs5. In the clone analysis, progenies of xrs5 under bystander conditions showed significantly higher levels of micronuclei, while CHO and EM9 did not. Genomic instability induced by X-irradiation is associated with DSB (double-strand break) repair, even at low doses. It is also suggested that bystander signals, which lead to genomic instability, may be enhanced when DSB repair is compromised.

  5. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair.

    Science.gov (United States)

    Halvey, Patrick J; Wang, Xiaojing; Wang, Jing; Bhat, Ajaz A; Dhawan, Punita; Li, Ming; Zhang, Bing; Liebler, Daniel C; Slebos, Robbert J C

    2014-01-01

    A growing body of genomic data on human cancers poses the critical question of how genomic variations translate to cancer phenotypes. We used standardized shotgun proteomics and targeted protein quantitation platforms to analyze a panel of 10 colon cancer cell lines differing by mutations in DNA mismatch repair (MMR) genes. In addition, we performed transcriptome sequencing (RNA-seq) to enable detection of protein sequence variants from the proteomic data. Biologic replicate cultures yielded highly consistent proteomic inventories with a cumulative total of 6,513 protein groups with a protein false discovery rate of 3.17% across all cell lines. Networks of coexpressed proteins with differential expression based on MMR status revealed impact on protein folding, turnover and transport, on cellular metabolism and on DNA and RNA synthesis and repair. Analysis of variant amino acid sequences suggested higher stability of proteins affected by naturally occurring germline polymorphisms than of proteins affected by somatic protein sequence changes. The data provide evidence for multisystem adaptation to MMR deficiency with a stress response that targets misfolded proteins for degradation through the ubiquitin-dependent proteasome pathway. Enrichment analysis suggested epithelial-to-mesenchymal transition in RKO cells, as evidenced by increased mobility and invasion properties compared with SW480. The observed proteomic profiles demonstrate previously unknown consequences of altered DNA repair and provide an expanded basis for mechanistic interpretation of MMR phenotypes.

  6. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  7. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX...... deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  8. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours

    NARCIS (Netherlands)

    von Bueren, A. O.; Bacolod, M. D.; Hagel, C.; Heinimann, K.; Fedier, A.; Kordes, U.; Pietsch, T.; Koster, J.; Grotzer, M. A.; Friedman, H. S.; Marra, G.; Kool, M.; Rutkowski, S.

    2012-01-01

    BACKGROUND: Tumours are responsive to temozolomide (TMZ) if they are deficient in O-6-methylguanine-DNA methyltransferase (MGMT), and mismatch repair (MMR) proficient. METHODS: The effect of TMZ on medulloblastoma (MB) cell killing was analysed with clonogenic survival assays. Expression of DNA

  9. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. DNA Repair Deficiency in Neurodegeneration

    Science.gov (United States)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  11. Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time

    Science.gov (United States)

    Nakamura, Jun; Asakura, Shoji; Hester, Susan D.; de Murcia, Gilbert; Caldecott, Keith W.; Swenberg, James A.

    2003-01-01

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1–/– cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time. PMID:12930978

  12. Nitric oxide-donating aspirin derivatives suppress microsatellite instability in mismatch repair-deficient and hereditary nonpolyposis colorectal cancer cells.

    Science.gov (United States)

    McIlhatton, Michael A; Tyler, Jessica; Burkholder, Susan; Ruschoff, Josef; Rigas, Basil; Kopelovich, Levy; Fishel, Richard

    2007-11-15

    Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as cancer chemopreventive agents. Aspirin and sulindac have been shown to be effective in selecting for cells with reduced microsatellite instability (MSI) that is inherent in mismatch repair (MMR)-deficient hereditary nonpolyposis colorectal cancer (HNPCC) cells. The effect of NO-NSAIDs on MSI in MMR-deficient HNPCC cells is unknown. Here, we have examined genetically defined MMR-deficient murine embryo fibroblasts, murine colonocytes, and isogenic human HNPCC tumor cell lines treated with acetylsalicylic acid (aspirin; ASA) and three isomeric derivatives of NO-aspirin (NO-ASA). The MSI profiles were determined and compared with the Bethesda Criteria. We found that the ASA- and NO-ASA-treated MMR-deficient cell lines displayed a dose-dependent suppression of MSI that appeared as early as 8 weeks and gradually increased to include up to 67% of the microsatellite sequences examined after 19 to 20 weeks of continuous treatment. Residual resistance to microsatellite stabilization was largely confined to mononucleotide repeat sequences. Control (MMR-proficient) cells showed no changes in microsatellite status with or without treatment. The relative dose-dependent stabilization selection was: ortho-NO-ASA approximately para-NO-ASA > meta-NO-ASA > ASA. Moreover, the doses required for stabilization by the ortho- and para-NO-ASA were 300- to 3,000-fold lower than ASA. These results suggest that NO-ASA derivatives may be more effective at suppressing MSI in MMR-deficient cell lines than ASA and should be considered for chemopreventive trials with HNPCC carriers.

  13. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice.

    Science.gov (United States)

    Diderich, Karin E M; Nicolaije, Claudia; Priemel, Matthias; Waarsing, Jan H; Day, Judd S; Brandt, Renata M C; Schilling, Arndt F; Botter, Sander M; Weinans, Harrie; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; van Leeuwen, Johannes P T M

    2012-08-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism.

  14. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Joyce, Kellie [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Xie, Hong [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Falank, Carolyne [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); and others

    2014-04-15

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  15. Repair of DNA lesions induced by ultraviolet irradiation and aromatic amines in normal and repair-deficient human lymphoblastoid cell lines

    DEFF Research Database (Denmark)

    Stevnsner, Tinna; Frandsen, Henrik; Autrup, Herman

    1995-01-01

    belonging to complementation group B of Cockayne's syndrome (CS-B) showed reduced host cell reactivation. Fibroblasts from CS-B patients have reduced gene-specific DNA repair, but normal total genomic DNA repair, thus our data suggest that the HCR assay measures the capacity for gene-specific DNA repair...

  16. Xin-deficient mice display myopathy, impaired contractility, attenuated muscle repair and altered satellite cell functionality.

    Science.gov (United States)

    Al-Sajee, D; Nissar, A A; Coleman, S K; Rebalka, I A; Chiang, A; Wathra, R; van der Ven, P F M; Orfanos, Z; Hawke, T J

    2015-06-01

    Xin is an F-actin-binding protein expressed during development of cardiac and skeletal muscle. We used Xin-/- mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration. Xin-/- skeletal muscles and their satellite cell (SC) population were investigated for the presence of myopathic changes by a series of histological and immunofluorescent stains on resting uninjured muscles. To further understand the effect of Xin loss on muscle health and its SCs, we studied SCs responses following cardiotoxin-induced muscle injury. Functional data were determined using in situ muscle stimulation protocol. Compared to age-matched wild-type (WT), Xin-/- muscles exhibited generalized myopathy and increased fatigability with a significantly decreased force recovery post-fatiguing contractions. Muscle regeneration was attenuated in Xin-/- mice. This impaired regeneration prompted an investigation into SC content and functionality. Although SC content was not different, significantly more activated SCs were present in Xin-/- vs. WT muscles. Primary Xin-/- myoblasts displayed significant reductions (approx. 50%) in proliferative capacity vs. WT; a finding corroborated by significantly decreased MyoD-positive nuclei in 3 days post-injury Xin-/- muscle vs. WT. As more activated SCs did not translate to more proliferating myoblasts, we investigated whether Xin-/- SCs displayed an exaggerated loss by apoptosis. More apoptotic SCs (TUNEL+/Pax7+) were present in Xin-/- muscle vs. WT. Furthermore, more Xin-/- myoblasts were expressing nuclear caspase-3 compared to WT at 3 days post-injury. Xin deficiency leads to a myopathic condition characterized by increased muscle fatigability, impaired regeneration and SC dysfunction. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines.

    Science.gov (United States)

    George, Kerry A; Hada, Megumi; Jackson, Lori J; Elliott, Todd; Kawata, Tetsuya; Pluth, Janice M; Cucinotta, Francis A

    2009-06-01

    We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (gamma rays and high-energy iron ions (LET = 151 keV/microm). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for gamma rays compared to iron nuclei. For gamma-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose-response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures.

  18. Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice

    NARCIS (Netherlands)

    K.E.M. Diderich (Karin); C. Nicolaije (Claudia); M. Priemel (Matthias); J.H. Waarsing (Jan); J.S. Day (Judd); R.M.C. Brandt (Renata); A.F. Schilling (Arndt); S.M. Botter (Sander); H.H. Weinans (Harrie); G.T.J. van der Horst (Gijsbertus); J.H.J. Hoeijmakers (Jan); J.P.T.M. van Leeuwen (Hans)

    2012-01-01

    textabstractTrichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many

  19. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair.

    Science.gov (United States)

    Parshad, R; Sanford, K K; Jones, G M

    1983-09-01

    Ten lines of skin fibroblasts from individuals with genetic disorders predisposing to a high risk of cancer were compared with nine lines from normal adult donors with respect to chromatid damage after x-irradiation [25, 50, and 100 rad (0.25, 0.50, and 1 gray)] during G2 phase. The 10 cell lines represented five genetic disorders: Bloom syndrome, familial polyposis, Fanconi anemia, Gardner syndrome, and xeroderma pigmentosum, complementation groups A(XP-A), C(XP-C), E(XP-E), and variant (XP-Va). The incidence of chromatid breaks in all cancer-prone lines except XP-E and XP-A was significantly higher than in the normal lines. The incidence of chromatid gaps in all cancer-prone lines except XP-A and XP-Va was significantly higher than in the normal lines. Because each chromatid apparently contains a single continuous DNA double strand, chromatid breaks and gaps represent unrepaired DNA strand breaks arising directly or indirectly during excision repair of x-ray-induced DNA damage. These cytogenetic data together with results from use of the DNA repair inhibitor arabinofuranosyl cytosine (cytosine arabinoside) suggest that cells from all of these cancer-prone individuals are deficient in some step of DNA repair, predominantly excision repair operative during the G2-prophase period of the cell cycle. It appears that these DNA repair deficiencies are associated with a genetic predisposition to a high risk of cancer.

  20. Establishment, characterization and chemosensitivity of three mismatch repair deficient cell lines from sporadic and inherited colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available BACKGROUND: Colorectal cancer (CRC represents a morphologic and molecular heterogenic disease. This heterogeneity substantially impairs drug effectiveness and prognosis. The subtype of mismatch repair deficient (MMR-D CRCs, accounting for about 15% of all cases, shows particular differential responses up to resistance towards currently approved cytostatic drugs. Pre-clinical in vitro models representing molecular features of MMR-D tumors are thus mandatory for identifying biomarkers that finally help to predict responses towards new cytostatic drugs. Here, we describe the successful establishment and characterization of three patient-derived MMR-D cell lines (HROC24, HROC87, and HROC113 along with their corresponding xenografts. METHODOLOGY: MMR-D cell lines (HROC24, HROC87, and HROC113 were established from a total of ten clinicopathological well-defined MMR-D cases (120 CRC cases in total. Cells were comprehensively characterized by phenotype, morphology, growth kinetics, invasiveness, and molecular profile. Additionally, response to clinically relevant chemotherapeutics was examined in vitro and in vivo. PRINCIPAL FINDINGS: Two MMR-D lines showing CIMP-H derived from sporadic CRC (HROC24: K-ras(wt, B-raf(mut, HROC87: K-ras(wt, B-raf(mut, whereas the HROC113 cell line (K-ras(mut, B-raf(wt was HNPCC-associated. A diploid DNA-status could be verified by flow cytometry and SNP Array analysis. All cell lines were characterized as epithelial (EpCAM(+ tumor cells, showing surface tumor marker expression (CEACAM(+. MHC-class II was inducible by Interferon-γ stimulation. Growth kinetics as well as invasive potential was quite heterogeneous between individual lines. Besides, MMR-D cell lines exhibited distinct responsiveness towards chemotherapeutics, even when comparing in vitro and in vivo sensitivity. CONCLUSIONS: These newly established and well-characterized, low-passage MMR-D cell lines provide a useful tool for future investigations on the

  1. Differential radioprotective effects of misoprostol in DNA repair-proficient and -deficient or radiosensitive cell systems

    NARCIS (Netherlands)

    van Buul, P. P.; van Duyn-Goedhart, A.; de rooij, D. G.; Sankaranarayanan, K.

    1997-01-01

    The protective effects of misoprostol (MP), an analogue of prostaglandin E1, on X-ray-induced chromosomal aberrations, were studied in normal or mutant Chinese hamster cell lines grown as spheroids in vitro and on cell-killing in stem-cell spermatogonia of a mutant (acid) mouse strain or its

  2. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair.

    Science.gov (United States)

    Francis, M A; Bagga, P S; Athwal, R S; Rainbow, A J

    1997-10-01

    Endonuclease V (denV) from bacteriophage T4 has been examined for its ability to complement the repair defect in Cockayne syndrome (CS) cells of complementation groups A and B. CS is an autosomal recessive disorder characterized by hypersensitivity to UV light and a defect in the preferential repair of UV-induced lesions in transcriptionally active DNA by the nucleotide excision repair (NER) pathway. The denV gene was introduced into non-transformed normal and CS fibroblasts transiently via a recombinant adenovirus (Ad) vector and into SV40-transformed normal and CS cells via a retroviral vector. Expression of denV in CS-A cells resulted in partial correction of the UV-sensitive phenotype in assays of gene-specific repair and cell viability, while correction of CS-B cells by expression of denV in the same assays was minimal or non-existent. In contrast, denV expression led to enhanced host cell reactivation (HCR) of viral DNA synthesis in both CS complementation groups to near normal levels. DenV is a glycosylase which is specific for cyclobutane-pyrimidine dimers (CPDs) but does not recognize other UV-induced lesions. Previous work has indicated that CS cells can efficiently repair all non-CPD UV-induced transcription blocking lesions (S.F. Barrett et al.. Mutation Res. 255 (1991) 281-291 [1]) and that denV incised lesions are believed to be processed via the base excision repair (BER) pathway. The inability of denV to complement the NER defect in CS cells to normal levels implies an impaired ability to process denV incised lesions by the BER pathway, and suggests a role for the CS genes, particularly the CS-B gene, in BER.

  3. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  4. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair......: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage...

  5. The Effect of Msh2 Knockdown on Toxicity Induced by tert-Butyl-hydroperoxide, Potassium Bromate, and Hydrogen Peroxide in Base Excision Repair Proficient and Deficient Cells

    Directory of Open Access Journals (Sweden)

    N. Cooley

    2013-01-01

    Full Text Available The DNA mismatch repair (MMR and base excision repair (BER systems are important determinants of cellular toxicity following exposure to agents that cause oxidative DNA damage. To examine the interactions between these different repair systems, we examined whether toxicity, induced by t-BOOH and KBrO3, differs in BER proficient (Mpg+/+, Nth1+/+ and deficient (Mpg−/−, Nth1−/− mouse embryonic fibroblasts (MEFs following Msh2 knockdown of between 79 and 88% using an shRNA expression vector. Msh2 knockdown in Nth1+/+ cells had no effect on t-BOOH and KBrO3 induced toxicity as assessed by an MTT assay; knockdown in Nth1−/− cells resulted in increased resistance to t-BOOH and KBrO3, a result consistent with Nth1 removing oxidised pyrimidines. Msh2 knockdown in Mpg+/+ cells had no effect on t-BOOH toxicity but increased resistance to KBrO3; in Mpg−/− cells, Msh2 knockdown increased cellular sensitivity to KBrO3 but increased resistance to t-BOOH, suggesting a role for Mpg in removing DNA damage induced by these agents. MSH2 dependent and independent pathways then determine cellular toxicity induced by oxidising agents. A complex interaction between MMR and BER repair systems, that is, exposure dependent, also exists to determine cellular toxicity.

  6. The Effect of Msh2 Knockdown on Toxicity Induced by tert-Butyl-hydroperoxide, Potassium Bromate, and Hydrogen Peroxide in Base Excision Repair Proficient and Deficient Cells

    Science.gov (United States)

    Cooley, N.; Elder, R. H.; Povey, A. C.

    2013-01-01

    The DNA mismatch repair (MMR) and base excision repair (BER) systems are important determinants of cellular toxicity following exposure to agents that cause oxidative DNA damage. To examine the interactions between these different repair systems, we examined whether toxicity, induced by t-BOOH and KBrO3, differs in BER proficient (Mpg +/+, Nth1 +/+) and deficient (Mpg −/−, Nth1 −/−) mouse embryonic fibroblasts (MEFs) following Msh2 knockdown of between 79 and 88% using an shRNA expression vector. Msh2 knockdown in Nth1 +/+ cells had no effect on t-BOOH and KBrO3 induced toxicity as assessed by an MTT assay; knockdown in Nth1 −/− cells resulted in increased resistance to t-BOOH and KBrO3, a result consistent with Nth1 removing oxidised pyrimidines. Msh2 knockdown in Mpg +/+ cells had no effect on t-BOOH toxicity but increased resistance to KBrO3; in Mpg −/− cells, Msh2 knockdown increased cellular sensitivity to KBrO3 but increased resistance to t-BOOH, suggesting a role for Mpg in removing DNA damage induced by these agents. MSH2 dependent and independent pathways then determine cellular toxicity induced by oxidising agents. A complex interaction between MMR and BER repair systems, that is, exposure dependent, also exists to determine cellular toxicity. PMID:23984319

  7. Characterization of illudin S sensitivity in DNA repair-deficient Chinese hamster cells. Unusually high sensitivity of ERCC2 and ERCC3 DNA helicase-deficient mutants in comparison to other chemotherapeutic agents.

    Science.gov (United States)

    Kelner, M J; McMorris, T C; Estes, L; Rutherford, M; Montoya, M; Goldstein, J; Samson, K; Starr, R; Taetle, R

    1994-07-19

    Illudins, novel natural products with a structure unrelated to any other known chemical, display potent in vitro and in vivo anti-cancer activity against even multi-drug resistant tumors, and are metabolically activated to an unstable intermediate that binds to DNA. The DNA damage produced by illudins, however, appears to differ from that of other known DNA damaging toxins. The sensitivity pattern of the various UV-sensitive cell lines differs from previously studied DNA cross-linking agents. Normally, the ERCC1- (excision repair cross complementing) and ERCC4-deficient cell lines are most sensitive to DNA cross-linking agents, with ERCC2-, ERCC3- and ERCC5-deficient cell lines having minimal sensitivity. With illudins the pattern is reversed, with ERCC2 and ERCC3 being the most sensitive. The sensitivity to illudins in complementation groups 1 through 3 is due to a deficiency of the ERCC1-3 gene products, as cellular drug accumulation studies revealed no differences in transport capacity or total drug accumulation. Also, a transgenic cell line in which ERCC2 activity was expressed through an expression vector regained its relative resistance to the illudins. The EM9 cell line, which displays sensitivity to monoadduct producing chemicals, was not sensitive. Thus, excision repair is involved in repair of illudin-induced damage and, unlike other anti-cancer agents, the involvement of ERCC2 and ERCC3 helicases is critical for repair to occur. The requirement for ERCC2 and ERCC3, combined with the finding that ERCC1 but not ERCC2 is upregulated in drug-resistant tumors, may explain the efficacy of illudins against drug-resistant tumors. The inhibition of DNA synthesis in cells within minutes after exposure to illudins at nanomolar concentrations may be related to the finding that the ERCC3 gene product is actually the p89 helicase component of the BTF2 (TFII) basic transcription factor and the high sensitivity of ERCC3-deficient cells to illudins.

  8. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Excision repair in mammalian cells. [uv radiation, N-acetoxy-2-acetylaminofluorene

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Setlow, R.B.

    1978-01-01

    Excision repair after combined treatments of uv and N-acetoxy-2-acetylaminofluorene (AAAF) was studied by three different techniques in cells proficient in uv excision repair and in cells deficient in uv repair. Two patterns of repair were observed: in repair proficient cells total repair was additive, and in repair deficient cells total repair was much less than additive--usually less than observed for separate treatments--and AAAF inhibited dimer excision. We conclude that in the 1st class of cells pathways for repair of uv and AAAF lesions are not identical, and in the 2nd class the residual excision enzymes are different from those in repair proficient cells.

  10. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

    DEFF Research Database (Denmark)

    Berquist, Brian R; Singh, Dharmendra Kumar; Fan, Jinshui

    2010-01-01

    XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R mu...

  11. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade

    Science.gov (United States)

    Lee, Valerie; Murphy, Adrian; Le, Dung T.

    2016-01-01

    More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. Implications for Practice: Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade. PMID:27412392

  12. Comparison of cellular lethality in DNA repair-proficient or -deficient cell lines resulting from exposure to 70 MeV/n protons or 290 MeV/n carbon ions.

    Science.gov (United States)

    Genet, Stefan C; Maeda, Junko; Fujisawa, Hiroshi; Yurkon, Charles R; Fujii, Yoshihiro; Romero, Ashley M; Genik, Paula C; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A

    2012-11-01

    Charged particle therapy utilizing protons or carbon ions has been rapidly intensifying over recent years. The present study was designed to jointly investigate these two charged particle treatment modalities with respect to modeled anatomical depth-dependent dose and linear energy transfer (LET) deliveries to cells with either normal or compromised DNA repair phenotypes. We compared cellular lethality in response to dose, LET and Bragg peak location for accelerated protons and carbon ions at 70 and 290 MeV/n, respectively. A novel experimental live cell irradiation OptiCell™ in vitro culture system using three different Chinese hamster ovary (CHO) cells as a mammalian model was conducted. A wild-type DNA repair-competent CHO cell line (CHO 10B2) was compared to two other CHO cell lines (51D1 and xrs5), each genetically deficient with respect to one of the two major DNA repair pathways (homologous recombination and non-homologous end joining pathways, respectively) following genotoxic insults. We found that wild-type and homologous recombination-deficient (Rad51D) cellular lethality was dependent on both the dose and LET of the carbon ions, whereas it was only dependent on dose for protons. The non-homologous end joining deficient cell line (Ku80 mutant) showed nearly identical dose-response profiles for both carbon ions and protons. Our results show that the increasingly used modality of carbon ions as charged particle therapy is advantageous to protons in a radiotherapeutic context, primarily for tumor cells proficient in non-homologous end joining DNA repair where cellular lethality is dependent not only on the dose as in the case of more common photon therapeutic modalities, but more importantly on the carbon ion LETs. Genetic characterization of patient tumors would be key to individualize and optimize the selection of radiation modality, clinical outcome and treatment cost.

  13. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Maaike P.G., E-mail: vreeswijk@lumc.nl [Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, Postzone S4-P, 2300 RC Leiden (Netherlands); Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Building 2, Postzone S-04, P.O. Box 9600, 2300 RC Leiden (Netherlands); Meijers, Caro M.; Giphart-Gassler, Micheline; Vrieling, Harry; Zeeland, Albert A. van; Mullenders, Leon H.F.; Loenen, Wil A.M. [Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, Postzone S4-P, 2300 RC Leiden (Netherlands)

    2009-04-26

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C > T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  14. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  15. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma--report on a novel biallelic MSH6 mutation.

    Science.gov (United States)

    Ripperger, Tim; Beger, Carmela; Rahner, Nils; Sykora, Karl W; Bockmeyer, Clemens L; Lehmann, Ulrich; Kreipe, Hans H; Schlegelberger, Brigitte

    2010-05-01

    Biallelic mutations of mismatch repair genes cause constitutional mismatch repair deficiency associated with an increased risk for childhood leukemia/lymphoma. We report on a case with constitutional mismatch repair deficiency caused by a novel MSH6 mutation leading to a T-cell lymphoma and colonic adenocarcinoma at six and 13 years of age, respectively. A review of the literature on hematologic malignancies in constitutional mismatch repair deficiency showed that in almost half of the 47 known constitutional mismatch repair deficiency families, at least one individual is affected by a hematologic malignancy, predominantly T-cell lymphomas. However, diagnosing constitutional mismatch repair deficiency may be difficult when the first child is affected by leukemia/lymphoma, but identification of the causative germline mutation is of vital importance: (i) to identify relatives at risk and exclude an increased risk in non-mutation carriers; (ii) to prevent hematopoietic stem cell transplantation from sibling donors also carrying a biallelic germline mutation; and (iii) to implement effective surveillance programs for mutation carriers, that may reduce constitutional mismatch repair deficiency-associated mortality.

  16. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma – report on a novel biallelic MSH6 mutation

    Science.gov (United States)

    Ripperger, Tim; Beger, Carmela; Rahner, Nils; Sykora, Karl W.; Bockmeyer, Clemens L.; Lehmann, Ulrich; Kreipe, Hans H.; Schlegelberger, Brigitte

    2010-01-01

    Biallelic mutations of mismatch repair genes cause constitutional mismatch repair deficiency associated with an increased risk for childhood leukemia/lymphoma. We report on a case with constitutional mismatch repair deficiency caused by a novel MSH6 mutation leading to a T-cell lymphoma and colonic adenocarcinoma at six and 13 years of age, respectively. A review of the literature on hematologic malignancies in constitutional mismatch repair deficiency showed that in almost half of the 47 known constitutional mismatch repair deficiency families, at least one individual is affected by a hematologic malignancy, predominantly T-cell lymphomas. However, diagnosing constitutional mismatch repair deficiency may be difficult when the first child is affected by leukemia/lymphoma, but identification of the causative germline mutation is of vital importance: (i) to identify relatives at risk and exclude an increased risk in non-mutation carriers; (ii) to prevent hematopoietic stem cell transplantation from sibling donors also carrying a biallelic germline mutation; and (iii) to implement effective surveillance programs for mutation carriers, that may reduce constitutional mismatch repair deficiency-associated mortality. PMID:20015892

  17. PD-1 blockade restores impaired function of ex vivo expanded CD8+ T cells and enhances apoptosis in mismatch repair deficient EpCAM+PD-L1+ cancer cells

    Directory of Open Access Journals (Sweden)

    Kumar R

    2017-07-01

    Full Text Available Rajeev Kumar,1,2 Fang Yu,1 Yuan-Huan Zhen,3 Bo Li,2 Jun Wang,1 Yuan Yang,1,2 Hui-Xin Ge,4 Ping-Sheng Hu,1,2 Jin Xiu1,2 1Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China; 2Cancer Immunology and Immunotherapy Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China; 3Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China; 4Department of Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China Background: Adoptive T cell therapy has been proven to be a promising modality for the treatment of cancer patients in recent years. However, the increased expression of inhibitory receptors could negatively regulate the function and persistence of transferred T cells which mediates T cell anergy, exhaustion, and tumor regression. In this study, we investigated increased cytotoxic activity after the blockade of PD-1 for effective immunotherapy.Methods: The cytotoxic function of expanded CD8+ CTLs and interactions with tumor cells investigated after blocking of PD-1. Ex vivo expanded CD8+ CTLs were co-cultured with mismatch repair (MMR stable or deficient (high microsatellite instability [MSI-H] EpCAM+ tumor cells. The levels of IFN-γ and GrB were detected by enzyme-linked immunosorbent spot assay. Flow cytometry and confocal microscopy were used to assess CD107a mobilization, cytosolic uptake, and cell migration. Results: A dramatic increase in PD-1 expression on the surface of CD8+ CTLs during ex vivo expansion was observed. PD-1 level was downregulated by approximately 40% after incubation of the CD8+ CTLs with monoclonal antibody which enhanced the secretion of IFN-γ, GrB, and CD107a. Additionally, PD-1 blockade enhanced cell migration and cytosolic exchange between CD8+ CTLs and MMR deficient (MSI-H EpCAM+PD-L1+ tumor

  18. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. [Los Alamos National Lab., NM (United States); Chen, D.S. [Rochester Univ., NY (United States). Dept. of Radiation Oncology

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  19. DNA repair and radiation sensitivity in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Stackhouse, M. (Los Alamos National Lab., NM (United States)); Chen, D.S. (Rochester Univ., NY (United States). Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  20. Relationship between DNA Mismatch Repair Deficiency and Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Kenta Masuda

    2011-01-01

    Full Text Available Some cases of endometrial cancer are associated with a familial tumor and are referred to as hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome. Lynch syndrome is thought to be induced by germline mutation of the DNA mismatch repair (MMR gene. An aberration in the MMR gene prevents accurate repair of base mismatches produced during DNA replication. This phenomenon can lead to an increased frequency of errors in target genes involved in carcinogenesis, resulting in cancerization of the cell. On the other hand, aberrant DNA methylation is thought to play a key role in sporadic endometrial carcinogenesis. Hypermethylation of unmethylated CpG islands in the promoter regions of cancer-related genes associated with DNA repair leads to the cell becoming cancerous. Thus, both genetic and epigenetic changes are intricately involved in the process through which cells become cancerous. In this review, we introduce the latest findings on the DNA mismatch repair pathway in endometrial cancer.

  1. Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair.

    Science.gov (United States)

    Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Nieminuszczy, Jadwiga; Wrzesinski, Michal; Grzesiuk, Elzbieta

    2010-03-01

    Methylmethane sulphonate (MMS), an S(N)2-type alkylating agent, generates DNA methylated bases exhibiting cytotoxic and mutagenic properties. Such damaged bases can be removed by a system of base excision repair (BER) and by oxidative DNA demethylation catalysed by AlkB protein. Here, we have shown that the lack of the BER system and functional AlkB dioxygenase results in (i) increased sensitivity to MMS, (ii) elevated level of spontaneous and MMS-induced mutations (measured by argE3 --> Arg(+) reversion) and (iii) induction of the SOS response shown by visualization of filamentous growth of bacteria. In the xth nth nfo strain additionally mutated in alkB gene, all these effects were extreme and led to 'error catastrophe', resulting from the presence of unrepaired apurinic/apyrimidinic (AP) sites and 1-methyladenine (1meA)/3-methylcytosine (3meC) lesions caused by deficiency in, respectively, BER and AlkB dioxygenase. The decreased level of MMS-induced Arg(+) revertants in the strains deficient in polymerase V (PolV) (bearing the deletion of the umuDC operon), and the increased frequency of these revertants in bacteria overproducing PolV (harbouring the pRW134 plasmid) indicate the involvement of PolV in the error-prone repair of 1meA/3meC and AP sites. Comparison of the sensitivity to MMS and the induction of Arg(+) revertants in the double nfo alkB and xth alkB, and the quadruple xth nth nfo alkB mutants showed that the more AP sites there are in DNA, the stronger the effect of the lack of AlkB protein. Since the sum of MMS-induced Arg(+) revertants in xth, nfo and nth xth nfo and alkB mutants is smaller than the frequency of these revertants in the BER(-) alkB(-) strain, we consider two possibilities: (i) the presence of AP sites in DNA results in relaxation of its structure that facilitates methylation and (ii) additional AP sites are formed in the BER(-) alkB(-) mutants.

  2. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Hernández, Alba, E-mail: alba.hernandez@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-09-15

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO{sub 3}, MMA{sup III} or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1{sup +/+} and Ogg1{sup −/−} genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1{sup +/+} and Ogg1{sup −/−} cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1{sup −/−} cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1{sup −/−} cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency

  3. Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency.

    Science.gov (United States)

    Reid-Bayliss, Kate S; Arron, Sarah T; Loeb, Lawrence A; Bezrookove, Vladimir; Cleaver, James E

    2016-09-06

    Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are human photosensitive diseases with mutations in the nucleotide excision repair (NER) pathway, which repairs DNA damage from UV exposure. CS is mutated in the transcription-coupled repair (TCR) branch of the NER pathway and exhibits developmental and neurological pathologies. The XP-C group of XP patients have mutations in the global genome repair (GGR) branch of the NER pathway and have a very high incidence of UV-induced skin cancer. Cultured cells from both diseases have similar sensitivity to UV-induced cytotoxicity, but CS patients have never been reported to develop cancer, although they often exhibit photosensitivity. Because cancers are associated with increased mutations, especially when initiated by DNA damage, we examined UV-induced mutagenesis in both XP-C and CS cells, using duplex sequencing for high-sensitivity mutation detection. Duplex sequencing detects rare mutagenic events, independent of selection and in multiple loci, enabling examination of all mutations rather than just those that confer major changes to a specific protein. We found telomerase-positive normal and CS-B cells had increased background mutation frequencies that decreased upon irradiation, purging the population of subclonal variants. Primary XP-C cells had increased UV-induced mutation frequencies compared with normal cells, consistent with their GGR deficiency. CS cells, in contrast, had normal levels of mutagenesis despite their TCR deficiency. The lack of elevated UV-induced mutagenesis in CS cells reveals that their TCR deficiency, although increasing cytotoxicity, is not mutagenic. Therefore the absence of cancer in CS patients results from the absence of UV-induced mutagenesis rather than from enhanced lethality.

  4. Isolating human DNA repair genes using rodent-cell mutants

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  5. DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair.

    Science.gov (United States)

    Trinh, Binh N; Long, Tiffany I; Nickel, Andrea E; Shibata, Darryl; Laird, Peter W

    2002-05-01

    We have introduced DNA methyltransferase 1 (Dnmt1) mutations into a mouse strain deficient for the Mlh1 protein to study the interaction between DNA mismatch repair deficiency and DNA methylation. Mice harboring hypomorphic Dnmt1 mutations showed diminished RNA expression and DNA hypomethylation but developed normally and were tumor free. When crossed to Mlh1(-/-) homozygosity, they were less likely to develop the intestinal cancers that normally arise in this tumor-predisposed, mismatch repair-deficient background. However, these same mice developed invasive T- and B-cell lymphomas earlier and at a much higher frequency than their Dnmt1 wild-type littermates. Thus, the reduction of Dnmt1 activity has significant but opposing outcomes in the development of two different tumor types. DNA hypomethylation and mismatch repair deficiency interact to exacerbate lymphomagenesis, while hypomethylation protects against intestinal tumors. The increased lymphomagenesis in Dnmt1 hypomorphic, Mlh1(-/-) mice may be due to a combination of several mechanisms, including elevated mutation rates, increased expression of proviral sequences or proto-oncogenes, and/or enhanced genomic instability. We show that CpG island hypermethylation occurs in the normal intestinal mucosa, is increased in intestinal tumors in Mlh1(-/-) mice, and is reduced in the normal mucosa and tumors of Dnmt1 mutant mice, consistent with a role for Dnmt1-mediated CpG island hypermethylation in intestinal tumorigenesis.

  6. Nucleotide excision repair- and p53-deficient mouse models in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Hoogervorst, Esther M. [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Utrecht University, Department of Pathobiology, Utrecht (Netherlands); Steeg, Harry van [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Vries, Annemieke de [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands)]. E-mail: Annemieke.de.Vries@rivm.nl

    2005-07-01

    Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.

  7. Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells.

    Science.gov (United States)

    Tu, Y; Bates, S; Pfeifer, G P

    1997-08-15

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) cells have specific DNA repair defects. We had previously analyzed repair rates of cyclobutane pyrimidine dimers at nucleotide resolution along the human JUN gene in normal fibroblasts and found very efficient repair of sequences near the transcription initiation site but slow repair along the promoter. To investigate sequence-specific repair rate patterns in XP and CS cells, we conducted a similar analysis in XPA, XPB, XPC, XPD, and CSB fibroblasts. XPA cells were almost completely repair-deficient at all sequences analyzed. XPC cells repaired only the transcribed DNA strand beginning at position -20 relative to the transcription start site. Both XBP and XPD cells were deficient in repair of nontranscribed DNA and also very inefficiently repaired the transcribed strand including sequences near the transcription start site. CSB cells exhibited rapid repair near the transcription initiation site but were deficient in repair of sequences encountered by RNA polymerase during elongation (beginning at position +20). Since transcription of the JUN gene was UV-induced in all fibroblast strains, including CSB, the defective repair of the transcribed strand in CSB cannot be explained by a lack of transcription; rather, it appears to be a true DNA repair defect.

  8. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. PARP10 deficiency manifests by severe developmental delay and DNA repair defect.

    Science.gov (United States)

    Shahrour, Maher Awni; Nicolae, Claudia M; Edvardson, Simon; Ashhab, Motee; Galvan, Adri M; Constantin, Daniel; Abu-Libdeh, Bassam; Moldovan, George-Lucian; Elpeleg, Orly

    2016-10-01

    DNA repair mechanisms such as nucleotide excision repair (NER) and translesion synthesis (TLS) are dependent on proliferating cell nuclear antigen (PCNA), a DNA polymerase accessory protein. Recently, homozygosity for p.Ser228Ile mutation in the PCNA gene was reported in patients with neurodegeneration and impaired NER. Using exome sequencing, we identified a homozygous deleterious mutation, c.648delAG, in the PARP10 gene, in a patient suffering from severe developmental delay. In agreement, PARP10 protein was absent from the patient cells. We have previously shown that PARP10 is recruited by PCNA to DNA damage sites and is required for DNA damage resistance. The patient cells were significantly more sensitive to hydroxyurea and UV-induced DNA damage than control cells, resulting in increased apoptosis, indicating DNA repair impairment in the patient cells. PARP10 deficiency joins the long list of DNA repair defects associated with neurodegenerative disorders, including ataxia telangiectasia, xeroderma pigmentosum, Cockayne syndrome, and the recently reported PCNA mutation.

  10. CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro.

    Science.gov (United States)

    Tsuji, Toshiya; Sapinoso, Lisa M; Tran, Tam; Gaffney, Bonny; Wong, Lilly; Sankar, Sabita; Raymon, Heather K; Mortensen, Deborah S; Xu, Shuichan

    2017-09-26

    CC-115, a selective dual inhibitor of the mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase (DNA-PK), is undergoing Phase 1 clinical studies. Here we report the characterization of DNA-PK inhibitory activity of CC-115 in cancer cell lines. CC-115 inhibits auto-phosphorylation of the catalytic subunit of DNA-PK (DNA-PKcs) at the S2056 site (pDNA-PK S2056), leading to blockade of DNA-PK-mediated non-homologous end joining (NHEJ). CC-115 also indirectly reduces the phosphorylation of ataxia-telangiectasia mutated kinase (ATM) at S1981 and its substrates as well as homologous recombination (HR). The mTOR kinase and DNA-PK inhibitory activity of CC-115 leads to not only potent anti-tumor activity against a large panel of hematopoietic and solid cancer cell lines but also strong induction of apoptosis in a subset of cancer lines. Mechanistically, CC-115 prevents NHEJ by inhibiting the dissociation of DNA-PKcs, X-ray repair cross-complementing protein 4 (XRCC4), and DNA ligase IV from DNA ends. CC-115 inhibits colony formation of ATM-deficient cells more potently than ATM-proficient cells, indicating that inhibition of DNA-PK is synthetically lethal with the loss of functional ATM. In conclusion, CC-115 inhibits both mTOR signaling and NHEJ and HR by direct inhibition of DNA-PK. The mechanistic data not only provide selection of potential pharmacodynamic (PD) markers but also support CC-115 clinical development in patients with ATM-deficient tumors.

  11. FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair

    Directory of Open Access Journals (Sweden)

    Zeina Kais

    2016-06-01

    Full Text Available BRCA1/2 proteins function in homologous recombination (HR-mediated DNA repair and cooperate with Fanconi anemia (FA proteins to maintain genomic integrity through replication fork stabilization. Loss of BRCA1/2 proteins results in DNA repair deficiency and replicative stress, leading to genomic instability and enhanced sensitivity to DNA-damaging agents. Recent studies have shown that BRCA1/2-deficient tumors upregulate Polθ-mediated alternative end-joining (alt-EJ repair as a survival mechanism. Whether other mechanisms maintain genomic integrity upon loss of BRCA1/2 proteins is currently unknown. Here we show that BRCA1/2-deficient tumors also upregulate FANCD2 activity. FANCD2 is required for fork protection and fork restart in BRCA1/2-deficient tumors. Moreover, FANCD2 promotes Polθ recruitment at sites of damage and alt-EJ repair. Finally, loss of FANCD2 in BRCA1/2-deficient tumors enhances cell death. These results reveal a synthetic lethal relationship between FANCD2 and BRCA1/2, and they identify FANCD2 as a central player orchestrating DNA repair pathway choice at the replication fork.

  12. Efficient and reproducible identification of mismatch repair deficient colon cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Bendahl, Pär-Ola; Halvarsson, Britta

    2013-01-01

    BACKGROUND: The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease...... of application and favorable reproducibility. METHODS: We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between...... and efficiently identifies MMR defective colon cancers with high sensitivity and specificity. The model shows stable performance with low inter-observer variability and favorable performance when compared to other MMR predictive models....

  13. Diagnostic criteria for constitutional mismatch repair deficiency syndrome

    DEFF Research Database (Denmark)

    Wimmer, Katharina; Kratz, Christian P; Vasen, Hans F A

    2014-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain...... and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer....... They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches...

  14. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  15. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  16. The role of mismatch repair in small-cell lung cancer cells

    DEFF Research Database (Denmark)

    Hansen, L T; Thykjaer, T; Ørntoft, T F

    2003-01-01

    The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous...

  17. Inhibition of UV-induced G1 arrest by exposure to 50 Hz magnetic fields in repair-proficient and -deficient yeast strains.

    Science.gov (United States)

    Takashima, Y; Ikehata, M; Miyakoshi, J; Koana, T

    2003-11-01

    To assess the possibility that extremely low frequency (ELF) magnetic fields obstruct the damage repair process, the gene conversion frequency and cell cycle kinetics in a DNA repair-proficient and nucleotide excision repair (NER)-deficient strain of diploid yeast Saccharomyces cerevisiae. DNA repair- or NER-deficient cells were irradiated with sublethal doses of ultraviolet light (UV) radiation followed by exposure to 50 Hz magnetic fields up to 30 mT for 48 h. After exposure, colony-forming ability was scored as revertants in which gene conversion had restored the functional allele of the ARG4 gene conversion hotspot. Cell cycle analysis was performed using flow cytometry. Gene conversion rate was increased by the combined exposure in DNA repair-proficient cells, whereas it remained unchanged between UV alone and the combined exposure in NER-deficient cells. The UV-induced G1 arrest was inhibited by exposure to 30 mT ELF magnetic fields in both repair-proficient and -deficient cells. The results suggest that exposure to high-density (30 mT) ELF magnetic fields decreases the efficiency of NER by suppressing G1 arrest, which in turn led to enhancement of the UV-induced gene conversion.

  18. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome

    NARCIS (Netherlands)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C.J.; Schreibelt, Gerty

    2017-01-01

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations

  19. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations.

    Science.gov (United States)

    Hu, Zishuo I; Shia, Jinru; Stadler, Zsofia K; Varghese, Anna M; Capanu, Marinela; Salo-Mullen, Erin; Lowery, Maeve A; Diaz, Luis A; Mandelker, Diana; Yu, Kenneth H; Zervoudakis, Alice; Kelsen, David P; Iacobuzio-Donahue, Christine A; Klimstra, David S; Saltz, Leonard B; Sahin, Ibrahim H; O'Reilly, Eileen M

    2018-01-24

    Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC. Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status. Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease). Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1-11. ©2018 AACR. ©2018 American Association for Cancer Research.

  20. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  1. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair.

    OpenAIRE

    Parshad, R; Sanford, K K; Jones, G. M.

    1983-01-01

    Ten lines of skin fibroblasts from individuals with genetic disorders predisposing to a high risk of cancer were compared with nine lines from normal adult donors with respect to chromatid damage after x-irradiation [25, 50, and 100 rad (0.25, 0.50, and 1 gray)] during G2 phase. The 10 cell lines represented five genetic disorders: Bloom syndrome, familial polyposis, Fanconi anemia, Gardner syndrome, and xeroderma pigmentosum, complementation groups A(XP-A), C(XP-C), E(XP-E), and variant (XP-...

  2. Mismatch Repair Deficiency Does Not Mediate Clinical Resistance to Temozolomide in Malignant Glioma

    Science.gov (United States)

    Maxwell, Jill A.; Johnson, Stewart P.; McLendon, Roger E.; Lister, David W.; Horne, Krystle S.; Rasheed, Ahmed; Quinn, Jennifer A.; Ali-Osman, Francis; Friedman, Allan H.; Modrich, Paul L.; Bigner, Darell D.; Friedman, Henry S.

    2010-01-01

    Purpose A major mechanism of resistance to methylating agents, including temozolomide, is the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). Preclinical data indicates that defective DNA mismatch repair (MMR) results in tolerance to temozolomide regardless of AGT activity. The purpose of this study was to determine the role of MMR deficiency in mediating resistance in samples from patients with both newly diagnosed malignant gliomas and those who have failed temozolomide therapy. Experimental Design The roles of AGT and MMR deficiency in mediating resistance in glioblastoma multiforme were assessed by immunohistochemistry and microsatellite instability (MSI), respectively. The mutation status of the MSH6 gene, a proposed correlate of temozolomide resistance, was determined by direct sequencing and compared with data from immunofluorescent detection of MSH6 protein and reverse transcription-PCR amplification of MSH6 RNA. Results Seventy percent of newly diagnosed and 78 % of failed-therapy glioblastoma multiforme samples expressed nuclear AGT protein in ≥20% of cells analyzed, suggesting alternate means of resistance in 20% to 30% of cases. Single loci MSI was observed in 3% of patient samples; no sample showed the presence of high MSI. MSI was not shown to correlate with MSH6 mutation or loss of MSH6 protein expression. Conclusions Although high AGT levels may mediate resistance in a portion of these samples, MMR deficiency does not seem to be responsible for mediating temozolomide resistance in adult malignant glioma. Accordingly, the presence of a fraction of samples exhibiting both lowAGT expression and MMR proficiency suggests that additional mechanisms of temozolomide resistance are operational in the clinic. PMID:18676759

  3. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  4. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  5. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  6. Hypermutation of Immunoglobulin Genes in Memory B Cells of DNA Repair–deficient Mice

    Science.gov (United States)

    Jacobs, Heinz; Fukita, Yosho; van der Horst, Gijsbertus T.J.; de Boer, Jan; Weeda, Geert; Essers, Jeroen; de Wind, Niels; Engelward, Bevin P.; Samson, Leona; Verbeek, Sjef; de Murcia, Josiane Ménissier; de Murcia, Gilbert; e Riele, Hein t; Rajewsky, Klaus

    1998-01-01

    To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged Vλ1 light chain genes from naive and memory B cells in DNA repair–deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation group (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand–break repair, and AAG-mediated base excision repair. PMID:9607915

  7. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Nicole; Fontana, Andrea O. [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Hug, Eugen B.; Lomax, Antony; Coray, Adolf [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Augsburger, Marc [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sartori, Alessandro A. [Institute of Molecular Cancer Research, University of Zurich, Zurich (Switzerland); Pruschy, Martin, E-mail: martin.pruschy@usz.ch [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland)

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  8. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  9. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis

    DEFF Research Database (Denmark)

    Adelman, Carrie A.; Lolo, Rafal L.; Birkbak, Nicolai Juul

    2013-01-01

    while translocating along DNA, little is known regarding its functions in mammalian organisms. Here we report that HELQ helicase-deficient mice exhibit subfertility, germ cell attrition, ICL sensitivity and tumour predisposition, with Helq heterozygous mice exhibiting a similar, albeit less severe...... role for HELQ in replication-coupled DNA repair, germ cell maintenance and tumour suppression in mammals....

  10. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  11. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  12. Fhit-deficient hematopoietic stem cells survive hydroquinone exposure carrying precancerous changes.

    Science.gov (United States)

    Ishii, Hideshi; Mimori, Koshi; Ishikawa, Kazuhiro; Okumura, Hiroshi; Pichiorri, Flavia; Druck, Teresa; Inoue, Hiroshi; Vecchione, Andrea; Saito, Toshiyuki; Mori, Masaki; Huebner, Kay

    2008-05-15

    The fragile FHIT gene is among the first targets of DNA damage in preneoplastic lesions, and recent studies have shown that Fhit protein is involved in surveillance of genome integrity and checkpoint response after genotoxin exposure. We now find that Fhit-deficient hematopoietic cells, exposed to the genotoxin hydroquinone, are resistant to the suppression of stem cell in vitro colony formation observed with wild-type (Wt) hematopoietic cells. In vivo-transplanted, hydroquinone-exposed, Fhit-deficient bone marrow cells also escaped the bone marrow suppression exhibited by Wt-transplanted bone marrow. Comparative immunohistochemical analyses of bone marrow transplants showed relative absence of Bax in Fhit-deficient bone marrow, suggesting insensitivity to apoptosis; assessment of DNA damage showed that occurrence of the oxidized base 8-hydroxyguanosine, a marker of DNA damage, was also reduced in Fhit-deficient bone marrow, as was production of intracellular reactive oxygen species. Treatment with the antioxidant N-acetyl-l-cysteine relieved hydroquinone-induced suppression of colony formation by Wt hematopoietic cells, suggesting that the decreased oxidative damage to Fhit-deficient cells, relative to Wt hematopoietic cells, accounts for the survival advantage of Fhit-deficient bone marrow. Homology-dependent recombination repair predominated in Fhit-deficient cells, although not error-free repair, as indicated by a higher incidence of 6-thioguanine-resistant colonies. Tissues of hydroquinone-exposed Fhit-deficient bone marrow-transplanted mice exhibited preneoplastic alterations, including accumulation of histone H2AX-positive DNA damage. The results indicate that reduced oxidative stress, coupled with efficient but not error-free DNA damage repair, allows unscheduled long-term survival of genotoxin-exposed Fhit-deficient hematopoietic stem cells carrying deleterious mutations.

  13. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D. (Imperial Cancer Research Fund, South Mimms, (United Kingdom))

    1991-07-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.

  14. Determination of genotoxic potential by comparison of structurally related azo dyes using DNA repair-deficient DT40 mutant panels.

    Science.gov (United States)

    Ooka, Masato; Kobayashi, Koji; Abe, Takuya; Akiyama, Kazuhiko; Hada, Masahiko; Takeda, Shunichi; Hirota, Kouji

    2016-12-01

    Azo dyes, including Sudan I, Orange II and Orange G, are industrial dyes that are assumed to have genotoxic potential. However, neither the type of DNA damage induced nor the structural features responsible for toxicity have been determined. We used a panel of DNA-repair-pathway-deficient mutants generated from chicken DT40 cells to evaluate the ability of these azo dyes to induce DNA damage and to identify the type of DNA damage induced. We compared the structurally related azo dyes Sudan I, Orange II and Orange G to identify the structural features responsible for genotoxicity. Compared with wild type cells, the double-strand break repair defective RAD54-/-/KU70-/- cells were significantly more sensitive to Sudan I, but not to Orange II or Orange G. The quantum-chemical calculations revealed that Sudan I, but not Orange II or Orange G, has a complete planar aromatic ring structure. These suggest that the planar feature of Sudan I is critical to the inducing of double-strand breaks. In summary, we used a DNA-repair mutant panel in combination with quantum-chemical calculations to provide a clue to the chemical structure responsible for genotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Priming of microglia in a DNA-repair deficient model of accelerated aging.

    Science.gov (United States)

    Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2014-09-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Mononuclear Cells and Vascular Repair in HHT

    Directory of Open Access Journals (Sweden)

    Calinda eDingenouts

    2015-03-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and ALK1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing of mononuclear cells following tissue damage is regulated by the stromal cell derived factor 1 (SDF1. MNCs that express the C-X-C chemokine receptor 4 (CXCR4 migrate towards the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4. Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing towards damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.

  17. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  18. Thymidine kinase 1 deficient cells show increased survival rate after UV-induced DNA damage

    DEFF Research Database (Denmark)

    Skovgaard, T; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    2010-01-01

    Balanced deoxynucleotide pools are known to be important for correct DNA repair, and deficiency for some of the central enzymes in deoxynucleotide metabolism can cause imbalanced pools, which in turn can lead to mutagenesis and cell death. Here we show that cells deficient for the thymidine salvage...... enzyme thymidine kinase 1 (TK1) are more resistant to UV-induced DNA damage than TK1 positive cells although they have thymidine triphosphate (dTTP) levels of only half the size of control cells. Our results suggest that higher thymidine levels in the TK- cells caused by defect thymidine salvage to d...

  19. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO). (ERB)

  20. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Buchanan DD

    2014-10-01

    Full Text Available Daniel D Buchanan,1,2 Christophe Rosty,1,3,4 Mark Clendenning,1 Amanda B Spurdle,5 Aung Ko Win2 1Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia; 2Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; 3Envoi Specialist Pathologists, Herston, QLD, Australia; 4School of Medicine, University of Queensland, Herston, QLD, Australia; 5Molecular Cancer Epidemiology Laboratory, Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Herston, QLD, AustraliaAbstract: Carriers of a germline mutation in one of the DNA mismatch repair (MMR genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome. MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the

  1. [Characteristics and Outcomes of Treatment in Patients with Stage IV Colorectal Cancer with Mismatch Repair Deficiency].

    Science.gov (United States)

    Ishibashi, Keiichiro; Chika, Noriyasu; Suzuki, Okihide; Ito, Tetsuya; Amano, Kunihiko; Kumamoto, Kensuke; Fukuchi, Minoru; Kumagai, Youichi; Mochiki, Erito; Ishida, Hideyuki

    2016-11-01

    Mismatch repair(MMR)protein deficiency in colorectal cancer is well correlated with high-level microsatellite instability (MSI-H). There are little data on mismatch repair deficiency(dMMR)colorectal cancers in Japan. In addition, we have no available data on the therapeutic efficacy of oxaliplatin(oxa)-based chemotherapy, one of the standard treatment regimens for metastatic colorectal cancer, for patients with dMMR colorectal cancer. The subjects were 254 patients with Stage IV colorectal cancer whose tumors were immunohistochemically stained for MMR proteins, MLH1, MSH2, MSH6, and PMS2. Patients who underwent R0 resection were excluded. Clinicopathologic factors and the efficacy of oxa-based chemotherapy were compared between patients with dMMR colorectal cancer and those with mismatch repair proficient(pMMR)colorectal cancer. There were 7(2.8%)patients with dMMR. Four patients demonstrated both MLH1 and PMS2 loss, while 3 patients demonstrated both MSH2 and MSH6 loss. Though the dMMR had a higher frequency in female patients(p=0.02) and a lower frequency in those with liver metastasis(pcolorectal cancers was lower than those(4-11%)reported in Western countries. Therefore, the clinical significance of universal screeningfor dMMR in all colorectal cancer samples may not be valid. Concerningsurvival benefit, oxa-based chemotherapy seems to be an effective alternative in clinical practice for metastatic colorectal cancer patients with dMMR.

  2. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis.

    Science.gov (United States)

    Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi

    2017-08-01

    Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.

  3. Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Andrea Plecenikova

    Full Text Available While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.

  4. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents.

    Science.gov (United States)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier; Collura, Ada; Tinat, Julie; Lavoine, Noémie; Guilloux, Agathe; Chalastanis, Alexandra; Lafitte, Philippe; Coulet, Florence; Buisine, Marie-Pierre; Ilencikova, Denisa; Ruiz-Ponte, Clara; Kinzel, Miriam; Grandjouan, Sophie; Brems, Hilde; Lejeune, Sophie; Blanché, Hélène; Wang, Qing; Caron, Olivier; Cabaret, Odile; Svrcek, Magali; Vidaud, Dominique; Parfait, Béatrice; Verloes, Alain; Knappe, Ulrich J; Soubrier, Florent; Mortemousque, Isabelle; Leis, Alexander; Auclair-Perrossier, Jessie; Frébourg, Thierry; Fléjou, Jean-François; Entz-Werle, Natacha; Leclerc, Julie; Malka, David; Cohen-Haguenauer, Odile; Goldberg, Yael; Gerdes, Anne-Marie; Fedhila, Faten; Mathieu-Dramard, Michèle; Hamelin, Richard; Wafaa, Badre; Gauthier-Villars, Marion; Bourdeaut, Franck; Sheridan, Eamonn; Vasen, Hans; Brugières, Laurence; Wimmer, Katharina; Muleris, Martine; Duval, Alex

    2015-10-01

    Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma.

    Science.gov (United States)

    Shia, Jinru

    2015-09-01

    The last two decades have seen significant advancement in our understanding of colorectal tumors with DNA mismatch repair (MMR) deficiency. The ever-emerging revelations of new molecular and genetic alterations in various clinical conditions have necessitated constant refinement of disease terminology and classification. Thus, a case with the clinical condition of hereditary non-polyposis colorectal cancer as defined by the Amsterdam criteria may be one of Lynch syndrome characterized by a germline defect in one of the several MMR genes, one of the yet-to-be-defined "Lynch-like syndrome" if there is evidence of MMR deficiency in the tumor but no detectable germline MMR defect or tumor MLH1 promoter methylation, or "familial colorectal cancer type X" if there is no evidence of MMR deficiency. The detection of these conditions carries significant clinical implications. The detection tools and strategies are constantly evolving. The Bethesda guidelines symbolize a selective approach that uses clinical information and tumor histology as the basis to select high-risk individuals. Such a selective approach has subsequently been found to have limited sensitivity, and is thus gradually giving way to the alternative universal approach that tests all newly diagnosed colorectal cancers. Notably, the universal approach also has its own limitations; its cost-effectiveness in real practice, in particular, remains to be determined. Meanwhile, technological advances such as the next-generation sequencing are offering the promise of direct genetic testing for MMR deficiency at an affordable cost probably in the near future. This article reviews the up-to-date molecular definitions of the various conditions related to MMR deficiency, and discusses the tools and strategies that have been used in detecting these conditions. Special emphasis will be placed on the evolving nature and the clinical importance of the disease definitions and the detection strategies. Copyright © 2015

  6. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    Science.gov (United States)

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis. © 2014 Wiley Periodicals, Inc.

  7. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  8. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    Science.gov (United States)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  9. Vitamin C deficiency in weanling guinea pigs: differential expression of oxidative stress and DNA repair in liver and brain

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... damaged DNA were observed in this tissue. In the brain, the pattern was markedly different. Of the measured antioxidants, only ascorbate was significantly depleted (P ... incision repair (P = 0.014) were all increased, while protein oxidation decreased (P = 0.003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may...

  10. Temozolomide increases the number of mismatch repair-deficient intestinal crypts and accelerates tumorigenesis in a mouse model of Lynch syndrome.

    Science.gov (United States)

    Wojciechowicz, Kamila; Cantelli, Erika; Van Gerwen, Bastiaan; Plug, Mirjam; Van Der Wal, Anja; Delzenne-Goette, Elly; Song, Ji-Ying; De Vries, Sandra; Dekker, Marleen; Te Riele, Hein

    2014-11-01

    Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with defects in MMR exist among MMR-proficient cells, as observed in healthy intestinal tissues from patients with Lynch syndrome. We aimed to create a mouse model of this situation to aid in identification of environmental factors that affect MMR-defective cells and their propensity for oncogenic transformation. We created mice in which the MMR gene Msh2 can be inactivated in a defined fraction of crypt base columnar stem cells to generate MSH2-deficient intestinal crypts among an excess of wild-type crypts (Lgr5-CreERT2;Msh2(flox/-) mice). Intestinal tissues were collected; immunohistochemical analyses were performed for MSH2, along with allele-specific PCR assays. We traced the fate of MSH2-deficient crypts under the influence of different external factors. Lgr5-CreERT2;Msh2(flox/-) mice developed more adenomas and adenocarcinomas than control mice; all tumors were MSH2 deficient. Exposure of Lgr5-CreERT2;Msh2(flox/-) mice to the methylating agent temozolomide caused MSH2-deficient intestinal stem cells to proliferate more rapidly than wild-type stem cells. The MSH2-deficient intestinal stem cells were able to colonize the intestinal epithelium and many underwent oncogenic transformation, forming intestinal neoplasias. We developed a mouse model of Lynch syndrome (Lgr5-CreERT2;Msh2(flox/-) mice) and found that environmental factors can modify the number and mutability of the MMR-deficient stem cells. These findings provide evidence that environmental factors can promote development of neoplasias and tumors in patients with Lynch syndrome. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  12. Cell-cycle-dependent repair of potentially lethal damage in the XR-1 gamma-ray-sensitive Chinese hamster ovary cell.

    Science.gov (United States)

    Stamato, T D; Dipatri, A; Giaccia, A

    1988-08-01

    Repair of potentially lethal damage (PLD) was investigated in a gamma-ray-sensitive Chinese hamster cell mutant, XR-1, and its parent by comparing survival of plateau-phase cells plated immediately after irradiation with cells plated after a delay. Previous work indicated that XR-1 cells are deficient in repair of double-strand DNA breaks and are gamma-ray sensitive in G1 but have near normal sensitivity and repair capacity in late S phase. At irradiation doses from 0 to 1.0 Gy (100 to 10% survival), the delayed- and immediate-plating survival curves of XR-1 cells were identical; however, at doses greater than 1.0 Gy a significant increase in survival was observed when plating was delayed (PLD repair), approaching a 20-fold increase at 8 Gy. Elimination of S-phase cells by [3H]thymidine suicide dramatically increased gamma-ray sensitivity of plateau-phase XR-1 mutant cells and reduced by 600-fold the number of cells capable of PLD repair after a 6-Gy dose. In contrast, elimination of S-phase cells in plateau-phase parental cells did not alter PLD repair. These results suggest that the majority of PLD repair observed in plateau-phase XR-1 cells occurs in S-phase cells while G1 cells perform little PLD repair. In contrast, G1 cells account for the majority of PLD repair in plateau-phase parental cells. Thus, in the XR-1 mutant, a cell's ability to repair PLD seems to depend upon the stage of the cell cycle at which the irradiation is delivered. A possible explanation for these findings is discussed.

  13. Microsatellite instability and DNA mismatch repair protein deficiency in Lynch syndrome colorectal polyps.

    Science.gov (United States)

    Yurgelun, Matthew B; Goel, Ajay; Hornick, Jason L; Sen, Ananda; Turgeon, Danielle Kim; Ruffin, Mack T; Marcon, Norman E; Baron, John A; Bresalier, Robert S; Syngal, Sapna; Brenner, Dean E; Boland, C Richard; Stoffel, Elena M

    2012-04-01

    Colorectal cancers associated with Lynch syndrome are characterized by deficient DNA mismatch repair (MMR) function. Our aim was to evaluate the prevalence of microsatellite instability (MSI) and loss of MMR protein expression in Lynch syndrome-associated polyps. Sixty-two colorectal polyps--37 adenomatous polyps, 23 hyperplastic polyps, and 2 sessile serrated polyps (SSP)--from 34 subjects with germline MMR gene mutations were tested for MSI using a single pentaplex PCR for five mononucleotide repeat microsatellite markers, and also for expression of MLH1, MSH2, MSH6, and PMS2 proteins by immunohistochemistry. High-level MSI (MSI-H) was seen in 15 of 37 (41%) adenomatous polyps, one of 23 (4%) hyperplastic polyps, and one of two (50%) SSPs. Loss of MMR protein expression was seen in 18 of 36 (50%) adenomatous polyps, zero of 21 hyperplastic polyps, and zero of two SSPs. Adenomatous polyps 8 mm or larger in size were significantly more likely to show MSI-H [OR, 9.98; 95% confidence interval (CI), 1.52-65.65; P = 0.02] and deficient MMR protein expression (OR, 3.17; 95% CI, 1.20-8.37; P = 0.02) compared with those less than 8 mm in size. All (six of six) adenomatous polyps 10 mm or larger in size showed both MSI-H and loss of MMR protein expression by immunohistochemistry. Our finding that the prevalence of MMR deficiency increases with the size of adenomatous polyps suggests that loss of MMR function is a late event in Lynch syndrome-associated colorectal neoplasia. Although testing large adenomatous polyps may be of value in the diagnostic evaluation of patients with suspected Lynch syndrome, the absence of an MMR-deficient phenotype in an adenoma cannot be considered as a strong evidence against Lynch syndrome, as it is with colorectal carcinomas. 2012 AACR

  14. Human DNA Glycosylase NEIL1’s Interactions with Downstream Repair Proteins Is Critical for Efficient Repair of Oxidized DNA Base Damage and Enhanced Cell Survival

    Directory of Open Access Journals (Sweden)

    Istvan Boldogh

    2012-11-01

    Full Text Available NEIL1 is unique among the oxidatively damaged base repair-initiating DNA glycosylases in the human genome due to its S phase-specific activation and ability to excise substrate base lesions from single-stranded DNA. We recently characterized NEIL1’s specific binding to downstream canonical repair and non-canonical accessory proteins, all of which involve NEIL1’s disordered C-terminal segment as the common interaction domain (CID. This domain is dispensable for NEIL1’s base excision and abasic (AP lyase activities, but is required for its interactions with other repair proteins. Here, we show that truncated NEIL1 lacking the CID is markedly deficient in initiating in vitro repair of 5-hydroxyuracil (an oxidative deamination product of C in a plasmid substrate compared to the wild-type NEIL1, thus suggesting a critical role of CID in the coordination of overall repair. Furthermore, while NEIL1 downregulation significantly sensitized human embryonic kidney (HEK 293 cells to reactive oxygen species (ROS, ectopic wild-type NEIL1, but not the truncated mutant, restored resistance to ROS. These results demonstrate that cell survival and NEIL1-dependent repair of oxidative DNA base damage require interactions among repair proteins, which could be explored as a cancer therapeutic target in order to increase the efficiency of chemo/radiation treatment.

  15. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    Science.gov (United States)

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  16. Phenacetin acts as a weak genotoxic compound preferentially in the kidney of DNA repair deficient Xpa mice.

    NARCIS (Netherlands)

    Luijten, Mirjam; Speksnijder, Ewoud N; Alphen, Niels van; Westerman, Anja; Heisterkamp, Siem H; Benthem, Jan van; Kreijl, Coen F van; Beems, Rudolf B; Steeg, Harrym van

    2006-01-01

    Chronic use of phenacetin-containing analgesics has been associated with the development of renal cancer. To establish genotoxicity as a possible cause for the carcinogenic effect of phenacetin, we exposed wild type and DNA repair deficient Xpa-/- and Xpa-/-/Trp53+/- mice (further referred as Xpa

  17. High rate of CAD gene amplification in human cells deficient in MLH1 or MSH6

    Science.gov (United States)

    Chen, Sihong; Bigner, Sandra H.; Modrich, Paul

    2001-01-01

    MutS and MutL homologs have been implicated in multiple genetic stabilization pathways. The activities participate in the correction of DNA biosynthetic errors, are involved in cellular responses to certain types of DNA damage, and serve to ensure the fidelity of genetic recombination. We show here that the rate of CAD (carbamyl-P synthetase/aspartate transcarbamylase/dihydroorotase) gene amplification is elevated 50- to 100-fold in human cell lines deficient in MLH1 or MSH6, as compared with mismatch repair-proficient control cells. Fluorescence in situ hybridization indicates that these amplification events are the probable consequence of unequal sister chromatid exchanges involving chromosome 2, as well as translocation events involving other chromosomes. These results implicate MutSα and MutLα in the suppression of gene amplification and suggest that defects in this genetic stabilization function may contribute to the cancer predisposition associated with mismatch repair deficiency. PMID:11717437

  18. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Senoo, Takanori; Kawano, Shinji; Ikeda, Shogo

    2017-03-01

    Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging. © 2017 International Federation for Cell Biology.

  19. Imaging stem cell differentiation for cell-based tissue repair.

    Science.gov (United States)

    Lee, Zhenghong; Dennis, James; Alsberg, Eben; Krebs, Melissa D; Welter, Jean; Caplan, Arnold

    2012-01-01

    Mesenchymal stem cells (MSCs) can differentiate into a number of tissue lineages and possess great potential in tissue regeneration and cell-based therapy. For bone fracture or cartilage wear and tear, stem cells need to be delivered to the injury site for repair. Assessing engraftment of the delivered cells and their differentiation status is crucial for the optimization of novel cell-based therapy. A longitudinal and quantitative method is needed to track stem cells transplanted/implanted to advance our understanding of their therapeutic effects and facilitate improvements in cell-based therapy. Currently, there are very few effective noninvasive ways to track the differentiation of infused stem cells. A brief review of a few existing approaches, mostly using transgenic animals, is given first, followed by newly developed in vivo imaging strategies that are intended to track implanted MSCs using a reporter gene system. Specifically, marker genes are selected to track whether MSCs differentiate along the osteogenic lineage for bone regeneration or the chondrogenic lineage for cartilage repair. The general strategy is to use the promoter of a differentiation-specific marker gene to drive the expression of an established reporter gene for noninvasive and repeated imaging of stem cell differentiation. The reporter gene system is introduced into MSCs by way of a lenti-viral vector, which allows the use of human cells and thus offers more flexibility than the transgenic animal approach. Imaging osteogenic differentiation of implanted MSCs is used as a demonstration of the proof-of-principle of this differentiation-specific reporter gene approach. This framework can be easily extended to other cell types and for differentiation into any other cell lineage for which a specific marker gene (promoter) can be identified. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  1. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Özlem Barut Selver

    2017-12-01

    Full Text Available The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane for expansion. The outgrowth (cultivated limbal epithelial cells is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory

  2. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  3. Intratumoral budding as a potential parameter of tumor progression in mismatch repair-proficient and mismatch repair-deficient colorectal cancer patients.

    Science.gov (United States)

    Lugli, Alessandro; Vlajnic, Tatjana; Giger, Olivier; Karamitopoulou, Eva; Patsouris, Efstratios S; Peros, George; Terracciano, Luigi M; Zlobec, Inti

    2011-12-01

    In colorectal cancer, tumor budding at the invasive front (peritumoral budding) is an established prognostic parameter and decreased in mismatch repair-deficient tumors. In contrast, the clinical relevance of tumor budding within the tumor center (intratumoral budding) is not yet known. The aim of the study was to determine the correlation of intratumoral budding with peritumoral budding and mismatch repair status and the prognostic impact of intratumoral budding using 2 independent patient cohorts. Following pancytokeratin staining of whole-tissue sections and multiple-punch tissue microarrays, 2 independent cohorts (group 1: n = 289; group 2: n = 222) with known mismatch repair status were investigated for intratumoral budding and peritumoral budding. In group 1, intratumoral budding was strongly correlated to peritumoral budding (r = 0.64; P budding was associated with right-sided location (P = .024), advanced T stage (P = .001) and N stage pN (P tumor margin (P = .003), and shorter survival time (P = .014). In mismatch repair-deficient cancers, high intratumoral budding was linked to higher tumor grade (P = .004), vascular invasion (P = .009), infiltrating tumor margin (P = .005), and more unfavorable survival time (P = .09). These associations were confirmed in group 2. High-grade intratumoral budding was a poor prognostic factor in univariate (P budding is an independent prognostic factor, supporting the future investigation of intratumoral budding in larger series of both preoperative and postoperative rectal and colon cancer specimens. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Scarring, stem cells, scaffolds and skin repair.

    Science.gov (United States)

    Markeson, Daniel; Pleat, Jonathon M; Sharpe, Justin R; Harris, Adrian L; Seifalian, Alexander M; Watt, Suzanne M

    2015-06-01

    The treatment of full thickness skin loss, which can be extensive in the case of large burns, continues to represent a challenging clinical entity. This is due to an on-going inability to produce a suitable tissue engineered substrate that can satisfactorily replicate the epidermal and dermal in vivo niches to fulfil both aesthetic and functional demands. The current gold standard treatment of autologous skin grafting is inadequate because of poor textural durability, scarring and associated contracture, and because of a paucity of donor sites in larger burns. Tissue engineering has seen exponential growth in recent years with a number of 'off-the-shelf' dermal and epidermal substitutes now available. Each has its own limitations. In this review, we examine normal wound repair in relation to stem/progenitor cells that are intimately involved in this process within the dermal niche. Endothelial precursors, in particular, are examined closely and their phenotype, morphology and enrichment from multiple sources are described in an attempt to provide some clarity regarding the controversy surrounding their classification and role in vasculogenesis. We also review the role of the next generation of cellularized scaffolds and smart biomaterials that attempt to improve the revascularisation of artificial grafts, the rate of wound healing and the final cosmetic and functional outcome. Copyright © 2013 John Wiley & Sons, Ltd.

  5. DNA repair in mammalian cells exposed to combinations of carcinogenic agents. [uv radiation; AAAF; 4-NQO; DMBA-epoxide; ICR-170

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors.

  6. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair.

    Science.gov (United States)

    Becker, Jordan R; Nguyen, Hai Dang; Wang, Xiaohan; Bielinsky, Anja-Katrin

    2014-01-01

    Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.

  7. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  8. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  9. Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells.

    Science.gov (United States)

    Koeppel, Florence; Poindessous, Virginie; Lazar, Vladimir; Raymond, Eric; Sarasin, Alain; Larsen, Annette K

    2004-08-15

    Irofulven is a novel alkylating agent with promising clinical activity, particularly toward ovarian and hormone-refractory prostate cancers. To facilitate additional clinical development, we have aimed to identify biological markers associated with sensitivity to the compound. Fibroblasts derived from patients with xeroderma pigmentosum or Cockayne's syndrome along with a panel of 20 human cancer cell lines (eight different tumor types) were examined to establish the importance of nucleotide excision repair proteins in the sensitivity to irofulven. Human cells deficient in nucleotide excision repair are up to 30-fold more sensitive to the cytotoxic effects of irofulven compared with repair-proficient controls, clearly indicating that nucleotide excision repair plays a crucial role in the sensitivity to the drug. Interestingly, our results show that irofulven-induced lesions are recognized by transcription-coupled repair but not by global genome repair. Another unique feature is the pronounced sensitivity of XPD and XPB helicase-deficient cells to the drug. Comparison of the IC50 values for irofulven, cisplatin, and ecteinascidin 743 with the expression levels of ERCC1, XPD, and XPG genes in different solid tumor cell lines shows no correlation between the expression levels of any of the three nucleotide excision repair proteins and the sensitivity to ecteinascidin 743. In contrast, expression of the XPG endonuclease was correlated with the cytotoxicity for irofulven and, to a lesser degree, for cisplatin. Importantly, XPG expression was also correlated with cellular nucleotide excision repair activity. Increasing evidence indicates that compromised nucleotide excision repair activity is frequent in several solid tumor types. The results presented here suggest that XPG expression in such tumors may be a useful marker to predict their sensitivity to irofulven.

  10. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Rosa Roy

    2012-10-01

    Full Text Available Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues.

  11. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  12. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure.

    Science.gov (United States)

    Jaspers, Nicolaas G J; Raams, Anja; Silengo, Margherita Cirillo; Wijgers, Nils; Niedernhofer, Laura J; Robinson, Andria Rasile; Giglia-Mari, Giuseppina; Hoogstraten, Deborah; Kleijer, Wim J; Hoeijmakers, Jan H J; Vermeulen, Wim

    2007-03-01

    Nucleotide excision repair (NER) is a genome caretaker mechanism responsible for removing helix-distorting DNA lesions, most notably ultraviolet photodimers. Inherited defects in NER result in profound photosensitivity and the cancer-prone syndrome xeroderma pigmentosum (XP) or two progeroid syndromes: Cockayne and trichothiodystrophy syndromes. The heterodimer ERCC1-XPF is one of two endonucleases required for NER. Mutations in XPF are associated with mild XP and rarely with progeria. Mutations in ERCC1 have not been reported. Here, we describe the first case of human inherited ERCC1 deficiency. Patient cells showed moderate hypersensitivity to ultraviolet rays and mitomycin C, yet the clinical features were very severe and, unexpectedly, were compatible with a diagnosis of cerebro-oculo-facio-skeletal syndrome. This discovery represents a novel complementation group of patients with defective NER. Further, the clinical severity, coupled with a relatively mild repair defect, suggests novel functions for ERCC1.

  13. The proline rich domain of p53 is dispensable for MGMT-dependent DNA repair and cell survival following alkylation damage.

    Science.gov (United States)

    Baran, Katherine; Yang, Mao; Dillon, Christopher P; Samson, Leona L; Green, Douglas R

    2017-11-01

    In addition to promoting cell death and senescence, p53 also has important cellular survival functions. A mutant p53, lacking a proline-rich domain (p53ΔP), that is deficient in controlling both cell death and cell cycle arrest, was employed to determine the biological means by which p53 mediates survival upon DNA damage. While p53ΔP and p53-/- cells were equally resistant to many DNA damaging agents, p53ΔP cells showed an exquisite resistance to high doses of the alkylating agent Diazald (N-Methyl-N-(p-tolylsulfonyl)nitrosamide), as compared to cells completely deficient for p53 function. We determined that p53ΔP was capable of transcribing the repair gene, MGMT (O6-methylguanine-DNA methyltransferase) after irradiation or alkylation damage, resulting in DNA repair and cell survival. Consistent with these observations, p53ΔP mice show enhanced survival after IR relative to p53-/- mice. Suppression or deletion of MGMT expression in p53ΔP cells inhibited DNA repair and survival after alkylation damage, whereas MGMT overexpression in p53-deficient cells facilitated DNA repair and conferred survival advantage. This study shows that when cell death and cell cycle arrest pathways are inhibited, p53 can still mediate MGMT-dependent repair, to promote cell survival upon DNA damage.

  14. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  15. Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1(δ/-) mouse.

    Science.gov (United States)

    Spoor, Marcella; Nagtegaal, A Paul; Ridwan, Yanto; Borgesius, Nils Z; van Alphen, Bart; van der Pluijm, Ingrid; Hoeijmakers, Jan H J; Frens, Maarten A; Borst, J Gerard G

    2012-01-01

    Age-related loss of hearing and vision are two very common disabling conditions, but the underlying mechanisms are still poorly understood. Damage by reactive oxygen species and other reactive cellular metabolites, which in turn may damage macromolecules such as DNA, has been implicated in both processes. To investigate whether DNA damage can contribute to age-related hearing and vision loss, we investigated hearing and vision in Ercc1(δ/-) mutant mice, which are deficient in DNA repair of helix-distorting DNA lesions and interstrand DNA crosslinks. Ercc1(δ/-) mice showed a progressive, accelerated increase of hearing level thresholds over time, most likely arising from deteriorating cochlear function. Ercc1(δ/-) mutants also displayed a progressive decrease in contrast sensitivity followed by thinning of the outer nuclear layer of the eyeball. The strong parallels with normal ageing suggest that unrepaired DNA damage can induce age-related decline of the auditory and visual system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Mitochondrial redox signaling enables repair of injured skeletal muscle cells.

    Science.gov (United States)

    Horn, Adam; Van der Meulen, Jack H; Defour, Aurelia; Hogarth, Marshall; Sreetama, Sen Chandra; Reed, Aaron; Scheffer, Luana; Chandel, Navdeep S; Jaiswal, Jyoti K

    2017-09-05

    Strain and physical trauma to mechanically active cells, such as skeletal muscle myofibers, injures their plasma membranes, and mitochondrial function is required for their repair. We found that mitochondrial function was also needed for plasma membrane repair in myoblasts as well as nonmuscle cells, which depended on mitochondrial uptake of calcium through the mitochondrial calcium uniporter (MCU). Calcium uptake transiently increased the mitochondrial production of reactive oxygen species (ROS), which locally activated the guanosine triphosphatase (GTPase) RhoA, triggering F-actin accumulation at the site of injury and facilitating membrane repair. Blocking mitochondrial calcium uptake or ROS production prevented injury-triggered RhoA activation, actin polymerization, and plasma membrane repair. This repair mechanism was shared between myoblasts, nonmuscle cells, and mature skeletal myofibers. Quenching mitochondrial ROS in myofibers during eccentric exercise ex vivo caused increased damage to myofibers, resulting in a greater loss of muscle force. These results suggest a physiological role for mitochondria in plasma membrane repair in injured cells, a role that highlights a beneficial effect of ROS. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells.

    Science.gov (United States)

    Bregman, D B; Halaban, R; van Gool, A J; Henning, K A; Friedberg, E C; Warren, S L

    1996-10-15

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.

  18. Perfluoroalkyl substances and beta cell deficient diabetes.

    Science.gov (United States)

    Conway, Baqiyyah; Innes, Karen E; Long, Dustin

    2016-08-01

    Perfluoroalkyl substances (PFAS) are synthetic hydrocarbons shown to preserve pancreatic islet cell viability and reduce islet cell hypoxia and apoptosis. We investigated the relationship of serum PFAS with diabetes, and whether this varied by diabetes type. 6,460 individuals with and 60,439 without diabetes from the C8 Health Project, were categorized into three groups: type 1 (n=820), type 2 (n=4,291), or uncategorized diabetes (n=1,349, missing data on diabetes type or diabetes based on blood sugar at study entry). Four PFAS were investigated: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononaoic acid (PFNA). PFAS levels were significantly lower in those with diabetes, and lowest in those with type 1 diabetes. In age and sex adjusted analyses, ORs (CI) for type 1, type 2, and uncategorized diabetes compared to no diabetes were 0.59 (0.54-0.64), 0.74 (0.71-0.77), 0.84 (0.78-0.90), respectively for PFHxS; 0.69 (0.65-0.74), 0.87 (0.89-0.91), 0.92 (0.88-0.97), respectively for PFOA; 0.65 (0.61-0.70), 0.86 (0.82-0.90), 0.93 (0.86-1.03), respectively for PFOS; and 0.65 (0.57-0.74), 0.94 (0.88-1.00), 0.95 (0.85-1.06), respectively for PFNA. Further adjustment for eGFR and other covariates did not eliminate these inverse associations. PFAS levels were negatively associated with diabetes. This inverse relationship was strongest for type 1 diabetes, suggesting the relationship with serum PFAS may vary with the severity of islet cell deficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  20. DNA repair mechanisms in dividing and non-dividing cells.

    Science.gov (United States)

    Iyama, Teruaki; Wilson, David M

    2013-08-01

    DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease. Published by Elsevier B.V.

  1. REPARACIÓN DEL ADN: UNA POSIBLE RELACIÓN ENTRE LA DEFICIENCIA DE FOLATO Y LA MUERTE NEURONAL DNA Repair: A Link Between Folate Deficiency and Neuronal Cell Death

    Directory of Open Access Journals (Sweden)

    GONZALO ARBOLEDA

    2007-11-01

    Full Text Available El presente artículo explora el papel que desempeña el folato como conocido metabolito del ciclo de un carbono (OCM, del inglés onecarbon metabolism en la alteración de la integridad de las células nerviosas. Aquí se discute evidencia reciente de la literatura que muestra la reparación del ADN como un proceso relacionado con la apoptosis neuronal inducida por ausencia de folato.This essay explores the role of folate in disruption of neural cell integrity. Here, it is discussed recent evidence which shows DNA reparation as a process related to neuronal apoptosis induced by folate depletion.

  2. DNA mismatch repair deficiency and hereditary syndromes in Latino patients with colorectal cancer.

    Science.gov (United States)

    Ricker, Charité N; Hanna, Diana L; Peng, Cheng; Nguyen, Nathalie T; Stern, Mariana C; Schmit, Stephanie L; Idos, Greg E; Patel, Ravi; Tsai, Steven; Ramirez, Veronica; Lin, Sonia; Shamasunadara, Vinay; Barzi, Afsaneh; Lenz, Heinz-Josef; Figueiredo, Jane C

    2017-10-01

    The landscape of hereditary syndromes and clinicopathologic characteristics among US Latino/Hispanic individuals with colorectal cancer (CRC) remains poorly understood. A total of 265 patients with CRC who were enrolled in the Hispanic Colorectal Cancer Study were included in the current study. Information regarding CRC risk factors was elicited through interviews, and treatment and survival data were abstracted from clinical charts. Tumor studies and germline genetic testing results were collected from medical records or performed using standard molecular methods. The mean age of the patients at the time of diagnosis was 53.7 years (standard deviation, 10.3 years), and 48.3% were female. Overall, 21.2% of patients reported a first-degree or second-degree relative with CRC; 3.4% met Amsterdam I/II criteria. With respect to Bethesda guidelines, 38.5% of patients met at least 1 criterion. Of the 161 individuals who had immunohistochemistry and/or microsatellite instability testing performed, 21 (13.0%) had mismatch repair (MMR)-deficient (dMMR) tumors. dMMR tumors were associated with female sex (61.9%), earlier age at the time of diagnosis (50.4 ± 12.4 years), proximal location (61.9%), and first-degree (23.8%) or second-degree (9.5%) family history of CRC. Among individuals with dMMR tumors, 13 (61.9%) had a germline MMR mutation (MutL homolog 1 [MLH1] in 6 patients; MutS homolog 2 [MSH2] in 4 patients; MutS homolog 6 [MHS6] in 2 patients; and PMS1 homolog 2, mismatch repair system component [PMS2] in 1 patient). The authors identified 2 additional MLH1 mutation carriers by genetic testing who had not received immunohistochemistry/microsatellite instability testing. In total, 5.7% of the entire cohort were confirmed to have Lynch syndrome. In addition, 6 individuals (2.3%) had a polyposis phenotype. The percentage of dMMR tumors noted among Latino individuals (13%) is similar to estimates in non-Hispanic white individuals. In the current study, the majority of

  3. Stem cell-based biological tooth repair and regeneration.

    Science.gov (United States)

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T

    2010-12-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic

  5. Microfluidic guillotine for single-cell wound repair studies

    Science.gov (United States)

    Blauch, Lucas R.; Gai, Ya; Khor, Jian Wei; Sood, Pranidhi; Marshall, Wallace F.; Tang, Sindy K. Y.

    2017-07-01

    Wound repair is a key feature distinguishing living from nonliving matter. Single cells are increasingly recognized to be capable of healing wounds. The lack of reproducible, high-throughput wounding methods has hindered single-cell wound repair studies. This work describes a microfluidic guillotine for bisecting single Stentor coeruleus cells in a continuous-flow manner. Stentor is used as a model due to its robust repair capacity and the ability to perform gene knockdown in a high-throughput manner. Local cutting dynamics reveals two regimes under which cells are bisected, one at low viscous stress where cells are cut with small membrane ruptures and high viability and one at high viscous stress where cells are cut with extended membrane ruptures and decreased viability. A cutting throughput up to 64 cells per minute—more than 200 times faster than current methods—is achieved. The method allows the generation of more than 100 cells in a synchronized stage of their repair process. This capacity, combined with high-throughput gene knockdown in Stentor, enables time-course mechanistic studies impossible with current wounding methods.

  6. Augmented cell death with Bloom syndrome helicase deficiency.

    Science.gov (United States)

    Kaneko, Hideo; Fukao, Toshiyuki; Kasahara, Kimiko; Yamada, Taketo; Kondo, Naomi

    2011-01-01

    Bloom syndrome (BS) is a rare autosomal genetic disorder characterized by lupus-like erythematous telangi-ectasias of the face, sun sensitivity, infertility, stunted growth, upper respiratory infection, and gastrointestinal infections commonly associated with decreased immuno-globulin levels. The syndrome is associated with immuno-deficiency of a generalized type, ranging from mild and essentially asympto-matic to severe. Chromosomal abnormalities are hallmarks of the disorder, and high frequencies of sister chromatid exchanges and quadriradial configurations in lymphocytes and fibroblasts are diagnostic features. BS is caused by mutations in BLM, a member of the RecQ helicase family. We determined whether BLM deficiency has any effects on cell growth and death in BLM-deficient cells and mice. BLM-deficient EB-virus-transformed cell lines from BS patients and embryonic fibroblasts from BLM-/- mice showed slower growth than wild-type cells. BLM-deficient cells showed abnormal p53 protein expression after irradiation. In BLM-/- mice, small body size, reduced number of fetal liver cells and increased cell death were observed. BLM deficiency causes the up-regulation of p53, double-strand break and apoptosis, which are likely observed in irradiated control cells. Slow cell growth and increased cell death may be one of the causes of the small body size associated with BS patients.

  7. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.

    Science.gov (United States)

    Baris, Hagit N; Barnes-Kedar, Inbal; Toledano, Helen; Halpern, Marisa; Hershkovitz, Dov; Lossos, Alexander; Lerer, Israela; Peretz, Tamar; Kariv, Revital; Cohen, Shlomi; Half, Elizabeth E; Magal, Nurit; Drasinover, Valerie; Wimmer, Katharina; Goldberg, Yael; Bercovich, Dani; Levi, Zohar

    2016-03-01

    Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis. © 2015 Wiley Periodicals, Inc.

  8. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    OpenAIRE

    Fedde, K; Horwitz, A L

    1984-01-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded ...

  9. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

    Directory of Open Access Journals (Sweden)

    Bray Clifford M

    2009-06-01

    Full Text Available Abstract Background DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. Results Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs and also double strand breaks (DSBs, implicating AtLIG1 in repair of both these lesions. Conclusion Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.

  10. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme. (ERB)

  11. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  12. ABCB5 is a limbal stem cell gene required for corneal development and repair

    Science.gov (United States)

    Ksander, Bruce R.; Kolovou, Paraskevi E.; Wilson, Brian J.; Saab, Karim R.; Guo, Qin; Ma, Jie; McGuire, Sean P.; Gregory, Meredith S.; Vincent, William J. B.; Perez, Victor L.; Cruz-Guilloty, Fernando; Kao, Winston W. Y.; Call, Mindy K.; Tucker, Budd A.; Zhan, Qian; Murphy, George F.; Lathrop, Kira L.; Alt, Clemens; Mortensen, Luke J.; Lin, Charles P.; Zieske, James D.; Frank, Markus H.; Frank, Natasha Y.

    2014-01-01

    Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs)1–3, and LSC deficiency is a major cause of blindness worldwide4. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts5, a gene allowing for prospective LSC enrichment has not been identified so far5. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5)6,7 marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs2 in mice and p63α-positive LSCs8 in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency. PMID:25030174

  13. Recent achievements in stem cell-mediated myelin repair.

    Science.gov (United States)

    Jadasz, Janusz Joachim; Lubetzki, Catherine; Zalc, Bernard; Stankoff, Bruno; Hartung, Hans-Peter; Küry, Patrick

    2016-06-01

    Following the establishment of a number of successful immunomodulatory treatments for multiple sclerosis, current research focuses on the repair of existing damage. Promotion of regeneration is particularly important for demyelinated areas with degenerated or functionally impaired axons of the central nervous system's white and gray matter. As the protection and generation of new oligodendrocytes is a key to the re-establishment of functional connections, adult oligodendrogenesis and myelin reconstitution processes are of primary interest. Moreover, understanding, supporting and promoting endogenous repair activities such as mediated by resident oligodendroglial precursor or adult neural stem cells are currently thought to be a promising approach toward the development of novel regenerative therapies. This review summarizes recent developments and findings related to pharmacological myelin repair as well as to the modulation/application of stem cells with the aim to restore defective myelin sheaths.

  14. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    Science.gov (United States)

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon-deficient

  15. Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells.

    Science.gov (United States)

    Nikolić, Biljana; Mitić-Ćulafić, Dragana; Vuković-Gačić, Branka; Knežević-Vukčević, Jelena

    2011-09-01

    The aim of this work was to examine the antigenotoxic potential of plant monoterpenes: camphor, eucalyptol and thujone in prokaryotic and eukaryotic cells and to elucidate their effect on DNA repair. We compared the effect of monoterpenes on spontaneous, UV- and 4NQO-induced mutagenesis in Escherichia coli K12 repair proficient, and MMR and NER deficient strains. Positive controls tannic acid and vanillin were included in bacterial tests. We also examined protective effect of monoterpenes against 4NQO-induced genotoxicity in Vero cell line by alkaline comet assay. The results obtained in repair proficient strain indicated antimutagenic potential of monoterpenes against UV- and 4NQO-induced mutagenesis, which was diminished with NER deficiency. Camphor and eucalyptol maintained UV-induced SOS response longer than in controls, while thujone decreased SOS response and reduced general protein synthesis and the growth rate. The three monoterpenes increased spontaneous and UV-induced recombination in recA730 and camphor additionally in recA(+) cells. Incubation of 4NQO-pretreated Vero cells with monoterpenes resulted in significant reduction of tail moment. However, higher concentrations of monoterpenes induced DNA strand breaks. Obtained results indicate that by making a small amount of DNA lesions camphor, eucalyptol and thujone can stimulate error-free DNA repair processes and act as bioantimutagens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  17. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies.

    Science.gov (United States)

    Durandy, Anne; Taubenheim, Nadine; Peron, Sophie; Fischer, Alain

    2007-01-01

    B-cell intrinsic immunoglobulin class switch recombination (Ig-CSR) deficiencies, previously termed hyper-IgM syndromes, are genetically determined conditions characterized by normal or elevated serum IgM levels and an absence or very low levels of IgG, IgA, and IgE. As a function of the molecular mechanism, the defective CSR is variably associated to a defect in the generation of somatic hypermutations (SHMs) in the Ig variable region. The study of Ig-CSR deficiencies contributed to a better delineation of the mechanisms underlying CSR and SHM, the major events of antigen-triggered antibody maturation. Four Ig-CSR deficiency phenotypes have been so far reported: the description of the activation-induced cytidine deaminase (AID) deficiency (Ig-CSR deficiency 1), caused by recessive mutations of AICDA gene, characterized by a defect in CSR and SHM, clearly established the role of AID in the induction of the Ig gene rearrangements underlying CSR and SHM. A CSR-specific function of AID has, however, been detected by the observation of a selective CSR defect caused by mutations affecting the C-terminus of AID. Ig-CSR deficiency 2 is the consequence of uracil-N-glycosylase (UNG) deficiency. Because UNG, a molecule of the base excision repair machinery, removes uracils from DNA and AID deaminates cytosines into uracils, that observation indicates that the AID-UNG pathway directly targets DNA of switch regions from the Ig heavy-chain locus to induce the CSR process. Ig-CSR deficiencies 3 and 4 are characterized by a selective CSR defect resulting from blocks at distinct steps of CSR. A further understanding of the CSR machinery is expected from their molecular definition.

  18. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  19. Induced pluripotent stem cells for post myocardial infarction repair

    OpenAIRE

    Rosa Fernández, Eduardo de la

    2016-01-01

    The aim of this review is to study translational aspects of induced pluripotent stem cell technology in cardiac repair after myocardial infarction. This will be achieved by illustrating the current state of the art of this technology and, furthermore, by evaluating the limitations for clinical traslation.

  20. Repair of defects in photoactive layer of organic solar cells

    NARCIS (Netherlands)

    Oostra, A. Jolt; Blom, Paul W.m.; Michels, Jasper J.

    2015-01-01

    Defects occurring during printing of the photoactive layer in organic solar cells lead to short-circuits due to direct contact between the PEDOT:PSS anode and metallic cathode. We provide a highly effective repair method where the defected zone with bare PEDOT:PSS is treated with aqueous sodium

  1. Cancer Stem Cells: Repair Gone Awry?

    Directory of Open Access Journals (Sweden)

    Fatima Rangwala

    2011-01-01

    Full Text Available Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh, that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors.

  2. Queueing models of potentially lethal damage repair in irradiated cells.

    Science.gov (United States)

    Myasnikova, E M; Rachev, S T; Yakovlev, A Y

    1996-07-01

    Some of the ideas arising in queueing theory are applied to describe the repair mechanisms responsible for recovery of cells from potentially lethal radiation damage. Two alternative versions are presented of a queueing model of damage repair after a single dose of irradiation. The first version represents a linear misrepair model, and the second invokes the idea of spontaneous lesion fixation. They are pieced together in the third model, allowing for both mechanisms. The consistency of the proposed models with published experimental data is tested.

  3. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer.

    Science.gov (United States)

    Ge, Yejing; Gomez, Nicholas C; Adam, Rene C; Nikolova, Maria; Yang, Hanseul; Verma, Akanksha; Lu, Catherine Pei-Ju; Polak, Lisa; Yuan, Shaopeng; Elemento, Olivier; Fuchs, Elaine

    2017-05-04

    Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Activation of Type II Cells into Regenerative Stem Cell Antigen-1+ Cells during Alveolar Repair

    Science.gov (United States)

    Kumar, Varsha Suresh; Zhang, Wei; Rehman, Jalees; Malik, Asrar B.

    2015-01-01

    The alveolar epithelium is composed of two cell types: type I cells comprise 95% of the gas exchange surface area, whereas type II cells secrete surfactant, while retaining the ability to convert into type I cells to induce alveolar repair. Using lineage-tracing analyses in the mouse model of Pseudomonas aeruginosa–induced lung injury, we identified a population of stem cell antigen (Sca)-1–expressing type II cells with progenitor cell properties that mediate alveolar repair. These cells were shown to be distinct from previously reported Sca-1–expressing bronchioalveolar stem cells. Microarray and Wnt reporter studies showed that surfactant protein (Sp)-C+Sca-1+ cells expressed Wnt signaling pathway genes, and inhibiting Wnt/β-catenin signaling prevented the regenerative function of Sp-C+Sca-1+ cells in vitro. Thus, P. aeruginosa–mediated lung injury induces the generation of a Sca-1+ subset of type II cells. The progenitor phenotype of the Sp-C+Sca-1+ cells that mediates alveolar epithelial repair might involve Wnt signaling. PMID:25474582

  5. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane...... repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique......, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested...

  6. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  7. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  8. Regenerative cell imaging in cardiac repair.

    Science.gov (United States)

    Moudgil, Rohit; Dick, Alexander J

    2014-11-01

    Heart disease continues to be a leading cause of death in the Western world. Although strides have been made in prevention and management of coronary artery disease, lost myocardium after an ischemic event remains at the core of the morbidity and the mortality. Poor regenerative capacity of the myocardium has led to the study of cell-based therapies to restore anatomical, functional, and viable myocardium. To that end, stem cells are undifferentiated cells that are self-renewing, clonogenic, and pluripotent and therefore ideal for the restorative job. However, to refine the technique of cell-based therapy, in vivo molecular assessment is imperative to monitor cell survival and their effect on myocardial restoration. Direct imaging of the behaviour of cells after implantation into living subjects can offer great insight into their mechanisms of action, and their therapeutic efficacy. In this article we explore current knowledge of various imaging modalities that have been used to assess in vivo cellular and molecular events after administration of stem cells in injured myocardium. The goal of the article is to provide a comprehensive overview of the literature, highlight various imaging modalities, and suggest some of the key concepts on the horizon in cardiac stem cell imaging. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Mismatch repair-deficient crypt foci in Lynch syndrome--molecular alterations and association with clinical parameters.

    Directory of Open Access Journals (Sweden)

    Laura Staffa

    Full Text Available Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR-DCF have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients was significantly associated with patients' age, but not with patients' gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12. Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1 with 33%, followed by AIM2 (17% and BAX (10%. Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients' age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers.

  10. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    Science.gov (United States)

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  11. Defects in Base Excision Repair Sensitize Cells to Manganese in S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Adrienne P. Stephenson

    2013-01-01

    Full Text Available Manganese (Mn is essential for normal physiologic functioning; therefore, deficiencies and excess intake of manganese can result in disease. In humans, prolonged exposure to manganese causes neurotoxicity characterized by Parkinson-like symptoms. Mn2+ has been shown to mediate DNA damage possibly through the generation of reactive oxygen species. In a recent publication, we showed that Mn induced oxidative DNA damage and caused lesions in thymines. This study further investigates the mechanisms by which cells process Mn2+-mediated DNA damage using the yeast S. cerevisiae. The strains most sensitive to Mn2+ were those defective in base excision repair, glutathione synthesis, and superoxide dismutase mutants. Mn2+ caused a dose-dependent increase in the accumulation of mutations using the CAN1 and lys2-10A mutator assays. The spectrum of CAN1 mutants indicates that exposure to Mn results in accumulation of base substitutions and frameshift mutations. The sensitivity of cells to Mn2+ as well as its mutagenic effect was reduced by N-acetylcysteine, glutathione, and Mg2+. These data suggest that Mn2+ causes oxidative DNA damage that requires base excision repair for processing and that Mn interferes with polymerase fidelity. The status of base excision repair may provide a biomarker for the sensitivity of individuals to manganese.

  12. Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, T.; Wood, R.D. (Clare Hall Labs., South Mimms (England)); Grossman, L.; Hansson, J. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-01-11

    A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome performed damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, D, and G) are deficient in DNA repair synthesis. When damaged plasmid DNA was pretreated with purified Escherichia coli UvrABC proteins, xeroderma pigmentosum cell extracts were able to carry out DNA repair synthesis. The ability of E. coli UvrABC proteins to complement xeroderma pigmentosum cell extracts indicates that the extracts are deficient in incision, but can carry out later steps of repair. Thus the in vitro system provides results that are in agreement with the incision defect found from studies of xeroderma pigmentosum cells.

  13. Selenium compounds activate ATM-dependent DNA damage responses via the mismatch repair protein hMLH1 in colorectal cancer cells

    Science.gov (United States)

    Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR) process. Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells ...

  14. Stem Cells from Deciduous Tooth Repair Mandibular Defect in Swine

    Science.gov (United States)

    Zheng, Y.; Liu, Y.; Zhang, C.M.; Zhang, H.Y.; Li, W.H.; Shi, S.; Le, A.D.; Wang, S.L.

    2009-01-01

    Stem cells from human exfoliated deciduous teeth have been identified as a new post-natal stem cell population with multipotential differentiation capabilities, including regeneration of mineralized tissues in vivo. To examine the efficacy of utilizing these stem cells in regenerating orofacial bone defects, we isolated stem cells from miniature pig deciduous teeth and engrafted the critical-size bone defects generated in swine mandible models. Our results indicated that stem cells from miniature pig deciduous teeth, an autologous and easily accessible stem cell source, were able to engraft and regenerate bone to repair critical-size mandibular defects at 6 months post-surgical reconstruction. This pre-clinical study in a large-animal model, specifically swine, allows for testing of a stem cells/scaffold construct in the restoration of orofacial skeletal defects and provides rapid translation of stem-cell-based therapy in orofacial reconstruction in human clinical trials. PMID:19329459

  15. Stem cells from deciduous tooth repair mandibular defect in swine.

    Science.gov (United States)

    Zheng, Y; Liu, Y; Zhang, C M; Zhang, H Y; Li, W H; Shi, S; Le, A D; Wang, S L

    2009-03-01

    Stem cells from human exfoliated deciduous teeth have been identified as a new post-natal stem cell population with multipotential differentiation capabilities, including regeneration of mineralized tissues in vivo. To examine the efficacy of utilizing these stem cells in regenerating orofacial bone defects, we isolated stem cells from miniature pig deciduous teeth and engrafted the critical-size bone defects generated in swine mandible models. Our results indicated that stem cells from miniature pig deciduous teeth, an autologous and easily accessible stem cell source, were able to engraft and regenerate bone to repair critical-size mandibular defects at 6 months post-surgical reconstruction. This pre-clinical study in a large-animal model, specifically swine, allows for testing of a stem cells/scaffold construct in the restoration of orofacial skeletal defects and provides rapid translation of stem-cell-based therapy in orofacial reconstruction in human clinical trials.

  16. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling.

    Science.gov (United States)

    McGonigle, Sharon; Chen, Zhihong; Wu, Jiayi; Chang, Paul; Kolber-Simonds, Donna; Ackermann, Karen; Twine, Natalie C; Shie, Jue-Lon; Miu, Jingzang Tao; Huang, Kuan-Chun; Moniz, George A; Nomoto, Kenichi

    2015-12-01

    Inhibition of Poly(ADP-ribose) Polymerase1 (PARP1) impairs DNA damage repair, and early generation PARP1/2 inhibitors (olaparib, niraparib, etc.) have demonstrated clinical proof of concept for cancer treatment. Here, we describe the development of the novel PARP inhibitor E7449, a potent PARP1/2 inhibitor that also inhibits PARP5a/5b, otherwise known as tankyrase1 and 2 (TNKS1 and 2), important regulators of canonical Wnt/β-catenin signaling. E7449 inhibits PARP enzymatic activity and additionally traps PARP1 onto damaged DNA; a mechanism previously shown to augment cytotoxicity. Cells deficient in DNA repair pathways beyond homologous recombination were sensitive to E7449 treatment. Chemotherapy was potentiated by E7449 and single agent had significant antitumor activity in BRCA-deficient xenografts. Additionally, E7449 inhibited Wnt/β-catenin signaling in colon cancer cell lines, likely through TNKS inhibition. Consistent with this possibility, E7449 stabilized axin and TNKS proteins resulting in β-catenin de-stabilization and significantly altered expression of Wnt target genes. Notably, hair growth mediated by Wnt signaling was inhibited by E7449. A pharmacodynamic effect of E7449 on Wnt target genes was observed in tumors, although E7449 lacked single agent antitumor activity in vivo, a finding typical for selective TNKS inhibitors. E7449 antitumor activity was increased through combination with MEK inhibition. Particularly noteworthy was the lack of toxicity, most significantly the lack of intestinal toxicity reported for other TNKS inhibitors. E7449 represents a novel dual PARP1/2 and TNKS1/2 inhibitor which has the advantage of targeting Wnt/β-catenin signaling addicted tumors. E7449 is currently in early clinical development.

  17. DNA repair of cancer stem cells

    National Research Council Canada - National Science Library

    Mathews, Lesley A; Cabarcas, Stephanie M; Hurt, Elaine M

    2013-01-01

    ... leukemia by John E. Dick from the University of Toronto. The heterogeneity of human leukemia and the presence of stem cells in cancer was further translated into solid tumors by Al-Hajj et al. when they published a provocative paper in Proceedings of the National Academy of Sciences discussing the ability to distinguish tumorigenic (tumor-initi...

  18. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  19. Defective repair of 5-hydroxy-2'-deoxycytidine in Cockayne syndrome cells and its complementation by Escherichia coli formamidopyrimidine DNA glycosylase and endonuclease III.

    Science.gov (United States)

    Foresta, Mara; Ropolo, Monica; Degan, Paolo; Pettinati, Ilaria; Kow, Yoke W; Damonte, Gianluca; Poggi, Alessandro; Frosina, Guido

    2010-03-01

    Repair of the oxidized purine 8-oxo-7,8-dihydro-2'-deoxyguanosine is inefficient in cells belonging to both complementation groups A and B of Cockayne syndrome (CS), a developmental and neurological disorder characterized by defective transcription-coupled repair. We show here that both CS-A and CS-B cells are also defective in the repair of 5-hydroxy-2'-deoxycytidine (5-OHdC), an oxidized pyrimidine with cytotoxic and mutagenic properties. The defect in the repair of oxidatively damaged DNA in CS cells thus extends to oxidized pyrimidines, indicating a general flaw in the repair of oxidized lesions in this syndrome. The defect could not be reproduced in in vitro repair experiments on oligonucleotide substrates, suggesting a role for both CS-A and CS-B proteins in chromatin remodeling during 5-OHdC repair. Expression of Escherichia coli formamidopyrimidine DNA glycosylase (FPG) or endonuclease III complemented the 5-OHdC repair deficiency. Hence, the expression of a single enzyme, FPG from E. coli, stably corrects the delayed removal of both oxidized purines and oxidized pyrimidines in CS cells. (c) 2009 Elsevier Inc. All rights reserved.

  20. Kidney repair and stem cells: a complex and controversial process.

    Science.gov (United States)

    Yeagy, Brian A; Cherqui, Stephanie

    2011-09-01

    Over the last decade, stem cells have been the topic of much debate and investigation for their regenerative potential in the case of renal injury. This review focuses on bone marrow stem cells (BMSC) for renal repair and the potential origins of the controversial results between studies. Some authors have shown that BMSC can differentiate into renal cells and reverse renal dysfunction while others obtained contradictory results. One significant variation between these studies is the choice of BMSC used. According to the literature and our own experience, unfractionated bone marrow cells and hematopoietic stem cells are able to lead to long-term cell tissue engraftment and repair, whereas mesenchymal stem cells have a short-term paracrine effect. Detection of the bone-marrow-derived cells is also an important source of error. However, the major difference between studies is the model of kidney injury used. Two categories of models have to be distinguished: acute and chronic kidney disease. However, variation within these categories also exists. The outcomes of various strategies for BMSC transplantation after injury to the kidney must be compared within a single model and cannot be transposed from one model to another.

  1. Dental stem cells for tooth regeneration and repair.

    Science.gov (United States)

    Mantesso, Andrea; Sharpe, Paul

    2009-09-01

    Mesenchymal stem cells (MSCs) resident in bone marrow are one of the most studied and clinically important populations of adult stem cells. Cells with, similar properties to these MSCs have been described in several different tooth tissues and the potential ease with which these dental MSCs could be obtained from patients has prompted great interest in these cells as a source of MSCs for cell-based therapeutics. In this review we address the current state of knowledge regarding these cells, their properties, origins, locations, functions and potential uses in tooth tissue engineering and repair. We discuss some of the key controversies and outstanding issues, not least of which whether dental stem cells actually exist.

  2. Mesenchymal stem cell-derived extracellular vesicles for renal repair

    Science.gov (United States)

    Nargesi, Arash Aghajani; Lerman, Lilach O.; Eirin, Alfonso

    2017-01-01

    Transplantation of autologous mesenchymal stem cells (MSCs) has been shown to attenuate renal injury and dysfunction in several animal models, and its efficacy is currently being tested in clinical trials for patients with renal disease. Accumulating evidence indicates that MSCs release extracellular vesicles (EVs) that deliver genes, microRNAs and proteins to recipient cells, acting as mediators of MSC paracrine actions. In this context, it is critical to characterize the MSC-derived EV cargo to elucidate their potential contribution to renal repair. In recent years, researchers have performed high-throughput sequencing and proteomic analysis to detect and identify genes, microRNAs, and proteins enriched in MSC-derived EVs. The present review summarizes the current knowledge of the MSC-derived EV secretome to shed light into the mechanisms mediating MSC renal repair, and discusses preclinical and clinical studies testing the efficacy of MSC-derived EVs for treating renal disease. PMID:28403795

  3. The role of ATM in the deficiency in nonhomologous end-joining near telomeres in a human cancer cell line.

    Directory of Open Access Journals (Sweden)

    Keiko Muraki

    2013-03-01

    Full Text Available Telomeres distinguish chromosome ends from double-strand breaks (DSBs and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.

  4. Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines.

    Science.gov (United States)

    Bourton, Emma C; Plowman, Piers N; Zahir, Sheba Adam; Senguloglu, Gonul Ulus; Serrai, Hiba; Bottley, Graham; Parris, Christopher N

    2012-02-01

    The measurement of γ-H2AX foci induction in cells provides a sensitive and reliable method for the quantitation of DNA damage responses in a variety of cell types. Accurate and rapid methods to conduct such observations are desirable. In this study, we have employed the novel technique of multispectral imaging flow cytometry to compare the induction and repair of γ-H2AX foci in three human cell types with different capacities for the repair of DNA double strand breaks (DSB). A repair normal fibroblast cell line MRC5-SV1, a DSB repair defective ataxia telangiectasia (AT5BIVA) cell line, and a DNA-PKcs deficient cell line XP14BRneo17 were exposed to 2 Gy gamma radiation from a (60)Cobalt source. Thirty minutes following exposure, we observed a dramatic induction of foci in the nuclei of these cells. After 24 hrs, there was a predictable reduction on the number of foci in the MRC5-SV1 cells, consistent with the repair of DNA DSB. In the AT5BIVA cells, persistence of the foci over a 24-hr period was due to the failure in the repair of DNA DSB. However, in the DNA-PKcs defective cells (XP14BRneo17), we observed an intermediate retention of foci in the nuclei indicative of partial repair of DNA DSB. In summary, the application of imaging flow cytometry has permitted an evaluation of foci in a large number of cells (20,000) for each cell line at each time point. This provides a novel method to determine differences in repair kinetics between different cell types. We propose that imaging flow cytometry provides an alternative platform for accurate automated high through-put analysis of foci induction in a variety of cell types. Copyright © 2011 International Society for Advancement of Cytometry.

  5. DNA repair deficiency as a susceptibility marker for spontaneous lymphoma in golden retriever dogs: a case-control study.

    Directory of Open Access Journals (Sweden)

    Douglas H Thamm

    Full Text Available There is accumulating evidence that an individual's inability to accurately repair DNA damage in a timely fashion may in part dictate a predisposition to cancer. Dogs spontaneously develop lymphoproliferative diseases such as lymphoma, with the golden retriever (GR breed being at especially high risk. Mechanisms underlying such breed susceptibility are largely unknown; however, studies of heritable cancer predisposition in dogs may be much more straightforward than similar studies in humans, owing to a high degree of inbreeding and more limited genetic heterogeneity. Here, we conducted a pilot study with 21 GR with lymphoma, 20 age-matched healthy GR and 20 age-matched healthy mixed-breed dogs (MBD to evaluate DNA repair capability following exposure to either ionizing radiation (IR or the chemical mutagen bleomycin. Inter-individual variation in DNA repair capacity was evaluated in stimulated canine lymphoctyes exposed in vitro utilizing the G2 chromosomal radiosensitivity assay to quantify clastogen-induced chromatid-type aberrations (gaps and breaks. Golden retrievers with lymphoma demonstrated elevated sensitivity to induction of chromosome damage following either challenge compared to either healthy GR or MBD at multiple doses and time points. Using the 75(th percentile of chromatid breaks per 1,000 chromosomes in the MBD population at 4 hours post 1.0 Gy IR exposure as a benchmark to compare cases and controls, GR with lymphoma were more likely than healthy GR to be classified as "sensitive" (odds ratio = 21.2, 95% confidence interval 2.3-195.8. Furthermore, our preliminary findings imply individual (rather than breed susceptibility, and suggest that deficiencies in heritable factors related to DNA repair capabilities may be involved in the development of canine lymphoma. These studies set the stage for larger confirmatory studies, as well as candidate-based approaches to probe specific genetic susceptibility factors.

  6. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    Science.gov (United States)

    Fedde, K; Horwitz, A L

    1984-05-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.

  7. Synaptic proteome changes in a DNA repair deficient Ercc1 mouse model of accelerated aging

    NARCIS (Netherlands)

    M.J. Végh (Marlene); M.C. de Waard (Monique); I. van der Pluijm (Ingrid); Y. Ridwan (Yanto); M.J.M. Sassen (Marion J.); P. van Nierop (Pim); R.C. van der Schors (Roel); K.W. Li (Ka Wan); J.H.J. Hoeijmakers (Jan); A.B. Smit (August); R.E. van Kesteren (Ronald)

    2012-01-01

    textabstractCognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of

  8. Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of accelerated aging

    NARCIS (Netherlands)

    Vegh, M.J.; de Waard, M.C.; van der Pluijm, I.; Ridwan, Y; Sassen, M.J.M.; van Nierop, P.; van der Schors, R.C.; Li, K.W.; Hoeijmakers, J.H.J.; Smit, A.B.; van Kesteren, R.E.

    2012-01-01

    Cognitive decline is one of the earliest hallmarks of both normal and pathological brain aging. Here we used Ercc1 mutant mice, which are impaired in multiple DNA repair systems and consequently show accelerated aging and progressive memory deficits, to identify changes in the levels of hippocampal

  9. Folate and Colorectal Cancer in Rodents: A Model of DNA Repair Deficiency

    Directory of Open Access Journals (Sweden)

    Rita Rosati

    2012-01-01

    Full Text Available Fortification of grains has resulted in a positive public health outcome vis-a-vis reduced incidence of neural tube defects. Whether folate has a correspondingly beneficial effect on other disease outcomes is less clear. A role for dietary folate in the prevention of colorectal cancer has been established through epidemiological data. Experimental data aiming to further elucidate this relationship has been somewhat equivocal. Studies report that folate depletion increases DNA damage, mutagenesis, and chromosomal instability, all suggesting inhibited DNA repair. While these data connecting folate depletion and inhibition of DNA repair are convincing, we also present data demonstrating that genetic inhibition of DNA repair is protective in the development of preneoplastic colon lesions, both when folate is depleted and when it is not. The purpose of this paper is to (1 give an overview of the data demonstrating a DNA repair defect in response to folate depletion, and (2 critically compare and contrast the experimental designs utilized in folate/colorectal cancer research and the corresponding impact on tissue folate status and critical colorectal cancer endpoints. Our analysis suggests that there is still an important need for a comprehensive evaluation of the impact of differential dietary prescriptions on blood and tissue folate status.

  10. Faulty DNA-polymerase {delta}/{epsilon}-mediated excision-repair in response to gamma-radiation or ultraviolet-light in P53-deficient fibroblast strains from affected members of a cancer-prone family with Li-Fraumeni syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mirzayans, R.; Enns, L.; Dietrich, K.; Barley, R.D.C.; Paterson, M.C. [Alberta Univ., Edmonton, AB (Canada). Cross Cancer Inst.]|[Alberta Univ., Edmonton, AB (Canada). Dept. of Oncology]|[Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Science

    1996-04-01

    Dermal fibroblast strains cultured from affected members of a cancer-prone family with Li-Fraumeni syndrome (LFS) harbor a point mutation in one allele of the p53 tumor suppressor gene, resulting in loss of normal p53-deficient strains to carry out the long-patch mode of excision repair, mediated by DNA polymerases delta and epsilon, after exposure to Co-60 gamma radiation or far ultraviolet (UV) (chiefly 254 mm) light. Repair was monitored by incubation of the irradiated cultures in the presence of aphidicolin (ape) or 1-beta-D-arabinofuranosylcytosine (araC), each a specific inhibitor of long-patch repair, followed by measurement of drug-induced DNA strand breaks (reflecting non-ligated strand incision events) by alkaline surcrose velocity sedimentation. The LFS strains displayed deficient repair capacity in response to both gamma rays and UV light. The repair anomaly in UV-irradiated LFS cultures was manifested not only in the overall genome, but also in the transcriptionally active, preferentially repaired c-myc gene. Using autoradiography we also assessed unscheduled DNA synthesis (UDS) after UV irradiation and found this conventional measure of repair replication to be deficient in LFS strains. Moreover, both ape and araC decreased the level of UV-induced UDS by similar to 75% in normal cells, but each had only a marginal effect on LFS cells. We further demonstrated that the LFS strains are impaired in the recovery of both RNA and replicative DNA syntheses after UV treatment, two molecular anomalies of the DNA repair deficiency disorders xeroderma pigmentosum and Cockayne`s syndrome. Together these results imply a critical role for wild-type p53 protein in DNA polymerase delta/epsilon-mediated excision repair, both the mechanism operating on the entire genome and that acting on expressed genes. (Author).

  11. Deficient natural killer cell function in preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  12. Radiation damage and repair in cells and cell components. Progress report, 1978-1979

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.; Pollard, E.C.

    1979-01-01

    Special work during the year concentrated on induced repair of cellular radiation damage in a number of strains of Escherchia coli. Ultraviolet and x-radiation are considered for induction of cell damage. (PCS)

  13. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  14. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  15. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy.

    Science.gov (United States)

    Van Ry, Pam M; Minogue, Priscilla; Hodges, Bradley L; Burkin, Dean J

    2014-01-15

    Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a severe and fatal muscle-wasting disease with no cure. MDC1A patients and the dy(W-/-) mouse model exhibit severe muscle weakness, demyelinating neuropathy, failed muscle regeneration and premature death. We have recently shown that laminin-111, a form of laminin found in embryonic skeletal muscle, can substitute for the loss of laminin-211/221 and prevent muscle disease progression in the dy(W-/-) mouse model. What is unclear from these studies is whether laminin-111 can restore failed regeneration to laminin-α2-deficient muscle. To investigate the potential of laminin-111 protein therapy to improve muscle regeneration, laminin-111 or phosphate-buffered saline-treated laminin-α2-deficient muscle was damaged with cardiotoxin and muscle regeneration quantified. Our results show laminin-111 treatment promoted an increase in myofiber size and number, and an increased expression of α7β1 integrin, Pax7, myogenin and embryonic myosin heavy chain, indicating a restoration of the muscle regenerative program. Together, our results show laminin-111 restores muscle regeneration to laminin-α2-deficient muscle and further supports laminin-111 protein as a therapy for the treatment of MDC1A.

  16. Hydrops fetalis associated with red cell pyruvate kinase deficiency.

    Science.gov (United States)

    Hennekam, R C; Beemer, F A; Cats, B P; Jansen, G; Staal, G E

    1990-01-01

    A hydrops fetalis and multicystic encephalomalacia were diagnosed in a neonate who was one of twins. The co-twin had died 5 weeks prior to delivery. The most likely explantation for both hydrops and multicystic encephalomalacia was fetal anemia caused by a red cell pyruvate kinase deficiency, and aggravated by an intrauterine disseminated intravascular coagulation.

  17. Stem Cells in Tooth Development, Growth, Repair, and Regeneration.

    Science.gov (United States)

    Yu, Tian; Volponi, Ana Angelova; Babb, Rebecca; An, Zhengwen; Sharpe, Paul T

    2015-01-01

    Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses. © 2015 Elsevier Inc. All rights reserved.

  18. miR-1290 Is a Biomarker in DNA-Mismatch-Repair-Deficient Colon Cancer and Promotes Resistance to 5-Fluorouracil by Directly Targeting hMSH2

    Directory of Open Access Journals (Sweden)

    Ling Ye

    2017-06-01

    Full Text Available 5-Fluorouracil (5FU-based adjuvant therapy is the first-line therapy for treating stage II and III colon cancer after surgery. However, its therapeutic efficacy is limited because of chemoresistance, especially in deficient mismatch repair (dMMR colon cancer. Here, we first used laser capture microdissection to obtain purified cells from four dMMR and four proficient mismatch repair (pMMR colon cancer tissues. Second, microRNA (miRNA microarray chips were used to identify miRNAs that are differentially expressed between these two classes of tumors. Third, we analyzed their differential expression by qRT-PCR in a panel of 5-FU-resistant colon cancer cell lines. We identified that miR-1290 was one of the most upregulated miRNAs in both dMMR colon cancer tissues and 5-FU-resistant cells. We also found that miR-1290 was positively correlated with dMMR status and predicted poor prognosis in stage II and III colon cancer patients who received 5-FU-based chemotherapy. Furthermore, we demonstrated that inhibition of the expression of miR-1290 enhanced sensitivity to 5-FU treatment in vitro and in tumor xenografts in vivo by direct targeting hMSH2. Our study indicates that miR-1290 may become a promising biomarker of dMMR colon cancer and predicts the prognosis of stage II and III patients who receive 5-FU-based adjuvant therapy.

  19. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  20. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and si......The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response......RNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts...

  1. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    Science.gov (United States)

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  2. Divergent impact of Toll-like receptor 2 deficiency on repair mechanisms in healthy muscle versus Duchenne muscular dystrophy.

    Science.gov (United States)

    Mojumdar, Kamalika; Giordano, Christian; Lemaire, Christian; Liang, Feng; Divangahi, Maziar; Qureshi, Salman T; Petrof, Basil J

    2016-05-01

    Injury to skeletal muscle, whether acute or chronic, triggers macrophage-mediated innate immunity in a manner which can be either beneficial or harmful for subsequent repair. Endogenous ligands for Toll-like receptor 2 (TLR2) are released by damaged tissues and might play an important role in activating the innate immune system following muscle injury. To test this hypothesis, we compared macrophage behaviour and muscle repair mechanisms in mice lacking TLR2 under conditions of either acute (cardiotoxin-induced) or chronic (mdx mouse genetic model of Duchenne muscular dystrophy; DMD) muscle damage. In previously healthy muscle subjected to acute damage, TLR2 deficiency reduced macrophage numbers in the muscle post-injury but did not alter the expression pattern of the prototypical macrophage polarization markers iNOS and CD206. In addition, there was abnormal persistence of necrotic fibres and impaired regeneration in TLR2-/- muscles after acute injury. In contrast, TLR2 ablation in chronically diseased muscles of mdx mice not only resulted in significantly reduced macrophage numbers but additionally modified their phenotype by shifting from inflammatory (iNOS(pos) CD206(neg) ) to more anti-inflammatory (iNOS(neg) CD206(pos) ) characteristics. This decrease in macrophage-mediated inflammation was associated with ameliorated muscle histopathology and improved force-generating capacity of the dystrophic muscle. Our results suggest that the role of TLR2 in macrophage function and skeletal muscle repair depends greatly upon the muscle injury context, and raise the possibility that inhibition of TLR2 could serve as a useful therapeutic measure in DMD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Replication fork stability confers chemoresistance in BRCA-deficient cells

    DEFF Research Database (Denmark)

    Chaudhuri, Arnab Ray; Callen, Elsa; Ding, Xia

    2016-01-01

    nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARP inhibitors and cisplatin resistance is associated with replication fork protection in Brca2-deficient tumour cells that do not develop Brca2 reversion mutations....... Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of replication fork protection, highlighting the complexities by which tumour cells evade chemotherapeutic interventions and acquire drug resistance....

  4. B-cell lymphoma, thiamine deficiency, and lactic acidosis.

    Science.gov (United States)

    Masood, Umair; Sharma, Anuj; Nijjar, Sonny; Sitaraman, Karthikeyan

    2017-01-01

    Type B lactic acidosis is found in the absence of tissue hypoperfusion, can be associated with malignancies, and can be caused by thiamine deficiency. We present a patient who presented with an abdominal mass that biopsy disclosed to be a diffuse large B-cell lymphoma. Because thiamine deficiency is a rare cause of lactic acidosis in cancer, the patient was treated with intravenous thiamine with rapid normalization of the lactic acid level. The level prior to treatment was low. The case emphasizes a rare cause of lactic acidosis.

  5. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  6. Membrane repair of human skeletal muscle cells requires Annexin-A5.

    Science.gov (United States)

    Carmeille, Romain; Bouvet, Flora; Tan, Sisareuth; Croissant, Coralie; Gounou, Céline; Mamchaoui, Kamel; Mouly, Vincent; Brisson, Alain R; Bouter, Anthony

    2016-09-01

    Defect in membrane repair contributes to the development of limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. In healthy skeletal muscle, unraveling membrane repair mechanisms requires to establish an exhaustive list of the components of the resealing machinery. Here we show that human myotubes rendered deficient for Annexin-A5 (AnxA5) suffer from a severe defect in membrane resealing. This defect is rescued by the addition of recombinant AnxA5 while an AnxA5 mutant, which is unable to form 2D protein arrays, has no effect. Using correlative light and electron microscopy, we show that AnxA5 binds to the edges of the torn membrane, as early as a few seconds after sarcolemma injury, where it probably self-assembles into 2D arrays. In addition, we observed that membrane resealing is associated with the presence of a cluster of lipid vesicles at the wounded site. AnxA5 is present at the surface of these vesicles and may thus participate in plugging the cell membrane disruption. Finally, we show that AnxA5 behaves similarly in myotubes from a muscle cell line established from a patient suffering from LGMD2B, a myopathy due to dysferlin mutations, which indicates that trafficking of AnxA5 during sarcolemma damage is independent of the presence of dysferlin. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Role of Base Excision Repair (BER) in Transcription-associated Mutagenesis of Nutritionally Stressed Nongrowing Bacillus subtilis Cell Subpopulations.

    Science.gov (United States)

    Ambriz-Aviña, Verónica; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2016-11-01

    Compelling evidence points to transcriptional processes as important factors contributing to stationary-phase associated mutagenesis. However, it has not been documented whether or not base excision repair mechanisms play a role in modulating mutagenesis under conditions of transcriptional derepression. Here, we report on a flow cytometry-based methodology that employs a fluorescent reporter system to measure at single-cell level, the occurrence of transcription-associated mutations in nutritionally stressed B. subtilis cultures. Using this approach, we demonstrate that (i) high levels of transcription correlates with augmented mutation frequency, and (ii) mutation frequency is enhanced in nongrowing population cells deficient for deaminated (Ung, YwqL) and oxidized guanine (GO) excision repair, strongly suggesting that accumulation of spontaneous DNA lesions enhance transcription-associated mutagenesis.

  8. Strategy in clinical practice for classification of unselected colorectal tumours based on mismatch repair deficiency

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Lindebjerg, J; Byriel, L

    2007-01-01

    nonpolyposis colon cancer or Lynch syndrome), but most are epigenetic changes of sporadic origin. The aim of this study was to define a robust and inexpensive strategy for such classification in clinical practice. Method Tumours and blood samples from 262 successive patients with colorectal adenocarcinomas...... or BRAF mutation analysis to distinguish sporadic patients from likely hereditary ones. MMR deficient patients with sporadic disease can be reassured of the better prognosis and the likely hereditary cases should receive genetic counselling....

  9. Anaesthesia management in a patient with a severe biotinidase deficiency for congenital scoliosis repair

    Directory of Open Access Journals (Sweden)

    Ebrahim Almasri

    2016-01-01

    Full Text Available A 17 year old female patient with a biotinidase enzyme deficiency, cerebral palsy, aphamis, generalized hyperreflexia and spasticity, epilepsy and mental retardation came for the severe kyphoscoliotic deformity correction. Biotinidase enzyme deficiency is an autosomal recessive disorder with incidence of 1:60,000 neonatal birth. Treatment with biotin results in a rapid biochemical and clinical improvement. This enzyme deficiency involves neurological, neuromuscular, respiratory, dermatological and immunological problems. If untreated it can lead to convulsions, coma and death. Cobb’s angle that measures the curvature of scoliosis, determined by measurements made on X rays in this case was 120° with clinical presentation of recurrent respiratory tract infection, inability to maintain sagittal posture, inability to eat or feed and difficulty in nursing care. Anaesthetic management in these patients should focus primarily on associated comorbidities and congenital anomalies affecting the course of the perioperative management and thereafter comprehensive preoperative strategies must be executed to enhance the safety profile during the surgery.

  10. Development and function of CD94-deficient natural killer cells.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    Full Text Available The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.

  11. Stem Cells for Cardiac Repair: Status, Mechanisms, and New Strategies

    Directory of Open Access Journals (Sweden)

    Ren Mingliang

    2011-01-01

    Full Text Available Faced with the end stage of heart disease, the current treatments only slow worsening of heart failure. Stem cells have the potential of self-renewal and differentiation. It is expected to replace and repair damaged myocardium. But many clinical trials have shown that the stem cell therapy of heart failure is modest or not effective. The possible causes for the limited effects of stem cell in curing heart failure are the stem cells which have been transplanted into the ischemic heart muscle may suffer low survival rate, affected by inflammatory molecules, proapoptotic factor, and lack of nutrients and oxygen, and then the stem cells which home and have been completely transplanted to the site of myocardial infarction become very small. Therefore, through preconditioning of stem cells and appropriate choice of genes for mesenchymal stem cell modification to improve the survival rate of stem cells, ability in homing and promoting angiogenesis may become the newly effective strategies for the application of stem cells therapy in heart failure.

  12. [Succinate dehydrogenase (SDH)-deficient renal cell carcinoma].

    Science.gov (United States)

    Agaimy, A

    2016-03-01

    Succinate dehydrogenase (SDH) represents a type II mitochondrial complex related to the respiratory chain and Krebs cycle. The complex is composed of four major subunits, SDHA, SDHB, SDHC and SDHD. The oncogenic role of this enzyme complex has only recently been recognized and the complex is currently considered an important oncogenic signaling pathway with tumor suppressor properties. In addition to the familial paraganglioma syndromes (types 1-5) as prototypical SDH-related diseases, many other tumors have been defined as SDH-deficient, in particular a subset of gastrointestinal stromal tumors (GIST), rare hypophyseal adenomas, a subset of pancreatic neuroendocrine neoplasms (recently added) and a variety of other tumor entities, the latter mainly described as rare case reports. As a central core subunit responsible for the integrity of the SDH complex, the expression of SDHB is lost in all SDH-deficient neoplasms irrespective of the specific SDH subunit affected by a genetic mutation in addition to concurrent loss of the subunit specifically affected by genetic alteration. Accordingly, all SDH-deficient neoplasms are by definition SDHB-deficient. The SDH-deficient renal cell carcinoma (RCC) has only recently been well-characterized and it is included as a specific subtype of RCC in the new World Health Organization (WHO) classification published in 2016. In this review, the major clinicopathological, immunohistochemical and genetic features of this rare disease entity are presented and discussed in the context of the broad differential diagnosis.

  13. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  14. Progress in the study of stem cell transplantation for the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-08-01

    Full Text Available Spinal cord injury is a critical medical emergency that severely jeopardizes human health. Such injuries can cause lifelong paralysis and lead to various complications, including death, and there are often tremendous economic and emotional burdens placed on the society and family. Therefore, the study of spinal cord injury repair has important significance. The use of stem cell transplantation to repair spinal cord injury has been the focus and cause of difficulty in studies of spinal cord injury repair in recent years. However, there are numerous types of stem cells, diverse cell transplantation methods and different injury models that often cause confusion for investigators. The goal of this paper is to review the studies of spinal cord injury repair with various stem cells and summarize the bottleneck of stem cell transplantation for spinal cord injury repair to reveal the future direction of stem cell transplantation studies for spinal cord injury repair.

  15. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... wound healing. Allogeneic hematopoietic stem-cell transplantation offers the possibility of curative therapy, and with patient numbers at any individual center being limited, we surveyed the transplant experience at 14 centers worldwide. METHODS: The course of 36 children with a confirmed diagnosis...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International...

  16. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  17. Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair.

    Science.gov (United States)

    Sepantafar, Mohammadmajid; Maheronnaghsh, Reihan; Mohammadi, Hossein; Rajabi-Zeleti, Sareh; Annabi, Nasim; Aghdami, Nasser; Baharvand, Hossein

    2016-01-01

    One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Stem cells and cardiac repair: a critical analysis.

    Science.gov (United States)

    Dinsmore, Jonathan H; Dib, Nabil

    2008-03-01

    Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which

  19. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  20. Stem Cells for Temporomandibular Joint Repair and Regeneration.

    Science.gov (United States)

    Zhang, Shipin; Yap, Adrian U J; Toh, Wei Seong

    2015-10-01

    Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.

  1. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation.

    Science.gov (United States)

    Xue, Feng; Hu, Lei; Ge, Ruiliang; Yang, Lixue; Liu, Kai; Li, Yunyun; Sun, Yanfu; Wang, Kui

    2016-02-01

    Autophagy is a highly conserved and lysosome-dependent degradation process which assists in cell survival and tissue homeostasis. Although previous reports have shown that deletion of the essential autophagy gene disturbs stem cell maintenance in some cell types such as hematopoietic and neural cells, it remains unclear how autophagy-deficiency influences hepatic progenitor cells (HPCs). Here we report that Atg5-deficiency in HPCs delays HPC-mediated rat liver regeneration in vivo. In vitro researches further demonstrate that loss of autophagy decreases the abilities of colony and spheroid formations, and disrupts the induction of hepatic differentiation in HPCs. Meanwhile, autophagy-deficiency increases the accumulations of damaged mitochondria and mitochondrial reactive oxygen species (mtROS) and suppresses homologous recombination (HR) pathway of DNA damage repair in HPCs. Moreover, in both diethylnitrosamine (DEN) and CCl4 models, autophagy-deficiency accelerates neoplastic transformation of HPCs. In conclusion, these findings demonstrate that autophagy contributes to stemness maintenance and reduces susceptibility to neoplastic transformation in HPCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  3. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  4. Cardiac progenitor-cell derived exosomes as cell-free therapeutic for cardiac repair

    NARCIS (Netherlands)

    Mol, E. A.; Goumans, Marie-Jose; Sluijter, J. P.G.

    2017-01-01

    Cardiac progenitor cells (CPCs) have emerged as potential therapy to improve cardiac repair and prevent damage in cardiac diseases. CPCs are a promising cell source for cardiac therapy as they can generate all cardiovascular lineages in vitro and in vivo. Originating from the heart itself, CPCs may

  5. AIRE deficiency leads to impaired iNKT cell development.

    Science.gov (United States)

    Lindh, Emma; Rosmaraki, Eleftheria; Berg, Louise; Brauner, Hanna; Karlsson, Mikael C I; Peltonen, Leena; Höglund, Petter; Winqvist, Ola

    2010-02-01

    Autoimmune Polyendocrine Syndrome type I (APS I) is caused by mutations in the Autoimmune Regulator gene (AIRE), and results in the immunological destruction of endocrine organs. Herein we have characterized the CD1d-restricted invariant NKT cells (iNKT) and NK cells in APS I patients and Aire(-/-) mice, two cell populations known to play a role in the regulation of autoimmune disease. We show that the frequency of circulating iNKT cells is reduced in APS I patients compared to healthy controls. In accordance with this, iNKT cells are significantly reduced in the thymus and peripheral organs of Aire(-/-) mice. Bone marrow transfer from wild type donors into lethally irradiated Aire(-/-) recipients led to a decreased iNKT cell population in the liver, suggesting an impaired development of iNKT cells in the absence of Aire expression in radio-resistant cells. In contrast to the iNKT cells, both conventional NK cells and thymus-derived NK cells were unaffected by Aire deficiency and differentiated normally in Aire(-/-) mice. Our results show that expression of Aire in radio-resistant cells is important for the development of iNKT cells, whereas NK cell development and function does not depend on Aire. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies.

    Science.gov (United States)

    Haagdorens, Michel; Van Acker, Sara Ilse; Van Gerwen, Veerle; Ní Dhubhghaill, Sorcha; Koppen, Carina; Tassignon, Marie-José; Zakaria, Nadia

    2016-01-01

    Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.

  7. Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies

    Directory of Open Access Journals (Sweden)

    Michel Haagdorens

    2016-01-01

    Full Text Available Severe ocular surface disease can result in limbal stem cell deficiency (LSCD, a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET. Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.

  8. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Science.gov (United States)

    Musicki, Biljana; Zhang, Yuxi; Chen, Haolin; Brown, Terry R; Zirkin, Barry R; Burnett, Arthur L

    2015-01-01

    Testosterone deficiency is associated with sickle cell disease (SCD), but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle) exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH) levels compared with wild type (WT) mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol)- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR), but not cholesterol side-chain cleavage enzyme (P450scc), in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi) exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  9. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Directory of Open Access Journals (Sweden)

    Biljana Musicki

    Full Text Available Testosterone deficiency is associated with sickle cell disease (SCD, but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH levels compared with wild type (WT mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR, but not cholesterol side-chain cleavage enzyme (P450scc, in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  10. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

    DEFF Research Database (Denmark)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier

    2015-01-01

    in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients...... features of CMMRD. RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD...

  11. Limbal stem cell deficiency : Concept, aetiology, clinical presentation, diagnosis and management.

    Directory of Open Access Journals (Sweden)

    Dua H

    2000-01-01

    Full Text Available Defects in renewal and repair of ocular surface as a result of limbal stem cell deficiency are now known to cause varying ocular surface morbidity including persistent photophobia, repeated and persistent surface breakdown and overt conjunctivalisation of the cornea. Ocular conditions with abnormalities of ocular surface repair include pterygium, limbal tumours, aniridia, severe scarring following burns, cicatricial pemphigoid and Stevens-Johnson Syndrome, sequelae of mustard gas exposure and Herpes simplex epithelial disease, radiation keratopathy, contact lens induced keratopathy, neuroparalytic keratitis and drug toxicity. Restoring ocular health in these eyes has traditionally been frustrating. An understanding of these intricate cell renewal and maintenance processes has spurred the evolution in recent years of new treatment methods for several blinding diseases of the anterior segment; many more exciting modalities are in the offing. However, there is inadequate awareness among ophthalmologists about the current principles of management of ocular surface disorders. The purpose of this article is to help elucidate the important principles and current treatment methods relevant to ocular surface disorders.

  12. PARP Inhibition by Flavonoids Induced Selective Cell Killing to BRCA2-Deficient Cells

    Directory of Open Access Journals (Sweden)

    Cathy Su

    2017-10-01

    Full Text Available High consumption of dietary flavonoids might contribute to a reduction of cancer risks. Quercetin and its glycosides have PARP inhibitory effects and can induce selective cytotoxicity in BRCA2-deficient cells by synthetic lethality. We hypothesized that common flavonoids in diet naringenin, hesperetin and their glycosides have a similar structure to quercetin, which might have comparable PARP inhibitory effects, and can induce selective cytotoxicity in BRCA2-deficient cells. We utilized Chinese hamster V79 wild type, V-C8 BRCA2-deficient and its gene-complemented cells. In vitro analysis revealed that both naringenin and hesperetin present a PARP inhibitory effect. This inhibitory effect is less specific than for quercetin. Hesperetin was more cytotoxic to V79 cells than quercetin and naringenin based on colony formation assay. Quercetin and naringenin killed V-C8 cells with lower concentrations, and presented selective cytotoxicity to BRCA2-deficient cells. However, the cytotoxicity of hesperetin was similar among all three cell lines. Glycosyl flavonoids, isoquercetin and rutin as well as naringin showed selective cytotoxicity to BRCA2-deficient cells; hesperidin did not. These results suggest that flavonoids with the PARP inhibitory effect can cause synthetic lethality to BRCA2-deficient cells when other pathways are not the primary cause of death.

  13. DNA Repair in Human Cells Exposed to Combinations of Carcinogenic Agents

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R. B.; Ahmed, F. E.

    1980-01-01

    Normal human and XP2 fibroblasts were treated with UV plus UV-mimetic chemicals. The UV dose used was sufficient to saturate the UV excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a UV specific endonuclease. Since the repair of damage from UV and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of UV and chemical damage and that after a combined treatment the total amount of repair would be the same as from UV or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170.

  14. Association between IHC and MSI testing to identify mismatch repair-deficient patients with ovarian cancer.

    Science.gov (United States)

    Lee, Ji-Hyun; Cragun, Deborah; Thompson, Zachary; Coppola, Domenico; Nicosia, Santo V; Akbari, Mohammad; Zhang, Shiyu; McLaughlin, John; Narod, Steven; Schildkraut, Joellen; Sellers, Thomas A; Pal, Tuya

    2014-04-01

    In epithelial ovarian cancer, concordance between results of microsatellite instability (MSI) and immunohistochemical (IHC) testing has not been demonstrated. This study evaluated the association of MSI-high (MSI-H) status with loss of expression (LoE) of mismatch repair (MMR) proteins on IHC and assessed for potential factors affecting the strength of the association. Tumor specimens from three population-based studies of epithelial ovarian cancer were stained for MMR proteins through manual or automated methods, and results were interpreted by one of two pathologists. Tumor and germline DNA was extracted and MSI testing performed. Multivariable logistic regression models were fitted to predict loss of IHC expression based on MSI status after adjusting for staining method and reading pathologist. Of 834 cases, 564 (67.6%) were concordant; 41 were classified as MSI-H with LoE and 523 as microsatellite stable (MSS) with no LoE. Of the 270 discordant cases, 83 were MSI-H with no LoE and 187 were MSS with LoE. Both IHC staining method and reading pathologist were strongly associated with discordant results. Lack of concordance in the current study may be related to inconsistencies in IHC testing methods and interpretation. Results support the need for validation studies before routine screening of ovarian tumors is implemented in clinical practice for the purpose of identifying Lynch syndrome.

  15. Transient expression of a plasmid gene, a tool to study DNA repair in human cells: defect of DNA repair in Cockayne syndrome; one thymine cyclobutane dimer is sufficient to block transcription.

    Science.gov (United States)

    Klocker, H; Schneider, R; Burtscher, H J; Auer, B; Hirsch-Kauffmann, M; Schweiger, M

    1986-01-01

    Transfected recombinant DNA with regulatory elements such as eukaryotic promoter and termination sites is transiently expressed in human fibroblast cells. Utilizing an expression vector containing the simian virus 40 (SV 40) early control region followed by the E. coli chloramphenicol acetyltransferase (CAT) gene, we investigated the ability of normal, Xeroderma pigmentosum and Cockayne Syndrome cells to repair UV lesions in transfected DNA. Fibroblasts from Xeroderma pigmentosum patients which cannot excise pyrimidine cyclobutane dimers were unable to restore expression of UV irradiated CAT gene. An UV dose inducing one thymine cyclobutane dimer in the transcribed strand of the CAT gene blocked its transcription in these repair deficient cells. Normal cell were able to repair the lesions in transfected DNA during an incubation period of about 40 h and in this way could overcome the UV block. In several fibroblast cell lines from patients suffering from Cockayne Syndrome expression of UV damaged CAT gene was restored significantly less than in normal fibroblasts, indicating that Cockayne Syndrome is associated with a UV repair defect.

  16. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration.

    Science.gov (United States)

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-10-13

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.

  17. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...... and functional oriC sequence. The seqA2 mutation was found to overcome the incompatibility phenotype by increasing the cellular oriC copy nnumber 3-fold thereby allowing minichromosomes to coexist with the chromosome. The replication pattern of a wild type strain with multiple integrated minichromosomes...

  18. Excluding Lynch syndrome in a female patient with metachronous DNA mismatch repair deficient colon- and ovarian cancer.

    Science.gov (United States)

    Crobach, Stijn; Jansen, Anne M L; Ligtenberg, Marjolein J L; Koopmans, Marije; Nielsen, Maartje; Hes, Frederik J; Wijnen, Juul T; Dinjens, Winand N M; van Wezel, Tom; Morreau, Hans

    2017-11-09

    Patients synchronously or metachronously presenting with ovarian and colon cancer can pose diagnostic challenges. A primary colon carcinoma can metastasize to one or both ovaries, two independent primary tumors can arise or an ovarian carcinoma can metastasize to the colon. Clinical and immunohistochemical characterization can aid the diagnosis. Recently, we reported that in difficult cases finding pathogenic APC variants supports a colonic origin.In this case report we describe the clinical history of a female patient suspected for Lynch syndrome. She was diagnosed with a bilateral ovarian cancer at age 44, followed by the detection of a colon carcinoma 12.5 months later. Lesions of both sites showed a DNA mismatch repair deficiency with immunohistochemical loss of MLH1 and PMS2 expression without MLH1 promoter hypermethylation. In absence of germline MMR gene variants identical somatic MLH1 and CTNNB1 gene variants were found, indicating a clonal relation. MMR germline mosaicism was made unlikely by ultra deep sequencing of the MLH1 variant in DNA isolated from normal mucosa, blood, urine and saliva. Although initially being suspect for Lynch syndrome it was eventually concluded that a metachronously diagnosed colon carcinoma that metastasized to both ovaries was most likely.

  19. Cancer screening behaviors and risk perceptions among family members of colorectal cancer patients with unexplained mismatch repair deficiency.

    Science.gov (United States)

    Katz, Lior H; Advani, Shailesh; Burton-Chase, Allison M; Fellman, Bryan; Polivka, Katrina M; Yuan, Ying; Lynch, Patrick M; Peterson, Susan K

    2017-04-01

    Communication gaps in families with unexplained mismatch repair (MMR) deficiency (UMMRD) could negatively impact the screening behaviors of relatives of individual with UMMRD. We evaluated cancer risk perception, screening behaviors, and family communication among relatives of colorectal cancer (CRC) patients with UMMRD. Fifty-one family members of 17 probands with UMMRD completed a questionnaire about cancer risk perception, adherence to Lynch syndrome (LS) screening recommendations, and communication with relatives. Clinical data about the probands were obtained from medical records. Thirty-eight participants (78%) were worried from having cancer and twenty-one participants (42%) had undergone colonoscopy in the past 2 years, as recommended for LS families. In terms of screening for extracolonic cancers, only two eligible participants (3.9%) were screened for gastric, endometrial (10.0%), and ovarian (9.5%) cancers. Additionally, 5 participants (10%) underwent genetic counseling. Most participants were not told by anyone to be screened for extracolonic cancers (84, 85, and 95% for gastric, ovarian, and endometrial cancers, respectively). A minority of family members of CRC patients with UMMRD follow cancer screening as recommended for LS families. Health care providers should encourage patients with UMMRD to share information on LS-related cancers screening, especially extracolonic cancers, with their relatives.

  20. Detection of Mismatch Repair Deficiency and Microsatellite Instability in Colorectal Adenocarcinoma by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Nowak, Jonathan A; Yurgelun, Matthew B; Bruce, Jacqueline L; Rojas-Rudilla, Vanesa; Hall, Dimity L; Shivdasani, Priyanka; Garcia, Elizabeth P; Agoston, Agoston T; Srivastava, Amitabh; Ogino, Shuji; Kuo, Frank C; Lindeman, Neal I; Dong, Fei

    2017-01-01

    Mismatch repair protein deficiency (MMR-D) and high microsatellite instability (MSI-H) are features of Lynch syndrome-associated colorectal carcinomas and have implications in clinical management. We evaluate the ability of a targeted next-generation sequencing panel to detect MMR-D and MSI-H based on mutational phenotype. Using a criterion of >40 total mutations per megabase or >5 single-base insertion or deletion mutations in repeats per megabase, sequencing achieves 92% sensitivity and 100% specificity for MMR-D by immunohistochemistry in a training cohort of 149 colorectal carcinomas and 91% sensitivity and 98% specificity for MMR-D in a validation cohort of 94 additional colorectal carcinomas. False-negative samples are attributable to tumor heterogeneity, and next-generation sequencing results are concordant with analysis of microsatellite loci by PCR. In a subset of 95 carcinomas with microsatellite analysis, sequencing achieves 100% sensitivity and 99% specificity for MSI-H in the combined training and validation set. False-positive results for MMR-D and MSI-H are attributable to ultramutated cancers with POLE mutations, which are confirmed by direct sequencing of the POLE gene and are detected by mutational signature analysis. These findings provide a framework for a targeted tumor sequencing panel to accurately detect MMR-D and MSI-H in colorectal carcinomas. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948.

    Science.gov (United States)

    Long, Hongan; Sung, Way; Miller, Samuel F; Ackerman, Matthew S; Doak, Thomas G; Lynch, Michael

    2014-12-23

    High levels of genetic diversity exist among natural isolates of the bacterium Pseudomonas fluorescens, and are especially elevated around the replication terminus of the genome, where strain-specific genes are found. In an effort to understand the role of genetic variation in the evolution of Pseudomonas, we analyzed 31,106 base substitutions from 45 mutation accumulation lines of P. fluorescens ATCC948, naturally deficient for mismatch repair, yielding a base-substitution mutation rate of 2.34 × 10(-8) per site per generation (SE: 0.01 × 10(-8)) and a small-insertion-deletion mutation rate of 1.65 × 10(-9) per site per generation (SE: 0.03 × 10(-9)). We find that the spectrum of mutations in prophage regions, which often contain virulence factors and antibiotic resistance, is highly similar to that in the intergenic regions of the host genome. Our results show that the mutation rate varies around the chromosome, with the lowest mutation rate found near the origin of replication. Consistent with observations from other studies, we find that site-specific mutation rates are heavily influenced by the immediately flanking nucleotides, indicating that mutations are context dependent. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Mesenchymal stem cells for cartilage repair in osteoarthritis.

    Science.gov (United States)

    Gupta, Pawan K; Das, Anjan K; Chullikana, Anoop; Majumdar, Anish S

    2012-07-09

    Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing capacity and biomechanical properties of thinning cartilage are severely compromised during the course of disease progression. Although surgical and pharmaceutical interventions are currently available for treating OA, restoration of normal cartilage function has been difficult to achieve. Since the tissue is composed primarily of chondrocytes distributed in a specialized extracellular matrix bed, bone marrow stromal cells (BMSCs), also known as bone marrow-derived 'mesenchymal stem cells' or 'mesenchymal stromal cells', with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. BMSCs can be easily isolated and massively expanded in culture in an undifferentiated state for therapeutic use. Owing to their potential to modulate local microenvironment via anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage for allogeneic application. Moreover, by secreting various bioactive soluble factors, BMSCs can protect the cartilage from further tissue destruction and facilitate regeneration of the remaining progenitor cells in situ. This review broadly describes the advances made during the last several years in BMSCs and their therapeutic potential for repairing cartilage damage in OA.

  3. Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ito

    Full Text Available Although severe combined immune deficiency (SCID is a very important research model for mice and SCID mice are widely used, there are only few reports describing the SCID pig models. Therefore, additional research in this area is needed. In this study, we describe the generation of Recombination activating gene-1 (Rag-1-deficient neonatal piglets in Duroc breed using somatic cell nuclear transfer (SCNT with gene targeting and analysis using fluorescence-activated cell sorting (FACS and histology. We constructed porcine Rag-1 gene targeting vectors for the Exon 2 region and obtained heterozygous/homozygous Rag-1 knockout cell colonies using SCNT. We generated two Rag-1-deficient neonatal piglets and compared them with wild-type neonatal piglets. FACS analysis showed that Rag-1 disruption causes a lack of Immunoglobulin M-positive B cells and CD3-positive T cells in peripheral blood mononuclear cells. Consistent with FACS analysis, histological analysis revealed structural defects and an absence of mature lymphocytes in the spleen, mesenteric lymph node (MLNs, and thymus in Rag-1-deficient piglets. These results confirm that Rag-1 is necessary for the generation of lymphocytes in pigs, and Rag-1-deficient piglets exhibit a T and B cell deficient SCID (T-B-SCID phenotype similar to that of rodents and humans. The T-B-SCID pigs with Rag-1 deficiency generated in this study could be a suitably versatile model for laboratory, translational, and biomedical research, including the development of a humanized model and assessment of pluripotent stem cells.

  4. Repair of some active genes in Cockayne syndrome cells is at the genome overall rate.

    Science.gov (United States)

    Kantor, G J; Bastin, S A

    1995-05-01

    Repair of UV (254 nm)-induced DNA damage in cells from patients with the genetic disease Cockayne syndrome (CS; CS3BE, CS2BE) has been examined in several different genomic regions. These regions include those that contain the actively transcribed beta-actin and adenosine deaminase (ADA) genes and the inactive insulin and 754 loci. The beta-actin, ADA and insulin regions are repaired at about the same rate, one which is equal to the genome overall repair rate. The 754 locus is repaired considerably more slowly. The insulin region is repaired at the same rate in both CS and normal cells as is the 754 locus. The only difference from normal is that the active genes, while repaired well, are not preferentially repaired relative to the genome overall. Our results are consistent with the hypothesis that the repair defect in CS is due to an inactive transcription-repair coupling factor (TRCF). However, the results also indicate that factors other than TRCF and active transcription must also promote repair of some regions relative to others in both normal and CS cells.

  5. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  6. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977--October 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H H

    1978-10-01

    The objective of this research is to compare repair-proficient and repair-deficient mammalian cells with regard to the frequencies of mutation and oncogenic transformation following treatment with mutagenic/carcinogenic agents or environmental pollutants. During the past 15 months we have established methods and conditions for the growth, maintenance, and assay of the mouse embryo cell line C3H/10T1/2 and for infection of this cell with polyoma virus. We have determined the levels of various mutagens and selectants to be used with this cell line. Following treatment of the cells with 0.06% ethylmethane sulfonate (EMS), no cell killing results, but the number of ouabain-resistant (oua/sup R/) mutants induced is higher than the number of spontaneous oua/sup R/ mutants. The frequency of mutation ranged from 4 x 10/sup -8/ to 2.8 x 10/sup -6/. The higher frequencies were obtained when the selectant was applied to cells plated at a low density and when a three-day expression time was allowed between the mutagenic treatment and the application of the selectant. The frequency of oncogenic transformation was higher than the frequency of mutagenesis, by several orders of magnitude, perhaps because of problems with the morphological transformation assay. We are investigating the use of growth in soft agar as an assay for transformation.

  7. Mutation rates of TGFBR2 and ACVR2 coding microsatellites in human cells with defective DNA mismatch repair.

    Directory of Open Access Journals (Sweden)

    Heekyung Chung

    Full Text Available Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1-/-, hMSH6-/-, hMSH3-/-, and MMR-proficient to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP gene, allowing a -1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7-35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a -1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2 in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes and M2 (bright, representing full mutants were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91 x 10(-4 and 15 (2.18 x 10(-4 times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was approximately 3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The -1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background.

  8. Pembrolizumab, Capecitabine, and Radiation Therapy in Treating Patients With Mismatch-Repair Deficient and Epstein-Barr Virus Positive Gastric Cancer

    Science.gov (United States)

    2017-11-15

    Epstein-Barr Virus Positive; Gastric Adenocarcinoma; Mismatch Repair Protein Deficiency; Stage IB Gastric Cancer AJCC v7; Stage II Gastric Cancer AJCC v7; Stage IIA Gastric Cancer AJCC v7; Stage IIB Gastric Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7

  9. Priming of microglia in a DNA-repair deficient model of accelerated aging

    NARCIS (Netherlands)

    Raj, Divya D. A.; Jaarsma, Dick; Holtman, Inge R.; Olah, Marta; Ferreira, Filipa M.; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M.; de Waard, Monique C.; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L.; Laman, Jon D.; de Haan, Gerald; Biber, Knut P. H.; Hoeijmakers, Jan H. J.; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of

  10. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1978-October 31, 1979. [EMS; cultured mouse embryo cells (C3H/10T 1/2)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1979-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammlian cells. Repair capabilities will be varied by: (1) using wild-type and repair-deficient cell lines; (2) imposing various recovery periods following mutagenic treatment; (3) exposing cells to inhibitors of DNA repair following mutagenic treatment; and (4) varying the mutagenic treatment to cause DNA lesions repairable by different pathways. Reconstruction experiments were conducted to (1) investigate conditions for measuring transformation frequency using colony formation, and (2) determine the influence of ouabain-sensitive cells on the expression of ouabain-resistance. Ouabain-resistant cells were isolated from EMS-treated cultures and were shown to be resistant to the drug with regard to survival and the activity of the Na/sup +/-K/sup +/-ATPase. The effect of holding EMS-treated cells under various conditions which do not allow DNA synthesis was determined with respect to survival and the incidence of transformation and mutation. When confluent cells were held for 4 hrs following EMS treatment, both survival and the frequency of transformation increased. When the cells were incubated in 0.1% serum for 6 hrs following EMS treatment, no change in either the transformation or mutation frequency was observed as compared to cells incubated in 10% serum. Further experiments are in progress to determine the effect of recovery periods on transformation and mutation frequencies.

  11. Insulin-degrading enzyme deficiency in bone marrow cells increases atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Caravaggio, Justin W; Hasu, Mirela; MacLaren, Robin; Thabet, Mohamed; Raizman, Joshua E; Veinot, John P; Marcel, Yves L; Milne, Ross W; Whitman, Stewart C

    2013-01-01

    Insulin-degrading enzyme (IDE), a protease implicated in several chronic diseases, associates with the cytoplasmic domain of the macrophage Type A scavenger receptor (SR-A). Our goal was to investigate the effect of IDE deficiency (Ide(-/-)) on diet-induced atherosclerosis in low density lipoprotein-deficient (Ldlr(-/-)) mice and on SR-A function. Irradiated Ldlr(-/-) or Ide(-/-)Ldlr(-/-) mice were reconstituted with wild-type or Ide(-/-) bone marrow and, 6 weeks later, were placed on a high-fat diet for 8 weeks. After 8 weeks on a high-fat diet, male Ldlr(-/-) recipients of Ide(-/-) bone marrow had more atherosclerosis, higher serum cholesterol and increased lesion-associated β-amyloid, an IDE substrate, and receptor for advanced glycation end products (RAGE), a proinflammatory receptor for β-amyloid, compared to male Ldlr(-/-) recipients of wild-type bone marrow. IDE deficiency in male Ldlr(-/-) recipient mice did not affect atherosclerosis or cholesterol levels and moderated the effects of IDE deficiency of bone marrow-derived cells. No differences were seen between Ldlr(-/-) and Ide(-/-)Ldlr(-/-) female mice reconstituted with Ide(-/-) or wild-type bone marrow. IDE deficiency in macrophages did not alter SR-A levels, cell surface SR-A, or foam cell formation. IDE deficiency in bone marrow-derived cells results in larger atherosclerotic lesions, increased lesion-associated Aβ and RAGE, and higher serum cholesterol in male, Ldlr(-/-) mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  13. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  14. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency

    Science.gov (United States)

    Ehinger, Johannes K.; Piel, Sarah; Ford, Rhonan; Karlsson, Michael; Sjövall, Fredrik; Frostner, Eleonor Åsander; Morota, Saori; Taylor, Robert W.; Turnbull, Doug M.; Cornell, Clive; Moss, Steven J.; Metzsch, Carsten; Hansson, Magnus J.; Fliri, Hans; Elmér, Eskil

    2016-01-01

    Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [13C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction. PMID:27502960

  15. ATR inhibition preferentially targets homologous recombination-deficient tumor cells

    NARCIS (Netherlands)

    Krajewska, M.; Fehrmann, R. S. N.; Schoonen, P. M.; Labib, S.; de Vries, E. G. E.; Franke, L.; van Vugt, M. A. T. M.

    Homologous recombination (HR) is required for faithful repair of double-strand DNA breaks. Defects in HR repair cause severe genomic instability and challenge cellular viability. Paradoxically, various cancers are HR defective and have apparently acquired characteristics to survive genomic

  16. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  17. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  18. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity.

    Science.gov (United States)

    Mindos, Thomas; Dun, Xin-Peng; North, Katherine; Doddrell, Robin D S; Schulz, Alexander; Edwards, Philip; Russell, James; Gray, Bethany; Roberts, Sheridan L; Shivane, Aditya; Mortimer, Georgina; Pirie, Melissa; Zhang, Nailing; Pan, Duojia; Morrison, Helen; Parkinson, David B

    2017-02-01

    Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS. © 2017 Mindos et al.

  19. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  20. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling.

    Directory of Open Access Journals (Sweden)

    Yunhai Luo

    2014-07-01

    Full Text Available Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs, which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA, a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency.

  1. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

    Science.gov (United States)

    Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus

    2013-01-01

    The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675

  2. Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency, and p53 heterozygosity.

    Science.gov (United States)

    Rebel, H; Mosnier, L O; Berg, R J; Westerman-de Vries, A; van Steeg, H; van Kranen, H J; de Gruijl, F R

    2001-02-01

    p53 mutations appear to be early events in skin carcinogenesis induced by chronic UVB irradiation. Clusters of epidermal cells that express p53 in mutant conformation ("p53 positive foci") are easily detected by immunohistochemical staining long before the appearance of skin carcinomas or their precursor lesions. In a hairless mouse model, we determined the dose-time dependency of the induction of these p53+ foci and investigated the relationship with the induction of skin carcinomas. The density of p53+ foci may be a good direct indicator of tumor risk. Hairless SKH1 mice were exposed to either of two regimens of daily UVB (500 or 250 J/m2 broadband UV from Philips TL12 lamps; 54% UVB 280-315 nm). With the high-dose regimen, the average number of p53+ foci in a dorsal skin area (7.2 cm2) increased rapidly from 9.0 +/- 2.1 (SE) at 15 days to 470 +/- 80 (SE) at 40 days. At half that daily dose, the induction of p53+ foci was slower by a factor of 1.49 +/- 0.15, very similar to a previously observed slower induction of squamous cell carcinomas by a factor of 1.54 +/- 0.02. In a double-log plot of the average number of p53 + foci versus time, the curves for the two exposure regimens ran parallel (slope, 3.7 +/- 0.7), similar to the curves for the number of tumors versus time (slope, 6.9 +/- 0.8). The difference in slopes (3.7 versus 6.9) is in line with the contention that more rate-limiting steps are needed to develop a tumor than a p53+ focus. By the time the first tumors appear (around 7-8 weeks with the high daily dose), the dorsal skin contains >100 p53+ foci/cm2. To further validate the density of p53+ foci as a direct measure of tumor risk, we carried out experiments with transgenic mice with an enhanced susceptibility to UV carcinogenesis, homozygous Xpa knockout mice (deficient in nucleotide excision repair) and heterozygousp53 knockout mice (i.a. partially deficient in apoptosis). In both of these cancer-prone strains, the p53+ foci were induced at markedly

  3. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    van den Berg, G. J.; de Goeij, J. J.; Bock, I.; Gijbels, M. J.; Brouwer, A.; Lei, K. Y.; Hendriks, H. F.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and

  4. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  5. Gene specific damage and repair after treatment of cells with UV and chemotherapeutical agents

    Energy Technology Data Exchange (ETDEWEB)

    Bohr, V.A. (Division of Cancer Treatment, National Cancer Institute, NIH, Bethesda, MD (USA))

    1991-01-01

    The authors have previously demonstrated preferential DNA repair of active genes in mammalian cells. The methodology involves the use of a specific endonuclease or other more direct approaches to create nicks at sites of damage followed by quantitative Southern analysis and probing for specific genes. Initially, they used pyrimidine dimer specific endonuclease to detect pyrimidine dimers after UV irradiation. They now also use the bacterial enzyme ABC excinuclease to examine the DNA damage and repair of a number of adducts other than pyrimidine dimers in specific genes. They can detect gene specific alkylation damage by creating nicks via depurination and alkaline hydrolysis. In our assay for preferential repair, they compare the efficiency of repair in the DHFR gene to that in the 3{prime} flanking, non-coding region to the gene. In CHO cells, UV induced pyrimidine dimers are efficiently repaired from the active DHFR gene, but not from the inactive region. They have demonstrated that the 6-4 photoproducts are also preferentially repaired and that they are removed faster from the regions studied than pyrimidine dimers. Using similar approaches, they find that DNA adducts and crosslinks caused by cisplatinum are preferentially repaired in the active gene compared to the inactive regions and to the inactive c-fos oncogene. Also, nitrogen mustard and methylnitrosurea damage is preferentially repaired whereas dimethylsulphate damage is not. NAAAF adducts do not appear to be preferentially repaired in this system. 32 refs.

  6. The role of purinergic signaling on deformation induced injury and repair responses of alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hewan A Belete

    Full Text Available Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5' triphosphate (ATP promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1 stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2 enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3 enriching extracellular ATP concentrations facilitates wound repair; 4 purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5 ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.

  7. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  8. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test; Phenotypage de la reparation de l'ADN de lignees Xeroderma pigmentosum, par un test in vitro multiparametrique

    Energy Technology Data Exchange (ETDEWEB)

    Raffin, A.L.

    2009-06-15

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  9. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander

    2013-01-01

    Exogenous and endogenous damage to DNA is constantly challenging the stability of our genome. This DNA damage increase the frequency of errors in DNA replication, thus causing point mutations or chromosomal rearrangements and has been implicated in aging, cancer, and neurodegenerative diseases....... Therefore, efficient DNA repair is vital for the maintenance of genome stability. The general notion has been that DNA repair capacity decreases with age although there are conflicting results. Here, we focused on potential age-associated changes in DNA damage response and the capacities of repairing DNA...... single-strand breaks (SSBs) and double-strand breaks (DSBs) in human peripheral blood mononuclear cells (PBMCs). Of these lesions, DSBs are the least frequent but the most dangerous for cells. We have measured the level of endogenous SSBs, SSB repair capacity, γ-H2AX response, and DSB repair capacity...

  10. Deficiency in the repair of UV and. gamma. -ray damaged DNA in fibroblasts from Cockayne's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, A.J.; Howes, M. (McMaster Univ., Hamilton, Ontario (Canada). Dept. of Biology; McMaster Univ., Hamilton, Ontario (Canada). Dept. of Radiology)

    1982-01-01

    The host-cell reactivation of V antigen production for irradiated adenovirus was examined in fibroblasts from 5 unrelated patients with Cockayne's syndrome (CS) and 2 CS heterozygotes. The fibroblast cultures were infected with either irradiated or non-irradiated adenovirus and subsequently examined for the presence of viral structural antigens using immunofluorescent staining. All CS-homozygous strains showed a reduced host-cell reactivation (HCR) of this viral function for both UV-and ..gamma..-irradiated virus. For UV-irradiation of the virus, D/sub 37/ values expressed as a percentage of that obtained on normal strains, ranged from 14 to 35%. For ..gamma..-irradiation of the virus these values ranged from 61 to 80%. These results indicate some defect in the repair of both UV- and ..gamma..-ray-induced DNA damage for CS. 1 CS-heterozygote strain tested also showed a reduced HCR for UV-irradiated adenovirus intermediate between that of the patient strain and normal, whereas another CS-heterozygote strain showed an apparently normal HCR level.

  11. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to differentiate into multiple cell types without propagating DNA errors. Previous studies have suggested that mechanisms of genome surveillance, including DNA repair, are superior in mouse embryonic stem...... cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...... fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic...

  12. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  13. Role of Artemis in DSB repair and guarding chromosomal stability following exposure to ionizing radiation at different stages of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Darroudi, Firouz [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands)]. E-mail: F.Darroudi@LUMC.NL; Wiegant, Wouter [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Meijers, Matty [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Friedl, Anna A. [Radiobiological Institute, University of Munich, Munich (Germany); Institute of Radiobiology, GSF National Research Center for Environment and Health, Neuherberg (Germany); Burg, Mirjam van der [Department of Immunology, Erasmus Medical Centre, Rotterdam (Netherlands); Fomina, Janna [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Dongen, Jacques J.M. van [Department of Immunology, Erasmus Medical Centre, Rotterdam (Netherlands); Gent, Dik C. van [Department of Cell Biology and Genetics, Erasmus Medical Centre, Rotterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Centre, Einthovenweg 20, 2300RC Leiden (Netherlands); Department of Molecular Cell Genetics, Collegium Medicum, N. Corpernicus University, Bydgoszcz (Poland)

    2007-02-03

    We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and {gamma}H2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G{sub 1}/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G{sub 2} resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G{sub 1} cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G{sub 1}-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4 {>=} AT > Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when

  14. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hidenori; Fujimori, Hiroaki [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Gunji, Akemi [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Maeda, Daisuke [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Hirai, Takahisa [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Poetsch, Anna R. [ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Harada, Hiromi [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Yoshida, Tomoko [Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minatoku, Tokyo 105-8512 (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Masutani, Mitsuko, E-mail: mmasutan@ncc.go.jp [Division of Genome Stability Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  15. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells

    OpenAIRE

    Bosurgi, Lidia; Cao, Y. Grace; Cabeza-Cabrerizo, Mar; Tucci,Andrea; Hughes, Lindsey D.; Kong, Yong; Weinstein, Jason S.; Licona-Limon, Paula; Schmid, Edward T.; Pelorosso, Facundo; Gagliani, Nicola; Craft, Joseph E.; Flavell, Richard A.; Ghosh, Sourav; Rothlin, Carla V.

    2017-01-01

    Tissue repair is a subset of a broad repertoire of interleukin-4 (IL-4)- and IL-13-dependent host responses during helminth infection. Here we show that IL-4 or IL-13 alone was not sufficient, but IL-4 or IL-13 together with apoptotic cells induced the tissue repair program in macrophages. Genetic ablation of sensors of apoptotic cells impaired the proliferation of tissue-resident macrophages and the induction of anti-inflammatory and tissue repair genes in the lungs after helminth infection ...

  16. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  17. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  18. Drugging the Cancers Addicted to DNA Repair.

    Science.gov (United States)

    Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert

    2017-11-01

    Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.

  19. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  20. Transbilayer phospholipid movements in ABCA1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Patrick Williamson

    2007-08-01

    Full Text Available Tangier disease is an inherited disorder that results in a deficiency in circulating levels of HDL. Although the disease is known to be caused by mutations in the ABCA1 gene, the mechanism by which lesions in the ABCA1 ATPase effect this outcome is not known. The inability of ABCA1 knockout mice (ABCA1-/- to load cholesterol and phospholipids onto apoA1 led to a proposal that ABCA1 mediates the transbilayer externalization of phospholipids, an activity integral not only to the formation of HDL particles but also to another, distinct process: the recognition and clearance of apoptotic cells by macrophages. Expression of phosphatidylserine (PS on the surface of both macrophages and their apoptotic targets is required for efficient engulfment of the apoptotic cells, and it has been proposed that ABCA1 is required for transbilayer externalization of PS to the surface of both cell types. To determine whether ABCA1 is responsible for any of the catalytic activities known to control transbilayer phospholipid movements, these activities were measured in cells from ABCA1-/- mice and from Tangier individuals as well as ABCA1-expressing HeLa cells. Phospholipid movements in either normal or apoptotic lymphocytes or in macrophages were not inhibited when cells from knockout and wildtype mice or immortalized cells from Tangier individuals vs normal individuals were compared. Exposure of PS on the surface of normal thymocytes, apoptotic thymocytes and elicited peritoneal macrophages from wildtype and knockout mice or B lymphocytes from normal and Tangier individuals, as measured by annexin V binding, was also unchanged. No evidence was found of ABCA1-stimulated active PS export, and spontaneous PS movement to the outer leaflet in the presence or absence of apoA1 was unaffected by the presence or absence of ABCA1. Normal or Tangier B lymphocytes and macrophages were also identical in their ability to serve as targets or phagocytes, respectively, in apoptotic

  1. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-Hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair.

  2. Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.

    Science.gov (United States)

    Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta

    2015-01-01

    Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.

  3. Prevalence and clinicopathologic/molecular characteristics of mismatch repair-deficient colorectal cancer in the under-50-year-old Japanese population.

    Science.gov (United States)

    Suzuki, Okihide; Eguchi, Hidetaka; Chika, Noriyasu; Sakimoto, Takehiko; Ishibashi, Keiichiro; Kumamoto, Kensuke; Tamaru, Jun-Ichi; Tachikawa, Tetsuhiko; Akagi, Kiwamu; Arai, Tomio; Okazaki, Yasushi; Ishida, Hideyuki

    2017-09-01

    To clarify the prevalence and clinicopathologic/molecular characteristics of mismatch repair (MMR)-deficient colorectal cancer in the young Japanese population. Immunohistochemical analyses for MMR proteins (MLH1, MSH2, MSH6, and PMS2) were performed in formalin-fixed paraffin-embedded sections prepared from the resected CRC specimens of 119 consecutive patients aged history of LS-associated tumors in the first-degree relatives (P < 0.01) were identified as independent factors predictive of MMR-deficient CRC. These results are of value in the clinical management of patients with the early onset CRC under circumstances where universal tumor screening approaches for LS are still not available, like in Japan.

  4. Osteochondral repair using perichondrial cells. A 1-year study in rabbits.

    Science.gov (United States)

    Chu, C R; Dounchis, J S; Yoshioka, M; Sah, R L; Coutts, R D; Amiel, D

    1997-07-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the transplantation of chondrogenic cells. This study evaluated the repair response during a 1-year period after implantation of allogenic perichondrium cell polylactic acid composite grafts into 3.7 x 5 mm osteochondral defects drilled into the medial femoral condyles of 82 adult New Zealand White rabbits. The repair tissue was evaluated grossly, histologically, histomorphometrically, biochemically, and biomechanically at 6 weeks, 12 weeks, 6 months, and 1 year after implantation. After gross evaluation, cartilaginous material appeared to fill the defect in 70 experimental knees, for an overall repair frequency of 85%. The histomorphometric results and the histologic appearances were variable. None of the specimens were completely normal at 1 year. Only specimens with subchondral bone reformation displayed a definable cartilage appearing surface with chondrocytes surrounded by dense matrix. Subchondral bone reformation was inconsistent, reaching 50% at 1 year. Biochemically, the repair tissue matured during a 1-year period into a hyaline Type II collagen dominant tissue, whereas glycosaminoglycan content remained low at all time periods. The measured compressive properties of the repair tissue at 1 year were not significantly different from those of the contralateral knee that was not surgically treated. The treatment of osteochondral defects in the rabbit knee with allogenic perichondrium cell polylactic acid composite grafts yielded a high percentage of grossly successful repairs that showed inconsistent subchondral bone reformation. These results suggest that healthy subchondral bone is important to articular cartilage repair. They also highlight that a cartilaginous appearing tissue at gross inspection may not represent structurally normal articular cartilage. Continued multidisciplinary studies on the arthroplastic potential of rib perichondrial cells

  5. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    better graft function. This effect was independent of the lower T-cell numbers in Rhoh-deficient recipients, because injection of equal numbers of Rhoh-deficient or control T cells into kidney transplanted mice with SCID led again to a significant 60% reduction of rejection. Mixed lymphocyte reaction...

  6. Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability.

    Directory of Open Access Journals (Sweden)

    Yunfu Lin

    Full Text Available Expansion of CAG•CTG tracts located in specific genes is responsible for 13 human neurodegenerative disorders, the pathogenic mechanisms of which are not yet well defined. These disease genes are ubiquitously expressed in human tissues, and transcription has been identified as one of the major pathways destabilizing the repeats. Transcription-induced repeat instability depends on transcription-coupled nucleotide excision repair (TC-NER, the mismatch repair (MMR recognition component MSH2/MSH3, and RNA/DNA hybrids (R-loops. Recently, we reported that simultaneous sense and antisense transcription-convergent transcription-through a CAG repeat not only promotes repeat instability, but also induces a cell stress response, which arrests the cell cycle and eventually leads to massive cell death via apoptosis. Here, we use siRNA knockdowns to investigate whether NER, MMR, and R-loops also modulate convergent-transcription-induced cell death and repeat instability. We find that siRNA-mediated depletion of TC-NER components increases convergent transcription-induced cell death, as does the simultaneous depletion of RNase H1 and RNase H2A. In contrast, depletion of MSH2 decreases cell death. These results identify TC-NER, MMR recognition, and R-loops as modulators of convergent transcription-induced cell death and shed light on the molecular mechanism involved. We also find that the TC-NER pathway, MSH2, and R-loops modulate convergent transcription-induced repeat instability. These observations link the mechanisms of convergent transcription-induced repeat instability and convergent transcription-induced cell death, suggesting that a common structure may trigger both outcomes.

  7. The Potential for Synovium-derived Stem Cells in Cartilage Repair.

    Science.gov (United States)

    Kubosch, Eva Johanna; Lang, Gernot; Furst, David; Kubosch, David; Izadpanah, Kaywan; Rolauffs, Bernd; Sudkamp, Norbert P; Schmal, Hagen

    2018-02-23

    Articular cartilage defects often result in pain, loss of function and finally osteoarthritis. Developing cell-based therapies for cartilage repair is a major goal of orthopaedic research. Autologous chondrocyte implantation is currently the gold standard cell-based surgical procedure for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell application showed encouraging results. Since synvoium-derived stem cells are located in the direct vicinity of cartilage and cartilage lesions these cells might even contribute to natural cartilage regeneration. The only one published human in vivo study with 10 patients revealed good results concerning postoperative outcome, MRI, and histologic features after a two-stage implantation of synovial stem cells into an isolated cartilage defect of the femoral condyle. Synovium-derived stem cells possess great chondrogenic potential and showed encouraging results for cartilage repair purposes. Furthermore, synovial stem cells play an important role in joint homeostasis and possibly in natural cartilage repair. Further studies are needed to elucidate the interplay of synovial stem cells and

  8. Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal

    Energy Technology Data Exchange (ETDEWEB)

    Parris, C.N.; Kraemer, K.H. (National Cancer Institute, Bethesda, MD (United States))

    1993-08-01

    The authors compared the contribution to mutagenesis on Cockayne syndrome (CS) cells of the major class of UV photoproducts, the cyclobutane pyrimidine dimer, to that of other DNA photoproducts by using the mutagenesis shuttle vector pZ189. Lymphoblastoid cell lines from the DNA repair-deficient disorders CS and xeroderma pigmentosum (XP) and a normal line were transfected with UV-treated pZ189. Cyclobutane dimers were selectively removed before transfection by photoreactivation (PR), leaving nondimer photoproducts intact. After UV exposure and replication in CS and XP cells, plasmid survival was abnormally elevated. After PR, plasmid survival increased and mutation frequency in CS cells decreased to normal levels but remained abnormal in XP cells. Sequence analysis of >200 mutant plasmids showed that with CS cells a major mutational hot spot was caused by unrepaired cyclobutane dimers. These data indicate that with both CS and XP cyclobutane dimers are major photoproducts generating reduced plasmid survival and increased mutation frequency. However, unlike XP, CS cells are proficient in repair of nondimer photoproducts. Since XP but not CS patients have a high frequency of UV-induced skin cancers, the data suggest that prevention of UV-induced skin cancers is associated with proficient repair of nondimer photoproducts. 38 refs., 3 figs., 2 tabs.

  9. Natural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy.

    Science.gov (United States)

    Zhang, Lihong; Peng, Yang; Uray, Ivan P; Shen, Jianfeng; Wang, Lulu; Peng, Xiangdong; Brown, Powel H; Tu, Wei; Peng, Guang

    2017-12-01

    Investigation of natural products is an attractive strategy to identify novel compounds for cancer prevention and treatment. Numerous studies have shown the efficacy and safety of natural products, and they have been widely used as alternative treatments for a wide range of illnesses, including cancers. However, it remains unknown whether natural products affect homologous recombination (HR)-mediated DNA repair and whether these compounds can be used as sensitizers with minimal toxicity to improve patients' responses to radiation therapy, a mainstay of treatment for many human cancers. In this study, in order to systematically identify natural products with an inhibitory effect on HR repair, we developed a high-throughput image-based HR repair screening assay and screened a chemical library containing natural products. Among the most interesting of the candidate compounds identified from the screen was β-thujaplicin, a bioactive compound isolated from the heart wood of plants in the Cupressaceae family, can significantly inhibit HR repair. We further demonstrated that β-thujaplicin inhibits HR repair by reducing the recruitment of a key HR repair protein, Rad51, to DNA double-strand breaks. More importantly, our results showed that β-thujaplicin can radiosensitize cancer cells. Additionally, β-thujaplicin sensitizes cancer cells to PARP inhibitor in different cancer cell lines. Collectively, our findings for the first time identify natural compound β-thujaplicin, which has a good biosafety profile, as a novel HR repair inhibitor with great potential to be translated into clinical applications as a sensitizer to DNA-damage-inducing treatment such as radiation and PARP inhibitor. In addition, our study provides proof of the principle that our robust high-throughput functional HR repair assay can be used for a large-scale screening system to identify novel natural products that regulate DNA repair and cellular responses to DNA damage-inducing treatments such as

  10. Generation of Glycosylphosphatidylinositol Anchor Protein-Deficient Blood Cells From Human Induced Pluripotent Stem Cells

    OpenAIRE

    Yuan, Xuan; Braunstein, Evan M.; Ye, Zhaohui; Liu, Cyndi F; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao; Brodsky, Robert A.

    2013-01-01

    Using PIG-A gene targeting and an inducible PIG-A expression system, this study established a conditional PIG-A knockout model in human induced pluripotent stem cells that allowed for the production of glycosylphosphatidylinositol-anchored protein (GPI-AP)-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.

  11. Single-molecule live-cell imaging of bacterial DNA repair and damage tolerance.

    Science.gov (United States)

    Ghodke, Harshad; Ho, Han; van Oijen, Antoine M

    2018-02-19

    Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA-repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA-repair processes in prokaryotes. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells

    Science.gov (United States)

    Bosurgi, Lidia; Cao, Y. Grace; Cabeza-Cabrerizo, Mar; Tucci, Andrea; Hughes, Lindsey D.; Kong, Yong; Weinstein, Jason S.; Licona-Limon, Paula; Schmid, Edward T.; Pelorosso, Facundo; Gagliani, Nicola; Craft, Joseph E.; Flavell, Richard A.; Ghosh, Sourav; Rothlin, Carla V.

    2017-01-01

    Tissue repair is a subset of a broad repertoire of interleukin-4 (IL-4)- and IL-13-dependent host responses during helminth infection. Here we show that IL-4 or IL-13 alone was not sufficient, but IL-4 or IL-13 together with apoptotic cells induced the tissue repair program in macrophages. Genetic ablation of sensors of apoptotic cells impaired the proliferation of tissue-resident macrophages and the induction of anti-inflammatory and tissue repair genes in the lungs after helminth infection or in the gut after induction of colitis. By contrast, the recognition of apoptotic cells was dispensable for cytokine-dependent induction of pattern recognition receptor, cell adhesion, or chemotaxis genes in macrophages. Detection of apoptotic cells can therefore spatially compartmentalize or prevent premature or ectopic activity of pleiotropic, soluble cytokines such as IL-4 or IL-13. PMID:28495875

  13. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  14. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Science.gov (United States)

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  15. Pulmonary squamous cell carcinoma associated with repaired congenital tracheoesophageal fistula and esophageal atresia.

    Science.gov (United States)

    Esquibies, Americo E; Zambrano, Eduardo; Ziai, James; Kesebir, Deniz; Touloukian, Robert J; Egan, Marie E; Reyes-Múgica, Miguel; Bazzy-Asaad, Alia

    2010-02-01

    We report a 19-year-old man with pulmonary squamous cell carcinoma (SCC) who had a history of vertebral, anal, cardiac, tracheal, esophageal, renal, and radial limb defects (VACTERL) association and tracheoesophageal fistula (TEF) + esophageal atresia (EA) repair as an infant. Children that undergo TEF + EA repair may have an increased risk for developing cancer as they reach adulthood. (c) 2010 Wiley-Liss, Inc.

  16. Progress in the study of stem cell transplantation for the repair of spinal cord injury

    OpenAIRE

    Chao Zhang(Brookhaven National Lab); Karen A. Egiazaryan; Andrei Р. Ratyev; Victor M. Feniksov; Haixiao Wu; Vladimir Р. Chekhonin

    2017-01-01

    Spinal cord injury is a critical medical emergency that severely jeopardizes human health. Such injuries can cause lifelong paralysis and lead to various complications, including death, and there are often tremendous economic and emotional burdens placed on the society and family. Therefore, the study of spinal cord injury repair has important significance. The use of stem cell transplantation to repair spinal cord injury has been the focus and cause of difficulty in studies of spinal cord in...

  17. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay.

    Science.gov (United States)

    Nickson, Catherine M; Parsons, Jason L

    2014-01-01

    Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20-50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A-DDB1-STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair

  18. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay

    Directory of Open Access Journals (Sweden)

    Jason Luke Parsons

    2014-07-01

    Full Text Available Base excision repair (BER is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionising radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation in the regulation of cellular levels of BER proteins, and that subtle changes (~20-50 % in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumour suppressor protein ARF and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A-DDB1-STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA

  19. Gastric Medullary Carcinoma with Sporadic Mismatch Repair Deficiency and a TP53 R273C Mutation: An Unusual Case with Wild-Type BRAF

    Directory of Open Access Journals (Sweden)

    Brett M. Lowenthal

    2017-01-01

    Full Text Available Medullary carcinoma has long been recognized as a subtype of colorectal cancer associated with microsatellite instability and Lynch syndrome. Gastric medullary carcinoma is a very rare neoplasm. We report a 67-year-old male who presented with a solitary gastric mass. Total gastrectomy revealed a well-demarcated, poorly differentiated carcinoma with an organoid growth pattern, pushing borders, and abundant peritumoral lymphocytic response. The prior cytology was cellular with immunohistochemical panel consistent with upper gastrointestinal/pancreaticobiliary origin. Overall, the histopathologic findings were consistent with gastric medullary carcinoma. A mismatch repair panel revealed a mismatch repair protein deficient tumor with loss of MLH1 and PMS2 expression. BRAF V600E immunostain (VE1 and BRAF molecular testing were negative, indicating a wild-type gene. Tumor sequencing of MLH1 demonstrated a wild-type gene, while our molecular panel identified TP53 c.817C>T (p.R273C mutation. These findings were compatible with a sporadic tumor. Given that morphologically identical medullary tumors often occur in Lynch syndrome, it is possible that mismatch repair loss is an early event in sporadic tumors with p53 mutation being a late event. Despite having wild-type BRAF, this tumor is sporadic and unrelated to Lynch syndrome. This case report demonstrates that coordinate ancillary studies are needed to resolve sporadic versus hereditary rare tumors.

  20. Roles of neural stem cells in the repair of peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2017-01-01

    Full Text Available Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  1. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  2. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  3. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  4. [Induction by mycotoxins of somatic mosaicism in Drosophila and DNA repair in mammalian liver cell cultures].

    Science.gov (United States)

    Belitskiĭ, G A; Khovanova, E M; Budunova, I V; Sharunich, E G

    1983-07-01

    The genotoxic activity of four mycotoxins has been studied. High level of somatic mutagenesis in imaginal discs of Drosophila melanogaster larvae and DNA repair synthesis in human embryo and adult rat liver cell cultures were inducible only by highly carcinogenic aflatoxin B1. Patulin, a weak direct-action carcinogenic substance, slightly elevated the mutagenesis in somatic cells of Drosophila but did not induce DNA repair synthesis in liver cell cultures. Citrinin that did not exhibit any carcinogenic properties when used alone and stachybotrotoxin with non-reported carcinogenic activity appeared inactive in the test-systems applied. The possibilities of rapid recognition of carcinogenic mycotoxins by detecting their genotoxic properties are discussed.

  5. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Science.gov (United States)

    2012-01-01

    Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU) to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5) and keratin 14 (K14) for basal cells, Clara cell secretory protein (CCSP) for Clara cells, and acetylated tubulin (AcTub) for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10), but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion The data are

  6. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  7. Adipose, Bone Marrow and Synovial Joint-derived Mesenchymal Stem Cells for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Christopher Fellows

    2016-12-01

    Full Text Available Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple ‘one size fits all’, but more likely an array of solutions that need to applied systematically to achieve regeneration of a biomechanically competent repair tissue.

  8. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells.

    Science.gov (United States)

    Sontag, Stephanie; Förster, Malrun; Qin, Jie; Wanek, Paul; Mitzka, Saskia; Schüler, Herdit M; Koschmieder, Steffen; Rose-John, Stefan; Seré, Kristin; Zenke, Martin

    2017-04-01

    Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  10. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis.

    Science.gov (United States)

    Tang, Pei-Ciao; Watson, Glen M

    2015-09-01

    Sea anemones have an extraordinary capability to repair damaged hair bundles, even after severe trauma. A group of secreted proteins, named repair proteins (RPs), found in mucus covering sea anemones significantly assists the repair of damaged hair bundle mechanoreceptors both in the sea anemone Haliplanella luciae and the blind cavefish Astyanax hubbsi. The polypeptide constituents of RPs must be identified in order to gain insight into the molecular mechanisms by which repair of hair bundles is accomplished. In this study, several polypeptides of RPs were isolated from mucus using blue native PAGE and then sequenced using LC-MS/MS. Thirty-seven known polypeptides were identified, including Hsp70s, as well as many polypeptide subunits of the 20S proteasome. Other identified polypeptides included those involved in cellular stress responses, protein folding, and protein degradation. Specific inhibitors of Hsp70s and the 20S proteasome were employed in experiments to test their involvement in hair bundle repair. The results of those experiments suggested that repair requires biologically active Hsp70s and 20S proteasomes. A model is proposed that considers the function of extracellular Hsp70s and 20S proteasomes in the repair of damaged hair cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice.

    Science.gov (United States)

    King, L E; Osati-Ashtiani, F; Fraker, P J

    1995-05-01

    Though lymphopenia is often noted in malnourished humans and rodents, little is known about the effects of suboptimal nutriture on lymphopoietic processes. Focusing primarily on cells of the B lineage in the marrow of young adult mice, a moderate degree of zinc deficiency (MZD) caused a 43% decline in the proportion of nucleated cells bearing B220 with a 91% decline noted among more severely zinc deficient mice (SZD). Early B cells (B220+Ig-) were highly sensitive to the deficiency, being barely detectable in SZD mice and reduced by almost 60% in MZD mice. Immature B cells (B220+IgM+IgD-) were similarly affected, declining 35% to 80% depending on the degree of the deficiency. In MZD mice, mature B cells (IgM+IgD+) exhibited moderate losses, being somewhat resistant. A more profound loss in this population was noted for SZD mice. Flow cytometric (FACS) scatter profiles indicated that zinc deficiency caused a sharp decline in the proportion of small nucleated cells which in the marrow are thought to contain a high proportion of developing lymphoid cells. There was a concomitant increase in large granular cells that paralleled a substantial increase in the proportion of nucleated cells bearing Mac-1 for both MZD and SZD mice. Given the dramatic depletion of cells of the B lineage in the marrow created by a deficiency in zinc, it is probable that disruptions in lymphopoietic processes in the marrow play a key role in the resulting lymphopenia observed in many types of malnutrition.

  12. Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death.

    Science.gov (United States)

    Shang, Zeng-Fu; Wei, Qiang; Yu, Lan; Huang, Fang; Xiao, Bei-Bei; Wang, Hongtao; Song, Man; Wang, Li; Zhou, Jianguang; Wang, Jian; Li, Shanhu

    2016-09-20

    Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.

  13. Trace metals alter DNA repair and histone modification pathways concurrently in mouse embryonic stem cells.

    Science.gov (United States)

    Gadhia, Sanket R; Calabro, Anthony R; Barile, Frank A

    2012-07-20

    Exposure to metals alters gene expression, changes transcription rates or interferes with DNA repair mechanisms. We tested a hypothesis to determine whether in vitro acute metal exposure, with or without recovery, alters epigenetic pathways in mouse embryonic stem (mES) cells. We measured cell viability, total and histone protein production, changes in gene expression for differentiation and DNA repair, and histone lysine mono-methylation (H3K27me1), in differentiated cells. Confluent differentiated cultures of mES cells were exposed to arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), lithium (Li), mercury (Hg), and nickel (Ni), for 1-h and 24-h, followed by a recovery period. The data demonstrate that maximum cell death occurred during the first few hours of exposure at 24-h IC₅₀ concentrations for all metals. Prolonged in vitro exposure to metals at low concentrations also inhibited protein production and cell proliferation. Subsequently, we determined that metals alter cell differentiation (Oct-4 and egfr) and DNA repair mechanisms (Rad-18, Top-3a and Ogg-1). Interestingly, As, Cd, Hg, and Ni decreased cell proliferation to a greater extent than total histone protein production. Yet, at equivalent concentrations, As and Hg significantly decreased total histone protein production per cell compared to respective controls, suggesting suppression of repair or compensatory mechanisms involving histone pathways. And, acute exposure to As, Cd, Hg and Ni decreased H3K27me1 residue, when compared to control cells. Because activation of cellular differentiation, histone modification, and DNA repair are linked by common transcriptional pathways, and the data propose that metals alter these conduits, then it is reasonable to conclude that trace quantities of metals are capable of suppressing regulation of chromatin structure, cellular differentiation, and controlled cell proliferation in mES cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of "difficult to repair" lesions such as double-strand breaks without a repair template and eroded telomeres in telomerase-deficient cells. In addition to such pathological situations, a recent study by Su and colle......The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of "difficult to repair" lesions such as double-strand breaks without a repair template and eroded telomeres in telomerase-deficient cells. In addition to such pathological situations, a recent study by Su...

  15. Endostatin sensitizes p53-deficient non-small-cell lung cancer to genotoxic chemotherapy by targeting DNA-dependent protein kinase catalytic subunit.

    Science.gov (United States)

    Jia, Lin; Lu, Xin-An; Liu, Guanghua; Wang, Shan; Xu, Min; Tian, Yang; Zhang, Shaosen; Fu, Yan; Luo, Yongzhang

    2017-10-01

    Endostatin was discovered as an endogenous angiogenesis inhibitor with broad-spectrum antitumour activities. Although clinical efficacy was observed when endostatin was combined with standard chemotherapy for non-small cell lung cancer (NSCLC), as well as other cancer types, the specific mechanisms underlying the benefit of endostatin are not completely understood. Extensive investigations suggest that endostatin is a multifunctional protein possessing more than anti-angiogenic activity. Here, we found that endostatin exerts a direct chemosensitizing effect on p53-deficient tumour cells. Concomitant treatment with endostatin and genotoxic drugs resulted in therapeutic synergy in both cellular and animal models of p53-deficient NSCLC. Mechanistically, endostatin specifically interacts with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in tumour cells and suppresses its DNA repair activity. Using isogenic NSCLC cells with different p53 statuses, we discovered that p53-deficient tumour cells show chemoresistance to genotoxic drugs, creating a synthetic dependence on DNA-PKcs-mediated DNA repair. In this setting, endostatin exerted inhibitory effects on DNA-PKcs activity, leading to accumulation of DNA lesions and promotion of the therapeutic effect of genotoxic chemotherapy. In contrast, p53-proficient tumour cells were more sensitive to genotoxic drugs so that DNA-PKcs could be cleaved by drug-activated caspase-3, making DNA-PKcs inhibition less effective during this ongoing apoptotic process. Therefore, our data demonstrate a novel mechanism for endostatin as a DNA-PKcs suppressor, and indicate that combination therapy of endostatin with genotoxic drugs could be a promising treatment strategy for cancer patients with p53-deficient tumours. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. [Advances in the research of effects of exosomes derived from stem cells on wound repair].

    Science.gov (United States)

    Li, M Y; Liu, D W; Mao, Y G

    2017-03-20

    Exosomes are nano-vesicles released by many kinds of cells. Exosomes play a significant role in cell-to-cell communication and substance transportation through direct effect of signaling molecules on the cell membrane surface, intracellular regulation of cellular content during membrane fusion, or regulation of release of various bioactive molecules. Several studies have reported that culture supernatant of stem cells has some related exosomes to take part in wound repair. The secretion of exosomes is depended on the source and the physiological and pathological condition of deriving cells. How to stimulate the stem cells to produce exosomes maximally and their clinical application are worthy to explore. In this review, we summarize the biological function and application of exosomes derived from stem cells in wound repair.

  17. Excision repair of bulky lesions in the DNA of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R B; Grist, E

    1980-01-01

    The report examines the process of excision repair of pyrimidine dimers from uv-irradiated and chemically challenged human cells. It is shown by means of a sensitive endonuclease assay that the amount of excision observed depends upon the isotope used to label cells, and that XP heterozygotes are between normals and XPs. (ACR)

  18. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    Science.gov (United States)

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  19. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2017-06-01

    Full Text Available Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs from human pluripotent stem cells (hPSCs, using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system.

  20. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    Science.gov (United States)

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtual...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  2. Association between age and repair of oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    It has been hypothesised that positive associations between age and levels of oxidative stress-generated damage to DNA may be related to an age-dependent decline in DNA repair activity. The objective of this study was to investigate the association between age and repair activity of oxidatively......, the results show an inverse association between age and DNA repair activity of oxidatively damaged DNA....... damaged DNA in peripheral blood mononuclear cells (PBMCs). We isolated PBMCs from subjects aged 18-83 years, as part of a health survey of the Danish population that focussed on lifestyle factors. The level of DNA repair activity was measured as incisions on potassium bromate-damaged DNA by the comet...

  3. Loss of Cdx2 expression in primary tumors and lymph node metastases is specific for mismatch repair-deficiency in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Heather eDawson

    2013-10-01

    Full Text Available Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the serrated pathway characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype (CIMP and microsatellite instability/mismatch repair (MMR-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic (ROC curve analysis and Area under the Curve (AUC were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out.Results Loss of Cdx2 expression was associated with higher tumor grade (p=0.0002, advanced pT (p=0.0166, and perineural invasion (p=0.0228. Cdx2 loss was an unfavorable prognostic factor in univariate (p=0.0145 and multivariate (p=0.0427; HR (95%CI: 0.58 (0.34-0.98 analysis. The accuracy (AUC for discriminating MMR-proficient and –deficient cancers was 87% (OR (95%CI:0.96 (0.95-0.98; p<0.0001. Specificity and negative predictive value for MMR-deficiency was 99.1% and 96.3%. 174 patients had MMR-proficient cancers, of which 60 (34.5% showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p<0.0001. There was no difference in expression between primary tumors and matched metastases.Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events upstream of the development of MSI may impact Cdx2 expression.

  4. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  5. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    Science.gov (United States)

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  6. Differential UVB-induced modulation of cytokine production in XPA, XPC, and CSB repair-deficient mice

    NARCIS (Netherlands)

    Boonstra, A.P.; Oudenaren, van A.; Baert, M.R.M.; Steeg, van H.; Leenen, P.J.; Horst, van der G.T.J.; Hoeijmakers, J.H.J.; Savelkoul, H.F.J.; Garssen, J.

    2001-01-01

    Ultraviolet B irradiation has serious consequences for cellular immunity and can suppress the rejection of skin tumors and the resistance to infectious diseases. DNA damage plays a crucial role in these immunomodulatory effects of ultraviolet B, as impaired repair of ultraviolet-B-induced DNA damage

  7. Calvarial Suture-Derived Stem Cells and Their Contribution to Cranial Bone Repair

    Directory of Open Access Journals (Sweden)

    Daniel H. Doro

    2017-11-01

    Full Text Available In addition to the natural turnover during life, the bones in the skeleton possess the ability to self-repair in response to injury or disease-related bone loss. Based on studies of bone defect models, both processes are largely supported by resident stem cells. In the long bones, the source of skeletal stem cells has been widely investigated over the years, where the major stem cell population is thought to reside in the perivascular niche of the bone marrow. In contrast, we have very limited knowledge about the stem cells contributing to the repair of calvarial bones. In fact, until recently, the presence of specific stem cells in adult craniofacial bones was uncertain. These flat bones are mainly formed via intramembranous rather than endochondral ossification and thus contain minimal bone marrow space. It has been previously proposed that the overlying periosteum and underlying dura mater provide osteoprogenitors for calvarial bone repair. Nonetheless, recent studies have identified a major stem cell population within the suture mesenchyme with multiple differentiation abilities and intrinsic reparative potential. Here we provide an updated review of calvarial stem cells and potential mechanisms of regulation in the context of skull injury repair.

  8. Normal telomere length and chromosomal end capping in poly(ADP-ribose) polymerase–deficient mice and primary cells despite increased chromosomal instability

    Science.gov (United States)

    Samper, Enrique; Goytisolo, Fermín A.; Murcia, Josiane Ménissier-de; González-Suárez, Eva; Cigudosa, Juan C.; de Murcia, Gilbert; Blasco, María A.

    2001-01-01

    Poly(ADP-ribose) polymerase (PARP)-1, a detector of single-strand breaks, plays a key role in the cellular response to DNA damage. PARP-1–deficient mice are hypersensitive to genotoxic agents and display genomic instability due to a DNA repair defect in the base excision repair pathway. A previous report suggested that PARP-1–deficient mice also had a severe telomeric dysfunction consisting of telomere shortening and increased end-to-end fusions (d'Adda di Fagagna, F., M.P. Hande, W.-M. Tong, P.M. Lansdorp, Z.-Q. Wang, and S.P. Jackson. 1999. Nat. Genet. 23:76–80). In contrast to that, and using a panoply of techniques, including quantitative telomeric (Q)-FISH, we did not find significant differences in telomere length between wild-type and PARP-1−/− littermate mice or PARP-1−/− primary cells. Similarly, there were no differences in the length of the G-strand overhang. Q-FISH and spectral karyotyping analyses of primary PARP-1−/− cells showed a frequency of 2 end-to-end fusions per 100 metaphases, much lower than that described previously (d'Adda di Fagagna et al., 1999). This low frequency of end-to-end fusions in PARP-1−/− primary cells is accordant with the absence of severe proliferative defects in PARP-1−/− mice. The results presented here indicate that PARP-1 does not play a major role in regulating telomere length or in telomeric end capping, and the chromosomal instability of PARP-1−/− primary cells can be explained by the repair defect associated to PARP-1 deficiency. Finally, no interaction between PARP-1 and the telomerase reverse transcriptase subunit, Tert, was found using the two-hybrid assay. PMID:11448989

  9. Prospect of Induced Pluripotent Stem Cell Genetic Repair to Cure Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Jeanne Adiwinata Pawitan

    2012-01-01

    Full Text Available In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient’s own cell can be developed. However, iPSC from the patients’s cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.

  10. Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair

    Science.gov (United States)

    Luissint, Anny-Claude; Parkos, Charles A.; Nusrat, Asma

    2017-01-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  11. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  12. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.

    Science.gov (United States)

    Wakitani, S; Goto, T; Pineda, S J; Young, R G; Mansour, J M; Caplan, A I; Goldberg, V M

    1994-04-01

    Osteochondral progenitor cells were used to repair large, full-thickness defects of the articular cartilage that had been created in the knees of rabbits. Adherent cells from bone marrow, or cells from the periosteum that had been liberated from connective tissue by collagenase digestion, were grown in culture, dispersed in a type-I collagen gel, and transplanted into a large (three-by-six-millimeter), full-thickness (three-millimeter) defect in the weight-bearing surface of the medial femoral condyle. The contralateral knee served as a control: either the defect in that knee was left empty or a cell-free collagen gel was implanted. The periosteal and the bone-marrow-derived cells showed similar patterns of differentiation into articular cartilage and subchondral bone. Specimens of reparative tissue were analyzed with use of a semiquantitative histological grading system and by mechanical testing with employment of a porous indenter to measure the compliance of the tissue at intervals until twenty-four weeks after the operation. There was no apparent difference between the results obtained with the cells from the bone marrow and those from the periosteum. As early as two weeks after transplantation, the autologous osteochondral progenitor cells had uniformly differentiated into chondrocytes throughout the defects. This repair cartilage was subsequently replaced with bone in a proximal-to-distal direction, until, at twenty-four weeks after transplantation, the subchondral bone was completely repaired, without loss of overlying articular cartilage. The mechanical testing data were a useful index of the quality of the long-term repair. Twenty-four weeks after transplantation, the reparative tissue of both the bone-marrow and the periosteal cells was stiffer and less compliant than the tissue derived from the empty defects but less stiff and more compliant than normal cartilage. The current modalities for the repair of defects of the articular cartilage have many

  13. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  14. 1Restoration of ATM expression in DNA-PKcs deficient cells inhibits signal end joining

    Science.gov (United States)

    Neal, Jessica A.; Xu, Yao; Abe, Masumi; Hendrickson, Eric; Meek, Katheryn

    2016-01-01

    Unlike most DNA-PKcs deficient mouse cell strains, we show here that targeted deletion of DNA-PKcs in two different human cell lines abrogates VDJ signal end joining in episomal assays. Although the mechanism is not well defined, DNA-PKcs deficiency results in spontaneous reduction of ATM expression in many cultured cell lines (including those studied here) and in DNA-PKcs deficient mice. We considered that varying loss of ATM expression might explain differences in signal end joining in different cell strains and animal models, and we investigated the impact of ATM and/or DNA-PKcs loss on VDJ recombination in cultured human and rodent cell strains. To our surprise, in DNA-PKcs deficient mouse cell strains that are proficient in signal end joining, restoration of ATM expression markedly inhibits signal end joining. In contrast, in DNA-PKcs deficient cells that are deficient in signal end joining, complete loss of ATM enhances signal (but not coding) joint formation. We propose that ATM facilitates restriction of signal ends to the “classical” non-homologous end-joining pathway. PMID:26921311

  15. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  16. Germ cell DNA-repair systems-possible tools in cancer research?

    Science.gov (United States)

    Helle, F

    2012-04-01

    A major dogma in cancer research is that cancer begins at the cellular level. Because of this single-cell origin, evolutionary principles have often been used to explain how somatic cancer cells are selected at a sub-individual level. The traditional application of Darwinian theory, however, in which the colony of cells constituting an individual is regarded as a whole, has not been applied extensively to the understanding of cancer until recently. Two proponents for this view, Breivik and Gaudernack, have suggested that in certain situations the cost of DNA repair might exceed the cost of errors. This model predicts that genetic stability is configured for an optimal cost-benefit relationship. Natural selection is not expected to have produced the best genetic stability available in the human body, merely the best compromise of DNA repair and costs. Repair and maintenance of the vast human genome is thermodynamically expensive, and an optimal balance between DNA repair and dietary needs is likely to have originated. Furthermore, fast growth conveys significant advantages such as early maturation or cognitive development, but usually at the expense of replication accuracy. Thus, a compromise between growth speed and cancer risk is likely to have taken place. These and other ecological mechanisms have probably prevented genomic stability to reach its full potential in the human body. In contrast, germ lines express near perfect DNA maintenance. Although germ cells are specialized DNA-conserving cells with few other functions, it's not given that their proteins will all be incompatible with the somatic cell. One approach to study this would be to systematically explore which DNA-stability and -repair systems are unique in germ cells, and induce their expression in invertebrate and mammalian model organisms. This could unveil which DNA-repair systems are switched off in the somatic cell lines, as they are incompatible, and which are absent due to evolution. The

  17. Studies of DNA repair in saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Douthwright-Fasse, Jane Ann [Univ. of Rochester, NY (United States)

    1979-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in Saccharomyces cerevisiae; characterization of a new allele in the RAD6 gene which suggests that the gene is multifunctional, and utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, are as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3 but, unlike them, are capable of induced mutagenesis and sporulation. Although rad6-4 may well be a missense mutation, the evidence shows that it is unlikely that this phenotype is due to leakiness. Instead, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. Rad6-1 and rad6-3 strains are deficient in both of these functions, while rad6-4 strains are deficient only in the error-free function. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle after DNA damage. LOP is dependent upon de novo protein synthesis. LOP begins immediately after UV irradiation, before semiconservative DNA synthesis takes place, and is complete after four hours in growth medium.There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair.

  18. Cell-Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    Science.gov (United States)

    2016-07-01

    growth factors specific to this tissue, to increase the formation of fibrocartilage by adult stem cells seeded within the scaffold. This bio...the ability of the bio-activated, aligned NFS sheath to enhance meniscus repair when combined with stem cell -based wound bonding strategies and...patient to rapid joint degeneration (i.e., osteoarthritis ). Tissue engineering approaches, including the combination of cells , scaffolds, and

  19. Distinctions in sensitivity and repair of cells of children with some hereditary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Zasukhina, G.D.; Barashnev, Yu.I.; Vasil' eva, I.M.; Sdirkova, N.I.; Semyachkina, A.N. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    A study was made of blood cell sensitivity of children with some hereditary diseases, to ..gamma..-radiation and 4-nitro-quinoline-1-oxide. Using the host cell reactivation and chromatographic methods we revealed the increase in the sensitivity to the above mentioned agents and inhibition of the repair function in cells of patients with the following diseases: Marfan's disease, histidinemia, osteogenesis imperfecta, Sylvere-Russelle, Laurence, Franchescetti, and Losch-Nychane syndromes.

  20. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe-/- Neil3-/- mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation...... of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage....

  1. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  2. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  3. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  4. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Brandon J.; Dickey, Jennifer S.; Nakamura, Asako J.; Redon, Christophe E.; Parekh, Palak [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States); Griko, Yuri V. [Radiation and Space Biotechnology Branch, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Aziz, Khaled; Georgakilas, Alexandros G. [Biology Department, East Carolina University, Greenville, NC 27858 (United States); Bonner, William M. [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States); Martin, Olga A., E-mail: sedelnio@mail.nih.gov [Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD 20892 (United States)

    2011-06-03

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0 {sup o}C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7 {sup o}C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13 {sup o}C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13 {sup o}C during and 12 h after irradiation. Mild hypothermia at 20 and 30 {sup o}C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13 {sup o}C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX ({gamma}-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13 {sup o}C compared to the rapid repair at 37 {sup o}C. For both {gamma}-H2AX foci and OCDLs, the return of lymphocytes to 37 {sup o}C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against

  5. A influência da deficiência estrogênica no processo de remodelação e reparação óssea Effect of estrogen deficiency on bone turnover and bone repair

    Directory of Open Access Journals (Sweden)

    Susana Ungaro Amadei

    2006-02-01

    cellular activity and several studies focus on the factors able to modulate the bone functions. The increase of bone research is, in part, due to the establishment of osteoporosis as a healthy problem common in elderly. Osteoporosis is one of the most important osteopathy, characterized by the bone mass reduction, resulted from disequilibrium between bone resorption and bone formation. OBJECTIVE: Based on the relationship between estrogen and bone metabolism, the aim of this study is present a review of literature about the principal aspects of bone turnover and bone repair associated to estrogen deficiency. Bone turnover: Bone tissue is in continuous turnover, however, changes in this process can result in some disorders, such as osteoporosis. Bone repair: Involves a sequence of biological events. It is affected by local and external factors and regulated by interaction of several mechanisms, like bone turnover. Estrogen deficiency and bone metabolism: The capacity to repair has been associated to changes in bone turnover and repair. DISCUSSION: It is not known which bone repair stage is modified: the bone formation, the mineralization or the resorption stage. CONCLUSION: The pathophysiology of bone changes caused by estrogen deficiency are not completely clear, so, new studies are still necessary.

  6. Randomized evaluation of efficacy and safety of ferric carboxymaltose in patients with iron deficiency anaemia and impaired renal function (REPAIR-IDA): rationale and study design.

    Science.gov (United States)

    Szczech, Lynda A; Bregman, David B; Harrington, Robert A; Morris, David; Butcher, Angelia; Koch, Todd A; Goodnough, Lawrence T; Wolf, Myles; Onken, Jane E

    2010-07-01

    Patients with iron deficiency anaemia (IDA) in the setting of non-dialysis-dependent chronic kidney disease (NDD-CKD) may benefit from treatment with intravenous (IV) iron. Ferric carboxymaltose (FCM) is a novel IV iron formulation designed to permit larger infusions compared to currently available IV standards such as Venofer(R) (iron sucrose). The primary objective of REPAIR-IDA is to estimate the cardiovascular safety and efficacy of FCM (two doses at 15 mg/kg to a maximum of 750 mg per dose) compared to Venofer(R) (1000 mg administered as five infusions of 200 mg) in subjects who have IDA and NDD-CKD. REPAIR-IDA is a multi-centre, randomized, active-controlled, open-label study. Eligible patients must have haemoglobin (Hgb) IDA will assess the efficacy and safety of two 750-mg infusions of FCM compared to an FDA-approved IV iron regimen in patients with NDD-CKD at increased risk for cardiovascular disease.

  7. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    Science.gov (United States)

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  8. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration.

    Science.gov (United States)

    Catón, Javier; Bostanci, Nagihan; Remboutsika, Eumorphia; De Bari, Cosimo; Mitsiadis, Thimios A

    2011-05-01

    Cell-based tissue repair of the tooth and - tooth-supporting - periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  9. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation.

    Science.gov (United States)

    Zhou, Ya-Jing; Liu, Jian-Min; Wei, Shu-Ming; Zhang, Yun-Hao; Qu, Zhen-Hua; Chen, Shu-Bo

    2015-08-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  10. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  11. Loss of Cell Adhesion Increases Tumorigenic Potential of Polarity Deficient Scribble Mutant Cells.

    Directory of Open Access Journals (Sweden)

    Indrayani Waghmare

    Full Text Available Epithelial polarity genes are important for maintaining tissue architecture, and regulating growth. The Drosophila neoplastic tumor suppressor gene scribble (scrib belongs to the basolateral polarity complex. Loss of scrib results in disruption of its growth regulatory functions, and downregulation or mislocalization of Scrib is correlated to tumor growth. Somatic scribble mutant cells (scrib- surrounded by wild-type cells undergo apoptosis, which can be prevented by introduction of secondary mutations that provide a growth advantage. Using genetic tools in Drosophila, we analyzed the phenotypic effects of loss of scrib in different growth promoting backgrounds. We investigated if a central mechanism that regulates cell adhesion governs the growth and invasive potential of scrib mutant cells. Here we show that increased proliferation, and survival abilities of scrib- cells in different genetic backgrounds affect their differentiation, and intercellular adhesion. Further, loss of scrib is sufficient to cause reduced cell survival, activation of the JNK pathway and a mild reduction of cell adhesion. Our data show that for scrib cells to induce aggressive tumor growth characterized by loss of differentiation, cell adhesion, increased proliferation and invasion, cooperative interactions that derail signaling pathways play an essential role in the mechanisms leading to tumorigenesis. Thus, our study provides new insights on the effects of loss of scrib and the modification of these effects via cooperative interactions that enhance the overall tumorigenic potential of scrib deficient cells.

  12. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Otterlei, Marit; Pena Diaz, Javier

    2004-01-01

    , PCNA and DNA ligase, the latter detected as activity. Short-patch repair was the predominant mechanism both in extracts and UNG2-ARC from proliferating and less BER-proficient growth-arrested cells. Repair of U/G mispairs and U/A pairs was completely inhibited by neutralizing UNG......Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using...

  13. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, M L; Würtz, S Ø; Rømer, M U

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  14. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    Science.gov (United States)

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  15. Polyclonal Expansion of NKG2C+ NK Cells in TAP-deficient Patients

    Directory of Open Access Journals (Sweden)

    vivien eBeziat

    2015-10-01

    Full Text Available Adaptive natural killer (NK cell responses to human cytomegalovirus (CMV infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs. Here, we set out to study the HLA class I-dependency of such NKG2C+ NK cell expansions. We demonstrate expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP-deficiency, whom express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR-profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR-repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. Thus, the emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to anti-viral immunity and potentially explain these patients’ low incidence of severe viral infections.

  16. Dental stem cells in tooth regeneration and repair in the future.

    Science.gov (United States)

    Morsczeck, Christian; Reichert, Torsten E

    2018-02-01

    Human dental stem cells can be obtained from postnatal teeth, extracted wisdom teeth or exfoliated deciduous teeth. Due to their differentiation potential, these mesenchymal stem cells are promising for tooth repair. Therefore, the development of dental tissue regeneration represents a suitable but challenging, target for dental stem cell therapies. Areas covered: In this review, the authors provide an overview of human dental stem cells and their properties for regeneration medicine. Numerous preclinical studies have shown that dental stem cells improve bone augmentation and healing of periodontal diseases. Clinical trials are ongoing to validate the clinical feasibility of these approaches. Dental stem cells are also important for basic research. Expert opinion: Dental stem cells offer numerous advantages for tooth repair and regeneration. Data obtained from different studies are encouraging. In the next few years, investigations on dental stem cells in basic research, pre-clinical research and clinical studies will pave the way to optimizing patient-tailored treatments for repair and regeneration of dental tissues.

  17. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.

    2016-01-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062

  18. Renal cell carcinoma as a cause of iron deficiency anemia

    African Journals Online (AJOL)

    Amar A. Dowd

    Abstract. A case of a 66-years-old male with iron deficiency anemia for more than 16 years, refractory to management with iron therapy is reported. Fecal occult blood test done several times was found to be negative. Upper and lower endoscopy revealed no source of bleeding. Capsule enterscopy showed no vascular ...

  19. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha

    2011-01-01

    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells...

  20. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    Science.gov (United States)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  1. The role of HUCB derived stem cells therapy in repair of renal ...

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    consequences, unsatisfactory therapeutic options and enormous financial burden to society. The aim is to investigate the role of human umbilical cord blood (HUCB) derived mesenchymal (MSCs) and CD34+ hematopoietic stem cell therapy in repair of renal damage and improvement of renal function in cisplatin-induced ...

  2. Shutting down the power supply for DNA repair in cancer cells

    NARCIS (Netherlands)

    van Vugt, Marcel A. T. M.

    Phosphoglycerate mutase 1 (PGAM1) functions in glycolysis. In this issue, Qu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201607008) show that PGAM1 inactivation leads to nucleotide depletion, which causes defective homologous recombination-mediated DNA repair, suggesting that targeting

  3. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance

    DEFF Research Database (Denmark)

    Alvero, Ayesha B; Chen, Rui; Fu, Han-Hsuan

    2009-01-01

    . CSC identified in EOC cells isolated form ascites and solid tumors are characterized by: CD44+, MyD88+, constitutive NFkappaB activity and cytokine and chemokine production, high capacity for repair, chemoresistance to conventional chemotherapies, resistance to TNFalpha-mediated apoptosis, capacity...

  4. Mitochondrial Complexes I and II Are More Susceptible to Autophagy Deficiency in Mouse β-Cells

    Directory of Open Access Journals (Sweden)

    Min Joo Kim

    2015-03-01

    Full Text Available BackgroundDamaged mitochondria are removed by autophagy. Therefore, impairment of autophagy induces the accumulation of damaged mitochondria and mitochondrial dysfunction in most mammalian cells. Here, we investigated mitochondrial function and the expression of mitochondrial complexes in autophagy-related 7 (Atg7-deficient β-cells.MethodsTo evaluate the effect of autophagy deficiency on mitochondrial function in pancreatic β-cells, we isolated islets from Atg7F/F:RIP-Cre+ mice and wild-type littermates. Oxygen consumption rate and intracellular adenosine 5'-triphosphate (ATP content were measured. The expression of mitochondrial complex genes in Atg7-deficient islets and in β-TC6 cells transfected with siAtg7 was measured by quantitative real-time polymerase chain reaction.ResultsBaseline oxygen consumption rate of Atg7-deficient islets was significantly lower than that of control islets (P<0.05. Intracellular ATP content of Atg7-deficient islets during glucose stimulation was also significantly lower than that of control islets (P<0.05. By Oxygraph-2k analysis, mitochondrial respiration in Atg7-deficient islets was significantly decreased overall, although state 3 respiration and responses to antimycin A were unaffected. The mRNA levels of mitochondrial complexes I, II, III, and V in Atg7-deficient islets were significantly lower than in control islets (P<0.05. Down-regulation of Atg7 in β-TC6 cells also reduced the expression of complexes I and II, with marginal significance (P<0.1.ConclusionImpairment of autophagy in pancreatic β-cells suppressed the expression of some mitochondrial respiratory complexes, and may contribute to mitochondrial dysfunction. Among the complexes, I and II seem to be most vulnerable to autophagy deficiency.

  5. Xeroderma pigmentosum-Cockayne syndrome complex in two patients: absence of skin tumors despite severe deficiency of DNA excision repair.

    Science.gov (United States)

    Scott, R J; Itin, P; Kleijer, W J; Kolb, K; Arlett, C; Muller, H

    1993-11-01

    Two brothers had a complex combination of two DNA repair disorders: Cockayne syndrome and xeroderma pigmentosum. This rare combination has previously been observed in only two other patients. The clinical signs shared by these two brothers and the two other previously described patients include severe sun sensitivity, freckling, diminished stature, hearing and movement impairment, and neurologic degeneration. Although defective UV-induced unscheduled DNA synthesis has been demonstrated (5% of normal), no skin cancers have appeared in these 38- and 41-year-old brothers, whereas skin cancers developed at a relatively early age in the two previously described patients who also had defective UV-induced unscheduled DNA synthesis.

  6. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  7. Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function.

    Directory of Open Access Journals (Sweden)

    Ivana Murfuni

    2013-10-01

    Full Text Available In checkpoint-deficient cells, DNA double-strand breaks (DSBs are produced during replication by the structure-specific endonuclease MUS81. The mechanism underlying MUS81-dependent cleavage, and the effect on chromosome integrity and viability of checkpoint deficient cells is only partly understood, especially in human cells. Here, we show that MUS81-induced DSBs are specifically triggered by CHK1 inhibition in a manner that is unrelated to the loss of RAD51, and does not involve formation of a RAD51 substrate. Indeed, CHK1 deficiency results in the formation of a RAD52-dependent structure that is cleaved by MUS81. Moreover, in CHK1-deficient cells depletion of RAD52, but not of MUS81, rescues chromosome instability observed after replication fork stalling. However, when RAD52 is down-regulated, recovery from replication stress requires MUS81, and loss of both these proteins results in massive cell death that can be suppressed by RAD51 depletion. Our findings reveal a novel RAD52/MUS81-dependent mechanism that promotes cell viability and genome integrity in checkpoint-deficient cells, and disclose the involvement of MUS81 to multiple processes after replication stress.

  8. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...... cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was up-regulated in cancer cell mitochondria but down-regulated in the nucleus when compared...

  9. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells

    Science.gov (United States)

    Sansone, Clementina; Galasso, Christian; Orefice, Ida; Nuzzo, Genoveffa; Luongo, Elvira; Cutignano, Adele; Romano, Giovanna; Brunet, Christophe; Fontana, Angelo; Esposito, Francesco; Ianora, Adrianna

    2017-01-01

    Green microalgae contain many active pigments such as carotenoids having antioxidant and protective activity on human cells. Here we investigate the biological activity of an ethanol/water extract of the marine green microalga Tetraselmis suecica containing high levels of carotenoids such as the xanthophylls lutein, violaxanthin, neoxanthin, antheraxanthin and loroxanthin esters. This extract has a strong antioxidant and repairing activity in the human lung cancer cell line (A549) as shown by the increased expression of dehydrocholesterol reductase-24 (DHCR24) and prostaglandin reductase 1 (PTGR1) genes and proteins. The extract also reduces prostaglandin E2 (PGE2) levels in cells damaged by H2O2 and has tissue repairing effects on reconstructed human epidermal tissue cells (EpiDermTM) indicating a potential cosmeceutical activity of this microalgal species. PMID:28117410

  10. The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair.

    OpenAIRE

    Koninckx, Remco; Daniels, Annick; Windmolders, Severina; Mees, Urbain; Macianskiene, Regina; Mubagwa, Kanigula; Steels, Paul; Jamaer, Luc; Dubois, Jasperina; Robic, Boris; Hendrikx, Marc; Rummens, Jean-Luc; Hensen, Karen

    2013-01-01

    AIMS: Considerable shortcomings in the treatment of myocardial infarction (MI) still exist and therefore mortality remains high. Cardiac stem cell (CSC) therapy is a promising approach for myocardial repair. However, identification and isolation of candidate CSCs is mainly based on the presence or absence of certain cell surface markers, which suffers from some drawbacks. In order to find a more specific and reliable identification and isolation method, we investigated whether CSCs can b...

  11. Adult Stem Cell-Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2017-10-01

    STATEMENT Approved  for  Public  Release;;  Distribution  Unlimited   13. SUPPLEMENTARY  NOTES 14. ABSTRACT Musculoskeletal trauma is frequently...accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability. While nerves have the ability...stem cells from the injured tissue site that have wound healing promoting activities. In this application, we propose to use these cells, which may be

  12. Mesenchymal stem cells promote incision wound repair in a mouse ...

    African Journals Online (AJOL)

    250 cells/cm2. Conclusion: The results suggest that MSC therapies enhance the tissue regeneration capacity in mice, especially in older populations, through effective transdifferentiation into the epithelium. Keywords: Mesenchymal stem cell, wound healing, mouse. Tropical Journal of Pharmaceutical Research is indexed ...

  13. Mesenchymal stem cells promote incision wound repair in a mouse ...

    African Journals Online (AJOL)

    ... a dosage of 5 × 104 activated MSCs/8 cm2 of wound area or 6, 250 cells/cm2. Conclusion: The results suggest that MSC therapies enhance the tissue regeneration capacity in mice, especially in older populations, through effective transdifferentiation into the epithelium. Keywords: Mesenchymal stem cell, wound healing, ...

  14. Variation of Mesenchymal Cells in Polylactic Acid Scaffold in an Osteochondral Repair Model

    Science.gov (United States)

    Oshima, Yasushi; Harwood, Frederick L.; Coutts, Richard D.; Kubo, Toshikazu

    2009-01-01

    Objective To achieve osteochondral regeneration utilizing transplantation of cartilage-lineage cells and adequate scaffolds, it is essential to characterize the behavior of transplanted cells in the repair process. The objectives of this study were to elucidate the survival of mesenchymal cells (MCs). In a polylactic acid (PLA) scaffold and assess the possibility of MC/PLA constructs for osteochondral repair. Design Bone marrow from mature male rabbits was cultured for 2 weeks, and fibroblast-like MCs, which contain mesenchymal stem cells (MSCs), were obtained. A cell/scaffold construct was prepared with one million MCs and a biodegradable PLA core using a rotator device. One week after culturing, the construct was transplanted into an osteochondral defect in the medial femoral condyle of female rabbits and the healing process examined histologically. To examine the survivability of transplanted MCs, the male-derived sex-determining region Y (SRY) gene was assessed as a marker of MCs in the defect by polymerase chain reaction (PCR). Results In the groups of defects without any treatment, and the transplantation of PLA without cells, the defects were not repaired with hyaline cartilage. The cartilaginous matrix by safranin O staining and type II collagen by immunohistochemical staining were recognized, however the PLA matrix was still present in the defects at 24 weeks after transplantation of the construct. During the time passage, transplanted MCs numbers decreased from 7.8 × 105 at 1 week, to 3.5 × 105 at 4 weeks, and to 3.8 × 104 at 12 weeks. Transplanted MCs were not detectable at 24 weeks. Conclusions MCs contribute to the osteochondral repair expressing the cartilaginous matrix, however the number of MCs were decreasing with time (i.e. 24 weeks). These results could be essential for achieving cartilage regeneration by cell transplantation strategies with growth factors and/or gene therapy. PMID:19231922

  15. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.

    Science.gov (United States)

    Boiteux, Serge; Coste, Franck; Castaing, Bertrand

    2017-06-01

    Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  17. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein.

    Science.gov (United States)

    Citterio, E; Rademakers, S; van der Horst, G T; van Gool, A J; Hoeijmakers, J H; Vermeulen, W

    1998-05-08

    Cockayne syndrome (CS) is a nucleotide excision repair disorder characterized by sun (UV) sensitivity and severe developmental problems. Two genes have been shown to be involved: CSA and CSB. Both proteins play an essential role in preferential repair of transcription-blocking lesions from active genes. In this study we report the purification and characterization of baculovirus-produced HA-His6-tagged CSB protein (dtCSB), using a highly efficient three-step purification protocol. Microinjection of dtCSB protein in CS-B fibroblasts shows that it is biologically functional in vivo. dtCSB exhibits DNA-dependent ATPase activity, stimulated by naked as well as nucleosomal DNA. Using structurally defined DNA oligonucleotides, we show that double-stranded DNA and double-stranded DNA with partial single-stranded character but not true single-stranded DNA act as efficient cofactors for CSB ATPase activity. Using a variety of substrates, no overt DNA unwinding by dtCSB could be detected, as found with other SNF2/SWI2 family proteins. By site-directed mutagenesis the invariant lysine residue in the NTP-binding motif of CSB was substituted with a physicochemically related arginine. As expected, this mutation abolished ATPase activity. Surprisingly, the mutant protein was nevertheless able to partially rescue the defect in recovery of RNA synthesis after UV upon microinjection in CS-B fibroblasts. These results indicate that integrity of the conserved nucleotide-binding domain is important for the in vivo function of CSB but that also other properties independent from ATP hydrolysis may contribute to CSB biological functions.

  18. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells.

    Science.gov (United States)

    Haruta, M; Tomita, Y; Yuno, A; Matsumura, K; Ikeda, T; Takamatsu, K; Haga, E; Koba, C; Nishimura, Y; Senju, S

    2013-05-01

    We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b(+) myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells 'iPS-ML', and the iPS-ML-derived APC 'ML-DC'. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8(+) T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8(+) T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

  19. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  20. Chronic renal ischemia in humans: can cell therapy repair the kidney in occlusive renovascular disease?

    Science.gov (United States)

    Saad, Ahmed; Herrmann, Sandra M; Textor, Stephen C

    2015-05-01

    Occlusive renovascular disease caused by atherosclerotic renal artery stenosis (ARAS) elicits complex biological responses that eventually lead to loss of kidney function. Recent studies indicate a complex interplay of oxidative stress, endothelial dysfunction, and activation of fibrogenic and inflammatory cytokines as a result of atherosclerosis, hypoxia, and renal hypoperfusion in this disorder. Human studies emphasize the limits of the kidney adaptation to reduced blood flow, eventually leading to renal hypoxia with activation of inflammatory and fibrogenic pathways. Several randomized prospective clinical trials show that stent revascularization alone in patients with atherosclerotic renal artery stenosis provides little additional benefit to medical therapy once these processes have developed and solidified. Experimental data now support developing adjunctive cell-based measures to support angiogenesis and anti-inflammatory renal repair mechanisms. These data encourage the study of endothelial progenitor cells and/or mesenchymal stem/stromal cells for the repair of damaged kidney tissue. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.

  1. Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair.

    Science.gov (United States)

    Yao, Bin; Huang, Sha; Gao, Dongyun; Xie, Jiangfan; Liu, Nanbo; Fu, Xiaobing

    2016-12-01

    Mesenchymal stem cells (MSCs) represent an ideal source of autologous cell-based therapy for chronic wounds. Functional characteristics of MSCs may benefit wound healing by exerting their multi-regenerative potential. However, cell ageing resulting from chronic degenerative diseases or donor age could cause inevitable effects on the regenerative abilities of MSCs. A variety of studies have shown the relationship between MSC ageing and age-related dysfunction, but few associate these age-related impacts on MSCs with their ability of repairing chronic wounds, which are common in the elderly population. Here, we discuss the age-associated changes of MSCs and describe the potential impacts on MSC-based therapy for chronic wounds. Furthermore, critical evaluation of the current literatures is necessary for understanding the underlying mechanisms of MSC ageing and raising the corresponding concerns on considering their possible use for chronic wound repair. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  2. Sensitive detection of chemical-induced genotoxicity by the Cypridina secretory luciferase reporter assay, using DNA repair-deficient strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Ochi, Yukari; Sugawara, Harumi; Iwami, Mio; Tanaka, Megumi; Eki, Toshihiko

    2011-04-01

    Yeast-based reporter assays are useful for detecting various genotoxic chemicals. We established a genotoxicity assay using recombinant strains of Saccharomyces cerevisiae, each containing a reporter plasmid with the secretory luciferase gene from Cypridina noctiluca, driven by a DNA damage-responsive promoter of the yeast RNR3 gene. This system detected the genotoxicity of methyl methanesulphonate (MMS) as sensitively as conventional yeast-based reporter assays, using the β-galactosidase gene in a concentration-dependent manner; it also detects four other genotoxic chemicals, allowing us to monitor DNA damage easily by skipping the cell extraction process for the assay. We examined Cypridina luciferase levels induced by MMS and three antitumour agents using a set of BY4741-derived deletion mutants, each defective in a DNA repair pathway or DNA damage checkpoint. Luciferase activities were particularly enhanced in mutant strains with mms2 Δ and mag1 Δ by exposure to MMS, rad59 Δ and mlh1 Δ to camptothecin and mms2 Δ and mlh1 Δ to mitomycin C, respectively, compared with their parent strains. Enhanced reporter activities were also found in some DNA repair mutants with cisplatin. These observations suggest that this Cypridina secretory luciferase reporter assay using yeast DNA repair mutants offers convenient and sensitive detection of the potential genotoxicity of numerous compounds, including antitumour drugs and studying the mechanisms of DNA damage response in yeast. Copyright © 2011 John Wiley & Sons, Ltd.

  3. UV-induced ubiquitination of RNA polymerase II: A novel modification deficient in Cockayne syndrome cells

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, D.R.; Warren, S.L.; Halaban, R. [Yale Univ. School of Medicine, New Haven, CT (United States)] [and others

    1996-10-15

    Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription. 37 refs., 4 figs.

  4. Effects of Doxycycline on Mesenchymal Stem Cell Chondrogenesis and Cartilage Repair

    Science.gov (United States)

    Friel, Nicole A.; Chu, Constance R.

    2017-01-01

    Objective Strategies to improve cartilage repair tissue quality after bone marrow cell-based procedures may reduce later development of osteoarthritis. Doxycycline is inexpensive, well-tolerated, and has been shown to reduce matrix-metalloproteinases (MMP) and osteoarthritis progression. This study tests the hypotheses that doxycycline reduces MMP, enhances chondrogenesis of human bone marrow-derived mesenchymal stem cells (hMSC), and improves in vivo cartilage repair. Design Ninety hMSC pellets were cultured in chondrogenic media with either 0-, 1- or 2-μg/mL doxycycline. Pellets were evaluated with stereomicroscopy, proteoglycan assay, qRT-PCR, and histology. Osteochondral defects (OCD) were created in the trochlear grooves of 24-Sprague-Dawley rats treated with/without oral doxycycline. Rats were sacrificed at 12-weeks and repair tissues were examined grossly and histologically. Results hMSC pellets with 1-μg/mL (p=0.014) and 2-μg/mL (p=0.002) doxycycline had larger areas than pellets without doxycycline. hMSC pellets with 2-μg/mL doxycycline showed reduced mmp-13 mRNA (p=0.010) and protein at 21-days. Proteoglycan, DNA contents, and mRNA expressions of chondrogenic genes were similar (p>0.05). For the in vivo study, while the histological scores were similar between the two groups (p=0.116), the gross scores of the OCD repair tissues in doxycycline-treated rats were higher at 12-weeks (p=0.017), reflective of improved repair quality. The doxycycline-treated repairs also showed lower MMP-13 protein (p=0.029). Conclusions This study shows that doxycycline improves hMSC chondrogenesis and decreases MMP-13 in pellet cultures and within rat OCDs. Doxycycline exerted no negative effect on multiple measures of chondrogenesis and cartilage repair. These data support potential use of doxycycline to improve cartilage repair to delay the onset of osteoarthritis. PMID:23186943

  5. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients

    NARCIS (Netherlands)

    I. Brigida (Immacolata); A.V. Sauer (Aisha); F. Ferrua (Francesca); S. Giannelli (Stefania); S. Scaramuzza (Samantha); V. Pistoia (Valentina); M.C. Castiello (Maria Carmina); B.H. Barendregt (Barbara); M.P. Cicalese (Maria Pia); F. Casiraghi (Federica); C. Brombin (Chiara); J. Puck (Jennifer); K. Muller (Karin); L.D. Notarangelo (Luigi Daniele); D. Montin (Davide); J.M. van Montfrans (Joris); M.G. Roncarolo (Maria Grazia); E. Traggiai (Elisabetta); J.J.M. van Dongen (Jacques); M. van der Burg (Mirjam); A. Aiuti (Alessandro)

    2014-01-01

    textabstractBackground Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC)

  6. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...

  7. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small...... activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...

  8. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    Directory of Open Access Journals (Sweden)

    Nathaniel Holcomb

    Full Text Available Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC, a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  9. Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects.

    Science.gov (United States)

    Hood, Brian; Levene, Howard B; Levi, Allan D

    2009-02-01

    Peripheral nerve injuries are a source of chronic disability. Incomplete recovery from such injuries results in motor and sensory dysfunction and the potential for the development of chronic pain. The repair of human peripheral nerve injuries with traditional surgical techniques has limited success, particularly when a damaged nerve segment needs to be replaced. An injury to a long segment of peripheral nerve is often repaired using autologous grafting of "noncritical" sensory nerve. Although extensive axonal regeneration can be observed extending into these grafts, recovery of function may be absent or incomplete if the axons fail to reach their intended target. The goal of this review was to summarize the progress that has occurred in developing an artificial neural prosthesis consisting of autologous Schwann cells (SCs), and to detail future directions required in translating this promising therapy to the clinic. In the authors' laboratory, methods are being explored to combine autologous SCs isolated using cell culture techniques with axon guidance channel (AGC) technology to develop the potential to repair critical gap length lesions within the peripheral nervous system. To test the clinical efficacy of such constructs, it is critically important to characterize the fate of the transplanted SCs with regard to cell survival, migration, differentiation, and myelin production. The authors sought to determine whether the use of SC-filled channels is superior or equivalent to strategies that are currently used clinically (for example, autologous nerve grafts). Finally, although many nerve repair paradigms demonstrate evidence of regeneration within the AGC, the authors further sought to determine if the regeneration observed was physiologically relevant by including electrophysiological, behavioral, and pain assessments. If successful, the development of this reparative approach will bring together techniques that are readily available for clinical use and should

  10. Erythrosine B and quinoline yellow dyes regulate DNA repair gene expression in human HepG2 cells.

    Science.gov (United States)

    Chequer, Farah Md; Venancio, Vinicius P; Almeida, Mara R; Aissa, Alexandre F; Bianchi, Maria Lourdes P; Antunes, Lusânia Mg

    2017-10-01

    Erythrosine B (ErB) is a cherry pink food colorant and is widely used in foods, drugs, and cosmetics. Quinoline yellow (QY) is a chinophthalon derivative used in cosmetic compositions for application to the skin, lips, and/or body surface. Previously, ErB and QY synthetic dyes were found to induce DNA damage in HepG2 cells. The aim of this study was to investigate the molecular basis underlying the genotoxicity attributed to ErB and QY using the RT2 Profiler polymerase chain reaction array and by analyzing the expression profile of 84 genes involved in cell cycle arrest, apoptosis, and DNA repair in HepG2 cells. ErB (70 mg/L) significantly decreased the expression of two genes ( FEN1 and REV1) related to DNA base repair. One gene ( LIG1) was downregulated and 20 genes related to ATR/ATM signaling ( ATR, RBBP8, RAD1, CHEK1, CHEK2, TOPB1), nucleotide excision repair ( ERCC1, XPA), base excision repair ( FEN1, MBD4), mismatch repair ( MLH1, MSH3, TP73), double strand break repair ( BLM), other DNA repair genes ( BRIP1, FANCA, GADD45A, REV1), and apoptosis ( BAX, PPP1R15A) were significantly increased after treatment with QY (20 mg/L). In conclusion, our data suggest that the genotoxic mechanism of ErB and QY dyes involves the modulation of genes related to the DNA repair system and cell cycle.

  11. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance

    DEFF Research Database (Denmark)

    Alvero, Ayesha B; Chen, Rui; Fu, Han-Hsuan

    2009-01-01

    of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence...... to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor. Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique......A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk...

  12. The Potential for Synovium-derived Stem Cells in Cartilage Repair

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Lang, Gernot Michael; Fürst, David

    2018-01-01

    BACKGROUND: Articular cartilage defects often result in pain, loss of function and finally osteoarthritis. Developing cell-based therapies for cartilage repair is a major goal of orthopaedic research. Autologous chondrocyte implantation is currently the gold standard cell-based surgical procedure...... for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. OBJECTIVE: Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells......, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current...

  13. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Acute Cholecystitis.

    Science.gov (United States)

    Kim, Jung-Chul; Jin, Hye-Mi; Cho, Young-Nan; Kwon, Yong-Soo; Kee, Seung-Jung; Park, Yong-Wook

    2015-05-01

    Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play crucial roles in a variety of diseases, including autoimmunity, infectious diseases, and cancers. However, little is known about the roles of these invariant T cells in acute cholecystitis. The purposes of this study were to examine the levels of MAIT cells and NKT cells in patients with acute cholecystitis and to investigate potential relationships between clinical parameters and these cell levels. Thirty patients with pathologically proven acute cholecystitis and 47 age- and sex-matched healthy controls were enrolled. Disease grades were classified according to the revised Tokyo guidelines (TG13) for the severity assessment for acute cholecystitis. Levels of MAIT and NKT cells in peripheral blood were measured by flow cytometry. Circulating MAIT and NKT cell numbers were significantly lower in acute cholecystitis patients than in healthy controls, and these deficiencies in MAIT cells and NKT cell numbers were associated with aging in acute cholecystitis patients. Notably, a reduction in NKT cell numbers was found to be associated with severe TG13 grade, death, and high blood urea nitrogen levels. The study shows numerical deficiencies of circulating MAIT and NKT cells and age-related decline of these invariant T cells. In addition, NKT cell deficiency was associated with acute cholecystitis severity and outcome. These findings provide an information regarding the monitoring of these changes in circulating MAIT and NKT cell numbers during the course of acute cholecystitis and predicting prognosis.

  14. Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology.

    Directory of Open Access Journals (Sweden)

    Dick Jaarsma

    2011-12-01

    Full Text Available Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER and transcription-coupled repair (TCR, two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP and Cockayne syndrome (CS. TCR-deficient Csa(-/- and Csb(-/- CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER-deficient Xpa(-/- and Xpc(-/- XP mice, but also occurred in Xpd(XPCS mice carrying a point mutation (G602D in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR-deficient mice are compatible with focal dysmyelination in CS patients. Both TCR-deficient and NER-deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa(-/-, Csb(-/- or highly sporadic (Xpa(-/-, Xpc(-/- neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR-deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa(-/- and Csb(-/- TCR-deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron

  15. Human embryonic stem cell transplantation to repair the infarcted myocardium

    National Research Council Canada - National Science Library

    Leor, Jonathan; Gerecht, Sharon; Cohen, Smadar; Miller, Liron; Holbova, Radka; Ziskind, Anna; Shachar, Michal; Feinberg, Micha S; Guetta, Esther; Itskovitz-Eldor, Joseph

    2007-01-01

    To test the hypothesis that human embryonic stem cells (hESCs) can be guided to form new myocardium by transplantation into the normal or infarcted heart, and to assess the influence of hESC-derived cardiomyocytes (hESCMs...

  16. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

    Science.gov (United States)

    Berberoglu, Michael A; Gallagher, Thomas L; Morrow, Zachary T; Talbot, Jared C; Hromowyk, Kimberly J; Tenente, Inês M; Langenau, David M; Amacher, Sharon L

    2017-04-15

    Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  18. Clinical potential and challenges of using genetically modified cells for articular cartilage repair

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2011-01-01

    Articular cartilage defects do not regenerate. Transplantation of autologous articular chondrocytes, which is clinically being performed since several decades, laid the foundation for the transplantation of genetically modified cells, which may serve the dual role of providing a cell population capable of chondrogenesis and an additional stimulus for targeted articular cartilage repair. Experimental data generated so far have shown that genetically modified articular chondrocytes and mesenchymal stem cells (MSC) allow for sustained transgene expression when transplanted into articular cartilage defects in vivo. Overexpression of therapeutic factors enhances the structural features of the cartilaginous repair tissue. Combined overexpression of genes with complementary mechanisms of action is also feasible, holding promises for further enhancement of articular cartilage repair. Significant benefits have been also observed in preclinical animal models that are, in principle, more appropriate to the clinical situation. Finally, there is convincing proof of concept based on a phase I clinical gene therapy study in which transduced fibroblasts were injected into the metacarpophalangeal joints of patients without adverse events. To realize the full clinical potential of this approach, issues that need to be addressed include its safety, the choice of the ideal gene vector system allowing for a long-term transgene expression, the identification of the optimal therapeutic gene(s), the transplantation without or with supportive biomaterials, and the establishment of the optimal dose of modified cells. As safe techniques for generating genetically engineered articular chondrocytes and MSCs are available, they may eventually represent new avenues for improved cell-based therapies for articular cartilage repair. This, in turn, may provide an important step toward the unanswered question of articular cartilage regeneration. PMID:21674822

  19. Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells.

    Science.gov (United States)

    Lee, Namho; Thorne, Tina; Losordo, Douglas W; Yoon, Young-sup

    2005-07-01

    Congestive heart failure is a growing, worldwide epidemic. The major causes of heart failure are related to irreversible damage resulting from myocardial infarction (heart attack). The long-standing axiom has been that the myocardium has a limited capacity for self-repair or regeneration; and the irreversible loss of cardiac muscle and accompanying contraction and fibrosis of myocardial scar tissue, sets into play a series of events, namely, progressive ventricular remodeling of nonischemic myocardium that ultimately leads to progressive heart failure. The loss of cardiomyocyte survival cues is associated with diverse pathways for heart failure, underscoring the importance of maintaining the number of viable cardiomyocytes during heart failure progression. Currently, no medication or procedure used clinically has shown efficacy in replacing the myocardial scar with functioning contractile tissue. Therefore, given the major morbidity and mortality associated with myocardial infarction and heart failure, new approaches have been sought to address the principal pathophysiologic deficits responsible for these conditions, resulting from the loss of cardiomyocytes and viable blood vessels. Recently, the identification of stem cells from bone marrow capable of contributing to tissue regeneration has ignited significant interest in the possibility that cell therapy could be employed therapeutically for the repair of damaged myocardium. In this review, we will discuss the currently available bone marrow-derived stem progenitor cells for myocardial repair and focus on the advantages of using recently identified novel bone marrow-derived multipotent stem cells (BMSC).

  20. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-08-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage /sup 51/Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed.

  1. Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized byEx VivoLive Multiphoton Imaging.

    Science.gov (United States)

    Rawji, Khalil S; Kappen, Janson; Tang, Weiwen; Teo, Wulin; Plemel, Jason R; Stys, Peter K; Yong, V Wee

    2018-02-21

    Aging impairs regenerative processes including remyelination, the synthesis of a new myelin sheath. Microglia and other infiltrating myeloid cells such as macrophages are essential for remyelination through mechanisms that include the clearance of inhibitory molecules within the lesion. Prior studies have shown that the quantity of myeloid cells and the clearance of inhibitory myelin debris are deficient in aging, contributing to the decline in remyelination efficiency with senescence. It is unknown, however, whether the impaired clearance of debris is simply the result of the reduced number of phagocytes or if the dynamic activity of myeloid cells within the demyelinating plaque also declines with aging and this question is relevant to the proper design of therapeutics to mobilize myeloid cells for repair. Herein, we describe a high-resolution multiphoton ex vivo live imaging protocol that visualizes individual myelinated/demyelinated axons and lipid-containing myeloid cells to investigate the demyelinated lesion of aging female mice. We found that aging lesions have fewer myeloid cells and that these have reduced phagocytosis of myelin. Although the myeloid cells are actively migratory within the lesion of young mice and have protrusions that seem to survey the environment, this motility and surveillance is significantly reduced in aging mice. Our results emphasize the necessity of not only increasing the number of phagocytes, but also enhancing their activity once they are within demyelinated lesions. The high-resolution live imaging of demyelinated lesions can serve as a platform with which to discover pharmacological agents that rejuvenate intralesional remodeling that promotes the repair of plaques. SIGNIFICANCE STATEMENT The repair of myelin after injury depends on myeloid cells that clear debris and release growth factors. As organisms age, remyelination becomes less efficient correspondent with fewer myeloid cells that populate the lesions. It is unknown

  2. Cultured human muscle cells and respiratory chain deficiencies

    NARCIS (Netherlands)

    Herzberg, N. H.; Bolhuis, P. A.; van den Bogert, C.; Barth, P. G.

    1994-01-01

    Cultured muscle cells are useful in the study of respiratory chain disorders. Muscle tissue is affected in most cases and muscle biopsies are often taken for diagnostic purposes. Small samples of the biopsies can provide large numbers of muscle cells. In contrast with most other cell types, the

  3. Bone repair in calcium-deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium.

    Science.gov (United States)

    Hämäläinen, M M

    1994-06-01

    The potential value of xylitol in calcium therapy was evaluated by comparing the effect of dietary xylitol (50 g/kg diet) + calcium carbonate with the effects of calcium carbonate, calcium lactate and calcium citrate on bone repair of young male rats after the rats consumed for 3 wk a calcium-deficient diet (0.2 g Ca/kg diet). After this calcium-depletion period, the rats were fed for 2 wk one of four diets, each containing 5 g Ca/kg diet as one of the four dietary calcium sources. The diet of the control animals was supplemented with CaCO3 (5 g Ca/kg diet) throughout the study. The Ca-deficient rats showed low bone mass, low serum calcium and high serum 1,25-dihydroxycholecalciferol, parathyroid hormone (1-34 fraction) and osteocalcin concentrations. They also excreted magnesium, phosphate and hydroxyproline in the urine in high concentrations, and had high bone alkaline phosphatase and tartrate-resistant acid phosphatase activities. Most of these changes were reversed by the administered of the calcium salts. The highest recoveries of femoral dry weight, calcium, magnesium and phosphate were observed in the groups receiving xylitol+CaCO3 and calcium lactate. Calcium lactate and calcium citrate caused low serum phosphate concentration compared with rats receiving CaCO3 and with the age-matched Ca-replete controls. Xylitol-treated rats excreted more calcium and magnesium in urine than did the other rats, probably due to increased absorption of these minerals from the gut. These results suggest that dietary xylitol improves the bioavailability of calcium salts.

  4. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    Science.gov (United States)

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  5. Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells.

    Science.gov (United States)

    Browning, Cynthia L; Wise, Catherine F; Wise, John Pierce

    2017-09-15

    Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis. Copyright © 2017. Published by Elsevier Inc.

  6. Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant

    Science.gov (United States)

    Ottey, M; Han, S-Y; Druck, T; Barnoski, B L; McCorkell, K A; Croce, C M; Raventos-Suarez, C; Fairchild, C R; Wang, Y; Huebner, K

    2004-01-01

    To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation. PMID:15494723

  7. Normal reconstruction of DNA supercoiling and chromatin structure in cockayne syndrome cells during repair of damage from ultraviolet light.

    Science.gov (United States)

    Cleaver, J E

    1982-07-01

    The chromatin of human cells undergoes structural rearrangements during excision repair of ultraviolet damage in DNA that were detected by transient relaxation of DNA supercoiling and increased staphylococcal nuclease digestibility of repaired sites. Inhibition of polymerization and/or ligation of repaired regions with inhibitors of DNA polymerase alpha (cytosine arabinoside and aphidicolin) resulted in the accumulation of single-strand breaks, delayed reconstruction of DNA supercoiling, and maintenance of the staphylococcal nuclease digestibility. These observations suggest that reconstruction of the native chromatin state requires completion of repaired regions with covalent ligation into the DNA strands. Although previous claims have been made that a late stage associated with ligation of repaired regions may be defective in cells from patients with Cockayne syndrome, complete reconstruction of the native chromatin occurred in cells from three unrelated patients after ultraviolet irradiation. No abnormality in repair was therefore detected in Cockayne syndrome cells. The hypersensitivity of cell survival and semiconservative DNA replication to damage by ultraviolet light in this human disorder must therefore be regarded as features of a primary defect in DNA metabolism unrelated to DNA repair.

  8. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells.

    Science.gov (United States)

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-05-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage.

  9. Perforin-deficient CD8+ T cells mediate fatal lymphocytic choriomeningitis despite impaired cytokine production

    DEFF Research Database (Denmark)

    Storm, Pernille; Bartholdy, Christina; Sørensen, Maria Rathmann

    2006-01-01

    Intracerebral (i.c.) infection with lymphocytic choriomeningitis virus (LCMV) is one of the most studied models for virus-induced immunopathology, and based on results from perforin-deficient mice, it is currently assumed that fatal disease directly reflects perforin-mediated cell lysis. However,...... for the delayed onset of fatal disease in perforin-deficient mice. However, once accumulated in the CNS, virus-specific CD8(+) T cells can induce fatal CNS pathology despite the absence of perforin-mediated lysis and reduced capacity to produce several key cytokines....

  10. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair

    Science.gov (United States)

    Garcia, Orquidea; Hiatt, Michael J.; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex

    2016-01-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury. PMID:26203800

  11. DEK is required for homologous recombination repair of DNA breaks

    DEFF Research Database (Denmark)

    Smith, Eric A; Gole, Boris; Willis, Nicholas A

    2017-01-01

    DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK-deficiency pheno......DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK......-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout...

  12. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy

    Science.gov (United States)

    Soto-Pantoja, David R.; Miller, Thomas W.; Pendrak, Michael L.; DeGraff, William G.; Sullivan, Camille; Ridnour, Lisa A.; Abu-Asab, Mones; Wink, David A.; Tsokos, Maria; Roberts, David D.

    2012-01-01

    Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double-membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury. PMID:22874555

  13. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis.

    Science.gov (United States)

    McGonagle, Dennis; Baboolal, Thomas G; Jones, Elena

    2017-12-01

    The role of native (not culture-expanded) joint-resident mesenchymal stem cells (MSCs) in the repair of joint damage in osteoarthritis (OA) is poorly understood. MSCs differ from bone marrow-residing haematopoietic stem cells in that they are present in multiple niches in the joint, including subchondral bone, cartilage, synovial fluid, synovium and adipose tissue. Research in experimental models suggests that the migration of MSCs adjacent to the joint cavity is crucial for chonodrogenesis during embryogenesis, and also shows that synovium-derived MSCs might be the primary drivers of cartilage repair in adulthood. In this Review, the available data is synthesized to produce a proposed model in which joint-resident MSCs with access to superficial cartilage are key cells in adult cartilage repair and represent important targets for manipulation in 'chondrogenic' OA, especially in the context of biomechanical correction of joints in early disease. Growing evidence links the expression of CD271, a nerve growth factor (NGF) receptor by native bone marrow-resident MSCs to a wider role for neurotrophins in OA pathobiology, the implications of which require exploration since anti-NGF therapy might worsen OA. Recognizing that joint-resident MSCs are comparatively abundant in vivo and occupy multiple niches will enable the optimization of single-stage therapeutic interventions for OA.

  14. Arthroscopic Subscapularis Augmentation of Bankart Repair in Chronic Anterior Shoulder Instability With Bone Loss Less Than 25% and Capsular Deficiency: Clinical Multicenter Study.

    Science.gov (United States)

    Maiotti, Marco; Massoni, Carlo; Russo, Raffaele; Schroter, Steffen; Zanini, Antonio; Bianchedi, Diana

    2017-05-01

    To assess the short-term outcomes of the arthroscopic subscapularis augmentation (ASA) technique, consisting of a tenodesis of the upper third of the subscapularis tendon and a Bankart repair, and its effect on shoulder external rotation. Patients selected for this study were involved in contact sports, with a history of traumatic recurrent shoulder dislocations and a minimum of 2-year follow-up. Inclusion criteria were patients with glenoid bone loss (GBL) ranging from 5% to 25%, anterior capsular deficiency, and Hill-Sachs lesion who underwent ASA technique. Exclusion criteria were GBL >25%, multidirectional instability, preexisting osteoarthritis, and overhead sports activities. Visual analog scale (VAS) scale for pain, Rowe score, and American Shoulder and Elbow Surgeons (ASES) scores were used to assess results. Loss of shoulder external rotation was measured with the arm at the side (ER1 position) or 90° in abduction (ER2 position). Analysis of variance and Fisher tests were used for data evaluation. Significance was established at P ≤ .05. One hundred ten patients (84 men and 26 women, mean age 27 years) were evaluated with a mean follow-up of 40.5 months (range: 24 to 65 months). In 98 patients, a Hill-Sachs lesion was observed and in 57 patients a capsular deficiency was present. Three patients (2.7%) had a traumatic redislocation. At final follow-up, the mean scores were as follows: VAS scale decreased from a mean of 3.5 to 0.5 (P = .015), Rowe score increased from 57.4 to 95.3 (P = .035), and ASES score increased from 66.5 to 96.5 (P = .021). The mean deficit of external rotation was 8° ± 2.5° in the ER1 position and 4° ± 1.5° in the ER2 position. The ASA procedure has been shown to be effective in restoring joint stability in patients practicing sports, affected by chronic anterior shoulder instability associated with anterior GBL (<25%), capsular deficiency, and Hill-Sachs lesions, with mild restriction of external rotation. Level IV

  15. Dendritic cells derived from TBP-2-deficient mice are defective in inducing T cell responses.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Okuyama, Hiroaki; Oka, Shin-ichi; Yoshihara, Eiji; Liu, Wenrui; Matsuo, Yoshiyuki; Kondo, Norihiko; Masutani, Hiroshi; Ishii, Yasuyuki; Iyoda, Tomonori; Inaba, Kayo; Yodoi, Junji

    2008-05-01

    Thioredoxin-binding protein-2 (TBP-2), also known as vitamin D3-up-regulated protein 1 (VDUP1), was identified as an endogenous molecule interacting with thioredoxin (TRX). Here, we show that dendritic cells (DC) derived from TBP-2-deficient mice are defective in the function of T cell activation. To compare TBP-2(-/-) DC function with wild-type (WT) DC, we stimulated DC with lipopolysaccharide (LPS). Although TBP-2(-/-) DC and WT DC expressed comparable levels of MHC class II and costimulatory molecules such as CD40, CD80 and CD86, the IL-12p40, IL-12p70 and IL-6 productions of TBP-2(-/-) DC were attenuated. In a mixed leukocyte reaction (MLR), the concentrations of IL-2, IFN-gamma, IL-4 and IL-10 in the culture supernatant of MLR with TBP-2(-/-) DC were significantly lower than those in the cultures with WT DC. In MLR also, as with LPS stimulation, IL-12p40 and IL-12p70 production from TBP-2(-/-) DC was less than that from WT DC. Proliferation of T cells cultured with TBP-2(-/-) DC was poorer than that with WT DC. In vivo delayed-type hypersensitivity responses in TBP-2(-/-) mice immunized with ovalbumin were significantly reduced compared to WT mice. These results indicate that TBP-2 plays a crucial role in DC to induce T cell responses.

  16. A difference in the pattern of repair in a large genomic region in UV-irradiated normal human and Cockayne syndrome cells.

    Science.gov (United States)

    Shanower, G A; Kantor, G J

    1997-11-01

    Xeroderma pigmentosum group C cells repair DNA damaged by ultraviolet radiation in an unusual pattern throughout the genome. They remove cyclobutane pyrimidine dimers only from the DNA of transcriptionally active chromatin regions and only from the strand that contains the transcribed strand. The repair proceeds in a manner that creates damage-free islands which are in some cases much larger than the active gene associated with them. For example, the small transcriptionally active beta-actin gene (3.5 kb) is repaired as part of a 50 kb single-stranded region. The repair responsible for creating these islands requires active transcription, suggesting that the two activities are coupled. A preferential repair pathway in normal human cells promotes repair of actively transcribed DNA strands and is coupled to transcription. It is not known if similar large islands, referred to as repair domains, are preferentially created as a result of the coupling. Data are presented showing that in normal cells, preferential repair in the beta-actin region is associated with the creation of a large, completely repaired region in the partially repaired genome. Repair at other genomic locations which contain inactive genes (insulin, 754) does not create similar large regions as quickly. In contrast, repair in Cockayne syndrome cells, which are defective in the preferential repair pathway but not in genome-overall repair, proceeds in the beta-actin region by a mechanism which does not create preferentially a large repaired region. Thus a correlation between the activity required to preferentially repair active genes and that required to create repaired domains is detected. We propose an involvement of the transcription-repair coupling factor in a coordinated repair pathway for removing DNA damage from entire transcription units.

  17. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes.

    Science.gov (United States)

    Abdel Meguid, Eiman; Ke, Yuehai; Ji, Junfeng; El-Hashash, Ahmed H K

    2018-03-01

    The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering. © 2017 Wiley Periodicals, Inc.

  18. Radiosensitivity and capacity for radiation-induced sublethal damage repair of canine transitional cell carcinoma (TCC) cell lines.

    Science.gov (United States)

    Parfitt, S L; Milner, R J; Salute, M E; Hintenlang, D E; Farese, J P; Bacon, N J; Bova, F J; Rajon, D A; Lurie, D M

    2011-09-01

    Understanding the inherent radiosensitivity and repair capacity of canine transitional cell carcinoma (TCC) can aid in optimizing radiation protocols to treat this disease. The objective of this study was to evaluate the parameters surviving fraction at 2 Gy (SF(2) ), α/β ratio and capacity for sublethal damage repair (SLDR) in response to radiation. Dose-response and split-dose studies were performed using the clonogenic assay. The mean SF(2) for three established TCC cell lines was high at 0.61. All the three cell lines exhibited a low to moderate α/β ratio, with the mean being 3.27. Two cell lines exhibited statistically increased survival at 4 and 24 h in the dose-response assay. Overall, our results indicate that the cell lines are moderately radioresistant, have a high repair capacity and behave similarly to a late-responding normal tissue. These findings indicate that the radiation protocols utilizing higher doses with less fractionation may be more effective for treating TCC. © 2011 Blackwell Publishing Ltd.

  19. Wwox-Brca1 interaction: role in DNA repair pathway choice.

    Science.gov (United States)

    Schrock, M S; Batar, B; Lee, J; Druck, T; Ferguson, B; Cho, J H; Akakpo, K; Hagrass, H; Heerema, N A; Xia, F; Parvin, J D; Aldaz, C M; Huebner, K

    2017-04-20

    In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1-Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers

  20. Wwox–Brca1 interaction: role in DNA repair pathway choice

    Science.gov (United States)

    Schrock, M S; Batar, B; Lee, J; Druck, T; Ferguson, B; Cho, J H; Akakpo, K; Hagrass, H; Heerema, N A; Xia, F; Parvin, J D; Aldaz, C M; Huebner, K

    2017-01-01

    In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1–Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers

  1. Arthroscopic Airbrush-Assisted Cell Spraying for Cartilage Repair: Design, Development, and Characterization of Custom-Made Arthroscopic Spray Nozzles

    NARCIS (Netherlands)

    Dijkstra, Koen; Hendriks, Jan; Karperien, Marcel; Vonk, Lucienne A.; Saris, Daniël B.F.

    2017-01-01

    © Copyright 2017, Mary Ann Liebert, Inc. 2017. Introduction: Airbrush-assisted cell spraying would facilitate fully arthroscopic filling of cartilage defects, thereby providing a minimally invasive procedure for cartilage repair. This study provides the development and characterization of

  2. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  3. B-cell Development and Primary Antibody Deficiencies

    NARCIS (Netherlands)

    M.C. van Zelm (Menno)

    2007-01-01

    textabstractB lymphocytes are generated throughout life from hematopoietic stem cells in bone marrow, and contribute to the immune system by the production of antigen-specific antibodies (immunoglobulins; Ig). Two distinct phase of B-cell development can be distinguished: 1) antigen-independent

  4. Tissue-specific endothelial cells: a promising approach for augmentation of soft tissue repair in orthopedics.

    Science.gov (United States)

    Lebaschi, Amir; Nakagawa, Yusuke; Wada, Susumu; Cong, Guang-Ting; Rodeo, Scott A

    2017-12-01

    Biologics are playing an increasingly significant role in the practice of modern medicine and surgery in general and orthopedics in particular. Cell-based approaches are among the most important and widely used modalities in orthopedic biologics, with mesenchymal stem cells and other multi/pluripotent cells undergoing evaluation in numerous preclinical and clinical studies. On the other hand, fully differentiated endothelial cells (ECs) have been found to perform critical roles in homeostasis of visceral tissues through production of an adaptive panel of so-called "angiocrine factors." This newly discovered function of ECs renders them excellent candidates for novel approaches in cell-based biologics. Here, we present a review of the role of ECs and angiocrine factors in some visceral tissues, followed by an overview of current cell-based approaches and a discussion of the potential applications of ECs in soft tissue repair. © 2017 New York Academy of Sciences.

  5. Trophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration

    Directory of Open Access Journals (Sweden)

    Lucia Formigli

    2012-10-01

    Full Text Available Bone marrow-derived mesenchymal stromal cells (BM-MSCs represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.

  6. Integration of principles of systems biology and radiation biology: toward development of in silico models to optimize IUdR-mediated radiosensitization of DNA mismatch repair-deficient (damage tolerant human cancers

    Directory of Open Access Journals (Sweden)

    Timothy James Kinsella

    2011-08-01

    Full Text Available Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR and ionizing radiation (IR induced DNA base damage by DNA mismatch repair (MMR. These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP, brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR- induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitiztion in MMR deficient (MMR- damage tolerant human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular and to in vivo (human tumor xenografts in athymic mice models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR- damage tolerant cancers.

  7. Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Directory of Open Access Journals (Sweden)

    Nagai Atsushi

    2011-06-01

    Full Text Available Abstract Background Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells impairs repair processes and exacerbates inflammation after airway injury. Methods C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation. Results BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway

  8. Vitamin D Deficiency Reduces the Immune Response, Phagocytosis Rate, and Intracellular Killing Rate of Microglial Cells

    Science.gov (United States)

    Onken, Marie Luise; Schütze, Sandra; Redlich, Sandra; Götz, Alexander; Hanisch, Uwe-Karsten; Bertsch, Thomas; Ribes, Sandra; Hanenberg, Andrea; Schneider, Simon; Bollheimer, Cornelius; Sieber, Cornel; Nau, Roland

    2014-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl-S-glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections. PMID:24686054

  9. BRCA1 requirement for the fidelity of plasmid DNA double-strand break repair in cultured breast epithelial cells.

    Science.gov (United States)

    Thompson, Eric G; Fares, Hanna; Dixon, Kathleen

    2012-01-01

    The tumor suppressor breast cancer susceptibility protein 1 (BRCA1) protects our cells from genomic instability in part by facilitating the efficient repair of DNA double-strand breaks (DSBs). BRCA1 promotes the error-free repair of DSBs through homologous recombination and is also implicated in the regulation of nonhomologous end joining (NHEJ) repair fidelity. Here, we investigate the role of BRCA1 in NHEJ repair mutagenesis following a DSB. We examined the frequency of microhomology-mediated end joining (MMEJ) and the fidelity of DSB repair relative to BRCA1 protein levels in both control and tumorigenic breast epithelial cells. In addition to altered BRCA1 protein levels, we tested the effects of cellular exposure to mirin, an inhibitor of meiotic recombination enzyme 11 (Mre11) 3'-5'-exonuclease activity. Knockdown or loss of BRCA1 protein resulted in an increased frequency of overall plasmid DNA mutagenesis and MMEJ following a DSB. Inhibition of Mre11-exonuclease activity with mirin significantly decreased the occurrence of MMEJ, but did not considerably affect the overall mutagenic frequency of plasmid DSB repair. The results suggest that BRCA1 protects DNA from mutagenesis during nonhomologous DSB repair in plasmid-based assays. The increased frequency of DSB mutagenesis and MMEJ repair in the absence of BRCA1 suggests a potential mechanism for carcinogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  10. DNA Repair Gene Polymorphisms in Relation to Non-Small Cell Lung Cancer Survival

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-07-01

    Full Text Available Background: Single nucleotide polymorphisms (SNPs in the DNA repair genes are suspected to be related to the survival of lung cancer patients due to their possible influence on DNA repair capacity (DRC. However, the study results are inconsistent. Methods: A follow-up study of 610 non-small cell lung cancer (NSCLC patients was conducted to investigate genetic polymorphisms associated with the DNA repair genes in relation to NSCLC survival; 6 SNPs were genotyped, including XRCC1 (rs25487 G>A, hOGG1 (rs1052133 C>G, MUTYH (rs3219489 G>C, XPA (rs1800975 G>A, ERCC2 (rs1799793 G>A and XRCC3 (rs861539 C>T. Kaplan-Meier survival curve and Cox proportional hazards regression analyses were performed. SNP-SNP interaction was also examined using the survival tree analysis. Results: Advanced disease stage and older age at diagnosis were associated with poor prognosis of NSCLC. Patients with the variant ‘G' allele of hOGG1 rs1052133 had poor overall survival compared with those with the homozygous wild ‘CC' genotype, especially in female patients, adenocarcinoma histology, early stage, light smokers and without family history of cancer. For never smoking female lung cancer patients, individuals carrying homozygous variant ‘AA' genotype of XPA had shorter survival time compared to those with wild ‘G' alleles. Furthermore, females carrying homozygous variant XPA and hOGG1 genotypes simultaneously had 2.78-fold increased risk for death. Among all 6 polymorphisms, the homozygous variant ‘AA' of XPA carriers had poor prognosis compared to the carriers of wild ‘G' alleles of XPA together with other base excision repair (BER polymorphisms. Conclusions: Besides disease stage and age, the study found DNA repair gene polymorphisms were associated with lung cancer survival.

  11. Radiation damage and repair in cells and cell components. Progress report: third new contract year

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.; Pollard, E.C.

    1980-01-01

    Research progress for 1979-1980 is reported. Projects discussed include the process of radiation-induced repair, Weigle-reactivation, induced radioresistance, the induction of the recA gene product, uv mutagenesis, and the induction of lambda. (ACR)

  12. Fucose-deficient hematopoietic stem cells have decreased self-renewal and aberrant marrow niche occupancy.

    Science.gov (United States)

    Myers, Jay; Huang, Yuanshuai; Wei, Lebing; Yan, Quanjian; Huang, Alex; Zhou, Lan

    2010-12-01

    Modification of Notch receptors by O-linked fucose and its further elongation by the Fringe family of glycosyltransferase has been shown to be important for Notch signaling activation. Our recent studies disclose a myeloproliferative phenotype, hematopoietic stem cell (HSC) dysfunction, and abnormal Notch signaling in mice deficient in FX, which is required for fucosylation of a number of proteins including Notch. The purpose of this study was to assess the self-renewal and stem cell niche features of fucose-deficient HSCs. Homeostasis and maintenance of HSCs derived from FX(-/-) mice were studied by serial bone marrow transplantation, homing assay, and cell cycle analysis. Two-photon intravital microscopy was performed to visualize and compare the in vivo marrow niche occupancy by fucose-deficient and wild-type (WT) HSCs. Marrow progenitors from FX(-/-) mice had mild homing defects that could be partially prevented by exogenous fucose supplementation. Fucose-deficient HSCs from FX(-/-) mice displayed decreased self-renewal capability compared with the WT controls. This is accompanied with their increased cell cycling activity and suppressed Notch ligand binding. When tracked in vivo by two-photon intravital imaging, the fucose-deficient HSCs were found localized farther from the endosteum of the calvarium marrow than the WT HSCs. The current reported aberrant niche occupancy by HSCs from FX(-/-) mice, in the context of a faulty blood lineage homeostasis and HSC dysfunction in mice expressing Notch receptors deficient in O-fucosylation, suggests that fucosylation-modified Notch receptor may represent a novel extrinsic regulator for HSC engraftment and HSC niche maintenance. © 2010 American Association of Blood Banks.

  13. DNA repair in Cockayne syndrome.

    Science.gov (United States)

    Hoar, D I; Waghorne, C

    1978-11-01

    Cockayne syndrome (CS) is a rare recessive genetic disease characterized in part by premature ageing and photosensitive skin. Because of the latter characteristic, this syndrome was considered to be an example of a UV-sensitive DNA repair-defective human disorder. We demonstrated normal levels of UV-induced unscheduled DNA synthesis (UDS) in four unrelated CS patients that show hypersensitivity to both UV and Mitomycin C (MMC). At low UV exposure, CS DNA shows a dose-dependent decrease in size. By contrast, heterozygotes appear to have a threshold below which there is little change in size of single strand DNA. Immediately following UV or MMC treatment, CS DNA is deficient in high molecular weight species, but undergoes a normal transition to larger DNA during a chase interval in the presence or absence of caffeine. This suggests a defect in replication or excision repair and no defect in post-replication repair (PRR). Pulse studies performed in the presence of hydroxyurea (HU) also reveal a deficient production of large DNA, suggesting the defect is in repair. As these cells have normal UDS and normal PRR, the basis for their UV sensitivity must be distinct from that observed in xeroderma pigmentosum (XP).

  14. T cells exacerbate Lyme borreliosis in TLR2-deficient mice

    Directory of Open Access Journals (Sweden)

    Carrie E. Lasky

    2016-11-01

    Full Text Available Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as, arthritis, carditis and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via Toll-like receptor (TLR2; however, previous work has demonstrated TLR2-/- mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2-/- mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, while depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.

  15. Mismatch repair proteins collaborate with methyltransferases in the repair of O6-methylguanine

    Science.gov (United States)

    Rye, Peter T.; Delaney, James C.; Netirojjanakul, Chawita; Sun, Dana X.; Liu, Jenny Z.; Essigmann, John M.

    2010-01-01

    DNA repair is essential for combatting the adverse effects of damage to the genome. One example of base damage is O6-methylguanine (O6mG), which stably pairs with thymine during replication and thereby creates a promutagenic O6mG:T mismatch. This mismatch has also been linked with cellular toxicity. Therefore, in the absence of repair, O6mG:T mismatches can lead to cell death or result in G:C→A:T transition mutations upon the next round of replication. Cysteine thiolate residues on the Ada and Ogt methyltransferase (MTase) proteins directly reverse the O6mG base damage to yield guanine. When a cytosine is opposite the lesion, MTase repair restores a normal G:C pairing. However, if replication past the lesion has produced an O6mG:T mismatch, MTase conversion to a G:T mispair must still undergo correction to avoid mutation. Two mismatch repair pathways in E. coli that convert G:T mispairs to native G:C pairings are methyl-directed mismatch repair (MMR) and very short patch repair (VSPR). This work examined the possible roles that proteins in these pathways play in coordination with the canonical MTase repair of O6mG:T mismatches. The possibility of this repair network was analyzed by probing the efficiency of MTase repair of a single O6mG residue in cells deficient in individual mismatch repair proteins (Dam, MutH, MutS, MutL, or Vsr). We found that MTase repair in cells deficient in Dam or MutH showed wild-type levels of MTase repair. In contrast, cells lacking any of the VSPR proteins MutS, MutL, or Vsr showed a decrease in repair of O6mG by the Ada and Ogt MTases. Evidence is presented that the VSPR pathway positively influences MTase repair of O6mG:T mismatches, and assists the efficiency of restoring these mismatches to native G:C base pairs. PMID:17951114

  16. Reversing and Repairing Microstructure Degradation in Solid Oxide Cells During Operation

    DEFF Research Database (Denmark)

    Graves, Christopher R.

    2013-01-01

    to counteract performance loss, by careful control of operating parameters and cell design. This paper describes four recently discovered methods of in situ reversal or repair of microstructure degradation: (1) The newest method is the elimination of severe electrolysis-induced degradation at high current...... density by reversible battery-like operation, cycling between electrolysis mode and fuel-cell mode. Also reported are new examples of beneficial effects of (2) redox cycling, (3) exsolution of nano-catalysts, and (4) high cathodic polarization, all of which can be used to maintain or even improve...

  17. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Yoon, Kyung-Sik, E-mail: sky9999@khu.ac.kr [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A-T cells were not hypersensitive to low levels of DNA DSBs. Black-Right-Pointing-Pointer A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. Black-Right-Pointing-Pointer A-T cells underwent premature senescence after DNA damage accumulated. Black-Right-Pointing-Pointer Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-{beta}-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  18. 11β-hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis.

    Science.gov (United States)

    Kipari, Tiina; Hadoke, Patrick W F; Iqbal, Javaid; Man, Tak-Yung; Miller, Eileen; Coutinho, Agnes E; Zhang, Zhenguang; Sullivan, Katie M; Mitic, Tijana; Livingstone, Dawn E W; Schrecker, Christopher; Samuel, Kay; White, Christopher I; Bouhlel, M Amine; Chinetti-Gbaguidi, Giulia; Staels, Bart; Andrew, Ruth; Walker, Brian R; Savill, John S; Chapman, Karen E; Seckl, Jonathan R

    2013-04-01

    11β-Hydroxysteroid dehydrogenase type-1 (11β-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11β-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11β-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11β-HSD1 inhibitor or crossed with 11β-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11β-HSD1 inhibition or deficiency attenuated atherosclerosis (74-76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11β-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11β-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11β-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.

  19. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects

    Directory of Open Access Journals (Sweden)

    Naoto Kuroda

    2016-05-01

    Full Text Available Succinate dehydrogenase (SDH-deficient renal cell carcinoma (RCC was first identified in 2004 and has been integrated into the 2016 WHO classification of RCC. Succinate dehydrogenase (SDH is an enzyme complex composed of four protein subunits (SDHA, SDHB, SDHC and SDHD. The tumor which presents this enzyme mutation accounts for 0.05 to 0.2% of all renal carcinomas. Multiple tumors may occur in approximately 30% of affected patients. SDHB-deficient RCC is the most frequent, and the tumor histologically consists of cuboidal cells with eosinophilic cytoplasm, vacuolization, flocculent intracytoplasmic inclusion and indistinct cell borders. Ultrastructurally, the tumor contains abundant mitochondria. Immunohistochemically, tumor cells are positive for SDHA, but negative for SDHB in SDHB-, SDHC- and SDHD-deficient RCCs. However, SDHA-deficient RCC shows negativity for both SDHA and SDHB. In molecular genetic analyses, a germline mutation in the SDHB , SDHC or SDHD gene (in keeping with most patients having germline mutations in an SDH gene has been identified in patients with or without a family history of renal tumors, paraganglioma/pheochromocytoma or gastrointestinal stromal tumor. While most tumors are low grade, some tumors may behave in an aggressive fashion, particularly if they are high nuclear grade, and have coagulative necrosis or sarcomatoid differentiation.

  20. Iron deficiency in sickle cell anaemia patients in Dar es Salaam ...

    African Journals Online (AJOL)

    A cross sectional descriptive study was done to determine the prevalence of iron deficiency and possible contributing factors in sickle cell anaemic patients. One hundred haemoglobin -SS children aged between six months to ten years inclusive were recruited in the study.Patients were selected using a simple random ...

  1. An update on targeted gene repair in mammalian cells: methods and mechanisms

    Directory of Open Access Journals (Sweden)

    Bolund Lars

    2011-02-01

    Full Text Available Abstract Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs, small DNA fragments (SDFs, triplex-forming oligonucleotides (TFOs, adeno-associated virus vectors (AAVs and zinc-finger nucleases (ZFNs. Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.

  2. Small margin (2 mm) excision of peri-ocular basal cell carcinoma with delayed repair.

    Science.gov (United States)

    David, D B.; Gimblett, M L.; Potts, M J.; Harrad, R A.

    1999-03-01

    Successful surgical treatment of peri-ocular basal cell carcinomas requires complete excision. Mohs' micrographic surgery achieves this, but is not readily available in all hospitals. The standard 3-4 mm margin does not guarantee complete excision and histology is often not available until after a repair has been undertaken. The 3-4 mm margin has evolved to deal with all forms of BCC. In our opinion, this margin is unnecessarily large for nodular/ulcerative BCC. We report our interim results of excision of localised BCCs using a 2 mm margin in conjunction with a delayed repair following confirmation of histological clearance. Thirty-one patients were treated in this manner; there have been no recurrences after an average follow-up period of 36 months (range 24-57 months).

  3. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation

    Directory of Open Access Journals (Sweden)

    Wollis J Vas

    2017-04-01

    Full Text Available Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.

  4. Nr2e1 Deficiency Augments Palmitate-Induced Oxidative Stress in Beta Cells

    Directory of Open Access Journals (Sweden)

    Xiaoli Shi

    2016-01-01

    Full Text Available Nuclear receptor subfamily 2 group E member 1 (Nr2e1 has been regarded as an essential regulator of the growth of neural stem cells. However, its function elsewhere is unknown. In the present study, we generated Nr2e1 knockdown MIN6 cells and studied whether Nr2e1 knockdown affected basal beta cell functions such as proliferation, cell death, and insulin secretion. We showed that knockdown of Nr2e1 in MIN6 cells resulted in increased sensitivity to lipotoxicity, decreased proliferation, a partial G0/G1 cell-cycle arrest, and higher rates of apoptosis. Moreover, Nr2e1 deficiency exaggerates palmitate-induced impairment in insulin secretion. At the molecular level, Nr2e1 deficiency augments palmitate-induced oxidative stress. Nr2e1 deficiency also resulted in decreases in antioxidant enzymes and expression level of Nrf2. Together, this study indicated a potential protective effect of Nr2e1 on beta cells, which may serve as a target for the development of novel therapies for diabetes.

  5. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Directory of Open Access Journals (Sweden)

    Rajendran Praveen

    2011-10-01

    Full Text Available Abstract Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.

  6. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    Science.gov (United States)

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  7. In vivo Importance of Homologous Recombination DNA Repair for Mouse Neural Stem and Progenitor Cells

    Science.gov (United States)

    Rousseau, Laure; Etienne, Olivier; Roque, Telma; Desmaze, Chantal; Haton, Céline; Mouthon, Marc-André; Bernardino-Sgherri, Jacqueline; Essers, Jeroen; Kanaar, Roland; Boussin, François D.

    2012-01-01

    We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically enhanced the radiation sensitivity of neural stem and progenitor cells. This resulted in the death of all cells irradiated during S or G2, whereas the viability of cells irradiated in G1 or G0 was not affected by Rad54 disruption. Apoptosis occurred after long arrests at intra-S and G2/M checkpoints. This concerned every type of neural stem and progenitor cells, showing that the importance of Rad54 for radiation response was linked to the cell cycle phase at the time of irradiation and not to the differentiation state. In the developing brain, RAD54-dependent homologous recombination appeared absolutely required for the repair of damages induced by ionizing radiation during S and G2 phases, but not for the repair of endogenous damages in normal conditions. Altogether our data support the existence of RAD54-dependent and -independent homologous recombination pathways. PMID:22666344

  8. Potential use of mesenchymal stem cells in human meniscal repair: current insights

    Directory of Open Access Journals (Sweden)

    Pak J

    2017-03-01

    Full Text Available Jaewoo Pak,1–3* Jung Hun Lee,1,4* Kwang Seung Park,4 Jeong Ho Jeon,4 Sang Hee Lee4 1Stems Medical Clinic, Gangnamgu, Seoul, Republic of Korea; 2TEDA‑Puhua International Hospital, Tianjin, People’s Republic of China; 3Life Science Institute, Komplek Permata Senayan, Jalan Tentara Pelajar, Jakarta Selatan, Indonesia; 4National Leading Research Laboratory, Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea *These authors contributed equally to this work Abstract: The menisci of the human knee play an important role in maintaining normal functions to provide stability and nutrition to the articular cartilage, and to absorb shock. Once injured, these important structures have very limited natural healing potential. Unfortunately, the traditional arthroscopic meniscectomy performed on these damaged menisci may predispose the joint toward early development of osteoarthritis. Although a very limited number of studies are available, mesenchymal stem cells (MSCs have been investigated as an alternative therapeutic modality to repair human knee meniscal tears. This review summarizes the results of published applications of MSCs in human patients, which showed that the patients who received MSCs (autologous adipose tissue-derived stem cells or culture-expanded bone marrow-derived stem cells presented symptomatic improvements, along with magnetic resonance imaging evidences of the meniscal repair. Keywords: adipose tissue-derived stem cells, bone marrow-derived stem cells, human knee, meniscal tear, articular cartilage, therapeutic modality

  9. Cytokine secretion and NK cell activity in human ADAM17 deficiency

    Science.gov (United States)

    Chavkin, Maor; Schmiedel, Dominik; Wong, Eitan; Werner, Marion; Yaacov, Barak; Averbuch, Diana; Molho-Pessach, Vered; Stepensky, Polina; Kaynan, Noa; Bar-On, Yotam; Seidel, Einat; Yamin, Rachel; Sagi, Irit; Elpeleg, Orly; Mandelboim, Ofer

    2015-01-01

    Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patient's NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patient's NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion. PMID:26683521

  10. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenasee

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, M.P. (Rush Medical College, Chicago, IL); Wald, N.; Diloy-Puray, M.

    1980-03-01

    X radiation of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells causes distinct shortening of their survival time. This is accompanied by significant lowering of reduced glutathione content and is not observed in similarly prepared and treated normal cells. The damage is most likely related to irradiation-induced formation of activated oxygen products and to their subsequent effects on the cells. Neither methemoglobin increases nor Heinz body formation were observed, suggesting that hemolysis occurred prior to these changes. The study provides a model for examining the effects of irradiation and activated oxygen on red cells and suggests that patients with G6PD deficiency who receive irradiation could develop severe hemolysis in certain clinical settings.

  11. A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts

    Directory of Open Access Journals (Sweden)

    Gebhard Daniel

    2010-06-01

    Full Text Available Abstract Background The Host Cell Reactivation Assay (HCRA is widely used to identify circumstances and substances affecting the repair capacity of cells, however, it is restricted by the transfection procedure used and the sensitivity of the detection method. Primary skin cells are particularly difficult to transfect, and therefore sensitive methods are needed to detect any variations due to the cell-type or inter-individual differences or changes induced by diverse substances. A sensitive and repeatable method to detect the repair capacity of skin cells would be useful in two different aspects: On the one hand, to identify substances influencing the repair capacity in a positive manner (these substances could be promising ingredients for cosmetic products and on the other hand, to exclude the negative effects of substances on the repair capacity (this could serve as one step further towards replacing or at least reducing animal testing. Results In this paper, we present a rapid and sensitive assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts based on two wave-length Green Fluorescent Protein (GFP and DsRed reporter technology in order to test different substances and their potential to influence the DNA repair capacity. For the detection of plasmid restoration, we used FACS technology, which, in comparison to luminometer technology, is highly sensitive and allows single cell based analysis. The usefulness of this assay and studying the repair capacity is demonstrated by the evidence that DNA repair is repressed by Cyclosporin A in fibroblasts. Conclusions The methodology described in this paper determines the DNA repair capacity in different types of human skin cells. The described transfection protocol is suitable for the transfection of melanocytes, keratinocytes and fibroblasts, reaching efficacies suitable for the detection of the restored plasmids by FACS technology. Therefore the repair capacity

  12. Biocompatibility of furcal perforation repair material using cell culture technique: Ketac Molar versus ProRoot MTA.

    Science.gov (United States)

    Vajrabhaya, La-ongthong; Korsuwannawong, Suwanna; Jantarat, Jeeraphat; Korre, Sumeth

    2006-12-01

    The objective of this study was to evaluate the cytotoxicity of furcal perforation repair materials, GI and MTA, using cell culture technique. The extract of ProRoot MTA and Ketac Molar were treated on PDL cells in a 96-well tissue-culture plate. Cell proliferation after an incubation period of 3 days was determined by using MTT assay. The growth of cultured human periodontal fibroblast cells were suppressed by both perforation repair materials. The percent of cell viability in the Ketac Molar group was lower than in the ProRoot MTA group (P = .000). Although Ketac Molar has the advantage of adhering to dentine, it is more cytotoxic to the PDL cells than MTA. In selecting the perforation repair material, it is recommended not only to consider the sealing ability of the material with dentine but also the biocompatibility of material to the underlying tissue.

  13. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

    Science.gov (United States)

    2013-01-01

    Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433

  14. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  15. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells.

    Science.gov (United States)

    Ye, Lei; Chang, Ying-Hua; Xiong, Qiang; Zhang, Pengyuan; Zhang, Liying; Somasundaram, Porur; Lepley, Mike; Swingen, Cory; Su, Liping; Wendel, Jacqueline S; Guo, Jing; Jang, Albert; Rosenbush, Daniel; Greder, Lucas; Dutton, James R; Zhang, Jianhua; Kamp, Timothy J; Kaufman, Dan S; Ge, Ying; Zhang, Jianyi

    2014-12-04

    Human induced pluripotent stem cells (hiPSCs) hold promise for myocardial repair following injury, but preclinical studies in large animal models are required to determine optimal cell preparation and delivery strategies to maximize functional benefits and to evaluate safety. Here, we utilized a porcine model of acute myocardial infarction (MI) to investigate the functional impact of intramyocardial transplantation of hiPSC-derived cardiomyocytes, endothelial cells, and smooth muscle cells, in combination with a 3D fibrin patch loaded with insulin growth factor (IGF)-encapsulated microspheres. hiPSC-derived cardiomyocytes integrated into host myocardium and generated organized sarcomeric structures, and endothelial and smooth muscle cells contributed to host vasculature. Trilineage cell transplantation significantly improved left ventricular function, myocardial metabolism, and arteriole density, while reducing infarct size, ventricular wall stress, and apoptosis without inducing ventricular arrhythmias. These findings in a large animal MI model highlight the potential of utilizing hiPSC-derived cells for cardiac repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Localization of the nucleotide excision repair gene ERCC-6 to human chromosome 10q11-q21.

    NARCIS (Netherlands)

    C. Troelstra (Christine); R.M. Landsvater; J. Wiegant; M. van der Ploeg; G. Viel; C.H.C.M. Buys; J.H.J. Hoeijmakers (Jan)

    1992-01-01

    textabstractWe have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ

  17. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    Directory of Open Access Journals (Sweden)

    Tapan G. Pipalia

    2016-06-01

    Full Text Available Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to re