WorldWideScience

Sample records for repair biomaterial based

  1. Biomaterials based strategies for rotator cuff repair.

    Science.gov (United States)

    Zhao, Song; Su, Wei; Shah, Vishva; Hobson, Divia; Yildirimer, Lara; Yeung, Kelvin W K; Zhao, Jinzhong; Cui, Wenguo; Zhao, Xin

    2017-09-01

    Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  3. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    vitro as well as in a subcutaneous mouse model. Stable MA-MC hydrogels, of varying weight percentages, demonstrated tunable swelling and mechanical properties in the absence of cytotoxic degradation products. In vivo, 6wt% MA-MC hydrogels maintained their shape and mechanical integrity while eliciting a minimal inflammatory response; highly desirable properties for soft tissue reconstruction. These cellulose-based photopolymerizable hydrogels can be further optimized for drug delivery and tissue engineering applications to enhance wound repair.

  4. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  5. Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Kai He; Yan Yongnian; Zhang Renji; Wang Xiaohong [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education and Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xinluan; Madhukar, Kumta Shekhar; Qin Ling [Department of Orthoapedics and Traumatology, The Chinese University of Hong Kong. Shatin, NT (Hong Kong)], E-mail: wangxiaohong@tsinghua.edu.cn, E-mail: kumta@cuhk.edu.hk, E-mail: qin@ort.cuhk.edu.hk

    2009-06-01

    After the removal of the giant cell tumor (GCT) of bone, it is necessary to fill the defects with adequate biomaterials. A new functional bone repair material with both stimulating osteoblast growth and inhibiting osteoclast activity has been developed with phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) as the additives of poly(lactic acid-co-glycolic acid) (PLGA)/calcium phosphate (TCP) scaffolds based on a double-nozzle low-temperature deposition manufacturing technique. A computer-assisted design model was used and the optimal fabrication parameters were determined through the manipulation of a pure PLGA/TCP system. The microscopic structures, water absorbability and mechanical properties of the samples with different P-chitosan and S-chitosan concentrations were characterized correspondingly. The results suggested that this unique composite porous scaffold material is a potential candidate for the repair of large bone defects after a surgical removal of GCT.

  6. Biomaterial applications in neural therapy and repair

    Institute of Scientific and Technical Information of China (English)

    Harmanvir Ghuman; Michel Modo

    2017-01-01

    The use of biomaterials,such as hydrogels,as a scaffold to deliver cells and drugs is becoming increasingly common to treat neurological conditions,including stroke.With a limited intrinsic ability to regenerate after injury,innovative tissue engineering strategies have shown the potential of biomaterials in facilitating neural tissue regeneration and functional recovery.Using biomaterials can not only promote the survival and integration of transplanted cells in the existing circuitry,but also support controlled site specific delivery of therapeutic drugs.This review aims to provide the reader an understanding of the brain tissue microenvironment after injury,biomaterial criteria that support tissue repair,commonly used natural and synthetic biomaterials,benefits of incorporating cells and neurotrophic factors,as well as the potential of endogenous neurogenesis in repairing the injured brain.

  7. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method.

    Directory of Open Access Journals (Sweden)

    Miguel Gonzalez-Andrades

    Full Text Available Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM for measuring functional optical blurring and transparency in corneal surface grafts.Plastic compressed collagen scaffolds (PCCS and multilayered amniotic membranes (AM samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD technique, which is the gold standard method.All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR value of 80.3 ± 2.8%, with a blurring index (BI of 50.6 ± 4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6| with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005. The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring.This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.

  8. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  9. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  10. Mini Review: Biomaterials for Enhancing Neuronal Repair

    Science.gov (United States)

    Cangellaris, Olivia V.; Gillette, Martha U.

    2018-04-01

    As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

  11. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  12. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  13. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  14. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  16. Rectocele repair using biomaterial augmentation: current documentation and clinical experience.

    Science.gov (United States)

    Altman, Daniel; Mellgren, Anders; Zetterström, Jan

    2005-11-01

    Although the etiology of rectocele remains debated, surgical innovations are currently promoted to improve anatomic outcome while avoiding dyspareunia and alleviating rectal emptying difficulties following rectocele surgery. Use of biomaterials in rectocele repair has become widespread in a short time, but the clinical documentation of their effectiveness and complications is limited. Medline and the Cochrane database were searched electronically from 1964 to May 2005 using the Pubmed and Ovid search engines. All English language publications including any of the search terms "rectocele," "implant," "mesh," "biomaterial," "prolapse," "synthetical," "pelvic floor," "biological," and "compatibility" were reviewed. This review outlines the basic principles for use of biomaterials in pelvic reconstructive surgery and provides a condensation of peer-reviewed articles describing clinical use of biomaterials in rectocele surgery. Historical and new concepts in rectocele surgery are discussed. Factors of importance for human in vivo biomaterial compatibility are presented together with current knowledge from clinical studies. Potential risks and problems associated with the use of biomaterials in rectocele and pelvic reconstructive surgery in general are described. Although use of biomaterials in rectocele and other pelvic organ prolapse surgery offers exciting possibilities, it raises treatment costs and may be associated with unknown and potentially severe complications at short and long term. Clinical benefits are currently unknown and need to be proven in clinical studies. Obstetricians & Gynecologists, Family Physicians After completion of this article, the reader should be able to explain that the objective of surgical treatment is to improve anatomic outcome and alleviate rectal emptying difficulties, describe the efficacy of biomaterials in rectocele repair, and summarize the potential risks and problems associated with use of biomaterials in rectocele and pelvic

  17. Laser-activated nano-biomaterials for tissue repair and controlled drug release

    International Nuclear Information System (INIS)

    Matteini, P; Ratto, F; Rossi, F; Pini, R

    2014-01-01

    We present recent achievements of minimally invasive welding of biological tissue and controlled drug release based on laser-activated nano-biomaterials. In particular, we consider new advancements in the biomedical application of near-IR absorbing gold nano-chromophores as an original solution for the photothermal repair of surgical incisions and as nanotriggers of controlled drug release from hybrid biopolymer scaffolds. (laser biophotonics)

  18. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  19. Production of ascorbic acid releasing biomaterials for pelvic floor repair.

    Science.gov (United States)

    Mangır, Naşide; Bullock, Anthony J; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better integrate into sites of implantation both biologically and mechanically. The impact of

  20. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  1. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  2. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  3. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  4. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    Science.gov (United States)

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  5. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    Directory of Open Access Journals (Sweden)

    Haiping Lu

    2016-03-01

    Full Text Available The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  6. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations

    Directory of Open Access Journals (Sweden)

    Christopher M. Mahoney

    2018-05-01

    Full Text Available Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  7. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    Science.gov (United States)

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  8. New injectable elastomeric biomaterials for hernia repair and their biocompatibility.

    Science.gov (United States)

    Skrobot, J; Zair, L; Ostrowski, M; El Fray, M

    2016-01-01

    Complications associated with implantation of polymeric hernia meshes remain a difficult surgical challenge. We report here on our work, developing for the first time, an injectable viscous material that can be converted to a solid and elastic implant in vivo, thus successfully closing herniated tissue. In this study, long-chain fatty acids were used for the preparation of telechelic macromonomers end-capped with methacrylic functionalities to provide UV curable systems possessing high biocompatibility, good mechanical strength and flexibility. Two different systems, comprising urethane and ester bonds, were synthesized from non-toxic raw materials and then subjected to UV curing after injection of viscous material into the cavity at the abdominal wall during hernioplasty in a rabbit hernia model. No additional fixation or sutures were required. The control group of animals was treated with commercially available polypropylene hernia mesh. The observation period lasted for 28 days. We show here that artificially fabricated defect was healed and no reherniation was observed in the case of the fatty acid derived materials. Importantly, the number of inflammatory cells found in the surrounding tissue was comparable to these found around the standard polypropylene mesh. No inflammatory cells were detected in connective tissues and no sign of necrosis has been observed. Collectively, our results demonstrated that new injectable and photocurable systems can be used for minimally invasive surgical protocols in repair of small hernia defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different...... of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass...

  10. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  11. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  12. Calcium-based biomaterials for diagnosis, treatment, and theranostics.

    Science.gov (United States)

    Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng

    2018-01-22

    Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.

  13. Simulation of Protein and Peptide-Based Biomaterials

    National Research Council Canada - National Science Library

    Daggett, Valerie

    2002-01-01

    The overall goal of the proposed research is to pursue realistic molecular modeling studies of the stability, dynamics, structure, function, and folding of proteins and protein-based biomaterials in solution...

  14. Preparation and mechanical property of polymer-based biomaterials

    International Nuclear Information System (INIS)

    Zhang, P; Chen, G; Zheng, X F

    2010-01-01

    The porous polymer-based biomaterial has been synthesized from PLGA, dioxane and tricalcium phosphate (TCP) by low-temperature deposition process. The deformation behaviours and fracture mechanism of polymer-based biomaterials were investigated using the compression test and the finite element (FE) simulation. The results show that the stress-strain curve of compression process includes linear elastic stage I, platform stage II and densification stage III, and the fracture mechanism can be considered as brittle fracture.

  15. Conducting polymer-based multilayer films for instructive biomaterial coatings

    OpenAIRE

    Hardy, John G; Li, Hetian; Chow, Jacqueline K; Geissler, Sydney A; McElroy, Austin B; Nguy, Lindsey; Hernandez, Derek S; Schmidt, Christine E

    2015-01-01

    Aim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment. Materials & methods: Thin conducting composite biomaterials based on multilayer films of poly (3,4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion. Fibroblasts were observed with fluorescence microscopy and their alignment (relative to the dipping direction and direction of electrical current passed through the films)...

  16. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    Science.gov (United States)

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  17. COLOSTRUM-COLLAGEN-HYDROXYAPATITE COMPOSITE, AN EXCELLENT CANDIDATE BIOMATERIAL FOR BONE REPAIR AND BONE INFECTION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dio Nurdin Setiawan

    2014-05-01

    Full Text Available In the case ofbone fracture or defect after surgery, which is common in patients with bone cancer (osteosarcoma, it takes a long time for closure and it may cause an infection problem. The use ofcollagen-hydroxyapatite composite with a blend ofcolostrum as a scaffold is aimed to accelerate the process of osteoblast growth, inhibite the emergence of infections, and act as bone tissue repair material. The method used was the hydrogel formation process and freeze dry process to remove the solvent and to form pores. The composition of scaffold composite manufactured was 15% collagen, 75% hydroxyapatite and 10% colostrum. Combination ofscaffold collagen-hydroxyapatite-colostrum has quite reliable properties because SEM test showed that scaffold could bind to both and could bind to both and could form sufficient pores to provide enough place for bone cells (osteoblats to grow. The results of MTT assay revealed percentage of above 60%, which indicates that the material is not toxic. In conclusion, collagen-hydroxyapatite-colostrum combination is an excellent biomaterial candidate for bone repair and bone infection management.

  18. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  19. Toward biomaterial-based implantable photonic devices

    Directory of Open Access Journals (Sweden)

    Humar Matjaž

    2017-03-01

    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  20. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  1. Some Biomaterials based on Collagen in Human Health care

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Some Biomaterials based on Collagen in Human Health care. Ophthalmology. Wound healing. Burn Dressing. Tumor Treatment. Tissue Engineered devices. for cardio-vascular functions; For managing chronic illnesses including diabetic ulcers and foot. Smart shoe.

  2. Design strategies and applications of nacre-based biomaterials.

    Science.gov (United States)

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the

  3. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue.

    Science.gov (United States)

    Fernandes, João S; Gentile, Piergiorgio; Pires, Ricardo A; Reis, Rui L; Hatton, Paul V

    2017-09-01

    Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag + , Cu + , and Sr 2+ , are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin

  4. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  5. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations

    NARCIS (Netherlands)

    Bruining, MJ; Blaauwgeers, HGT; Kuijer, R; Jongsma, FHM; de Brabander, J; Nuijts, RMMA; Koole, LH

    2000-01-01

    The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of

  6. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-06-01

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  7. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  8. Designing protein-based biomaterials for medical applications.

    Science.gov (United States)

    Gagner, Jennifer E; Kim, Wookhyun; Chaikof, Elliot L

    2014-04-01

    Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  10. Protein-based composites and biomaterials

    Science.gov (United States)

    World industrialization has generated substantial quantities of petroleum-based plastics over many years, which are not biodegradable or compostable, and are permanently residing on land, in landfills, or in the oceans, as environmental pollution. Recently, total or partially degradable materials ha...

  11. A Review of Injectable and Implantable Biomaterials for Treatment and Repair of Soft Tissues in Wound Healing

    Directory of Open Access Journals (Sweden)

    Shih-Feng Chou

    2017-01-01

    Full Text Available The two major topics concerning the development of nanomedicine are drug delivery and tissue engineering. With the advance in nanotechnology, scientists and engineers now have the ability to fabricate functional drug carriers and/or biomaterials that deliver and release drugs locally as well as promote tissue regeneration. In this short review, we address the use of nanotechnology in the fabrication of biomaterials (i.e., nanoparticles and nanofibers and their therapeutic function in wound healing as dressing materials. Furthermore, we discuss the use of surface nanofeatures to regulate cell adhesion, migration, proliferation, and differentiation, which is a crucial step in wound healing associated with tissue regeneration. Given that nanotechnology-based biomaterials exhibit superior pharmaceutical performance as compared to the traditional medicine, this short review provides current status and future directions of how nanotechnology is and will be used in biomedical field, especially in wound healing.

  12. Arsenic removal using natural biomaterial-based sorbents.

    Science.gov (United States)

    Ansone, Linda; Klavins, Maris; Viksna, Arturs

    2013-10-01

    Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.

  13. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  14. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial

    Science.gov (United States)

    Jesionowski, Teofil; Norman, Małgorzata; Żółtowska-Aksamitowska, Sonia; Petrenko, Iaroslav; Ehrlich, Hermann

    2018-01-01

    The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics. PMID:29522478

  16. Effective atomic numbers (Z_e_f_f) of based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Zenobio, Madelon Aparecida; Gonçalves Zenobio, Elton; Silva, Teógenes Augusto da; Socorro Nogueira, Maria do

    2016-01-01

    This study determined the interaction of radiation parameters of four biomaterials as attenuators to measure the transmitted X-rays spectra, the mass attenuation coefficient and the effective atomic number by spectrometric system comprising the CdTe detector. The biomaterial BioOss"® presented smaller mean energy than the other biomaterials. The μ/ρ and Z_e_f_f of the biomaterials showed their dependence on photon energy. The data obtained from analytical methods of x-ray spectra, µ/ρ and Z_e_f_f_, using biomaterials as attenuators, demonstrated that these materials could be used as substitutes for dentin, enamel and bone. Further, they are determinants for the characterization of the radiation in tissues or equivalent materials. - Highlights: • Measure of the transmitted x-rays spectra using based calcium phosphate biomaterials as attenuators. • Determination effective atomic number using four dental biomaterials. • Determination of the mass attenuation coefficient (µ/ρ) of the biomaterials samples calculated by the WinXCOM software. • Determination of the chemical composition of calcium phosphate biomaterials.

  17. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  18. Thiol-acrylate nanocomposite foams for critical size bone defect repair: A novel biomaterial.

    Science.gov (United States)

    Garber, Leah; Chen, Cong; Kilchrist, Kameron V; Bounds, Christopher; Pojman, John A; Hayes, Daniel

    2013-12-01

    Bone tissue engineering approaches using polymer/ceramic composites show promise as effective biocompatible, absorbable, and osteoinductive materials. A novel class of in situ polymerizing thiol-acrylate based copolymers synthesized via an amine-catalyzed Michael addition was studied for its potential to be used in bone defect repair. Both pentaerythritol triacrylate-co-trimethylolpropane tris(3-mercaptopropionate) (PETA-co-TMPTMP) and PETA-co-TMPTMP with hydroxyapatite (HA) composites were fabricated in solid cast and foamed forms. These materials were characterized chemically and mechanically followed by an in vitro evaluation of the biocompatibility and chemical stability in conjunction with human adipose-derived mesenchymal pluripotent stem cells (hASC). The solid PETA-co-TMPTMP with and without HA exhibited compressive strength in the range of 7-20 MPa, while the cytotoxicity and biocompatibility results demonstrate higher metabolic activity of hASC on PETA-co-TMPTMP than on a polycaprolactone control. Scanning electron microscope imaging of hASC show expected spindle shaped morphology when adhered to copolymer. Micro-CT analysis indicates open cell interconnected pores. Foamed PETA-co-TMPTMP HA composite shows promise as an alternative to FDA-approved biopolymers for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  19. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects

    NARCIS (Netherlands)

    Lu, H.; Liu, Y.; Guo, J.; Wu, H.; Wang, J.; Wu, G.

    2016-01-01

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity.

  20. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    Science.gov (United States)

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  1. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    OpenAIRE

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-01-01

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allogra...

  2. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface.

    Science.gov (United States)

    Qu, Feini; Pintauro, Michael P; Haughan, Joanne E; Henning, Elizabeth A; Esterhai, John L; Schaer, Thomas P; Mauck, Robert L; Fisher, Matthew B

    2015-01-01

    Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mitochondrial base excision repair assays

    DEFF Research Database (Denmark)

    Maynard, Scott; de Souza-Pinto, Nadja C; Scheibye-Knudsen, Morten

    2010-01-01

    The main source of mitochondrial DNA (mtDNA) damage is reactive oxygen species (ROS) generated during normal cellular metabolism. The main mtDNA lesions generated by ROS are base modifications, such as the ubiquitous 8-oxoguanine (8-oxoG) lesion; however, base loss and strand breaks may also occur....... Many human diseases are associated with mtDNA mutations and thus maintaining mtDNA integrity is critical. All of these lesions are repaired primarily by the base excision repair (BER) pathway. It is now known that mammalian mitochondria have BER, which, similarly to nuclear BER, is catalyzed by DNA...... glycosylases, AP endonuclease, DNA polymerase (POLgamma in mitochondria) and DNA ligase. This article outlines procedures for measuring oxidative damage formation and BER in mitochondria, including isolation of mitochondria from tissues and cells, protocols for measuring BER enzyme activities, gene...

  5. Biofunctionality and immunocompatibility of starch-based biomaterials

    Science.gov (United States)

    Marques, Alexandra Margarida Pinto

    A procura de novos biomateriais que desempenhem funcoes especificas sem, no entanto, desencadearem respostas negativas nos hospedeiros constitui um desafio permanente e actual nesta area. Biomateriais degradaveis foram uma das solucoes propostas e actualmente em aplicacao mas, embora possuam vantagens inegaveis, tambem apresentam alguns problemas nomeadamente no que diz respeito aos seus produtos de degradacao e respectivos efeitos negativos consequentes. Outros biomateriais, entre os quais polimeros de origem natural, foram propostos considerando que os seus produtos de degradacao poderao ser incorporados nas vias metabolicas normais evitando efeitos secundarios no hospedeiro. Ate ao momento, e apesar de todos os esforcos e do grande numero de dispositivos biomedicos desenvolvidos, o biomaterial ideal para uma aplicacao especifica ainda nao foi encontrado. Estudos com polimeros biodegradaveis a base de amido demonstraram que estes materiais possuem propriedades promissoras abrindo novas perspectivas para a sua possivel aplicacao numa variedade de aplicacoes biomedicas. Assim, de modo a demonstrar que estes materiais tem de facto potencial para serem utilizados em, por exemplo, substituicao ossea, sistemas de libertacao controlada, cimentos osseos e engenharia de tecidos, seria imperativo avaliar com maior profundidade a resposta biologica desencadeada pelos mesmos. Para tal foi delineado um plano de trabalhos com tres objectivos principais: i) avaliar a citocompatibilidade dos polimeros e compositos a base de amido com monitorizacao da citotoxicidade e analise da adesao e proliferacao celulares nas suas superficies. Foi dada particular atencao a osteoblastos considerando uma possivel aplicacao ortopedica para estes materiais; ii) estabelecer modelos in vitro para analisar e prever, tanto quanto possivel, uma situacao real de resposta inflamatoria; iii) validar os resultados in vitro com um modelo in vivo ja estabelecido em outros trabalhos de analise da resposta

  6. Diaphragm Repair with a Novel Cross-Linked Collagen Biomaterial in a Growing Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Steffi Mayer

    investigated ACM is not a viable option for CDH repair.

  7. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering.

    Science.gov (United States)

    Farraro, Kathryn F; Kim, Kwang E; Woo, Savio L-Y; Flowers, Jonquil R; McCullough, Matthew B

    2014-06-27

    In recent years, there has been a surge of interest in magnesium (Mg) and its alloys as biomaterials for orthopaedic applications, as they possess desirable mechanical properties, good biocompatibility, and biodegradability. Also shown to be osteoinductive, Mg-based materials could be particularly advantageous in functional tissue engineering to improve healing and serve as scaffolds for delivery of drugs, cells, and cytokines. In this paper, we will present two examples of Mg-based orthopaedic devices: an interference screw to accelerate ACL graft healing and a ring to aid in the healing of an injured ACL. In vitro tests using a robotic/UFS testing system showed that both devices could restore function of the goat stifle joint. Under a 67-N anterior tibial load, both the ACL graft fixed with the Mg-based interference screw and the Mg-based ring-repaired ACL could restore anterior tibial translation (ATT) to within 2mm and 5mm, respectively, of the intact joint at 30°, 60°, and 90° of flexion. In-situ forces in the replacement graft and Mg-based ring-repaired ACL were also similar to those of the intact ACL. Further, early in vivo data using the Mg-based interference screw showed that after 12 weeks, it was non-toxic and the joint stability and graft function reached similar levels as published data. Following these positive results, we will move forward in incorporating bioactive molecules and ECM bioscaffolds to these Mg-based biomaterials to test their potential for functional tissue engineering of musculoskeletal and other tissues. © 2013 Published by Elsevier Ltd.

  8. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  9. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2018-04-01

    Full Text Available The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials standard. In addition to that data on the chemical element test like K+, CO3−−, Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166 standardization. Therefore, it can be concluded that both organic (cellulose and starch based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries. Keywords: Nanocellulose, Nanobioplastic, Nanocoating, Biodegradable, Corn leaf

  10. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    Science.gov (United States)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  12. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  13. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  14. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  15. In-vitro responses of T lymphocytes to poly(butylene succinate) based biomaterials.

    Science.gov (United States)

    Toso, Montree; Patntirapong, Somying; Janvikul, Wanida; Singhatanadgit, Weerachai

    2017-04-01

    Polybutylene succinate (PBSu) and PBSu/β-tricalcium phosphate (TCP) composites are biocompatible and good candidates as bone graft materials. However, little is known about the responses of T lymphocytes to these biomaterials, which play an important role in the success of bone grafting. Activated T lymphocytes were cultured onto 32 mm diameter films (PBSu/TCP films), that had previously been placed in 6-well culture plates, for 8, 24 and 72 hours. A plastic-well culture plate was used as a control surface. The effects of PBSu-based biomaterials on T lymphocytes were examined by the using flow cytometry and reverse-transcription polymerase chain reaction. These biomaterials were non-toxic to T lymphocytes, allowing their normal DNA synthesis and activation. All materials induced only transient activation of T lymphocytes, which existed no longer than 72 hours. Proportions of four main CD4/CD8 T lymphocyte subpopulations were not affected by these biomaterials. Moreover, PBSu and PBSu/TCP significantly suppressed the expression of IL-1β and IL-6 genes by 15-35% and 21-26%, respectively. In contrast, a PBSu/TCP composite (at PBSu:TCP=60:40) significantly stimulated the expression of IL-10 and IL-13 genes by 17% and 19%, respectively. PBSu and PBSu/TCP composites were non-toxic to T lymphocytes and did not induce unfavorable responses of T lymphocytes. The tested biomaterials down-regulated key proinflammatory cytokine genes and up-regulated anti-inflammatory cytokine genes in T lymphocytes. These suggest that the biomaterials studied are good candidates as bone graft materials.

  16. Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    NARCIS (Netherlands)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different

  17. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    Science.gov (United States)

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  18. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  19. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.

    Science.gov (United States)

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-08-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.

  1. Cellular self-assembly and biomaterials-based organoid models of development and diseases.

    Science.gov (United States)

    Shah, Shivem B; Singh, Ankur

    2017-04-15

    Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  3. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    International Nuclear Information System (INIS)

    Skopinska-Wisniewska, J.; Sionkowska, A.; Kaminska, A.; Kaznica, A.; Jachimiak, R.; Drewa, T.

    2009-01-01

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in biomaterial

  4. Surface characterization of collagen/elastin based biomaterials for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Skopinska-Wisniewska, J., E-mail: joanna@chem.uni.torun.pl [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Sionkowska, A.; Kaminska, A. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun (Poland); Kaznica, A.; Jachimiak, R.; Drewa, T. [Collegium Medicum, Nicolaus Copernicus University, Karlowicz 24, 85-092 Bydgoszcz (Poland)

    2009-07-15

    Collagen and elastin are the main proteins of extracellular matrix. Collagen plays a crucial role in tensile strength of tissues, whereas elastin provides resilience to many organs. Both biopolymers are readily available and biocompatible. These properties point out that collagen and elastin are good components of materials for many potential medical applications. The surface properties of biomaterials play an important role in biomedicine as the majority of biological reactions occur on the surface of implanted materials. One of the methods of surface modification is UV-irradiation. The exposition of the biomaterial on ultraviolet light can alterate surface properties of the materials, their chemical stability, swelling properties and mechanical properties as well. The aim of our work was to study the surface properties and biocompatibility of new collagen/elastin based biomaterials and consideration of the influence of ultraviolet light on these properties. The surface properties of collagen/elastin based biomaterials modified by UV-irradiation were studied using the technique of atomic force microscopy (AFM) and contact angle measurements. On the basis of the results the surface free energy and its polar component was calculated using Owens-Wendt method. To assess the biological performance of films based on collagen, elastin and their blends, the response of 3T3 cell was investigated. It was found that the surface of collagen/elastin film is enriched in less polar component - collagen. Exposition on UV light increases polarity of collagen/elastin based films, due to photooxidation process. The AFM images have shown that topography and roughness of the materials had been also affected by UV-irradiation. The changes in surface properties influence on interaction between the material's surface and cells. The investigation of 3T3 cells grown on films based on collagen, elastin and their blends, leads to the conclusion that higher content of elastin in

  5. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials

    OpenAIRE

    Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire

    2016-01-01

    In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylin...

  6. Starch and polyethylene based bone-analogue composite biomaterials

    Science.gov (United States)

    Reis, Rui Luis Goncalves dos

    diopsidio contendo Al na estrutura, sinterizacao e no comportamento durante a cristalizacao de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicacao como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos a base de enstatite nao apresentavam as caracteristicas necessarias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos a base de diopsidio qualificaram-nos para futuros estudos neste tipo de aplicacoes. Para alem de investigar a adequacao dos vitro-cerâmicos a base de clinopyroxene como selantes, esta tese tem tambem como objetivo estudar a influencia dos agentes de nucleacao na nucleacao em volume dos vitro-cerâmicos resultantes a base de diopsidio, de modo a qualifica-los como potenciais materiais hopedeiros de residuos nucleares radioactivos.

  7. Study of biomaterials by ion-beam based methods

    International Nuclear Information System (INIS)

    Racolta, Petru; Craciun, Liviu; Cincu, Emanuela; Voiculescu, Dana; Muresan, Ofelia; Serban, Alin; Filip, Andrei Ilie; Bunea, Danil; Antoniac, Vasile; Tudor, Tiberiu Laurian; Visan, Teodor; Visan, Sanda; Ibris, Neluta

    2002-01-01

    The extension lifetime of prosthetic devices, dental materials and orthodontic devices is one main goal of the international medical supply community. In the frame of an interdisciplinary national project, IFIN-HH has started experimentation on some alternative procedures to study the wear/corrosion phenomena of biological materials by using ion-beam based techniques. Since joint prostheses are mechanical bearings there are concerns over friction and wear just as there are with any bearing. These concerns date back to the early introduction of total hip prostheses and were shown to be justified by the early failures due to wear. Subsequently, changes in materials and designs reduced the incidence of wear failure to a low level at which failures due to other mechanisms became dominant. Interest turned to preventing femoral component fracture, reducing the rates of infection, and reducing the rates of loosening. Attention to wear as a mechanism of failure has recently increased. The failure rate for joint replacement at the hip or knee has been progressively reduced. The biologic effects of wear debris have been recognized; wearing out of the prosthesis is no longer a prerequisite for an adverse outcome. There is an active search for new materials with increased wear resistance. In the case of metallic component from hip, knee prostheses and dental alloys, we present the optimum nuclear reactions according with the main parameters of our U-120 Cyclotron (p, d, E max = 13 MeV and α particle, E max = 26 MeV). In the case of polymers, one of an articulating couple of the prosthetic devices, direct activation causes severe changes in its surface morphology and its structure (formation of defects and free radicals). We have developed an indirect activation mode using the principle of recoil ion implantation, applied to 56 Co radioactive ions generated by proton particle beams on a Fe target (thickness ∼ 10 mm). A thin target of elementary composition A is bombarded by

  8. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Merolli, Antonio [Department of Orthopaedic Surgery, The Catholic University in Rome, Complesso Columbus, via Moscati 31, 00168 Rome (Italy); Nicolais, Luigi; Ambrosio, Luigi [Institute of Composite and Biomedical Materials, Consiglio Nazionale delle Ricerche, Piazzale Tecchio 80, 80130 Napoli (Italy); Santin, Matteo [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4 GJ (United Kingdom)

    2010-02-15

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  9. A degradable soybean-based biomaterial used effectively as a bone filler in vivo in a rabbit

    International Nuclear Information System (INIS)

    Merolli, Antonio; Nicolais, Luigi; Ambrosio, Luigi; Santin, Matteo

    2010-01-01

    The 'gold standard' for bone filling is currently the bone autograft, but its use is limited by material availability and by the possible risks of infection or other donor site morbidity. Materials proposed so far as bone fillers do not show all the characteristics which are desirable. These are (a) osteoconductivity, (b) controlled biodegradation and (c) ease of adaptation to the implantation site. Recently, a new class of biodegradable material based on soybeans has been presented which shows good mechanical properties and an intrinsic bioactivity on inflammatory and tissue cells in vitro. The authors investigated the morphology in vivo of bone response in repairing a surgical lesion in the presence of granules of a novel soybean-based biomaterial (SB), comparing it with a sham-operated contralateral lesion of critical size (non-healing model); 26 operations were performed in New Zealand White rabbits, with back scattered electron microscopy as the analysis technique of choice. Implantation of SB granules over 8 weeks produced bone repair with features distinct from those obtained by healing in a non-treated defect. New and progressively maturing trabeculae appeared in the animal group where SB granules were implanted, while sham operation produced only a rim of pseudo-cortical bone still featuring a large defect. The trabeculae forming in the presence of SB granules had features typical of reticular bone. These findings suggest that the bone regeneration potential of SB granules and their intrinsic bioactivity, combined with their relatively easy and cost-effective preparation procedures, make them suitable candidates as a bone filler in clinical applications.

  10. Evaluation of egg white ovomucin-based porous scaffold as an implantable biomaterial for tissue engineering.

    Science.gov (United States)

    Carpena, Nathaniel T; Abueva, Celine D G; Padalhin, Andrew R; Lee, Byong-Taek

    2017-10-01

    Studies have shown the technological and functional properties of ovomucin (OVN) in the food-agricultural industry. But research has yet to explore its potential as an implantable biomaterial for tissue engineering and regenerative medicine. In this study we isolated OVN from egg white by isoelectric precipitation and fabricated scaffolds with tunable porosity by utilizing its foaming property. Gelatin a known biocompatible material was introduced to stabilize the foams, wherein different ratios of OVN and gelatin had a significant effect on the degree of porosity, pore size and stability of the formed hydrogels. The porous scaffolds were crosslinked with EDC resulting in stable scaffolds with prolonged degradation. Improved cell proliferation and adhesion of rat bone marrow-derived mesenchymal stem cells were observed for OVN containing scaffolds. Although, scaffolds with 75% OVN showed decrease in cell proliferation for L929 fibroblast type of cells. Further biocompatibility assessment as implant material was determined by subcutaneous implantation in rats of selected scaffold. H&E staining showed reasonable vascularization over time and little evidence of severe fibrosis at the implant site. Persistent polarization of classically activated macrophage was not observed, potentially reducing inflammatory response, and showed increased expression of alternatively activated macrophage cells that is favorable for tissue repair. Analysis of IgE levels in rat serum after implantation indicated minimal and resolvable allergic response to the OVN implants. The results demonstrate OVN as an acceptable implant scaffold that could provide new opportunities as an alternative natural biocompatible and functional biomaterial in various biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2107-2117, 2017. © 2016 Wiley Periodicals, Inc.

  11. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  12. Learning-based diagnosis and repair

    NARCIS (Netherlands)

    Roos, Nico

    2017-01-01

    This paper proposes a new form of diagnosis and repair based on reinforcement learning. Self-interested agents learn locally which agents may provide a low quality of service for a task. The correctness of learned assessments of other agents is proved under conditions on exploration versus

  13. Base excision repair, aging and health span

    Czech Academy of Sciences Publication Activity Database

    Xu, G.; Herzig, M.; Rotrekl, Vladimír; Walter, Ch. A.

    2008-01-01

    Roč. 129, 7-8 (2008), s. 366-382 ISSN 0047-6374 Institutional research plan: CEZ:AV0Z50390512 Keywords : base excision repair * aging * DNA damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.915, year: 2008

  14. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  15. Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects.

    Science.gov (United States)

    Liu, Jingjing; Zhan, Xiudan; Wan, Jianbo; Wang, Yitao; Wang, Chunming

    2015-05-05

    Carrageenan (CRG) is a family of natural polysaccharides derived from seaweeds and has widely been used as food additives. In the past decade, owing to its attractive physicochemical properties, CRG has been developed into versatile biomaterials vehicles for drug delivery. Nevertheless, studies also emerged to reveal its adverse effects on the biological system. In this review, we critically appraise the latest literature (two thirds since 2008) on the development of CRG-based pharmaceutical vehicles and the perspective of using CRG for broader biomedical applications. We focus on how current strategies exploit the unique gelling mechanisms, strong water absorption and abundant functional groups of the three major CRG varieties. Notably, CRG-based matrices are demonstrated to increase drug loading and drug solubility, enabling release of orally administrated drugs in zero-order or in a significantly prolonged period. Other amazing features, such as pH-sensitivity and adhesive property, of CRG-based formulations are also introduced. Finally, we discuss the adverse influence of CRG on the human body and then suggest some future directions for the development of CRG-based biomaterials for broader applications in biomedicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    Science.gov (United States)

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  17. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    Science.gov (United States)

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  18. Ultrafast dynamics of solvation and charge transfer in a DNA-based biomaterial.

    Science.gov (United States)

    Choudhury, Susobhan; Batabyal, Subrata; Mondol, Tanumoy; Sao, Dilip; Lemmens, Peter; Pal, Samir Kumar

    2014-05-01

    Charge migration along DNA molecules is a key factor for DNA-based devices in optoelectronics and biotechnology. The association of a significant amount of water molecules in DNA-based materials for the intactness of the DNA structure and their dynamic role in the charge-transfer (CT) dynamics is less documented in contemporary literature. In the present study, we have used a genomic DNA-cetyltrimethyl ammonium chloride (CTMA) complex, a technological important biomaterial, and Hoechest 33258 (H258), a well-known DNA minor groove binder, as fluorogenic probe for the dynamic solvation studies. The CT dynamics of CdSe/ZnS quantum dots (QDs; 5.2 nm) embedded in the as-prepared and swollen biomaterial have also been studied and correlated with that of the timescale of solvation. We have extended our studies on the temperature-dependent CT dynamics of QDs in a nanoenvironment of an anionic, sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle (AOT RMs), whereby the number of water molecules and their dynamics can be tuned in a controlled manner. A direct correlation of the dynamics of solvation and that of the CT in the nanoenvironments clearly suggests that the hydration barrier within the Arrhenius framework essentially dictates the charge-transfer dynamics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials.

    Science.gov (United States)

    Jung, Ole; Smeets, Ralf; Porchetta, Dario; Kopp, Alexander; Ptock, Christoph; Müller, Ute; Heiland, Max; Schwade, Max; Behr, Björn; Kröger, Nadja; Kluwe, Lan; Hanken, Henning; Hartjen, Philip

    2015-09-01

    Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  1. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    Science.gov (United States)

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  2. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  3. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    Science.gov (United States)

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model.

    Directory of Open Access Journals (Sweden)

    Daniela Ulrich

    Full Text Available Fascial defects are a common problem in the abdominal wall and in the vagina leading to hernia or pelvic organ prolapse that requires mesh enhancement to reduce operation failure. However, the long-term outcome of synthetic mesh surgery may be unsatisfactory due to post-surgical complications. We hypothesized that mesh fabricated from alternative synthetic polymers may evoke a different tissue response, and provide more appropriate mechanical properties for hernia repair. Our aim was to compare the in vivo biocompatibility of new synthetic meshes with a commercial mesh.We have fabricated 3 new warp-knitted synthetic meshes from different polymers with different tensile properties polyetheretherketone (PEEK, polyamide (PA and a composite, gelatin coated PA (PA+G. The rat abdominal hernia model was used to implant the meshes (25 × 35 mm, n = 24/ group. After 7, 30, 60, 90 days tissues were explanted for immunohistochemical assessment of foreign body reaction and tissue integration, using CD31, CD45, CD68, alpha-SMA antibodies. The images were analysed using an image analysis software program. Biomechanical properties were uniaxially evaluated using an Instron Tensile® Tester.This study showed that the new meshes induced complex differences in the type of foreign body reaction over the time course of implantation. The PA, and particularly the composite PA+G meshes, evoked a milder early inflammatory response, and macrophages were apparent throughout the time course. Our meshes led to better tissue integration and new collagen deposition, particularly with the PA+G meshes, as well as greater and sustained neovascularisation compared with the PP meshes.PA, PA+G and PEEK appear to be well tolerated and are biocompatible, evoking an overlapping and different host tissue response with time that might convey mechanical variations in the healing tissue. These new meshes comprising different polymers may provide an alternative option for future treatment

  5. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  6. Digital design of scaffold for mandibular defect repair based on tissue engineering.

    Science.gov (United States)

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-09-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  7. Digital design of scaffold for mandibular defect repair based on tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LIU; Fu-dong ZHU; Xing-tao DONG; Wei PENG

    2011-01-01

    Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  8. A chlorhexidine-releasing epoxy-based coating on titanium implants prevents Staphylococcus aureus experimental biomaterial-associated infection

    NARCIS (Netherlands)

    Riool, M.; Dirks, A. J.; Jaspers, V.; de Boer, L.; Loontjens, T. J.; van der Loos, C. M.; Florquin, S.; Apachitei, I.; Rijk, L. N.; Keul, H. A.; Zaat, S. A.

    2017-01-01

    Prevention of biomaterial-associated infections (BAI) remains a challenging problem, in particular due to the increased risk of resistance development with the current antibiotic-based strategies. Metallic orthopaedic devices, such as non-cemented implants, are often inserted under high mechanical

  9. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Silvia Lopa

    2018-01-01

    Full Text Available Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.

  10. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair

    Science.gov (United States)

    Mondadori, Carlotta; Mainardi, Valerio Luca; Talò, Giuseppe; Candrian, Christian; Święszkowski, Wojciech

    2018-01-01

    Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects. PMID:29535776

  11. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  12. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  13. Age replacement policy based on imperfect repair with random probability

    International Nuclear Information System (INIS)

    Lim, J.H.; Qu, Jian; Zuo, Ming J.

    2016-01-01

    In most of literatures of age replacement policy, failures before planned replacement age can be either minimally repaired or perfectly repaired based on the types of failures, cost for repairs and so on. In this paper, we propose age replacement policy based on imperfect repair with random probability. The proposed policy incorporates the case that such intermittent failure can be either minimally repaired or perfectly repaired with random probabilities. The mathematical formulas of the expected cost rate per unit time are derived for both the infinite-horizon case and the one-replacement-cycle case. For each case, we show that the optimal replacement age exists and is finite. - Highlights: • We propose a new age replacement policy with random probability of perfect repair. • We develop the expected cost per unit time. • We discuss the optimal age for replacement minimizing the expected cost rate.

  14. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials.

    Science.gov (United States)

    Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire

    2016-12-01

    In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.

  15. Solid-phase based synthesis of ureidopyrimidinone-peptide conjugates for supramolecular biomaterials

    NARCIS (Netherlands)

    Feijter, de I.; Goor, O.J.G.M.; Hendrikse, S.I.S.; Comellas Aragones, M.; Sontjens, S.H.M.; Zaccaria, S.; Fransen, P.P.K.H.; Peeters, J.W.; Milroy, L.G.; Dankers, P.Y.W.

    2015-01-01

    Supramolecular polymers have shown to be powerful scaffolds for tissue engineering applications. Supramolecular biomaterials functionalized with ureidopyrimidinone (UPy) moieties, which dimerize via quadruple hydrogen-bond formation, are eminently suitable for this purpose. The conjugation of the

  16. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  17. Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ

    Directory of Open Access Journals (Sweden)

    Werner E. G. Müller

    2018-01-01

    Full Text Available Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP, on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The results revealed that the amorphous Ca-polyP particles promote the growth/viability of mesenchymal stem cells, as well as the osteogenic and chondrogenic differentiation of the bone marrow cells in rat femur explants, as revealed by an upregulation of the expression of the transcription factors SOX9 (differentiation towards osteoblasts and RUNX2 (chondrocyte differentiation. In parallel to this bone anabolic effect, incubation of the femur explants with these particles significantly reduced the expression of the gene encoding the osteoclast bone-catabolic enzyme, cathepsin-K, while the expression of the tartrate-resistant acid phosphatase remained unaffected. The gene expression data were supported by the finding of an increased mineralization of the cells in the femur explants in response to the Ca-polyP particles. Finally, we show that the hybrid particles of polyP complexed with zoledronic acid exhibit both the cytotoxic effect of the bisphosphonate and the morphogenetic and mineralization inducing activity of polyP. Our results suggest that the Ca-polyP nano/microparticles are not only a promising scaffold material for repairing long bone osteo-articular damages but can also be applied, as a hybrid with zoledronic acid, as a drug delivery system for

  18. Optimization and translation of MSC-based hyaluronic acid hydrogels for cartilage repair

    Science.gov (United States)

    Erickson, Isaac E.

    2011-12-01

    Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 k

  19. Biomaterials and scaffolds in reparative medicine

    Science.gov (United States)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  20. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases

    Science.gov (United States)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang

    2014-01-01

    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  1. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    Science.gov (United States)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  2. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    Science.gov (United States)

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  4. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  5. Fiber-based polarimetric stress sensor for measuring the Young's modulus of biomaterials

    Science.gov (United States)

    Harrison, Mark C.; Armani, Andrea M.

    2015-03-01

    Polarimetric optical fiber-based stress and pressure sensors have proven to be a robust tool for measuring and detecting changes in the Young's modulus (E) of materials in response to external stimuli, including the real-time monitoring of the structural integrity of bridges and buildings. These sensors typically work by using a pair of polarizers before and after the sensing region of the fiber, and often require precise alignment to achieve high sensitivity. The ability to perform similar measurements in natural and in engineered biomaterials could provide significant insights and enable research advancement and preventative healthcare. However, in order for this approach to be successful, it is necessary to reduce the complexity of the system by removing free-space components and the need for alignment. As the first step in this path, we have developed a new route for performing these measurements. By generalizing and expanding established theoretical analyses for these types of sensors, we have developed a predictive theoretical model. Additionally, by replacing the conventional free space components and polarization filters with a polarimeter, we have constructed a sensor system with higher sensitivity and which is semi-portable. In initial experiments, a series of polydimethylsiloxane (PDMS) samples with several base:curing agent ratios ranging from 5:1 up to 30:1 were prepared to simulate tissues with different stiffnesses. By simultaneously producing stress-strain curves using a load frame and monitoring the polarization change of light traveling through the samples, we verified the accuracy of our theoretical model.

  6. Enhancing analysis of cells and proteins by fluorescence imaging on silk-based biomaterials: modulating the autofluorescence of silk.

    Science.gov (United States)

    Neo, Puay Yong; Tan, Daryl Jian-An; Shi, Pujiang; Toh, Siew Lok; Goh, James Cho-Hong

    2015-02-01

    Silk is a versatile and established biomaterial for various tissue engineering purposes. However, it also exhibits strong autofluorescence signals-thereby hindering fluorescence imaging analysis of cells and proteins on silk-derived biomaterials. Sudan Black B (SB) is a lysochrome dye commonly used to stain lipids in histology. It has also been reported to be able to quench autofluorescence of tissues in histology and has been tested on artificial biomedical polymers in recent years. It was hypothesized that SB would exert similar quenching effects on silk, modulating the autofluorescence signals, and thereby enabling improved imaging analysis of cells and molecules of interests. The quenching effect of SB on the intrinsic fluorescence properties of silk and on commercial fluorescent dyes were first investigated in this study. SB was then incorporated into typical fluorescence-based staining protocols to study its effectiveness in improving fluorescence-based imaging of the cells and proteins residing with the silk-based biomaterials. Silk processed into various forms of biomaterials (e.g., films, sponges, fibers, and electrospun mats) was seeded with cells and cultured in vitro. At sacrificial time points, specimens were harvested, fixed, and prepared for fluorescence staining. SB, available commercially as a powder, was dissolved in 70% ethanol (0.3% [w/v]) to form staining solutions. SB treatment was introduced at the last step of typical immunofluorescence staining protocols for 15-120 min. For actin staining protocols by phalloidin toxin, SB staining solutions were added before and after permeabilization with Triton-X for 15-30 min. Results showed that ideal SB treatment duration is about 15 min. Apart from being able to suppress the autofluorescence of silk, this treatment duration was also not too long to adversely affect the fluorescent labeling probes used. The relative improvement brought about by SB treatment was most evident in the blue and green

  7. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  8. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.

    Science.gov (United States)

    Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao

    2017-10-01

    Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    Science.gov (United States)

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  10. Extracellular matrix based biomaterials for central nervous system tissue repair: the benefits and drawbacks

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka

    2017-01-01

    Roč. 12, č. 9 (2017), s. 1430-1432 ISSN 1673-5374 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : stem-cells * scaffold * cord * hydrogels Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 1.769, year: 2016

  11. Current developments in cell- and biomaterial-based approaches for stroke repair

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Kubinová, Šárka; Sandvig, I.; Erceg, Slaven; Sandvig, A.; Syková, Eva

    2016-01-01

    Roč. 16, č. 1 (2016), s. 43-56 ISSN 1471-2598 R&D Projects: GA MŠk(CZ) 7F14057 Institutional support: RVO:68378041 Keywords : clinical trials * ischemic lesion * mesenchymal stem cells * neural progenitors * neurogenesis * noninvasive imaging * stem cells * stroke * translation Subject RIV: FH - Neurology Impact factor: 3.684, year: 2016

  12. Base excision repair mechanisms and relevance to cancer susceptibility

    International Nuclear Information System (INIS)

    Dogliotti, E.; Wilson, S.H.

    2009-01-01

    The base excision repair (BER) pathway is considered the predominant DNA repair system in mammalian cells for eliminating small DNA lesions generated at DNA bases either exogenously by environmental agents or endogenously by normal cellular metabolic processes (e.g. production of oxyradical species, alkylating agents, etc). The main goal of this project is the understanding of the involvement of BER in genome stability and in particular in sporadic cancer development associated with inflammation such as gastric cancer (GC). A major risk factor of GC is the infection by Helicobacter pylori, which causes oxidative stress. Oxidative DNA damage is mainly repaired by BER

  13. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    Science.gov (United States)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  14. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  15. Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure.

    Science.gov (United States)

    Tanaka, Masaru

    2017-01-01

    Although various types of materials have been used widely in dialyzers, most biomaterials lack the desired functional properties to interface with blood and have not been engineered for optimum performance. Therefore, there is increasing demand to develop novel materials to address such problems in the dialysis arena. Numerous parameters of polymeric biomaterials can affect biocompatibility in a controlled manner. The mechanisms responsible for the biocompatibility of polymers at the molecular level have not been clearly demonstrated, although many theoretical and experimental efforts have been made to try and understand them. Moreover, water interactions have been recognized as fundamental for the blood response to contact with polymers. We have proposed the 'intermediate water' concept and hypothesized that intermediate water, which prevents the proteins and blood cells from directly contacting the polymer surface, or nonfreezing water on the polymer surface, plays an important role in the biocompatibility of polymers. This chapter provides an overview of the recent experimental progress of biocompatible polymers measured by thermal, spectroscopic, and surface force techniques. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for dialyzers and provides an overview of the progress made in the design of multifunctional biomedical polymers by controlling the biointerfacial water structure through precision polymer synthesis. Key Messages: Intermediate water was found only in hydrated biopolymers (proteins, polysaccharides, and nucleic acids, DNA and RNA) and hydrated biocompatible synthetic polymers. Intermediate water could be one of the main screening factors for the design of appropriate dialyzer materials. © 2017 S. Karger AG, Basel.

  16. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cell Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath

    Science.gov (United States)

    2017-07-01

    to subsequently guide tissue regeneration , for example, by seeded tissue progenitor cells . To achieve this objective, the first step is to develop...AWARD NUMBER: W81XWH-15-1-0104 TITLE: Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Cell -Based Meniscal Repair Using an Aligned Bioactive Nanofibrous Sheath 5b. GRANT NUMBER W81XWH-15-1-0104 5c. PROGRAM

  18. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies assessed by Raman spectroscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Soares, Luiz Guilherme P.; Marques, Aparecida Maria C.; Silveira, Landulfo

    2016-03-01

    This work aimed the assessment of the biochemical changes during bone mineralization induced by laser and LED irradiation in an animal model of bone repair using a spectral model based on Raman spectroscopy. Six groups were studied: Clot, Laser (λ780 nm, 70 mW), LED (λ850 nm +/- 10 nm, 150 mW), Biomaterial (biphasic synthetic microgranular hydroxyapatite (HA) + β-tricalcium phosphate), Laser + Biomaterial and LED + Biomaterial. When indicated, defects were further irradiated at 48 h interval during 2 wks, 20 J/cm2 per session. At 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA and carbonate HA, by using spectra of pure collagen, biomaterial and basal bone, respectively. At 15th days, the use of biomaterial associated to phototherapy reduced the collagen formation, whereas the amount of carbonate HA was not different in all groups. The phosphate HA was higher in the groups that received biomaterial grafts. At 30th days, it was observed an increase of collagen for the group Laser + Biomaterial, and a reduction in the carbonate HA for the LED + Biomaterial. The phosphate HA was higher for the groups LED + Biomaterial and Laser + Biomaterial, while decreased for the group Biomaterial. These results indicated that the use of Laser and LED phototherapies improved the repair of bone defects grafted with the biomaterial by increasing the collagen deposition and phosphate HA.

  19. Base excision repair in Archaea: back to the future in DNA repair.

    Science.gov (United States)

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of repair resin type and surface treatment on the repair strength of polyamide denture base resin.

    Science.gov (United States)

    Gundogdu, Mustafa; Yanikoglu, Nuran; Bayindir, Funda; Ciftci, Hilal

    2015-01-01

    The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way analysis of variance, and the post-hoc Tukey test (α=0.05). The effects of the surface treatments on the surface of the polyamide resin were examined using scanning electron microscopy. The repair resins and surface treatments significantly affected the repair strength of the polyamide denture base material (p0.05). The flexural strength of the specimens repaired with the polyamide resin was significantly higher than that of those repaired with the heat-polymerized and autopolymerizing acrylic resins.

  1. Biomaterials in orthopaedics

    Science.gov (United States)

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A

    2008-01-01

    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  2. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.

    Science.gov (United States)

    Kyle, Stuart; Jessop, Zita M; Al-Sabah, Ayesha; Whitaker, Iain S

    2017-08-01

    Regenerative medicine has been highlighted as one of the UK's 8 'Great Technologies' with the potential to revolutionize patient care in the 21st Century. Over the last decade, the concept of '3D bioprinting' has emerged, which allows the precise deposition of cell laden bioinks with the aim of engineering complex, functional tissues. For 3D printing to be used clinically, there is the need to produce advanced functional biomaterials, a new generation of bioinks with suitable cell culture and high shape/print fidelity, to match or exceed the physical, chemical and biological properties of human tissue. With the rapid increase in knowledge associated with biomaterials, cell-scaffold interactions and the ability to biofunctionalize/decorate bioinks with cell recognition sequences, it is important to keep in mind the 'printability' of these novel materials. In this illustrated review, we define and refine the concept of 'printability' and review seminal and contemporary studies to highlight the current 'state of play' in the field with a focus on bioink composition and concentration, manipulation of nozzle parameters and rheological properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    Science.gov (United States)

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biomining of MoS2 with Peptide-based Smart Biomaterials.

    Science.gov (United States)

    Cetinel, Sibel; Shen, Wei-Zheng; Aminpour, Maral; Bhomkar, Prasanna; Wang, Feng; Borujeny, Elham Rafie; Sharma, Kumakshi; Nayebi, Niloofar; Montemagno, Carlo

    2018-02-20

    Biomining of valuable metals using a target specific approach promises increased purification yields and decreased cost. Target specificity can be implemented with proteins/peptides, the biological molecules, responsible from various structural and functional pathways in living organisms by virtue of their specific recognition abilities towards both organic and inorganic materials. Phage display libraries are used to identify peptide biomolecules capable of specifically recognizing and binding organic/inorganic materials of interest with high affinities. Using combinatorial approaches, these molecular recognition elements can be converted into smart hybrid biomaterials and harnessed for biotechnological applications. Herein, we used a commercially available phage-display library to identify peptides with specific binding affinity to molybdenite (MoS 2 ) and used them to decorate magnetic NPs. These peptide-coupled NPs could capture MoS 2 under a variety of environmental conditions. The same batch of NPs could be re-used multiple times to harvest MoS 2 , clearly suggesting that this hybrid material was robust and recyclable. The advantages of this smart hybrid biomaterial with respect to its MoS 2 -binding specificity, robust performance under environmentally challenging conditions and its recyclability suggests its potential application in harvesting MoS 2 from tailing ponds and downstream mining processes.

  6. Modeling base excision repair in Escherichia coli bacterial cells

    International Nuclear Information System (INIS)

    Belov, O.V.

    2011-01-01

    A model describing the key processes in Escherichia coli bacterial cells during base excision repair is developed. The mechanism is modeled of damaged base elimination involving formamidopyrimidine DNA glycosylase (the Fpg protein), which possesses several types of activities. The modeling of the transitions between DNA states is based on a stochastic approach to the chemical reaction description

  7. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    Science.gov (United States)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  8. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  9. Mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S.; Goncalves Z, E.

    2015-10-01

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z eff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z eff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  10. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  11. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    Science.gov (United States)

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  14. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Directory of Open Access Journals (Sweden)

    M. Niinomi

    2011-01-01

    Full Text Available β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants.

  15. Detoxification of rats subjected to nickel chloride by a biomaterial-based carbonated orthophosphate.

    Science.gov (United States)

    Boulila, S; El Feki, A; Oudadesse, H; Kallel, C; El Feki, H

    2014-09-01

    Recently, the therapeutic approaches of the detoxification against the metals (nickel) in the body are the use of biomaterials such as carbonated hydroxyapatite. The aim of this study is therefore to analyze the physiological and physicochemical parameters of strain white rats "Wistar" receiving nickel chloride and to study the protective associative of apatite against adverse effects of this metal, and this in comparison with control rats. Our results showed that the nickel induced in rats an oxidative stress objectified by elevated levels of thiobarbituric acid-reactive substances and conjugated dienes associated with inhibition of the activity of the antioxidant defense system such as glutathione peroxidase, superoxide dismutase and catalase in the liver, kidney, spleen and erythrocyte. Disorders balances of ferric, phosphocalcic, a renal failure and a liver toxicity were observed in rats exposed to nickel. As well as a significant increase in the rate of nickel in the bones and microcytic anemia was revealed. However, the implantation of carbonated hydroxyapatite in capsule form protects rats intoxicated by the nickel against the toxic effects of this metal by lowering the levels of markers of lipid peroxidation and improving the activities of defense enzymes. Our implantation technique is effective to correct ferric balance and phosphocalcic equilibrium, to protect liver and kidney function, to reduce the rate of bone nickel and to correct anemia. They clearly explain the beneficial and protective of our biomaterial which aims the detoxification of rats receiving nickel by substituting cationic (Ca(2+) by Ni(2+)) and anionic (OH(-) by Cl(-)) confirmed by physicochemical characterization like the IR spectroscopy and X-ray diffraction. These techniques have shown on the one hand a duplication of OH(-) bands (IR) and on the other hand the increase of the volume of the apatite cell after these substitutions (X-ray diffraction). Copyright © 2014 Elsevier Masson

  16. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    Science.gov (United States)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  17. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials.

    Science.gov (United States)

    Bhattacharjee, Maumita; Schultz-Thater, Elke; Trella, Emanuele; Miot, Sylvie; Das, Sanskrita; Loparic, Marko; Ray, Alok R; Martin, Ivan; Spagnoli, Giulio C; Ghosh, Sourabh

    2013-11-01

    We have investigated monocyte and T cell responsiveness to silk based biomaterials of different physico-chemical characteristics. Here we report that untransformed CD14+ human monocytes respond to overnight exposure to silk fibroin-based biomaterials in tridimensional form by IL-1β and IL-6, but not IL-10 gene expression and protein production. In contrast, fibroin based materials in bidimensional form are unable to stimulate monocyte responsiveness. The elicitation of these effects critically requires contact between biomaterials and responding cells, is not sustained and becomes undetectable in longer term cultures. We also observed that NF-κβ and p38 MAP kinase play key roles in monocyte activation by silk-based biomaterials. On the other hand, fibroin based materials, irrespective of their physico-chemical characteristics appeared to be unable to induce the activation of peripheral blood T cells from healthy donors, as evaluated by the expression of activation markers and IFN-γ gene. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Opportunity-based age replacement policy with minimal repair

    International Nuclear Information System (INIS)

    Jhang, J.P.; Sheu, S.H.

    1999-01-01

    This paper proposes an opportunity-based age replacement policy with minimal repair. The system has two types of failures. Type I failures (minor failures) are removed by minimal repairs, whereas type II failures are removed by replacements. Type I and type II failures are age-dependent. A system is replaced at type II failure (catastrophic failure) or at the opportunity after age T, whichever occurs first. The cost of the minimal repair of the system at age z depends on the random part C(z) and the deterministic part c(z). The opportunity arises according to a Poisson process, independent of failures of the component. The expected cost rate is obtained. The optimal T * which would minimize the cost rate is discussed. Various special cases are considered. Finally, a numerical example is given

  19. Modulation of DNA base excision repair during neuronal differentiation

    DEFF Research Database (Denmark)

    Sykora, Peter; Yang, Jenq-Lin; Ferrarelli, Leslie K

    2013-01-01

    DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because...

  20. Pulse frequency in pulsed brachytherapy based on tissue repair kinetics

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Koedooder, Kees; Tienhoven, Geertjan van; Blank, Leo E.C.M.; Gonzalez Gonzalez, Dionisio

    1998-01-01

    Purpose: Investigation of normal tissue sparing in pulsed brachytherapy (PB) relative to continuous low-dose rate irradiation (CLDR) by adjusting pulse frequency based on tissue repair characteristics. Method: Using the linear quadratic model, the relative effectiveness (RE) of a 20 Gy boost was calculated for tissue with an α/β ratio ranging from 2 to 10 Gy and a half-time of sublethal damage repair between 0.1 and 3 h. The boost dose was considered to be delivered either in a number of pulses varying from 2 to 25, or continuously at a dose rate of 0.50, 0.80, or 1.20 Gy/h. Results: The RE of 20 Gy was found to be identical for PB in 25 pulses of 0.80 Gy each h and CLDR delivered at 0.80 Gy/h for any α/β value and for a repair half-time > 0.75 h. When normal tissue repair half-times are assumed to be longer than tumor repair half-times, normal tissue sparing can be obtained, within the restriction of a fixed overall treatment time, with higher dose per pulse and longer period time (time elapsed between start of pulse n and start of pulse n + 1). An optimum relative normal tissue sparing larger than 10% was found with 4 pulses of 5 Gy every 8 h. Hence, a therapeutic gain might be obtained when changing from CLDR to PB by adjusting the physical dose in such a way that the biological dose on the tumor is maintained. The normal tissue-sparing phenomenon can be explained by an increase in RE with longer period time for tissue with high α/β ratio and fast or intermediate repair half-time, and the RE for tissue with low α/β ratio and long repair half-time remains almost constant. Conclusion: Within the benchmark of the LQ model, advantage in normal tissue-sparing is expected when matching the pulse frequency to the repair kinetics of the normal tissue exposed. A period time longer than 1 h may lead to a reduction of late normal tissue complications. This theoretical advantage emphasizes the need for better knowledge of human tissue-repair kinetics

  1. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  2. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Bobola, Michael S.; Kolstoe, Douglas D.; Blank, A. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Chamberlain, Marc C. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Department of Neurology, University of Washington Medical Center, Seattle, WA (United States); Silber, John R., E-mail: jrsilber@u.washington.edu [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States)

    2012-11-30

    Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O{sup 6}-methylguanine (O{sup 6}-meG) mediates GBM cell killing. Moreover, low or absent expression of O{sup 6}-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O{sup 6}-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O{sup 6}-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O{sup 6}-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O{sup 6}-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.

  3. Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques.

    Science.gov (United States)

    Bardsley, Katie; Wimpenny, Ian; Wechsler, Roni; Shachaf, Yonatan; Yang, Ying; El Haj, Alicia J

    2016-11-01

    Non-destructive protocols which can define a biomaterial's degradation and its associated ability to support proliferation and/or promote extracellular matrix deposition will be an essential in vitro tool. In this study we investigate fluorescently tagged biomaterials, with varying rates of degradation and their ability to support cell proliferation and osteogenic differentiation. Changes in fluorescence of the biomaterials and the release of fluorescent soluble by-products were confirmed as accurate methods to quantify degradation. It was demonstrated that increasing rates of the selected biomaterials' degradation led to a decrease in cell proliferation and concurrently an increase in osteogenic matrix production. A novel turnover index (TI), which directly describes the effect of degradation of a biomaterial on cell behaviour, was calculated. Lower TIs for proliferation and high TIs for osteogenic marker production were observed on faster degrading biomaterials, indicating that these biomaterials supported an upregulation of osteogenic markers. This TI was further validated using an ex vivo chick femur model, where the faster degrading biomaterial, fibrin, led to an increased TI for mineralisation within an epiphyseal defect. This in vitro tool, TI, for monitoring the effect of biomaterial degradation on extracellular matrix production may well act as predictor of the selected biomaterials' performance during in vivo studies. This paper outlines a novel metric, Turnover Index (TI), which can be utilised in tissue-engineering for the comparison of a range of biomaterials. The metric sets out to define the relationship between the rate of degradation of biomaterials with the rate of cell proliferation and ECM synthesis, ultimately allowing us to tailor material for set clinical requirements. We have discovered some novel comparative findings that cells cultured on biomaterials with increased rates of degradation have lower rates of proliferation but alternatively

  4. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.

  5. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  6. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  7. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  8. A new incomplete-repair model based on a ''reciprocal-time'' pattern of sublethal damage repair

    International Nuclear Information System (INIS)

    Dale, R.G.; Fowler, J.F.

    1999-01-01

    A radiobiological model for closely spaced non-instantaneous radiation fractions is presented, based on the premise that the time process of sublethal damage (SLD) repair is 'reciprocal-time' (second order), rather than exponential (first order), in form. The initial clinical implications of such an incomplete-repair model are assessed. A previously derived linear-quadratic-based model was revised to take account of the possibility that SLD may repair with time such that the fraction of an element of initial damage remaining at time t is given as 1/(1+zt), where z is an appropriate rate constant; z is the reciprocal of the first half-time (τ) of repair. The general equation so derived for incomplete repair is applicable to all types of radiotherapy delivered at high, low and medium dose-rate in fractions delivered at regular time intervals. The model allows both the fraction duration and interfraction intervals to vary between zero and infinity. For any given value of z, reciprocal repair is associated with an apparent 'slowing-down' in the SLD repair rate as treatment proceeds. The instantaneous repair rates are not directly governed by total dose or dose per fraction, but are influenced by the treatment duration and individual fraction duration. Instantaneous repair rates of SLD appear to be slower towards the end of a continuous treatment, and are also slower following 'long' fractions than they are following 'short' fractions. The new model, with its single repair-rate parameter, is shown to be capable of providing a degree of quantitative explanation for some enigmas that have been encountered in clinical studies. A single-component reciprocal repair process provides an alternative explanation for the apparent existence of a range of repair rates in human tissues, and which have hitherto been explained by postulating the existence of a multi-exponential repair process. The build-up of SLD over extended treatments is greater than would be inferred using a

  9. A novel conduit-based coaptation device for primary nerve repair.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Kelm, Nathaniel D; Cardwell, Nancy; Pollins, Alonda C; Afshari, Ashkan; Nguyen, Lyly; Dortch, Richard D; Thayer, Wesley P

    2018-06-01

    Conduit-based nerve repairs are commonly used for small nerve gaps, whereas primary repair may be performed if there is no tension on nerve endings. We hypothesize that a conduit-based nerve coaptation device will improve nerve repair outcomes by avoiding sutures at the nerve repair site and utilizing the advantages of a conduit-based repair. The left sciatic nerves of female Sprague-Dawley rats were transected and repaired using a novel conduit-based device. The conduit-based device group was compared to a control group of rats that underwent a standard end-to-end microsurgical repair of the sciatic nerve. Animals underwent behavioral assessments at weekly intervals post-operatively using the sciatic functional index (SFI) test. Animals were sacrificed at four weeks to obtain motor axon counts from immunohistochemistry. A sub-group of animals were sacrificed immediately post repair to obtain MRI images. SFI scores were superior in rats which received conduit-based repairs compared to the control group. Motor axon counts distal to the injury in the device group at four weeks were statistically superior to the control group. MRI tractography was used to demonstrate repair of two nerves using the novel conduit device. A conduit-based nerve coaptation device avoids sutures at the nerve repair site and leads to improved outcomes in a rat model. Conduit-based nerve repair devices have the potential to standardize nerve repairs while improving outcomes.

  10. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    Science.gov (United States)

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  11. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults.

    Science.gov (United States)

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi

    2015-09-09

    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances.

  12. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    Science.gov (United States)

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  13. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  14. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  15. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  16. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  17. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants

    International Nuclear Information System (INIS)

    Das, Beauty; Karak, Niranjan; Mandal, Manabendra; Upadhyay, Aadesh; Chattopadhyay, Pronobesh

    2013-01-01

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe 3 O 4 NCs with different wt.% of magnetic nanoparticles (Fe 3 O 4 ) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe 3 O 4 , with an average diameter of 7.65 nm. The incorporation of Fe 3 O 4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications. (paper)

  18. Comparison of mechanical properties for polyamide 12 composite-based biomaterials fabricated by fused filament fabrication and injection molding

    Science.gov (United States)

    Rahim, Tuan Noraihan Azila Tuan; Abdullah, Abdul Manaf; Akil, Hazizan Md; Mohamad, Dasmawati

    2016-12-01

    The emergence of 3D printing technology known as fused filament fabrication (FFF) has offered the possibility of producing an anatomically accurate, patient specific implant with more affordable prices. The only weakness of this technology is related to incompatibility and lack of properties of current material to be applied in biomedical. Therefore, this study aims to develop a new, polymer composite-based biomaterial that exhibits a high processability using FFF technique, strong enough and shows acceptable biocompatibility, and safe for biomedical use. Polyamide 12 (PA12), which meets all these requirements was incorporated with two bioceramic fillers, zirconia and hydroxyapatite in order to improve the mechanical and bioactivity properties. The obtained mechanical properties were compared with injection-molded specimens and also a commercial biomedical product, HAPEXTM which is composed of hydroxyapatite and polyethylene. The yield strength and modulus of the PA12 composites increased steadily with increasing filler loading. Although the strength of printed PA12 composites were reduced compared with injection molded specimen, but still higher than HAPEXTM material. The higher surface roughness obtained by printed PA12 was expected to enhance the cell adhesion and provide better implant fixation.

  19. Design, production, and characterization of artificial protein- and silica-based biomaterials

    Science.gov (United States)

    Marner, Wesley Darrell, II

    This work focused on a specific protein polymer, poly(EAK) n, denoting a protein with n repeats of the amino acid monomer sequence AEAEAKAKAEAEAKAK (where A=alanine, E=glutamic acid, and K=lysine). Previous work has focused on lower molecular weight versions of these proteins, where n=1 and n=9. Those studies showed that while poly(EAK)9 an order of magnitude increase in hydrogel strength over EAK1, even the higher molecular weight version forms a relatively weak hydrogel. The first part of this dissertation describes efforts to improve the mechanical properties of poly(EAK)n hydrogels by investigating the self-assembly of higher molecular weight versions of the protein, where n = 24 and n = 63. Genes encoding these proteins were constructed and expressed in the bacterium Escherichia coli, and the proteins can be purified from cell culture by affinity chromatography. The solubility of these proteins, however, is significantly lower than the lower molecular weight versions of poly(EAK)n previously explored. Interestingly, despite decreased solubility, these proteins quickly form a stable gel-like matrix while in the milieu of the homogenized cell lysate. Congo Red binding assays and circular dichroism studies also indicate that poly(EAK)24 and poly(EAK)63 each self-assemble into stacked beta-sheet structures. While poor solubility prevents their use as a stand-alone biomaterial, these higher molecular weight protein polymers may prove useful as virtual crosslinking agents for hydrogels formed from lower molecular weight poly(EAK)n molecules. The second portion of this dissertation describes the generation of new biosilica matrices. Silica is one of the most abundant biominerals on Earth and is produced by a variety of organisms. One such organism is the diatom Cylindrotheca fusiformis. From dilute aqueous solutions of silica and using relatively mild processing conditions, these unicellular organisms create silica frustules with exquisite microstructures having

  20. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  1. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  2. Base Sequence Context Effects on Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Yuqin Cai

    2010-01-01

    Full Text Available Nucleotide excision repair (NER plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P, 10S (+-trans-anti-B[a]P-2-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.

  3. Repairable-conditionally repairable damage model based on dual Poisson processes.

    Science.gov (United States)

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  4. Simulation based mask defect repair verification and disposition

    Science.gov (United States)

    Guo, Eric; Zhao, Shirley; Zhang, Skin; Qian, Sandy; Cheng, Guojie; Vikram, Abhishek; Li, Ling; Chen, Ye; Hsiang, Chingyun; Zhang, Gary; Su, Bo

    2009-10-01

    As the industry moves towards sub-65nm technology nodes, the mask inspection, with increased sensitivity and shrinking critical defect size, catches more and more nuisance and false defects. Increased defect counts pose great challenges in the post inspection defect classification and disposition: which defect is real defect, and among the real defects, which defect should be repaired and how to verify the post-repair defects. In this paper, we address the challenges in mask defect verification and disposition, in particular, in post repair defect verification by an efficient methodology, using SEM mask defect images, and optical inspection mask defects images (only for verification of phase and transmission related defects). We will demonstrate the flow using programmed mask defects in sub-65nm technology node design. In total 20 types of defects were designed including defects found in typical real circuit environments with 30 different sizes designed for each type. The SEM image was taken for each programmed defect after the test mask was made. Selected defects were repaired and SEM images from the test mask were taken again. Wafers were printed with the test mask before and after repair as defect printability references. A software tool SMDD-Simulation based Mask Defect Disposition-has been used in this study. The software is used to extract edges from the mask SEM images and convert them into polygons to save in GDSII format. Then, the converted polygons from the SEM images were filled with the correct tone to form mask patterns and were merged back into the original GDSII design file. This merge is for the purpose of contour simulation-since normally the SEM images cover only small area (~1 μm) and accurate simulation requires including larger area of optical proximity effect. With lithography process model, the resist contour of area of interest (AOI-the area surrounding a mask defect) can be simulated. If such complicated model is not available, a simple

  5. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  7. The effect of irradiation by ultraviolet light on ureido-pyrimidinone based biomaterials

    NARCIS (Netherlands)

    Mollet, B.B.; Nakano, Y.; Magusin, P.C.M.M.; Spiering, A.J.H.; Vekemans, J.A.J.M.; Dankers, P.Y.W.; Meijer, E.W.

    2016-01-01

    Supramolecular polymers based on ureido-pyrimidinone (UPy) represent a promising class of biocompatible materials for medical applications. Here, the chemical modification effect of UV irradiation, used to sterilize these materials, is studied. Besides anticipated crosslinking effects, UV

  8. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  9. Base excision repair deficiency in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Scheer, N.M.

    2009-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system arising from a transformed myeloid progenitor cell. Genomic instability is the hallmark of AML and characterized by a variety of cytogenetic and molecular abnormalities. Whereas 10% to 20% of AML cases reflect long-term sequelae of cytotoxic therapies for a primary disorder, the etiology for the majority of AMLs remains unknown. The integrity of DNA is under continuous attack from a variety of exogenous and endogenous DNA damaging agents. The majority of DNA damage is caused by constantly generated reactive oxygen species (ROS) resulting from metabolic by-products. Base excision repair (BER) is the major DNA repair mechanism dealing with DNA base lesions that are induced by oxidative stress or alkylation. In this study we investigated the BER in AML. Primary AML patients samples as well as AML cell lines were treated with hydrogen peroxide (H 2 O 2 ). DNA damage induction and repair was monitored by the alkaline comet assay. In 15/30 leukemic samples from patients with therapy-related AML, in 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome, significantly reduced single strand breaks (SSBs) representing BER intermediates were found. In contrast, normal SSB formation was seen in mononuclear cells of 30 healthy individuals and 30/31 purified hematopoietic stem- and progenitor cell preparations obtained from umbilical cord blood. Additionally, in 5/10 analyzed AML cell lines, no SSBs were formed upon H 2 O 2 treatment, either. Differences in intracellular ROS concentrations or apoptosis could be excluded as reason for this phenomenon. A significantly diminished cleavage capacity for 7,8-dihydro-8-oxoguanine as well as for Furan was observed in cell lines that exhibited no SSB formation. These data demonstrate for the first time that initial steps of BER are impaired in a proportion of AML cell lines and leukemic cells from patients with different forms of

  10. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    Science.gov (United States)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  11. Twisting biomaterials around your little finger: Environmental impacts of bio-based wrappings

    NARCIS (Netherlands)

    Hermann, B.G.; Blok, K.; Patel, M.K.

    2010-01-01

    Background, aim, and scope Packaging uses nearly 40% of all polymers, a substantial share of which is used for sensitive merchandise such as moisture-sensitive food. To find out if bio-based materials are environmentally advantageous for this demanding application, we compared laminated, printed

  12. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.

    Science.gov (United States)

    Liu, Zhongmin; Tang, Mingliang; Zhao, Jinping; Chai, Renjie; Kang, Jiuhong

    2018-04-01

    Stem-cell-based therapies have the potential to provide novel solutions for the treatment of a variety of diseases, but the main obstacles to such therapies lie in the uncontrolled differentiation and functional engraftment of implanted tissues. The physicochemical microenvironment controls the self-renewal and differentiation of stem cells, and the key step in mimicking the stem cell microenvironment is to construct a more physiologically relevant 3D culture system. Material-based 3D assemblies of stem cells facilitate the cellular interactions that promote morphogenesis and tissue organization in a similar manner to that which occurs during embryogenesis. Both natural and artificial materials can be used to create 3D scaffolds, and synthetic organic and inorganic porous materials are the two main kinds of artificial materials. Nanotechnology provides new opportunities to design novel advanced materials with special physicochemical properties for 3D stem cell culture and transplantation. Herein, the advances and advantages of 3D scaffold materials, especially with respect to stem-cell-based therapies, are first outlined. Second, the stem cell biology in 3D scaffold materials is reviewed. Third, the progress and basic principles of developing 3D scaffold materials for clinical applications in tissue engineering and regenerative medicine are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymuş, Zeynep; Gundogdu, Mustafa

    2014-01-01

    Acrylic resin denture fracture is common in prosthodontic practice. When fractured denture bases are repaired, recurrent fractures frequently occur at the repair surface interface or adjacent areas. The purpose of this study was to evaluate the effect of different surface treatments on the flexural strength of the acrylic resin denture base repaired with heat-polymerized acrylic resin, autopolymerizing resin, and light-polymerized acrylic resin. Ninety-six specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association Specification No. 12 (65.0 × 10.0 × 2.5 mm) and sectioned into halves to create a repair gap (3.0 × 10 × 2.5 mm). The sectioned specimens were divided into 3 groups according to their repair materials. The specimens from each group were divided into 4 subgroups according to their surface treatments: a control group without any surface treatment; an experimental group treated with methyl methacrylate monomer (MMA group); an experimental group treated with airborne-particle abrasion with aluminum oxide particles of 250-μm particle size (abrasion group); and an experimental group treated with erbium:yttrium-aluminum-garnet laser (laser group). After the surface treatments, the 3 materials were placed into the repair gaps and then polymerized. After all of the specimens had been ground and polished, they were stored in distilled water at 37°C for 1 week and subjected to a 3-point bend test. Data were analyzed with a 2-way analysis of variance, and the Tukey honestly significant difference test was performed to identify significant differences (α=.05). The effects of the surface treatments and repair resins on the surface of the denture base resin were examined with scanning electron microscopy. Significant differences were found among the groups in terms of repair resin type (P<.001). All surface-treated specimens had higher flexural strength than controls, except the surface treated with the methyl

  14. Environmental status of plant-based industries. Biomass and bio-materials; Bilan environnemental des filieres vegetales. Biomasse et biomateriaux

    Energy Technology Data Exchange (ETDEWEB)

    Vindimian, E; Boeglin, N; Houillon, G; Osset, Ph; Vial, E; Leguern, Y; Gosse, G; Gabrielle, B; Dohy, M; Bewa, H; Rigal, L; Guilbert, St; Cesar, G; Pandard, P; Oster, D; Normand, N; Piccardi, M; Garoux, V; Arnaud, L; Barbier, J; Mougin, G; Krausz, P; Pluquet, V; Massacrier, L; Dussaud, J

    2005-07-01

    The French agency of environment and energy mastery (Ademe) and the agency of Agriculture for chemistry and energy (Agrice) have jointly organized these technical days about the potentialities of plant-based products in front of the big environmental stakes of the diversification of energy sources, the development of new outputs for agriculture and the opening of new fields of industrial innovation. This document gathers the articles and transparencies of the presentations given during these 2 days of conference: 1 - Biomass and life cycle analysis (LCA) - impacts and benefits: introduction to LCA (E. Vindimian), keys to understand this environmental evaluation tool (N. Boeglin); environmental status of plant-based industries for chemistry, materials and energy: LCA knowledge status, plant versus fossil (G. Houillon), detailed analysis of 2 industries: agro-materials and bio-polymers (J. Payet); example of environmental and LCA studies: energy and greenhouse gas statuses of the biofuel production processes (P. Osset, E. Vial), LCA of collective and industrial wood-fueled space heating (Y. Leguern), contribution and limitations of LCA for plant-based industries (G. Gosse, B. Gabrielle), conclusion of the first day (M. Dohy). 2 - Biomass and materials: a reality: biomaterials in the Agrice program (H. Bewa), plant-derived materials: resources, status and perspectives (L. Rigal); biopolymers: overview of the industrial use of biopolymers: materials and markets, applications (S. Guibert), degradation mechanisms of biopolymers used in agriculture: biodegradability, eco-toxicity and accumulation in soils (G. Cesar, P. Pandard), present and future regulatory framework: specifications and methods of biodegradability evaluation of materials for agriculture and horticulture (D. Oster), standardization: necessity and possibilities (N. Normand); vegetable fibers and composite materials: market of new vegetable fiber uses (M. Piccardi, V. Garoux), vegetable particulates and

  15. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Science.gov (United States)

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    Science.gov (United States)

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    Verma, Devendra; Desai, Malav S.; Kulkarni, Namrata; Langrana, Noshir

    2011-01-01

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m 2 and - 0.32 mC/m 2 , respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  18. Gum ghatti based novel electrically conductive biomaterials: A study of conductivity and surface morphology

    Directory of Open Access Journals (Sweden)

    S. Kalia

    2014-04-01

    Full Text Available Gum ghatti-cl-poly(acrylamide-aniline interpenetrating network (IPN was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM, Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.

  19. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Stefan; Nehl, Franziska; Ligon, S Clark; Liska, Robert [Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163MC, A-1060 Vienna (Austria); Nigisch, Anneliese; Bernhard, David [Department of Surgery, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bergmeister, Helga [Core Unit for Biomedical Research, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stampfl, Juergen, E-mail: robert.liska@tuwien.ac.at [Institute of Material Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2011-10-15

    A predominant portion of mortalities in industrial countries can be attributed to diseases of the cardiovascular system. In the last decades great efforts have been undertaken to develop materials for artificial vascular constructs. However, bio-inert materials like ePTFE or PET fail as material for narrow blood vessel replacements (coronary bypasses). Therefore, we aim to design new biocompatible materials to overcome this. In this paper we investigate the use of photoelastomers for artificial vascular constructs since they may be precisely structured by means of additive manufacturing technologies. Hence, 3D computer aided design and manufacturing technologies (CAD-CAM) offer the possibility of creating cellular structures within the grafts that might favour ingrowth of tissue. Different monomer formulations were screened concerning their suitability for this application but all had drawbacks, especially concerning the suture tear resistance. Therefore, we chose to modify the original network architecture by including dithiol chain transfer agents which effectively co-react with the acrylates and reduce crosslink density. A commercial urethane diacrylate was chosen as base monomer. In combination with reactive diluents and dithiols, the properties of the photopolymers could be tailored and degradability could be introduced. The optimized photoelastomers were in good mechanical accordance with native blood vessels, showed good biocompatibility in in vitro tests, degraded similar to poly(lactic acid) and were successfully manufactured with the 3D CAD-CAM technology.

  20. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    Science.gov (United States)

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  1. Photoactive Nitric Oxide Delivery Systems based on Metal Nitrosyl-Biomaterial Composites

    Science.gov (United States)

    Heilman, Brandon James

    Gaseous NO has been recognized as a potent antibiotic even against highly drug-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) in both animal and human studies. However, difficulties in the delivery of the toxic (and reactive) gas demands innovative techniques to deliver NO in a controlled manner to malignant sites throughout the body. Metal nitrosyls reported by our group have demonstrated rapid NO release under the complete control of visible and NIR light. Careful incorporation of these photoactive nitrosyls into polymer matrices has afforded a set of nitrosyl-polymer composites in order to localize the NO-donors at a targeted site, ensure reliable NO release kinetics in vivo, and prevent potentially cytotoxic interactions of the metal nitrosyl or its reaction-products with the treatment site. The work presented in this thesis was pursued to derive clinically relevant NO-delivery systems and demonstrate their utility for the treatment of infection. In chapter 2, an NO-releasing polyurethane film (PUX-NO) is described with dispersed xerogel particles containing up to 3 mol% of [Mn(PaPy 3)(NO)](ClO4) entrapped in a silica matrix and swelled with excess moisture. The polyurethane based xerogel-nitrosyl (PUX-NO) films demonstrated rapid NO photorelease upon illumination with low-power visible light which was sufficient to eradicate clinically relevant loads (105 CFU mL-1 ) of several gram-positive and gram-negative pathogenic bacteria, including a strain of methicillin-resistant of S. aureus. The results of this study suggest that PUX-NO films are suitable for use as a NO-releasing occlusive film for the treatment of skin and soft-tissue infections or chronic, non-healing wounds. Since the NO-release rate from the films can be modulated by simple adjustment of the intensity of the light source, the films could be used to first clear the microbial burden from the wound site using high fluxes of NO, and then, provide a moderate

  2. Laser-Based Maintenance and Repair Technologies for Reactor Components

    International Nuclear Information System (INIS)

    Masaki Yoda; Naruhiko Mukai; Makoto Ochiai; Masataka Tamura; Satoshi Okada; Katsuhiko Sato; Motohiko Kimura; Yuji Sano; Noboru Saito; Seishi Shima; Tetsuo Yamamoto

    2004-01-01

    Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening (LP) technology was developed and applied to reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP system as a preventive maintenance measure against stress corrosion cracking (SCC). Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed using a compact probe with a multi-mode optical fiber and an interferometer. The developed system successfully detected a micro slit of 0.5 mm depth on weld metal and heat-affected zone (HAZ). An artificial SCC was also detected by the system. We are developing a new LP system combined with LUT to treat the inner surface of bottom-mounted instruments (BMI) of PWR plants. Underwater laser seal welding (LSW) technology was also developed to apply surface crack. LSW is expected to isolate the crack tip from corrosive water environment and to stop the propagation of the crack. Rapid heating and cooling of the process minimize the heat effect, which extends the applicability to neutron-irradiated material. This paper describes recent advances in the development and application of such laser-based technologies. (authors)

  3. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  4. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  5. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  6. Designer biomaterials for mechanobiology

    Science.gov (United States)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  7. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  8. The Use of Alkaliphilic Bacteria-based Repair Solution for Porous Network Concrete Healing Mechanism

    NARCIS (Netherlands)

    Sangadji, S.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2017-01-01

    Bacteria induced calcium carbonate precipitation based on metabolic conversion of nutrients has been acknowledged for having potentials in self-healing cement-based materials. Recent studies have shown the development of bacteria-based repair solution (liquid) for concrete surface repair. This

  9. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    Directory of Open Access Journals (Sweden)

    Emanuel Santos

    Full Text Available Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  10. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    Science.gov (United States)

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  11. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  12. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Riley, Joseph L; Geraldeli, Saulo

    2012-01-01

    The authors aimed to determine whether dentists in practices belonging to The Dental Practice-Based Research Network (DPBRN) were more likely to repair or to replace a restoration that they diagnosed as defective; to quantify dentists' specific reasons for repairing or replacing restorations......; and to test the hypothesis that certain dentist-, patient- and restoration-related variables are associated with the decision between repairing and replacing restorations....

  13. Advanced Strategies for Articular Cartilage Defect Repair

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2013-02-01

    Full Text Available Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering. In addition, gene therapy is a growing area that has found noteworthy use in tissue engineering partly due to the potential to overcome some drawbacks associated with current growth factor delivery systems. In this context, such advanced strategies in biomaterial science, cell-based and growth factor-based therapies that have been employed in the restoration and repair of damaged articular cartilage will be the focus of this review article.

  14. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  15. Patterning biomaterials for the spatiotemporal delivery of bioactive molecules

    Directory of Open Access Journals (Sweden)

    Silvia eMinardi

    2016-06-01

    Full Text Available The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors, and stem cells has been at the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Towards this aim, the combination of scaffolds and growth factors is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.

  16. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  17. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  18. Advances in the development of supramolecular polymeric biomaterials

    NARCIS (Netherlands)

    Goor, O.J.G.M.; Dankers, P.Y.W.

    2016-01-01

    Regenerative medicine applications aim to recreate or repair the living functional environment of the human body. Many biomaterials that are designed and synthesized in recent years are inspired by the extracellular matrix (ECM) that is responsible for mechanical, structural, and biochemical support

  19. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid

    International Nuclear Information System (INIS)

    Marycz, Krzysztof; Śmieszek, Agnieszka; Grzesiak, Jakub; Donesz-Sikorska, Anna; Krzak-Roś, Justyna

    2013-01-01

    In this study, metal-based biomaterials were functionalized with ascorbic acid (LAA). Two types of substrates were used: austenitic steel 316L and titanium Ti6Al4V. Coatings were prepared with the sol–gel method and applied on metal surfaces using the dip-coating technique. Ascorbic acid was delivered with SiO 2 -coating at concentrations of 0.1 and 0.4 M. The morphology of the surfaces and coatings was determined using scanning electron microscope (SEM), whereas their elemental composition by SEM-EDX. Immobilization of ascorbic acid in the coatings was confirmed with Raman spectroscopy. The biocompatibility of the materials obtained was tested in vitro using both bone marrow- and adipose-derived mesenchymal stem cells (BMMSC and ADMSC, respectively). Proliferation rate and morphology of cells cultured in the presence of designed biomaterials were monitored after 24, 48, 120 and 168 h of propagation. The results obtained indicated that silica coatings doped with 0.4 M LAA had a positive effect on the proliferation rate of investigated cells, and in some cases on the growth pattern of culture. (paper)

  20. A methodology based on the "anterior chamber of rabbit eyes" model for noninvasively determining the biocompatibility of biomaterials in an immune privileged site.

    Science.gov (United States)

    Lu, Pei-Lin; Lai, Jui-Yang; Tabata, Yasuhiko; Hsiue, Ging-Ho

    2008-07-01

    In this study, a novel methodology based on the anterior chamber of rabbit eyes model was developed to evaluate the in vivo biocompatibility of biomaterials in an immune privileged site. The 7-mm-diameter membrane implants made from either a biological tissue material (amniotic membrane, AM group) or a biomedical polymeric material (gelatin, GM group) were inserted in rabbit anterior chamber for 36 months and characterized by biomicroscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The noninvasive ophthalmic parameters were scored to provide a quantitative grading system. In this animal model, both AM and GM implants were visible in an ocular immune privileged site during clinical observations. The implants of the AM group appeared as soft tissue patches and have undergone a slow dissolution process resulting in a partial reduction of their size. Additionally, the AM implants did not induce any foreign body reaction or change in ocular tissue response for the studied period. By contrast, in the GM groups, significant corneal edema, elevated intraocular pressure, and increased corneal thickness were noted in the early postoperative phase (within 3 days), but resolved rapidly with in vivo dissolution of the gelatin. The results from the ocular grading system showed that both implants had good long-term biocompatibility in an ocular immune privileged site for up to 3 years. It is concluded that the anterior chamber of rabbit eyes model is an efficient method for noninvasively determining the immune privileged tissue/biomaterial interactions. (c) 2007 Wiley Periodicals, Inc.

  1. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  2. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  3. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

    Science.gov (United States)

    Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2016-04-15

    Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.

  4. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  5. EPR analysis of biomaterials

    International Nuclear Information System (INIS)

    Sukhodub, L.

    2001-01-01

    There is the review of electron spin resonance application for paramagnetic individual investigation in biomaterials. Especially the bone tissue and tooth enamel can be taken into account. The material composition (e.g. Mn 2+ and Cr 3+ ions) can be measured, also after irradiation (X, γ radiations) when paramagnetic signal appears as a result of physical radiation effects

  6. Hot topics in biomaterials

    CERN Document Server

    Alton, Eric W; Griesenbach, Uta

    2014-01-01

    The expert coverage of the eight chapters in this book reflects the diverse nature of the field of biomaterials science and encompasses contributions from a wide range of fields, highlighting key classes of novel materials and exploring the underlying science and potential applications.

  7. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  8. Nanotechnology in medicine: nanofilm biomaterials.

    Science.gov (United States)

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  9. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    Science.gov (United States)

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants. Copyright © 2015. Published by Elsevier B.V.

  10. An optimal replacement policy for a repairable system based on its repairman having vacations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Li [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China); Xu Jian, E-mail: xujian@tongji.edu.c [School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092 (China)

    2011-07-15

    This paper studies a cold standby repairable system with two different components and one repairman who can take multiple vacations. If there is a component which fails and the repairman is on vacation, the failed component will wait for repair until the repairman is available. In the system, assume that component 1 has priority in use. After repair, component 1 follows a geometric process repair, while component 2 can be repaired as good as new after failures. Under these assumptions, a replacement policy N based on the failed times of component 1 is studied. The system will be replaced if the failure times of component 1 reach N. The explicit expression of the expected cost rate is given, so that the optimal replacement time N{sup *} is determined. Finally, a numerical example is given to illustrate the theoretical results of the model.

  11. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  12. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  13. The role of DNA base excision repair in brain homeostasis and disease

    DEFF Research Database (Denmark)

    Akbari, Mansour; Morevati, Marya; Croteau, Deborah

    2015-01-01

    Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function of p...... energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease....

  14. Thromboelastometric and platelet responses to silk biomaterials.

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C

    2014-05-13

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.

  15. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  16. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  17. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices

    Science.gov (United States)

    Bucciarelli, A.; Mulloni, V.; Maniglio, D.; Pal, R. K.; Yadavalli, V. K.; Motta, A.; Quaranta, A.

    2018-04-01

    Over the last two decades, silk fibroin has been exploited as a versatile optical material in biological applications due to a combination of unique properties. Recently, protocols have been developed to produce a silk fibroin negative tone resist that is UV crosslinkable, thereby allowing micro and nanoscale patterning of the protein using traditional photolithographic tools. The same protocol has been applied to the silk protein sericin to develop a sericin resist. Despite the immense potential of these biomaterials to develop micro optical patterns on silicon and glass surfaces, as well as self-standing components, their refractive indexes are not well characterized. In this work, optimizing a method to obtain extremely smooth, thin films, the refractive index (RI) of fibroin and sericin proteins and resists were characterized using ellipsometry. The parameters of the Sellmeier and Cauchy dispersion laws have been determined to obtain the RI over a large wavelength range. A complete morphological study of the films has been conducted. In addition, the effect of solvent on the optical properties of silk fibroin and sericin thin films are reported, with differences in values explained by examining the change in the protein secondary structure.

  18. Biomaterials and bone mechanotransduction

    Science.gov (United States)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  19. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  20. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  1. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  2. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  3. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  4. Chitosan adhesive for laser tissue repair

    Science.gov (United States)

    Lauto, A.; Stoodley, M.; Avolio, A.; Foster, L. J. R.

    2006-02-01

    Background. Laser tissue repair usually relies on haemoderivate solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited repair strength, high solubility, brittleness and viral transmission. Furthermore, the solder activation temperature (65-70 °C) can induce significant damage to tissue. In this study, a new laser-activated biomaterial for tissue repair was developed and tested in vitro and in vivo to overcome some of the shortcomings of traditional solders. Materials and Methods. Flexible and insoluble strips of chitosan adhesive (surface area ~34 mm2, thickness ~20 μm) were developed and bonded on sheep intestine with a laser fluence and irradiance of 52 +/- 2 J/cm2 and ~15 W/cm2 respectively. The temperature between tissue and adhesive was measured using small thermocouples. The strength of repaired tissue was tested by a calibrated tensiometer. The adhesive was also bonded in vivo to the sciatic nerve of rats to assess the thermal damage induced by the laser (fluence = 65 +/- 11 J/cm2, irradiance = 15 W/cm2) four days post-operatively. Results. Chitosan adhesives successfully repaired intestine tissue, achieving a repair strength of 0.50 +/- 0.15 N (shear stress = 14.7 +/- 4.7 KPa, n=30) at a temperature of 60-65 °C. The laser caused demyelination of axons at the operated site; nevertheless, the myelinated axons retained their normal morphology proximally and distally.

  5. Emerging issues in peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    Stefano Geuna; Pierluigi Tos; Bruno Battiston

    2012-01-01

    It is today widely acknowledged that nerve repair is now more than a matter of perfect microsurgical reconstruction only and that,to further improve clinical outcome,the involvement of different scientific disciplines is required.This evolving reconstructive/regenerative approach is based on the interdisciplinary and integrated pillars of tissue engineering such as reconstructive microsurgery,transplantation and biomaterials.In this paper,some of the most promising innovations for the tissue engineering of nerves,emerging from basic science investigation,are critically overviewed with special focus on those approaches that appear today to be more suitable for clinical translation.

  6. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  7. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Patch size and base composition of ultraviolet light-induced repair synthesis in toluenized Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R; Sharon, R [Technion-Israel Inst. of Tech., Haifa

    1978-04-15

    Small patch repair in ultraviolet-irradiated Escherichia coli was saturated at deoxynucleoside triphosphate concentrations (approximately 2..mu..M of each dNTP) that are severly limiting for DNA replication. The low requirement of the repair process for dNTPs permitted direct demonstration of u.v.-induced DNA synthesis by incorporation of labelled dNTP and determination of its extent, base composition and patch size. It is concluded that DNA polymerase 1 is involved in small patch repair and that an average of 13 to 16 nucleotides are re-inserted per pyrimidine dimer excised. The average base composition of the repaired stretches adjacent to the dimers is similar to that of total E.coli DNA. An assay utilizing endogenous u.v.-specific endonuclease to determine dimer excision is described.

  9. Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Jun-Gang Ren; Lei Wang; Dao-Kui Xu; Li-Yang Xie; Zhan-Chang Zhang

    2017-01-01

    A friction stir processing-based method was used to repair cracks in the 2024 aluminum alloy plates.The temperature field and plastic material flow pattern were analyzed on the basis of experimental and finite element simulation results.Microstructure and tensile properties of the repaired specimens were studied.The results showed that the entire crack repairing was a solid-phase process and plastic materials tended to flow toward the shoulder center and then resulted in the repairing of cracks.Meanwhile,the coarse grain structures were refined in repaired zone (RZ),while the grains in thermal-mechanically affected zone and heat-affected zone were elongated and driven to grow up.Meanwhile,large phases are crushed into small particles and dispersed inside the RZ.Finally,the strength of the repaired specimens can be restored dramatically and their ductility can be partially restored.After heat treatment,the tensile properties of the repaired specimens can be further enhanced.

  10. Fatigue and quasi‐static mechanical behavior of bio‐degradable porous biomaterials based on magnesium alloys

    Science.gov (United States)

    Ahmadi, S. M.; Lietaert, K.; Tümer, N.; Li, Y.; Amin Yavari, S.; Zadpoor, A. A.

    2018-01-01

    Abstract Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load‐bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress–strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6–12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite‐like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798

  11. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  12. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-07-01

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times ( 6, 12, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. © 2018 Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1798-1811, 2018. © 2018

  13. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Science.gov (United States)

    Huang, Brian J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2016-01-01

    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products. PMID:27177218

  14. Evidence-based outcomes following inferior alveolar and lingual nerve injury and repair: a systematic review.

    Science.gov (United States)

    Kushnerev, E; Yates, J M

    2015-10-01

    The inferior alveolar nerve (IAN) and lingual (LN) are susceptible to iatrogenic surgical damage. Systematically review recent clinical evidence regarding IAN/LN repair methods and to develop updated guidelines for managing injury. Recent publications on IAN/LN microsurgical repair from Medline, Embase and Cochrane Library databases were screened by title/abstract. Main texts were appraised for exclusion criteria: no treatment performed or results provided, poor/lacking procedural description, cohort nerve recovery occurred after direct apposition and suturing if nerve ending gaps were nerve grafting (sural/greater auricular nerve). Timing of microneurosurgical repair after injury remains debated. Most authors recommend surgery when neurosensory deficit shows no improvement 90 days post-diagnosis. Nerve transection diagnosed intra-operatively should be repaired in situ; minor nerve injury repair can be delayed. No consensus exists regarding optimal methods and timing for IAN/LN repair. We suggest a schematic guideline for treating IAN/LN injury, based on the most current evidence. We acknowledge that additional RCTs are required to provide definitive confirmation of optimal treatment approaches. © 2015 John Wiley & Sons Ltd.

  15. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  16. Self-repair in a Bidirectionally Coupled Astrocyte-Neuron (AN System based on Retrograde Signaling

    Directory of Open Access Journals (Sweden)

    John eWade

    2012-09-01

    Full Text Available In this paper we demonstrate that retrograde signaling via astrocytes may underpin self-repair in the brain. Faults manifest themselves in silent or near silent neurons caused by low transmission probability synapses; the enhancement of the transmission probability of a healthy neighbouring synapse by retrograde signaling can enhance the transmission probability of the faulty synapse (repair. Our model of self-repair is based on recent research showing that retrograde signaling via astrocytes can increase the probability of neurotransmitter release at damaged or low transmission probability synapses. The model demonstrates that astrocytes are capable of bidirectional communication with neurons which leads to modulation of synaptic activity, and that indirect signaling through retrograde messengers such as endocannabinoids leads to modulation of synaptic transmission probability. Although our model operates at the level of cells, it provides a new research direction on brain-like self-repair which can be extended to networks of astrocytes and neurons. It also provides a biologically inspired basis for developing highly adaptive, distributed computing systems that can, at fine levels of granularity, fault detect, diagnose and self-repair autonomously, without the traditional constraint of a central fault detect/repair unit.

  17. Repair mortars based on lime. Accelerated aging tests

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1995-06-01

    Full Text Available The behaviour under different accelerated aging tests (freeze/thaw and crystallization cycles of a new lime mortar with biocide properties destinated to monumental repair has been studied. New mortars (which have the biocide impregnated in a clay called sepiolite have a similar behaviour to lime mortars used as a reference. After the aging tests, the biocide properties of the mortars have been tried.

    Se ha estudiado el comportamiento frente a distintos ensayos de envejecimiento acelerado (ciclos de hielo/deshielo y cristalización de sales de un nuevo mortero de cal con propiedades biocidas, destinado a la reparación monumental. Se ha comprobado que los nuevos morteros (que llevan incorporado el biocida impregnado en una arcilla denominada sepiolita tienen un comportamiento muy similar a los morteros de cal utilizados como referencia. Tras los ensayos de envejecimiento se ha visto que las propiedades biocidas de los morteros se mantienen.

  18. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy.

    Science.gov (United States)

    Pinheiro, Antônio Luiz Barbosa; Soares, Luiz Guilherme Pinheiro; Marques, Aparecida Maria Cordeiro; Cangussú, Maria Cristina Teixeira; Pacheco, Marcos Tadeu Tavares; Silveira, Landulfo

    2017-04-01

    This work aimed the assessment of biochemical changes induced by laser or LED irradiation during mineralization of a bone defect in an animal model using a spectral model based on Raman spectroscopy. Six groups were studied: clot, laser (λ = 780 nm; 70 mW), LED (λ = 850 ± 10 nm; 150 mW), biomaterial (biphasic synthetic micro-granular hydroxyapatite (HA) + β-tricalcium phosphate), biomaterial + laser, and biomaterial + LED. When indicated, defects were further irradiated at a 48-h interval during 2 weeks (20 J/cm 2 per session). At the 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA, and carbonate HA by using the spectra of pure collagen and biomaterials composed of phosphate and carbonate HA, respectively. The use of the biomaterial associated to phototherapy did not change the collagen formation at both 15 and 30 days. The amount of carbonate HA was not different in all groups at the 15th day. However, at the 30th day, there was a significant difference (ANOVA, p = 0.01), with lower carbonate HA for the group biomaterial + LED compared to biomaterial (p biomaterial grafts at the 15th day compared to clot (significant for the biomaterial; p biomaterial + laser, while this was lower for all the other groups. These results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial by increasing the deposition of phosphate HA.

  19. Design, clinical translation and immunological response of biomaterials in regenerative medicine

    Science.gov (United States)

    Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.

    2016-07-01

    The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.

  20. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  1. The 23rd Annual Meeting of the European Tissue Repair Society (ETRS) in Reims, France

    NARCIS (Netherlands)

    Hoff, J.W. Von den; Agren, M.S.; Coulomb, B.; Eming, S.A.; Lataillade, J.J.

    2014-01-01

    The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns.

  2. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  3. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  4. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  5. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  6. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    Science.gov (United States)

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  7. The 23rd Annual Meeting of the European Tissue Repair Society (ETRS) in Reims, France

    DEFF Research Database (Denmark)

    Von den Hoff, Johannes W; Ågren, Sven Per Magnus; Coulomb, Bernard

    2014-01-01

    The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns.......The 23rd Annual Meeting of the European Tissue Repair Society, Reims, France, October 23 to 25, 2013 focused on tissue repair and regenerative medicine covering topics such as stem cells, biomaterials, tissue engineering, and burns....

  8. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway...... for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...

  9. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Trends in biomaterials

    CERN Document Server

    Kothiyal, G P

    2016-01-01

    Biomaterials research requires the union of materials scientists, engineers, biologists, biomedical doctors, and surgeons. Societal implications have invoked tremendous interest in this area of research in recent years. What started as a search for strong and durable implant materials has now led to path-breaking developments in tissue engineering, targeted drug delivery, and tissue scaffolds. Viable applications of mesoporous structures, polymer biocomposites, and fibers (synthetic and natural) in the areas of clinical orthopedics, controlled drug delivery, tissue engineering, orthodontics, etc., have emerged as relatively recent concepts. This book presents recent results related to both materials aspects and implant issues. The focus is on structural, magnetic, antibacterial, bioactivity/compatibility, mechanical, and other related properties and the implication of these results on biomedical applications. The book discusses technical problems faced by the surgeon during implant fixation in total hip repla...

  11. Current practices of laparoscopic inguinal hernia repair: a population-based analysis.

    Science.gov (United States)

    Trevisonno, M; Kaneva, P; Watanabe, Y; Fried, G M; Feldman, L S; Andalib, A; Vassiliou, M C

    2015-10-01

    The selection of a laparoscopic approach for inguinal hernias varies among surgeons. It is unclear what is being done in actual practice. The purpose of this study was to report practice patterns for treatment of inguinal hernias among Quebec surgeons, and to identify factors that may be associated with the choice of operative approach. We studied a population-based cohort of patients who underwent an inguinal hernia repair between 2007 and 2011 in Quebec, Canada. A generalized linear model was used to identify predictors associated with the selection of a laparoscopic approach. 49,657 inguinal hernias were repaired by 478 surgeons. Laparoscopic inguinal hernia repair (LIHR) was used in 8 % of all cases. LIHR was used to repair 28 % of bilateral hernias, 10 % of recurrent hernias, 6 % of unilateral hernias, and 4 % of incarcerated hernias. 268 (56 %) surgeons did not perform any laparoscopic repairs, and 11 (2 %) surgeons performed more than 100 repairs. These 11 surgeons performed 61 % of all laparoscopic cases. Patient factors significantly associated with having LIHR included younger age, fewer comorbidities, bilateral hernias, and recurrent hernias. An open approach is favored for all clinical scenarios, even for situations where published guidelines recommend a laparoscopic approach. Surgeons remain divided on the best technique for inguinal hernia repair: while more than half never perform LIHR, the small proportion who perform many use the technique for a large proportion of their cases. There appears to be a gap between the best practices put forth in guidelines and what surgeons are doing in actual practice. Identification of barriers to the broader uptake of LIHR may help inform the design of educational programs to train those who have the desire to offer this technique for certain cases, and have the volume to overcome the learning curve.

  12. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  13. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  15. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  16. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  17. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    Science.gov (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate-based

  18. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  19. Biofabrication of implants for articular joint repair : Cartilage regeneration in reinforced gelatin-based hydrogels

    NARCIS (Netherlands)

    Visser, J.

    2015-01-01

    Implants were biofabricated for the repair of chondral and osteochondral articular joint defects. The implants were based on gelatin methacrylamide (GelMA) hydrogels combined with printed fibers from polycaprolactone (PCL) for mechanical reinforcement. In Part I of the thesis, biological

  20. Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems

    Science.gov (United States)

    Craig L. Hill; Laurent Delannoy; Dean C. Duncan; Ira A. Weinstock; Roman F. Renneke; Richard S. Reiner; Rajai H. Atalla; Jong Woo Han; Daniel A. Hillesheim; Rui Cao; Travis M. Anderson; Nelya M. Okun; Djamaladdin G. Musaev; Yurii V. Geletii

    2007-01-01

    Progress in four interrelated catalysis research efforts in our laboratory are summarized: (1) catalytic photochemical functionalization of unactivated CeH bonds by polyoxometalates (POMs); (2) self-repairing catalysts; (3) catalysts for air-based oxidations under ambient conditions; and (4) terminal oxo complexes of the late-transition metal elements and their...

  1. Injecting a liquid bacteria-based repair system to make porous network conrete healed

    NARCIS (Netherlands)

    Sangadji, S.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2013-01-01

    Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and

  2. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  3. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  5. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  6. The bases for optimisation of scheduled repairs and tests of safety systems to improve the NPP productive efficiency

    International Nuclear Information System (INIS)

    Bilej, D.V.; Vasil'chenko, S.V.; Vlasenko, N.I.; Vasil'chenko, V.N.; Skalozubov, V.I.

    2004-01-01

    In the frames of risk-informed approaches the paper proposed the theoretical bases for methods of optimisation of scheduled repairs and tests of safety systems at nuclear power plants. The optimisation criterion is the objective risk function minimising. This function depends on the scheduled repairs/tests periodicity and the allowed time to bring the system channel to a state of non-operability. The main optimisation direct is to reduce the repair time with the purpose of enhancement of productive efficiency

  7. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    Science.gov (United States)

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  9. Review of biomaterials for electronics and photonics

    Science.gov (United States)

    Ouchen, Fahima; Rau, Ileana; Kajzar, François; Heckman, Emily; Grote, James G.

    2018-03-01

    Much work has been done developing and utilizing biomaterials over the last decade. Biomaterials not only includes deoxyribonucleic acid (DNA), but nucleobases and silk. These materials are abundant, inexpensive, non-fossil fuel-based and green. Researchers have demonstrated their potential to enhance the performance of organic and inorganic electronic and photonic devices, such as light emitting diodes, thin film transistors, capacitors, electromagnetic interference shielding and electro-optic modulators. Starting around the year 2000, with only a hand full of researchers, including researchers at the Air Force Research Laboratory (AFRL) and researchers at the Chitose Institute of Technology (CIST), it has grown into a large US, Asia and European consortium, producing over 3400 papers, three books, many book chapters and multiple patents. Presented here is a short overview of the progress in this exciting field of nano bio-engineering.

  10. A new repair criterion for steam generator tubes with axial cracks based on probabilistic integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Su; Oh, Chang-Kyun [KEPCO Engineering and Construction Company, Inc., 269, Hyeoksin-ro, Gimcheon, Gyeongsangbuk-do 39660 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, College of Engineering, Kyung Hee University, 1732 Deokyoungdaero, Giheung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Probabilistic assessment was performed for axially cracked steam generator tubes. • The threshold crack sizes were determined based on burst pressures of the tubes. • A new repair criterion was suggested as a function of operation time. - Abstract: Steam generator is one of the major components in a nuclear power plant, and it consists of thousands of thin-walled tubes. The operating record of the steam generators has indicated that a number of axial cracks due to stress corrosion have been frequently detected in the tubes. Since the tubes are closely related to the safety and also the efficiency of a nuclear power plant, an establishment of the appropriate repair criterion for the defected tubes and its applications are necessary. The objective of this paper is to develop an accurate repair criterion for the tubes with axial cracks. To do this, a thorough review is performed on the key parameters affecting the tube integrity, and then the probabilistic integrity assessment is carried out by considering the various uncertainties. In addition, the sizes of critical crack are determined by comparing the burst pressure of the cracked tube with the required performance criterion. Based on this result, the new repair criterion for the axially cracked tubes is defined from the reasonably conservative value such that the required performance criterion in terms of the burst pressure is able to be met during the next operating period.

  11. A cost effective degradation-based maintenance strategy under imperfect repair

    International Nuclear Information System (INIS)

    Wu, Fan; Niknam, Seyed A.; Kobza, John E.

    2015-01-01

    An optimization model is developed to minimize the total cost of imperfect degradation-based maintenance by determining an optimal interval of condition monitoring and the degradation level after imperfect preventive repairs. The decision model is based on a novel cost model that considers functional relationship between the expected degradation reduction and the cost of preventive repairs. The decision model is applied to simulated vibration signals with a variety of specifications of cost values and degradation model parameters. This study has initiated a new area for the research of cost effective maintenance strategies. The results clearly indicate the significance of the proposed model and the decision variables under the objective of minimal cost. For instance, the results indicate direct relationship between the optimal length of monitoring interval and the monitoring cost. However, longer monitoring interval increases the risk of failure, and therefore, more degradation reduction is needed. By increasing the slope of cumulative degradation, the cost effective strategy advocates taking more frequent monitoring. The optimal degradation level after each preventive repair is not so sensitive to the change in the degradation slope due to the uncertainty associated with degradation patterns. - Highlights: • Discuss the relationship of degradation reduction and maintenance cost. • Determine the optimal interval of condition monitoring with minimal cost. • Identify the optimal degradation level after imperfect preventive repairs. • Discuss the effects of change in the slope of cumulative degradation.

  12. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.

    Science.gov (United States)

    Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung

    2010-11-01

    Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. The pathology of the foreign body reaction against biomaterials.

    Science.gov (United States)

    Klopfleisch, R; Jung, F

    2017-03-01

    The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.

  14. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    Science.gov (United States)

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  15. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation

    Science.gov (United States)

    Zhang, Jie; Zhang, Wen; Yang, Hui-Lin

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309

  16. Effect of microencapsulated phase change materials on the thermo-mechanical properties of poly(methyl-methacrylate) based biomaterials.

    Science.gov (United States)

    De Santis, Roberto; Ambrogi, Veronica; Carfagna, Cosimo; Ambrosio, Luigi; Nicolais, Luigi

    2006-12-01

    Microencapsulated paraffin based phase change material (PCM) have been incorporated into Poly(methyl-methacrylate) (PMMA) matrix in order to enhance the thermo-mechanical properties. Calorimetric and mechanical analyses are carried out and the thermo regulating potential of PMMA/PCM composites is investigated. Results indicate that the PCM phase has a negligible effect on the glass transition temperature of the PMMA matrix, and the thermal regulating capability spans around body temperature absorbing or releasing a thermal energy up to 30 J/g. One of the effect of the PCM phase into the cement is the reduction of the peak temperature developed during the exothermal reaction.

  17. Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus

    OpenAIRE

    Kiyonari, Shinichi; Tahara, Saki; Shirai, Tsuyoshi; Iwai, Shigenori; Ishino, Sonoko; Ishino, Yoshizumi

    2009-01-01

    Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected...

  18. Optimal design of RTCs in digital circuit fault self-repair based on global signal optimization

    Institute of Scientific and Technical Information of China (English)

    Zhang Junbin; Cai Jinyan; Meng Yafeng

    2016-01-01

    Since digital circuits have been widely and thoroughly applied in various fields, electronic systems are increasingly more complicated and require greater reliability. Faults may occur in elec-tronic systems in complicated environments. If immediate field repairs are not made on the faults, elec-tronic systems will not run normally, and this will lead to serious losses. The traditional method for improving system reliability based on redundant fault-tolerant technique has been unable to meet the requirements. Therefore, on the basis of (evolvable hardware)-based and (reparation balance technology)-based electronic circuit fault self-repair strategy proposed in our preliminary work, the optimal design of rectification circuits (RTCs) in electronic circuit fault self-repair based on global sig-nal optimization is deeply researched in this paper. First of all, the basic theory of RTC optimal design based on global signal optimization is proposed. Secondly, relevant considerations and suitable ranges are analyzed. Then, the basic flow of RTC optimal design is researched. Eventually, a typical circuit is selected for simulation verification, and detailed simulated analysis is made on five circumstances that occur during RTC evolution. The simulation results prove that compared with the conventional design method based RTC, the global signal optimization design method based RTC is lower in hardware cost, faster in circuit evolution, higher in convergent precision, and higher in circuit evolution success rate. Therefore, the global signal optimization based RTC optimal design method applied in the elec-tronic circuit fault self-repair technology is proven to be feasible, effective, and advantageous.

  19. An Overview of Poly(lactic-co-glycolic Acid (PLGA-Based Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Piergiorgio Gentile

    2014-02-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA has attracted considerable interest as a base material for biomedical applications due to its: (i biocompatibility; (ii tailored biodegradation rate (depending on the molecular weight and copolymer ratio; (iii approval for clinical use in humans by the U.S. Food and Drug Administration (FDA; (iv potential to modify surface properties to provide better interaction with biological materials; and (v suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  20. Radiolytic Synthesis of Nanocomposites Based on Noble Metal Nanoparticles and Natural Polymer, and their Application as Biomaterial

    International Nuclear Information System (INIS)

    Krklješ, Aleksandra

    2011-01-01

    Laboratory for Radiation Chemistry and Physics - GAMMA with 60 employees is one of the largest laboratories in the VINČA Institute of Nuclear Sciences. Currently, 26 researchers with Ph.D. degree, 6 with M.Sc. degree and 13 graduated students are working on ongoing projects in experimental research in the field of nanoscience and modifications of materials by irradiation. Laboratory is well equipped for synthesis of nanoscale materials as well as for different types of their characterization. This Laboratory has excellent and long lasting tradition in scientific activities. Based on outstanding results in radiation chemistry, in the Laboratory GAMMA exists radiation unit for industrial sterilization of food and medical equipment. (author)

  1. Radiolytic Synthesis of Nanocomposites Based on Noble Metal Nanoparticles and Natural Polymer, and their Application as Biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Krklješ, Aleksandra [VINČA Institute of Nuclear ciences, Laboratory for Radiation Chemistry and Physics – GAMMA, Belgrade (Serbia)

    2011-07-01

    Laboratory for Radiation Chemistry and Physics - GAMMA with 60 employees is one of the largest laboratories in the VINČA Institute of Nuclear Sciences. Currently, 26 researchers with Ph.D. degree, 6 with M.Sc. degree and 13 graduated students are working on ongoing projects in experimental research in the field of nanoscience and modifications of materials by irradiation. Laboratory is well equipped for synthesis of nanoscale materials as well as for different types of their characterization. This Laboratory has excellent and long lasting tradition in scientific activities. Based on outstanding results in radiation chemistry, in the Laboratory GAMMA exists radiation unit for industrial sterilization of food and medical equipment. (author)

  2. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  3. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  4. Generalized renewal process for repairable systems based on finite Weibull mixture

    International Nuclear Information System (INIS)

    Veber, B.; Nagode, M.; Fajdiga, M.

    2008-01-01

    Repairable systems can be brought to one of possible states following a repair. These states are: 'as good as new', 'as bad as old' and 'better than old but worse than new'. The probabilistic models traditionally used to estimate the expected number of failures account for the first two states, but they do not properly apply to the last one, which is more realistic in practice. In this paper, a probabilistic model that is applicable to all of the three after-repair states, called generalized renewal process (GRP), is applied. Simplistically, GRP addresses the repair assumption by introducing the concept of virtual age into the stochastic point processes to enable them to represent the full spectrum of repair assumptions. The shape of measured or design life distributions of systems can vary considerably, and therefore frequently cannot be approximated by simple distribution functions. The scope of the paper is to prove that a finite Weibull mixture, with positive component weights only, can be used as underlying distribution of the time to first failure (TTFF) of the GRP model, on condition that the unknown parameters can be estimated. To support the main idea, three examples are presented. In order to estimate the unknown parameters of the GRP model with m-fold Weibull mixture, the EM algorithm is applied. The GRP model with m mixture components distributions is compared to the standard GRP model based on two-parameter Weibull distribution by calculating the expected number of failures. It can be concluded that the suggested GRP model with Weibull mixture with an arbitrary but finite number of components is suitable for predicting failures based on the past performance of the system

  5. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair.

    Science.gov (United States)

    Lee, Young-Joo; Kim, Robin E; Suh, Wonho; Park, Kiwon

    2017-04-24

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.

  6. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties.

    Science.gov (United States)

    Ullm, Sandra; Krüger, Anne; Tondera, Christoph; Gebauer, Tim P; Neffe, Axel T; Lendlein, Andreas; Jung, Friedrich; Pietzsch, Jens

    2014-12-01

    Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only Mɸ altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. New nanostructural biomaterials based on active silicate systems and hydroxyapatite: characterization and genotoxicity in human peripheral blood lymphocytes.

    Science.gov (United States)

    Opačić-Galić, V; Petrović, V; Zivković, S; Jokanović, V; Nikolić, B; Knežević-Vukčević, J; Mitić-Ćulafić, D

    2013-06-01

    To characterize and investigate the genotoxic effect of a new endodontic cement based on dicalcium- and tricalcium-silicate (CS) with hydroxyapatite (HA) on human lymphocytes. Hydrothermal treatment was applied for synthesis of CS and HA. The final mixture HA-CS, with potential to be used in endodontic practice, is composed of CS (34%) and HA (66%). Human lymphocytes were incubated with HA, HA-CS and CS for 1 h, at 37 °C and 5% CO2. Cell viability was determined using the trypan blue exclusion assay. To evaluate the level of DNA damage comet assay (single cell gel electrophoresis) was performed. For the statistical analysis anova and Duncan's Post Hoc Test were used. The SEM analysis indicated that CS consisted mostly of agglomerates of several micrometers in size, built up from smaller particles, with dimensions between 117 and 477 nm. This is promising because dimensions of agglomerates are not comparable with channels inside the cell membranes, whereas their nano-elements provide evident activity, important for faster setting of these mixtures compared to MTA. Values of DNA damage obtained in the comet assay indicated low genotoxic risk of the new endodontic materials. The significantly improved setting characteristics and low genotoxic risk of the new material support further research. © 2012 International Endodontic Journal.

  8. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth.

    Science.gov (United States)

    Adachi, Tetsuya; Pezzotti, Giuseppe; Yamamoto, Toshiro; Ichioka, Hiroaki; Boffelli, Marco; Zhu, Wenliang; Kanamura, Narisato

    2015-05-01

    A systematic investigation, based on highly spectrally resolved Raman spectroscopy, was undertaken to research the efficacy of vibrational assessments in locating chemical and crystallographic fingerprints for the characterization of dental caries and the early detection of non-cavitated carious lesions. Raman results published by other authors have indicated possible approaches for this method. However, they conspicuously lacked physical insight at the molecular scale and, thus, the rigor necessary to prove the efficacy of this spectroscopy method. After solving basic physical challenges in a companion paper, we apply them here in the form of newly developed Raman algorithms for practical dental research. Relevant differences in mineral crystallite (average) orientation and texture distribution were revealed for diseased enamel at different stages compared with healthy mineralized enamel. Clear spectroscopy features could be directly translated in terms of a rigorous and quantitative classification of crystallography and chemical characteristics of diseased enamel structures. The Raman procedure enabled us to trace back otherwise invisible characteristics in early caries, in the translucent zone (i.e., the advancing front of the disease) and in the body of lesion of cavitated caries.

  9. Fuzzy Activity Based Life Cycle Costing For Repairable Equipment

    Directory of Open Access Journals (Sweden)

    Mulubrhan Freselam

    2016-01-01

    Full Text Available Life-cycle cost (LCC is the much known method used for decision making that considers all costs in the life of a system or equipment. Predicting LCCs is fraught with potential errors, owing to the uncertainty in future events, future costs, interest rates, and even hidden costs. These uncertainties have a direct impact on the decision making. Activity based LCC is used to identify the activities and cost drivers in acquisition, operation and maintenance phase. This activity based LCC is integrated with fuzzy set theory and interval mathematics to model these uncertainties. Day–Stout–Warren (DSW algorithm and the vertex method are then used to evaluate competing alternatives. A case of two pumps (Pump A and Pump B are taken and their LCC is analysed using the developed model. The equivalent annual cost of Pump B is greater than Pump A, which leads the decision maker to choose Pump A over Pump B.

  10. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  11. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  12. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  13. Initial steps of the base excision repair pathway within the nuclear architecture

    International Nuclear Information System (INIS)

    Amouroux, R.

    2009-09-01

    Oxidative stress induced lesions threaten aerobic organisms by representing a major cause of genomic instability. A common product of guanine oxidation, 8-oxo-guanine (8- oxoG) is particularly mutagenic by provoking G to T transversions. Removal of oxidised bases from DNA is initiated by the recognition and excision of the damaged base by a DNA glycosylase, initiating the base excision repair (BER) pathway. In mammals, 8-oxoG is processed by the 8-oxoG-DNA-glycosylase I (OGG1), which biochemical mechanisms has been well characterised in vitro. However how and where this enzyme finds the modified base within the complex chromatin architecture is not yet understood. We show that upon induction of 8-oxoG, OGG1, together with at least two other proteins involved in BER, is recruited from a soluble fraction to chromatin. Formation kinetics of this patches correlates with 8-oxoG excision, suggesting a direct link between presence of this chromatin-associated complexes and 8-oxoG repair. More precisely, these repair patches are specifically directed to euchromatin regions, and completely excluded from heterochromatin regions. Inducing of artificial chromatin compaction results in a complete inhibition of the in vivo repair of 8-oxoG, probably by impeding the access of OGG1 to the lesion. Using OGG1 mutants, we show that OGG1 direct recognition of 8-oxoG did not trigger its re-localisation to the chromatin. We conclude that in response to the induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions. (author)

  14. How are base excision DNA repair pathways deployed in vivo? [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Upasna Thapar

    2017-03-01

    Full Text Available Since the discovery of the base excision repair (BER system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.

  15. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing; #8208; Xing; Lay, Kori T.; Yuen, Philip K.; David, Sheila S.; Rokas, Antonis; Eichman, Brandt F. (UCD); (Vanderbilt)

    2017-10-20

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct from that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.

  16. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    Science.gov (United States)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  17. The role of biomaterials in the treatment of meniscal tears

    Directory of Open Access Journals (Sweden)

    Crystal O. Kean

    2017-11-01

    Full Text Available Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears.

  18. MD study of pyrimidine base damage on DNA and its recognition by repair enzyme

    International Nuclear Information System (INIS)

    Pinak, M.

    2000-01-01

    The molecular dynamics (MD) simulation was used on the study of two specific damages of pyrimidine bases of DNA. Pyrimidine bases are major targets either of free radicals induced by ionizing radiation in DNA surrounding environment or UV radiation. Thymine dimer (TD) is UV induced damage, in which two neighboring thymines in one strand are joined by covalent bonds of C(5)-C(5) and C(6)-C(6) atoms of thymines. Thymine glycol (TG) is ionizing radiation induced damage in which the free water radical adds to unsaturated bond C(5)-C(6) of thymine. Both damages are experimentally suggested to be mutagenetic and carcinogenic unless properly repaired by repair enzymes. In the case of MD of TD, there is detected strong kink around the TD site that is not observed in native DNA. In addition there is observed the different value of electrostatic energy at the TD site - negative '-10 kcal/mol', in contrary to nearly neutral value of native thymine site. Structural changes and specific electrostatic energy - seems to be important for proper recognition of TD damaged site, formation of DNA-enzyme complex and thus for subsequent repair of DNA. In the case of TG damaged DNA there is major structural distortion at the TG site, mainly the increased distance between TG and the C5' of adjacent nucleotide. This enlarged gap between the neighboring nucleotides may prevent the insertion of complementary base during replication causing the replication process to stop. In which extend this structural feature together with energy properties of TG contributes to the proper recognition of TG by repair enzyme Endonuclease III is subject of further computational MD study. (author)

  19. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  20. Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development.

    Science.gov (United States)

    Phansalkar, Rasika S; Nam, Joo-Won; Chen, Shao-Nong; McAlpine, James B; Leme, Ariene A; Aydin, Berdan; Bedran-Russo, Ana-Karina; Pauli, Guido F

    2018-02-02

    Proanthocyanidins (PACs) find wide applications for human use including food, cosmetics, dietary supplements, and pharmaceuticals. The chemical complexity associated with PACs has triggered the development of various chromatographic techniques, with countercurrent separation (CCS) gaining in popularity. This study applied the recently developed DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) approach for the selective enrichment of trimeric and tetrameric PACs using centrifugal partition chromatography (CPC). This CPC method aims at developing PAC based biomaterials, particularly for their application in restoring and repairing dental hard tissue. A general separation scheme beginning with the depletion of polymeric PACs, followed by the removal of monomeric flavan-3-ols and a final enrichment step produced PAC trimer and tetramer enriched fractions. A successful application of this separation scheme is demonstrated for four polyphenol rich plant sources: grape seeds, pine bark, cinnamon bark, and cocoa seeds. Minor modifications to the generic DESIGNER CCS method were sufficient to accommodate the varying chemical complexities of the individual source materials. The step-wise enrichment of PAC trimers and tetramers was monitored using normal phase TLC and Diol-HPLC-UV analyses. CPC proved to be a reliable tool for the selective enrichment of medium size oligomeric PACs (OPACs). This method plays a key role in the development of dental biomaterials considering its reliability and reproducibility, as well as its scale-up capabilities for possible larger-scale manufacturing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gamma irradiation processing of Hydroxyapatite/poly-L-lactide composite biomaterial

    International Nuclear Information System (INIS)

    Suljovrujic, E.; Ignjatovic, N.; Uskokovic, D.

    2002-01-01

    Complete text of publication follows. As is well known, Hydroxyapatite/poly-L-lactide (HAp/PLLA) is a composite biomaterial, used for substitution and repair of hard bone tissue. It consists of a non-bioresorptive ceramic (HAp) and a bioresorptive polymer PLLA component, with mechanical properties similar to those of bones can be produced. On the other hand, a radiation processing is a main wide used step in certain modern technologies, and can be utilized for sterilization of implants based on sensitive polymers and composites. In this paper, the relation between the structure and properties is investigated for the case of HAp/PLLA composite where structure changes are created by gamma irradiation. The irradiation, to various absorbed doses (10, 25, 50, 100 and 300 KGy) of gamma radiation, was performed in a 60 Co radiation facility, in air at room temperature, at a dose rate of 9 kGy/h. Since the morphology of Hap/PLLA composite biomaterial is very sensitive to these procedures, surface microstructure was analyzed by scanning electronic microscopy (SEM). Structural changes occurring in the material, mostly changes in PLLA, which is more sensitive to irradiation than HAp, were studied by wade angle X-ray structural analyses (WAXS) and infrared (IR) spectroscopy. Differential scanning calorimetry measurements (DSC) were used to study the changes in thermal behaviour and crystallinity. Effects of radiation on the HAp/PLLA composite thermal stability were determined by thermogravimetric analysis (TGA). Conclusions derived using different methods were compared

  2. Optimal Design of Rectification Circuit in Electronic Circuit Fault Self-repair Based on EHW and RBT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junbin; CAI Jinyan; MENG Yafeng

    2018-01-01

    Reliability of traditional electronic circuit is improved mainly by redundant fault-tolerant technol-ogy with large hardware resource consumption and limited fault self-repair capability. In complicated environment, electronic circuit faults appear easily. If on-site immedi-ate repair is not implemented, normal running of elec-tronic system will be directly affected. In order to solve these problems, Evolvable hardware (EHW) technology is widely used. The conventional EHW has some bottlenecks. The optimal design of Rectification circuit (RTC) is fur-ther researched on the basis of the previously proposed fault self-repair based on EHW and Reparation balance technology (RBT). Fault sets are selected by fault danger degree and fault coverage rate. The optimal designed RTC can completely repair faults in the fault set. Simulation re-sults prove that it has higher self-repair capability and less hardware resource.

  3. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  4. GraDit: graph-based data repair algorithm for multiple data edits rule violations

    Science.gov (United States)

    Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.

    2018-03-01

    Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.

  5. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem.

    Science.gov (United States)

    Guimarães, Bruno Martini; Prati, Carlo; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Gandolfi, Maria Giovanna

    2018-04-05

    This study aimed to analyze the following physicochemical properties: radiopacity, final setting time, calcium release, pH change, solubility, water sorption, porosity, surface morphology, and apatite-forming ability of two calcium silicate-based materials. We tested MTA Repair HP and MTA Vitalcem in comparison with conventional MTA, analyzing radiopacity and final setting time. Water absorption, interconnected pores and apparent porosity were measured after 24-h immersion in deionized water at 37°C. Calcium and pH were tested up to 28 d in deionized water. We analyzed data using two-way ANOVA with Student-Newman-Keuls tests (pcalcium release at 28 d (pcalcium phosphate on their surface after 28 d in HBSS. MTA Repair HP and MTA Vitalcem had extended alkalinizing activity and calcium release that favored calcium phosphate nucleation. The presence of the plasticizer in MTA HP might increase its solubility and porosity. The radiopacifier calcium tungstate can be used to replace bismuth oxide.

  6. Uncertain multiobjective redundancy allocation problem of repairable systems based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Guo Jiansheng; Wang Zutong; Zheng Mingfa; Wang Ying

    2014-01-01

    Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.

  7. DNA Damage and Base Excision Repair in Mitochondria and Their Role in Aging

    Directory of Open Access Journals (Sweden)

    Ricardo Gredilla

    2011-01-01

    Full Text Available During the last decades, our knowledge about the processes involved in the aging process has exponentially increased. However, further investigation will be still required to globally understand the complexity of aging. Aging is a multifactorial phenomenon characterized by increased susceptibility to cellular loss and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage response are thought to play important roles. Due to the proximity of mitochondrial DNA to the main sites of mitochondrial-free radical generation, oxidative stress is a major source of mitochondrial DNA mutations. Mitochondrial DNA repair mechanisms, in particular the base excision repair pathway, constitute an important mechanism for maintenance of mitochondrial DNA integrity. The results reviewed here support that mitochondrial DNA damage plays an important role in aging.

  8. The base excision repair pathway is required for efficient lentivirus integration.

    Directory of Open Access Journals (Sweden)

    Kristine E Yoder

    Full Text Available An siRNA screen has identified several proteins throughout the base excision repair (BER pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins.

  9. DNA Base Excision Repair (BER) and Cancer Gene Therapy: Use of the Human N-mythlpurien DNA Glycosylase (MPG) to Sensitize Breast Cancer Cells to Low Dose Chemotherapy

    National Research Council Canada - National Science Library

    Harvey, Tia

    2003-01-01

    The DNA Base Excision Repair (PER) pathway is responsible for the repair of alkylation and oxidative DNA damage resulting in protection against the deleterious effects of endogenous and exogenous agents encountered on a daily basis...

  10. X-ray diffraction based residual stress analysis of repair welds of CrMo steels

    International Nuclear Information System (INIS)

    Rai, Sanjay; Sujith, S.; Jayakumar, T.

    1996-01-01

    Premature failure of weldments is often reported in the industry. Once failure occurs, the common practice now a days is either to replace the whole component or repair the failed region by welding. Since repairing rather than replacing is more economical, the process of repair welding assumes technological significance. However, it is necessary to realise the problems associated with repair-welding. During most of the repair welding cases, after repair weldments are hard and brittle. In many cases it is not possible to give post weld heat treatment (PWHT). This demands better welding techniques for repair without affecting the microstructure. Repair welding requires adoption of special procedure and parameters to obtain acceptable properties of the repair welded regions. In this paper different repair welding methods have been compared from residual stress and hardness point of view. (author)

  11. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    Peptides and polypeptides are emerging as a new class of biomaterials due to their unique structural, physiochemical, mechanical, and biological properties. The development of peptide and protein-based biomaterials is driven by the convergence of convenient techniques for peptide/protein engineering and its importance in applications as smart biomaterials. The thesis is divided in two parts; the first part highlights the importance of incorporation of non-natural amino acids into peptides and proteins. In particular, incorporation on p-bromophenylalanine in short alpha-helical peptide templates to control the association of chromophores is discussed. In the second part, design of a multi-component, biocompatible polypeptide with superior elasticity is discussed. Part 1. Novel peptide templates to control association of chromophores. Tailor made peptide and protein materials have many versatile applications, as both conformation and functional group position can be controlled. Such control may have intriguing applications in the development of hybrid materials for electroactive applications. A critical need in fabricating devices from organic semiconducting materials is to achieve control over the conformation and distance between two conjugated chains. Controlling chromophore spacing and orientation with required precision over nanometer length scale poses a greater challenge. Here we propose a peptide based template to control the alignment of the methylstilbene and Oxa-PPV chromophores with desired orientations and spacing. The hybrid peptides were characterized via CD, exciton coupled CD, 1H NMR and photoluminescence experiments. It is observed that slight change in the orientation of molecules has pronounced effect on the photo-physical behavior of the molecules. Characterization of the hybrid peptides via circular dichroism (CD) confirmed the helical character of the designed peptides and indicated that inclusion of non-natural amino acids has significant

  12. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand.

    Science.gov (United States)

    Reis, António M C; Mills, Wilbur K; Ramachandran, Ilangovan; Friedberg, Errol C; Thompson, David; Queimado, Lurdes

    2012-01-01

    Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.

  13. Predoctoral Curriculum Guidelines for Biomaterials.

    Science.gov (United States)

    Journal of Dental Education, 1986

    1986-01-01

    The American Association of Dental Schools' predoctoral guidelines for biomaterials curricula includes notes on interrelationships between this and other fields, a curriculum overview, primary educational goals, prerequisites, a core content outline, specific behavioral objectives for each content area, and information on sequencing, faculty and…

  14. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  15. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair

    International Nuclear Information System (INIS)

    Dhollander, A.A.M.; Huysse, W.C.J.; Verdonk, P.C.M.; Verstraete, K.L.; Verdonk, R.; Verbruggen, G.; Almqvist, K.F.

    2010-01-01

    Aim: The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects of the knee. MRI was used for the morphological analysis of cartilage repair. The correlation between MRI findings and clinical outcome was also studied. Methods: A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of symptomatic chondral and osteochondral lesions in the knee. Twenty-one patients were prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9 and 12 months of follow-up. Of the 21 patients, 12 had consented to follow the postoperative MRI evaluation protocol. MRI data were analyzed based on the original MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) and modified MOCART scoring system. The correlation between the clinical outcome and MRI findings was evaluated. Results: A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 12 months of follow-up. One of the two MRI scoring systems that were used, showed a statistically significant deterioration of the repair tissue at 1 year of follow-up. Twelve months after the operation complete filling or hypertrophy was found in 41.6%. Bone-marrow edema and effusion were seen in 41.7% and 25% of the study patients, respectively. We did not find a consistent correlation between the MRI criteria and the clinical results. Discussion: The present study confirmed the primary role of MRI in the evaluation of cartilage repair. Two MOCART-based scoring systems were used in a longitudinal fashion and allowed a practical and morphological evaluation of the repair tissue. However, the correlation between clinical outcome and MRI findings was poor. Further

  16. MRI evaluation of a new scaffold-based allogenic chondrocyte implantation for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Dhollander, A.A.M., E-mail: Aad.Dhollander@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Huysse, W.C.J., E-mail: Wouter.Huysse@Ugent.b [Department of Radiology, Ghent University Hospital, De Pintelaan 185, -1K12 IB, B9000 Gent (Belgium); Verdonk, P.C.M., E-mail: pverdonk@yahoo.co [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Verstraete, K.L., E-mail: Koenraad.Verstraete@Ugent.b [Department of Radiology, Ghent University Hospital, De Pintelaan 185, -1K12 IB, B9000 Gent (Belgium); Verdonk, R., E-mail: Rene.Verdonk@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium); Verbruggen, G., E-mail: Gust.Verbruggen@Ugent.b [Laboratory of Connective Tissue Biology, Department of Rheumatology, Ghent University Hospital, De Pintelaan 185, Ghent (Belgium); Almqvist, K.F., E-mail: Fredrik.Almqvist@Ugent.b [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 1P5, B9000 Gent (Belgium)

    2010-07-15

    Aim: The present study was designed to evaluate the implantation of alginate beads containing human mature allogenic chondrocytes for the treatment of symptomatic cartilage defects of the knee. MRI was used for the morphological analysis of cartilage repair. The correlation between MRI findings and clinical outcome was also studied. Methods: A biodegradable, alginate-based biocompatible scaffold containing human mature allogenic chondrocytes was used for the treatment of symptomatic chondral and osteochondral lesions in the knee. Twenty-one patients were prospectively evaluated with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Visual Analogue Scale (VAS) for pain preoperatively and at 3, 6, 9 and 12 months of follow-up. Of the 21 patients, 12 had consented to follow the postoperative MRI evaluation protocol. MRI data were analyzed based on the original MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) and modified MOCART scoring system. The correlation between the clinical outcome and MRI findings was evaluated. Results: A statistically significant clinical improvement became apparent after 6 months and patients continued to improve during the 12 months of follow-up. One of the two MRI scoring systems that were used, showed a statistically significant deterioration of the repair tissue at 1 year of follow-up. Twelve months after the operation complete filling or hypertrophy was found in 41.6%. Bone-marrow edema and effusion were seen in 41.7% and 25% of the study patients, respectively. We did not find a consistent correlation between the MRI criteria and the clinical results. Discussion: The present study confirmed the primary role of MRI in the evaluation of cartilage repair. Two MOCART-based scoring systems were used in a longitudinal fashion and allowed a practical and morphological evaluation of the repair tissue. However, the correlation between clinical outcome and MRI findings was poor. Further

  17. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  18. Base excision repair of both uracil and oxidatively damaged bases contribute to thymidine deprivation-induced radiosensitization

    International Nuclear Information System (INIS)

    Allen, Bryan G.; Johnson, Monika; Marsh, Anne E.; Dornfeld, Kenneth J.

    2006-01-01

    Purpose: Increased cellular sensitivity to ionizing radiation due to thymidine depletion is the basis of radiosensitization with fluoropyrimidine and methotrexate. The mechanism responsible for cytotoxicity has not been fully elucidated but appears to involve both the introduction of uracil into, and its removal from, DNA. The role of base excision repair of uracil and oxidatively damaged bases in creating the increased radiosensitization during thymidine depletion is examined. Methods and Materials: Isogenic strains of S. cerevisiae differing only at loci involved in DNA repair functions were exposed to aminopterin and sulfanilamide to induce thymidine deprivation. Cultures were irradiated and survival determined by clonogenic survival assay. Results: Strains lacking uracil base excision repair (BER) activities demonstrated less radiosensitization than the parental strain. Mutant strains continued to show partial radiosensitization with aminopterin treatment. Mutants deficient in BER of both uracil and oxidatively damaged bases did not demonstrate radiosensitization. A recombination deficient rad52 mutant strain was markedly sensitive to radiation; addition of aminopterin increased radiosensitivity only slightly. Radiosensitization observed in rad52 mutants was also abolished by deletion of the APN1, NTG1, and NTG2 genes. Conclusion: These data suggest radiosensitization during thymidine depletion is the result of BER activities directed at both uracil and oxidatively damaged bases

  19. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains.

    Science.gov (United States)

    Ashfaq, Mohammad; Verma, Nishith; Khan, Suphiya

    2017-08-01

    Pseudomonas aeruginosa (P. aeruginosa) is the most prevalent bacteria in the infections caused by burn, surgery, and traumatic injuries. Emergence of the P. aeruginosa bacterial resistance against various clinical drugs for wound treatment is the major concern nowadays. The present study describes the synthesis of the polyvinyl alcohol (PVA) and cellulose acetate phthalate (CAP) polymeric composite film (~0.2mm thickness) reinforced with the Cu/Zn bimetal-dispersed activated carbon micro/nanofiber (ACF/CNF), as a wound dressing material. The focus is on determining the efficacy of the prepared biomaterial against the multi and extensively drug-resistant P. aeruginosa strains isolated from the burning, surgical, and traumatic injury-wounds. The primary synthesis steps for the biomaterial include the mixing of a blend of CAP powder and the asymmetrically distributed Cu/Zn bimetals in ACF/CNF, into the polymerization reaction mixture of PVA. Biochemical tests showed that the prepared composite material significantly enhanced the in-vitro blood clotting rate, platelet aggregation, and macrophage cell proliferation, indicating the suitability of the material as a fast wound healer. The antibacterial tests performed against the P. aeruginosa strains showed that the material effectively suppressed the bacterial growth, with the bimetal nanoparticles dispersed in the material serving as an antibacterial agent. The PVA/CAP polymer composite served as an encapsulating agent providing a slow release of the nanoparticles, besides increasing the hemostatic properties of the biomaterial. The ACF/CNF served as a support to the dispersed bimetal nanoparticles, which also provided a mechanical and thermal stability to the material. Experimentally demonstrated to be biocompatible, the prepared metal-carbon-polymer nanocomposite in this study is an effective dressing material for the P. aeruginosa-infected wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  1. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  2. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  3. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  4. Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage

    Science.gov (United States)

    Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan

    2012-01-01

    ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876

  5. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  6. Augmentation with an ovine forestomach matrix scaffold improves histological outcomes of rotator cuff repair in a rat model.

    Science.gov (United States)

    Street, Matthew; Thambyah, Ashvin; Dray, Michael; Amirapu, Satya; Tuari, Donna; Callon, Karen E; McIntosh, Julie D; Burkert, Kristina; Dunbar, P Rod; Coleman, Brendan; Cornish, Jillian; Musson, David S

    2015-10-20

    Rotator cuff tears can cause significant pain and functional impairment. Without surgical repair, the rotator cuff has little healing potential, and following surgical repair, they are highly prone to re-rupture. Augmenting such repairs with a biomaterial scaffold has been suggested as a potential solution. Extracellular matrix (ECM)-based scaffolds are the most commonly used rotator cuff augments, although to date, reports on their success are variable. Here, we utilize pre-clinical in vitro and in vivo assays to assess the efficacy of a novel biomaterial scaffold, ovine forestomach extracellular matrix (OFM), in augmenting rotator cuff repair. OFM was assessed in vitro for primary tenocyte growth and adherence, and for immunogenicity using an assay of primary human dendritic cell activation. In vivo, using a murine model, supraspinatus tendon repairs were carried out in 34 animals. Augmentation with OFM was compared to sham surgery and unaugmented control. At 6- and 12-week time points, the repairs were analysed biomechanically for strength of repair and histologically for quality of healing. OFM supported tenocyte growth in vitro and did not cause an immunogenic response. Augmentation with OFM improved the quality of healing of the repaired tendon, with no evidence of excessive inflammatory response. However, there was no biomechanical advantage of augmentation. The ideal rotator cuff tendon augment has not yet been identified or clinically implemented. ECM scaffolds offer a promising solution to a difficult clinical problem. Here, we have shown improved histological healing with OFM augmentation. Identifying materials that offset the poorer mechanical properties of the rotator cuff post-injury/repair and enhance organised tendon healing will be paramount to incorporating augmentation into surgical treatment of the rotator cuff.

  7. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  8. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  9. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  10. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials

    NARCIS (Netherlands)

    Zadpoor, A.A.; Hedayati, R.

    2016-01-01

    Recent developments in additive manufacturing techniques have motivated an increasing number of researchers to study regular porous biomaterials that are based on repeating unit cells. The physical and mechanical properties of such porous biomaterials have therefore received increasing attention

  11. A community-based long-term follow up of women undergoing obstetric fistula repair in rural Ethiopia

    DEFF Research Database (Denmark)

    Nielsen, H S; Lindberg, L; Nygaard, U

    2009-01-01

    Western Ethiopia. POPULATION: Thirty-eight women (86%) of 44 who had undergone fistula repair were identified in their community. METHODS: Community-based structured interviews 14-28 months following fistula repair, using a customised questionnaire addressing urinary health, reproductive health...... Ethiopia. Despite one-third still suffering stress or urge incontinence, the women reported improved quality of life and social reintegration after fistula closure....

  12. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  13. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  14. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    International Nuclear Information System (INIS)

    Kim, Hyun-Suk; Guo, Chunlu; Thompson, Eric L.; Jiang, Yanlin; Kelley, Mark R.; Vasko, Michael R.; Lee, Suk-Hee

    2015-01-01

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons

  15. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  16. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

    Directory of Open Access Journals (Sweden)

    Cihad Tatar

    2016-08-01

    Full Text Available Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of noncomplicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3, and the other consisting of patients not undergoing bowel resection (Group 4. Results: In Group 1, it was observed that eight (7.14% of the patients had wound infections, while two (1.78% had hematomas, four (3.57% had seromas, and one (0.89% had relapse. In Group 2, one (2.56% of the patients had a wound infection, while three (7.69% had hematomas, one (2.56% had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection

  17. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    Science.gov (United States)

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  18. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  19. Moisture movement in cement-based repair systems monitored by X-ray absorption

    NARCIS (Netherlands)

    Lukovic, M.; Ye, G.; Schlangen, H.E.J.G.; van Breugel, K.

    2017-01-01

    In concrete repair systems, material properties in the repair material and interface are greatly influenced by the initial moisture content of the concrete (or mortar) substrate. In order to quantify moisture profiles inside the repair system, X-ray absorption was used. Preliminary studies are

  20. Microgel Mechanics in Biomaterial Design

    OpenAIRE

    Saxena, Shalini; Hansen, Caroline E.; Lyon, L. Andrew

    2014-01-01

    Conspectus The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels a...

  1. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  2. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  3. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  4. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?

    Science.gov (United States)

    Korpershoek, Jasmijn V.; de Windt, Tommy S.; Hagmeijer, Michella H.; Vonk, Lucienne A.; Saris, Daniel B. F.

    2017-01-01

    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold

  5. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naoya, E-mail: shikazono.naoya@jaea.go.jp [Japan Atomic Energy Agency, Advanced Research Science Center, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); O' Neill, Peter [Gray Institute for Radiation Oncology and Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2009-10-02

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  6. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    International Nuclear Information System (INIS)

    Shikazono, Naoya; O'Neill, Peter

    2009-01-01

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  7. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de, E-mail: nadja@iq.usp.br

    2015-06-15

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.

  8. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    International Nuclear Information System (INIS)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de

    2015-01-01

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin

  9. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    Science.gov (United States)

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Engineering dextran-based scaffolds for drug delivery and tissue repair

    Science.gov (United States)

    Sun, Guoming; Mao, Jeremy J

    2015-01-01

    Owing to its chemically reactive hydroxyl groups, dextran can be modified with different functional groups to form spherical, tubular and 3D network structures. The development of novel functional scaffolds for efficient controlled release and tissue regeneration has been a major research interest, and offers promising therapeutics for many diseases. Dextran-based scaffolds are naturally biodegradable and can serve as bioactive carriers for many protein biomolecules. The reconstruction of the in vitro microenvironment with proper signaling cues for large-scale tissue regenerative scaffolds has yet to be fully developed, and remains a significant challenge in regenerative medicine. This paper will describe recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering. Special attention is given to the development of dextran-based hydrogels that are precisely manipulated with desired structural properties and encapsulated with defined angiogenic growth factors for therapeutic neovascularization, as well as their potential for wound repair. PMID:23210716

  11. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Translating Regenerative Biomaterials Into Clinical Practice.

    Science.gov (United States)

    Stace, Edward T; Dakin, Stephanie G; Mouthuy, Pierre-Alexis; Carr, Andrew J

    2016-01-01

    Globally health care spending is increasing unsustainably. This is especially true of the treatment of musculoskeletal (MSK) disease where in the United States the MSK disease burden has doubled over the last 15 years. With an aging and increasingly obese population, the surge in MSK related spending is only set to worsen. Despite increased funding, research and attention to this pressing health need, little progress has been made toward novel therapies. Tissue engineering and regenerative medicine (TERM) strategies could provide the solutions required to mitigate this mounting burden. Biomaterial-based treatments in particular present a promising field of potentially cost-effective therapies. However, the translation of a scientific development to a successful treatment is fraught with difficulties. These barriers have so far limited translation of TERM science into clinical treatments. It is crucial for primary researchers to be aware of the barriers currently restricting the progression of science to treatments. Researchers need to act prospectively to ensure the clinical, financial, and regulatory hurdles which seem so far removed from laboratory science do not stall or prevent the subsequent translation of their idea into a treatment. The aim of this review is to explore the development and translation of new treatments. Increasing the understanding of these complexities and barriers among primary researchers could enhance the efficiency of biomaterial translation. © 2015 Wiley Periodicals, Inc.

  14. Immunologically active biomaterials for cancer therapy.

    Science.gov (United States)

    Ali, Omar A; Mooney, David J

    2011-01-01

    Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.

  15. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    Science.gov (United States)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  16. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment

    OpenAIRE

    Pritchard, Eleanor M.; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L.

    2012-01-01

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material f...

  17. Logic of Biomaterial devices from CLRI for wound management

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Logic of Biomaterial devices from CLRI for wound management. Designing of biodegradable scaffolds. Designing the scaffold. Host drugs and growth factors. Design controlled drug release only to the wound area (based on pH differentials). Smartness is built in ...

  18. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  19. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    Science.gov (United States)

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, phistogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  1. Crack Growth-Based Predictive Methodology for the Maintenance of the Structural Integrity of Repaired and Nonrepaired Aging Engine Stationary Components

    National Research Council Canada - National Science Library

    Barron, Michael

    1999-01-01

    .... Specifically, the FAA's goal was to develop "Crack Growth-Based Predictive Methodologies for the Maintenance of the Structural Integrity of Repaired and Nonrepaired Aging Engine Stationary Components...

  2. 75 FR 6383 - Lead-Based Paint Renovation, Repair and Painting, and Pre-Renovation Education Activities in...

    Science.gov (United States)

    2010-02-09

    ..., Repair and Painting, and Pre- Renovation Education Activities in Target Housing and Child Occupied....C. 2682(c)(3), and a lead-based paint pre-renovation education program in accordance with section... TSCA, and a lead-based paint pre-renovation education program in accordance with section 406(b) of TSCA...

  3. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  4. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.

    Science.gov (United States)

    Ebrahimkhani, Mohammad R; Daneshmand, Ali; Mazumder, Aprotim; Allocca, Mariacarmela; Calvo, Jennifer A; Abolhassani, Nona; Jhun, Iny; Muthupalani, Sureshkumar; Ayata, Cenk; Samson, Leona D

    2014-11-11

    Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag(-/-) mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag(-/-) mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag(-/-) liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.

  5. Effect of a calcium hydroxide-based root canal dressing on periapical repair in dogs: a histological study.

    Science.gov (United States)

    Leonardo, Mario R; Hernandez, Maria E F T; Silva, Léa A B; Tanomaru-Filho, Mário

    2006-11-01

    To compare the periapical repair of teeth with periapical lesion following root canal treatment by using a calcium hydroxide-based intracanal dressing for several time periods or filling in a single visit. After induction of periapical lesions in 4 dogs, the root canals were prepared using 5.25% sodium hypochlorite for irrigation, and animals were separated into 4 experimental groups; in group I, root canals were filled in a single session; in groups II, III, and IV, a calcium hydroxide-based dressing was kept in place for 15, 30, or 180 days, respectively. Root canals from groups I, II, and III were filled with gutta-percha cones and AH Plus sealer. After 180 days, animals were killed and histological sections were stained with hematoxylin-eosin to evaluate periapical repair. Periapical repair was better in groups II, III, and IV (intracanal dressing) compared with group I (single session; P session treatment.

  6. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    better understanding of the role of macrophages in the tissue healing processes, especially in events that follow biomaterial implantation, we can design novel biomaterials-based tissue-engineered constructs that elicit a favorable immune response upon implantation and perform for their intended applications.

  7. Glycosylase-mediated repair of radiation-induced DNA bases: substrate specificities and mechanisms

    International Nuclear Information System (INIS)

    D'ham, Cedric

    1998-01-01

    Cellular DNA is subject to permanent damage and repair processes. One way to restore the integrity of DNA involves the base excision repair pathway. Glycosylases are the key-enzymes of this process. The present work deals with the determination of the substrate specificity and the mechanism of action of three glycosylases: endonuclease III and Fpg of Escherichia coli and Ogg1 of Saccharomyces cerevisiae. The present manuscript is divided into four parts: Endonuclease III-mediated excision of 5,6-dihydro-thymine and 5-hydroxy-5,6-dihydro-thymine from γ-irradiated DNA was analyzed by a gas chromatography-mass spectrometry assay, including a liquid chromatography pre-purification step. This was found to be necessary in order to separate the cis and trans isomers of 6-hydroxy-5,6-dihydro-thymine from the 5-hydroxy-5,6-dihydro-thymine. Modified oligonucleotides that contained a unique lesion, including thymine glycol, 5,6-dihydro-thymine and 5-hydroxy-cytosine were synthesized to assess the substrate specificity of endonuclease III and Fpg. The order of preference of the enzymes for the substrates was determined by the measurement of the Michaelis constants of the kinetics. Furthermore, the mechanism of action of endonuclease III has been reconsidered, after analysis using the MALDI mass spectrometry technique. These studies reveal that hydrolysis is the main pathway by which endonuclease III cleaves the DNA backbone. Using a modified oligonucleotide, 8-oxo-7,8-dihydro-adenine was shown to be a product of excision of the Ogg1 enzyme. The role of the complementary base towards the lesion was found to be preponderant in the damage excision. A last chapter concerns the synthesis and the characterization of the four isomers of 5(6)-hydroxy-6(5)-hydroperoxides of thymine. These products may be substrates for endonuclease III or Fpg. (author) [fr

  8. Genetic variation in the base excision repair pathway, environmental risk factors, and colorectal adenoma risk.

    Directory of Open Access Journals (Sweden)

    Roman Corral

    Full Text Available Cigarette smoking, high alcohol intake, and low dietary folate levels are risk factors for colorectal adenomas. Oxidative damage caused by these three factors can be repaired through the base excision repair pathway (BER. We hypothesized that genetic variation in BER might modify colorectal adenoma risk. In a sigmoidoscopy-based study, we examined associations between 182 haplotype tagging SNPs in 14 BER genes, and colorectal adenoma risk, and examined their potential role as modifiers of the effect cigarette smoking, alcohol intake, and dietary folate levels. Among all individuals, no statistically significant associations between BER SNPs and adenoma risk persisted after correction for multiple comparisons. However, among Asian-Pacific Islanders we observed two SNPs in FEN1 and one in NTHL1, and among African-Americans one SNP in APEX1 that were associated with colorectal adenoma risk. Significant associations were also observed between SNPs in the NEIL2 gene and rectal adenoma risk. Three SNPS modified the effect of smoking (MUTYH interaction p = 0.002; OGG1 interaction p = 0.013; FEN1 interaction p = 0.013, one SNP in LIG3 modified the effect of alcohol consumption (interaction p = 0.024 and two SNPs in LIG3 modified the effect of dietary folate (interaction p = 0.001 and p = 0.08 on colorectal adenoma risk. These findings support a role for genetic variants in the BER pathway as potential modifiers of colorectal adenoma risk. Our findings strengthen the role of oxidative damage induced by key lifestyle and dietary risk factors in colorectal adenoma formation.

  9. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Bennett

    Full Text Available Host base excision repair (BER proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1 and mutY homolog (MYH as well as DNA polymerase beta (Polβ. While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5'dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggested Polβ DNA synthesis activity is not necessary while 5'dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.

  11. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses

    International Nuclear Information System (INIS)

    Mcdonald, E.J.; Hallam, K.R.; Flewitt, P.E.J.

    2005-01-01

    On many occasions repairs are undertaken to ferritic steel weldments on plant either during construction or to remove service induced defects. These repaired weldments are subsequently put into service with or without a post-weld heat treatment. In either case, but particularly for the latter, there is a need to accommodate the associated residual stresses in structural integrity assessments such as those based upon the R6 failure avoidance procedure. Although in some circumstances the residual macro-stresses developed within weldments of components and structures can be calculated this is not so readily achieved in the case of residual stresses introduced by repair welds. There is a range of physical and mechanical techniques available to undertake the measurement of macro-residual stresses. Of these X-ray diffraction has the advantage that it is essentially non-destructive and offers the potential for evaluating stresses, which exist in the near surface layer. Although for many structural integrity assessments both the magnitude and distribution of residual stresses have to be accommodated it is not practical to make destructive measurements on weld repaired components and structures to establish the through section distribution of stresses. An approach is to derive a description of the appropriate macro-stresses by a combination of measurement and calculation on trial ferritic steel repair weldments. Surface measurements on the plant can then be made to establish the relationship between the repaired component or structure and the trial weld and thereby improve confidence in predicted stresses and their distribution from the near-surface measured values. Hence X-ray diffraction measurements at the near-surface of the plant weldment can be used to underwrite the quality of the repair by confirming the magnitude and distribution of residual stresses used for the integrity assessment to demonstrate continued safe operation

  12. A vision on the future of articular cartilage repair

    Directory of Open Access Journals (Sweden)

    M Cucchiarini

    2014-05-01

    Full Text Available An AO Foundation (Davos, Switzerland sponsored workshop "Cell Therapy in Cartilage Repair" from the Symposium "Where Science meets Clinics" (September 5-7, 2013, Davos gathered leaders from medicine, science, industry, and regulatory organisations to debate the vision of cell therapy in articular cartilage repair and the measures that could be taken to narrow the gap between vision and current practice. Cell-based therapy is already in clinical use to enhance the repair of cartilage lesions, with procedures such as microfracture and articular chondrocyte implantation. However, even though long term follow up is good from a clinical perspective and some of the most rigorous randomised controlled trials in the regenerative medicine/orthopaedics field show beneficial effect, none of these options have proved successful in restoring the original articular cartilage structure and functionality in patients so far. With the remarkable recent advances in experimental research in cell biology (new sources for chondrocytes, stem cells, molecular biology (growth factors, genes, biomaterials, biomechanics, and translational science, a combined effort between scientists and clinicians with broad expertise may allow development of an improved cell therapy for cartilage repair. This position paper describes the current state of the art in the field to help define a procedure adapted to the clinical situation for upcoming translation in the patient.

  13. Properties and clinical relevance of osteoinductive biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela

    2005-01-01

    This thesis had two main goals: (¿) to investigate parameters influencing osteoinductive potential of biomaterials in order to unravel the mechanism underlying osteoinduction and (¿¿) to investigate performance of osteoinductive biomaterials orthotopically in order to get insight into their clinical

  14. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    functional components are not generally considered to be biomaterials since by definition they are not in ... The requirements in these cases will be varied depending upon the stress transfer system within the ... few widely used biomaterials in clinical practice but rather a whole range of metals and alloys, ceramic and ...

  15. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  16. Real-Time Multifault Rush Repairing Strategy Based on Utility Theory and Multiagent System in Distribution Networks

    Directory of Open Access Journals (Sweden)

    Zhao Hao

    2016-01-01

    Full Text Available The problem of multifault rush repair in distribution networks (DNs is a multiobjective dynamic combinatorial problem with topology constraints. The problem consists of archiving an optimal faults’ allocation strategy to squads and an admissible multifault rush repairing strategy with coordinating switch operations. In this article, the utility theory is introduced to solve the first problem and a new discrete bacterial colony chemotaxis (DBCC algorithm is proposed for the second problem to determine the optimal sequence for each squad to repair faults and the corresponding switch operations. The above solution is called the two-stage approach. Additionally, a double mathematical optimization model based on the fault level is proposed in the second stage to minimize the outage loss and total repairing time. The real-time adjustment multiagent system (RA-MAS is proposed to provide facility to achieve online multifault rush repairing strategy in DNs when there are emergencies after natural disasters. The two-stage approach is illustrated with an example from a real urban distribution network and the simulation results show the effectiveness of the two-stage approach.

  17. Acetylation regulates WRN catalytic activities and affects base excision DNA repair

    DEFF Research Database (Denmark)

    Muftuoglu, Meltem; Kusumoto, Rika; Speina, Elzbieta

    2008-01-01

    The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone...... acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription....

  18. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    implanting n-CDHA/PAA biomaterials, and lamellar bone gradually formed at 12 weeks and 24 weeks after implantation. Routine blood and kidney function tests showed no significant changes at 2 weeks and 24 weeks after implantation of both biomaterials. Conclusion n-CDHA/PAA composites showed good compatibility in in vivo model. In this study, n-CDHA/PAA were found to be safe, nontoxic, and biologically active in bone repair. PMID:26504382

  19. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    -CDHA/PAA biomaterials, and lamellar bone gradually formed at 12 weeks and 24 weeks after implantation. Routine blood and kidney function tests showed no significant changes at 2 weeks and 24 weeks after implantation of both biomaterials. n-CDHA/PAA composites showed good compatibility in in vivo model. In this study, n-CDHA/PAA were found to be safe, nontoxic, and biologically active in bone repair.

  20. The use of a cognitive task analysis-based multimedia program to teach surgical decision making in flexor tendon repair.

    Science.gov (United States)

    Luker, Kali R; Sullivan, Maura E; Peyre, Sarah E; Sherman, Randy; Grunwald, Tiffany

    2008-01-01

    The aim of this study was to compare the surgical knowledge of residents before and after receiving a cognitive task analysis-based multimedia teaching module. Ten plastic surgery residents were evaluated performing flexor tendon repair on 3 occasions. Traditional learning occurred between the first and second trial and served as the control. A teaching module was introduced as an intervention between the second and third trial using cognitive task analysis to illustrate decision-making skills. All residents showed improvement in their decision-making ability when performing flexor tendon repair after each surgical procedure. The group improved through traditional methods as well as exposure to our talk-aloud protocol (P > .01). After being trained using the cognitive task analysis curriculum the group displayed a statistically significant knowledge expansion (P multimedia surgical curriculum instruction achieved greater command of problem solving and are better equipped to make correct decisions in flexor tendon repair.

  1. Prediction of Combine Economic Life Based on Repair and Maintenance Costs Model

    Directory of Open Access Journals (Sweden)

    A Rohani

    2014-09-01

    Full Text Available Farm machinery managers often need to make complex economic decisions on machinery replacement. Repair and maintenance costs can have significant impacts on this economic decision. The farm manager must be able to predict farm machinery repair and maintenance costs. This study aimed to identify a regression model that can adequately represent the repair and maintenance costs in terms of machine age in cumulative hours of use. The regression model has the ability to predict the repair and maintenance costs for longer time periods. Therefore, it can be used for the estimation of the economic life. The study was conducted using field data collected from 11 John-Deer 955 combine harvesters used in several western provinces of Iran. It was found that power model has a better performance for the prediction of combine repair and maintenance costs. The results showed that the optimum replacement age of John-Deer 955 combine was 54300 cumulative hours.

  2. 76 FR 27044 - Lead-Based Paint Renovation, Repair and Painting, and Pre-Renovation Education Activities in...

    Science.gov (United States)

    2011-05-10

    ..., Repair and Painting, and Pre- Renovation Education Activities in Target Housing and Child Occupied...), and a lead-based paint pre-renovation education program in accordance with section 406(b) of TSCA, 15... renovation and remodeling activities of pre-1978 housing and child-occupied facilities in the State of...

  3. Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence

    Directory of Open Access Journals (Sweden)

    P Orth

    2013-06-01

    Full Text Available Alterations of the subchondral bone are pathological features associated with spontaneous osteochondral repair following an acute injury and with articular cartilage repair procedures. The aim of this review is to discuss their incidence, extent and relevance, focusing on recent knowledge gained from both translational models and clinical studies of articular cartilage repair. Efforts to unravel the complexity of subchondral bone alterations have identified (1 the upward migration of the subchondral bone plate, (2 the formation of intralesional osteophytes, (3 the appearance of subchondral bone cysts, and (4 the impairment of the osseous microarchitecture as potential problems. Their incidence and extent varies among the different small and large animal models of cartilage repair, operative principles, and over time. When placed in the context of recent clinical investigations, these deteriorations of the subchondral bone likely are an additional, previously underestimated, factor that influences the long-term outcome of cartilage repair strategies. Understanding the role of the subchondral bone in both experimental and clinical articular cartilage repair thus holds great promise of being translated into further improved cell- or biomaterial-based techniques to preserve and restore the entire osteochondral unit.

  4. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Marcio W.D., E-mail: mwdmendes@ipen.com; Ágreda, Carola G.; Bressiani, Ana H.A.; Bressiani, José C.

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti–27Nb–13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for > 3 days in the SBF solution. - Highlights: • The alloy is classified as α + β and the milling time influences the formation of these phases. • Dissolution of Nb is related to the mechanical properties of the alloy. • It's possible to form apatite on all samples immersed in SBF from 3 days. • The alloy can be used in orthopedic applications or in dental applications.

  5. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    Science.gov (United States)

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  6. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  7. Optimization of Aeroengine Shop Visit Decisions Based on Remaining Useful Life and Stochastic Repair Time

    Directory of Open Access Journals (Sweden)

    Jing Cai

    2016-01-01

    Full Text Available Considering the wide application of condition-based maintenance in aeroengine maintenance practice, it becomes possible for aeroengines to carry out their preventive maintenance in just-in-time (JIT manner by reasonably planning their shop visits (SVs. In this study, an approach is proposed to make aeroengine SV decisions following the concept of JIT. Firstly, a state space model (SSM for aeroengine based on exhaust gas temperature margin is developed to predict the remaining useful life (RUL of aeroengine. Secondly, the effect of SV decisions on risk and service level (SL is analyzed, and an optimization of the aeroengine SV decisions based on RUL and stochastic repair time is performed to carry out JIT manner with the requirement of safety and SL. Finally, a case study considering two CFM-56 aeroengines is presented to demonstrate the proposed approach. The results show that predictive accuracy of RUL with SSM is higher than with linear regression, and the process of SV decisions is simple and feasible for airlines to improve the inventory management level of their aeroengines.

  8. Android platform based smartphones for a logistical remote association repair framework.

    Science.gov (United States)

    Lien, Shao-Fan; Wang, Chun-Chieh; Su, Juhng-Perng; Chen, Hong-Ming; Wu, Chein-Hsing

    2014-06-25

    The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF) to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS), a Maintenance Support Center (MSC) and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT) is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use.

  9. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    International Nuclear Information System (INIS)

    Ericson, Kajsa M; Isinger, Anna P; Isfoss, Björn L; Nilbert, Mef C

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC

  10. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Isfoss Björn L

    2005-03-01

    Full Text Available Abstract Background Upper urothelial cancer (UUC, i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC. Defective mismatch repair (MMR specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. Methods We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. Results A MSI-high phenotype was identified in 9/216 (4% successfully analyzed patients and a MSI-low phenotype in 5/216 (2%. Loss of MMR protein immunostaining was found in 11/216 (5% tumors, and affected most commonly MSH2 and MSH6. Conclusion This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  11. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Kajsa M; Isinger, Anna P [Departments of Oncology, University Hospital, Lund (Sweden); Isfoss, Björn L [Departments of Pathology, University Hospital, Lund (Sweden); Nilbert, Mef C [Departments of Oncology, University Hospital, Lund (Sweden)

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  12. Android Platform Based Smartphones for a Logistical Remote Association Repair Framework

    Directory of Open Access Journals (Sweden)

    Shao-Fan Lien

    2014-06-01

    Full Text Available The maintenance of large-scale systems is an important issue for logistics support planning. In this paper, we developed a Logistical Remote Association Repair Framework (LRARF to aid repairmen in keeping the system available. LRARF includes four subsystems: smart mobile phones, a Database Management System (DBMS, a Maintenance Support Center (MSC and wireless networks. The repairman uses smart mobile phones to capture QR-codes and the images of faulty circuit boards. The captured QR-codes and images are transmitted to the DBMS so the invalid modules can be recognized via the proposed algorithm. In this paper, the Linear Projective Transform (LPT is employed for fast QR-code calibration. Moreover, the ANFIS-based data mining system is used for module identification and searching automatically for the maintenance manual corresponding to the invalid modules. The inputs of the ANFIS-based data mining system are the QR-codes and image features; the output is the module ID. DBMS also transmits the maintenance manual back to the maintenance staff. If modules are not recognizable, the repairmen and center engineers can obtain the relevant information about the invalid modules through live video. The experimental results validate the applicability of the Android-based platform in the recognition of invalid modules. In addition, the live video can also be recorded synchronously on the MSC for later use.

  13. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract

    International Nuclear Information System (INIS)

    Foehe, C.; Dikomey, E.

    1994-01-01

    DNA base damage was measured in Chinese hamster ovary cells X-irradiated under aerobic conditions using an extract of the bacterium Micrococcus luteus. The glycosylases and endonucleases present in this extract recognize damaged bases and convert them into strand breaks (termed endonuclease-sensitive sites, enss). Strand breaks were detected by the alkaline unwinding technique. The induction of enss was measured for X-ray doses ranging up to 45 Gy. The relative frequency of all enss related to all radiation induced strand breaks was 1.7 ± 0.4. Repair of enss was studied for a radiation dose of 45 Gy. The number of enss was found to decrease exponentially with time after irradiation with a half-time of τ enss = 37 ± 8 min. The repair kinetics that were also measured for all X-ray-induced DNA strand breaks were found to consist of three phases: fast, intermediate and slow. The intermediate phase was fitted under the assumption that this phase results from the information and repair of secondary single-strand breaks generated by enzymatic incision at the sites of base damage repair. (author)

  14. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  15. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  16. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  17. New biomaterials for orthopedic implants

    Directory of Open Access Journals (Sweden)

    Ong KL

    2015-09-01

    Full Text Available Kevin L Ong, Brian Min Yun, Joshua B WhiteExponent, Inc., Philadelphia, PA, USAAbstract: With the increasing use of orthopedic implants worldwide, there continues to be great interest in the development of novel technologies to further improve the effective clinical performance of contemporary treatment modalities and devices. Continuing research interest also exists in developing novel bulk biomaterials (eg, polycarbonate urethanes, silicon or novel formulations of existing but less widely used biomaterials (eg, polyaryletherketones, polyetheretherketone. There is also growing focus on customizing the material properties of bioabsorbables and composite materials with fillers such as bioactive ceramics. In terms of tissue engineering, more recent developments have focused on basic engineering and biological fundamentals to use cells, signaling factors, and the scaffold material itself to better restore tissue and organ structure and function. There has also been recent controversy with the use of injectables as a nonsurgical approach to treat joint disorders, but more attention is being directed toward the development of newer formulations with different molecular weights. The industry has also continuously sought to improve coatings to supplement the function of existing implants, with the goal of improving their osseointegrative qualities and incorporating antimicrobial properties. These include the use of bone morphogenetic protein, bisphosphonates, calcium phosphate, silicon nitride, and iodine. Due to the widespread use of bone graft materials, recent developments in synthetic graft materials have explored further development of bioactive glass, ceramic materials, and porous titanium particles. This review article provides an overview of ongoing efforts in the above research areas.Keywords: coatings, scaffolds, bioabsorbables, bone graft, injectables

  18. Developing a Model for Optimizing Inventory of Repairable Items at Single Operating Base

    OpenAIRE

    Le, Tin

    2016-01-01

    The use of EOQ model in inventory management is popular. However, EOQ models has many disadvantages, especially, when the model is applied to manage repairable items. In order to deal with high-cost and repairable items, Craig C. Sherbrooke introduced a model in his book “Optimal Inventory Modeling of Systems: Multi-Echelon Techniques”. The research focus is to implement and develop a program to execute the single-site in-ventory model for repairable items. The model helps to significantl...

  19. Challenges and strategies in the repair of ruptured annulus fibrosus

    Directory of Open Access Journals (Sweden)

    CC Guterl

    2013-01-01

    Full Text Available Lumbar discectomy is the surgical procedure most frequently performed for patients suffering from low back pain and sciatica. Disc herniation as a consequence of degenerative or traumatic processes is commonly encountered as the underlying cause for the painful condition. While discectomy provides favourable outcome in a majority of cases, there are conditions where unmet requirements exist in terms of treatment, such as large disc protrusions with minimal disc degeneration; in these cases, the high rate of recurrent disc herniation after discectomy is a prevalent problem. An effective biological annular repair could improve the surgical outcome in patients with contained disc herniations but otherwise minor degenerative changes. An attractive approach is a tissue-engineered implant that will enable/stimulate the repair of the ruptured annulus. The strategy is to develop three-dimensional scaffolds and activate them by seeding cells or by incorporating molecular signals that enable new matrix synthesis at the defect site, while the biomaterial provides immediate closure of the defect and maintains the mechanical properties of the disc. This review is structured into (1 introduction, (2 clinical problems, current treatment options and needs, (3 biomechanical demands, (4 cellular and extracellular components, (5 biomaterials for delivery, scaffolding and support, (6 pre-clinical models for evaluation of newly developed cell- and material-based therapies, and (7 conclusions. This article highlights that an interdisciplinary approach is necessary for successful development of new clinical methods for annulus fibrosus repair. This will benefit from a close collaboration between research groups with expertise in all areas addressed in this review.

  20. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  1. Defect characterization, diagnosis and repair of wood flooring based on a field survey

    International Nuclear Information System (INIS)

    Delgado, A.; Pereira, C.; Brito, J. de; Silvestre, J.D.

    2018-01-01

    A statistical characterization of defects in 35 buildings and 98 wood floorings (softwood and hardwood floors, and laminated and engineered wood floors), their diagnostic methods and repair solutions is presented. An expert system for inspecting wood flooring, comprising the classification of defects, their most probable causes, diagnostic methods and repair techniques, was used. Results include age, affected area, severity and frequency of defects and their main causes, as well as appropriate diagnostic methods, preventive and curative repair solutions most prescribed and the most significant correlations. Scratches were detected in more than five sixths of the sample, highly associated with exterior mechanical actions, and with an inadequate finishing layer. Wearing of the finishing layer was detected in a quarter of the inspected floorings. Accordingly, the application of a suitable finishing layer and, alternatively, its replacement are the most prescribed repair techniques. [es

  2. Application of a System-Based Inventory Model to Marine Corps Repairable Parts

    National Research Council Canada - National Science Library

    Barnett, Craig

    2001-01-01

    ... isolation of the inventories and because of mathematical flaws in the Marine Corps' sparing methodology The Marine Corps is seeking to centralize the management of secondary repairables and is considering...

  3. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  4. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  5. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  6. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formulation and Evaluation of Exotic Fat Based Cosmeceuticals for Skin Repair

    OpenAIRE

    Mandawgade, S. D.; Patravale, Vandana B.

    2008-01-01

    Mango butter was explored as a functional, natural supplement and active skin ingredient in skin care formulations. A foot care cream was developed with mango butter to evaluate its medicinal value and protective function in skin repair. Qualitative comparison and clinical case studies of the product were carried out. Wound healing potential of foot care cream was investigated on the rat excision and incision wound models. Results of the clinical studies demonstrated complete repair of worn a...

  8. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Science.gov (United States)

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  9. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  10. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  11. Biomaterials Approaches for Utilizing the Regenerative Potential of the Peripheral Nerve Injury Microenvironment

    Science.gov (United States)

    Wrobel, Melissa Renee

    following classical activation (M1/pro-inflammatory) with lipopolysaccharide (LPS; 1microg/mL) and would accelerate the transformation of Schwann cells from an immature state fol-lowing injury to a mature/pro-myelinating one. Cell phenotypes were functionally assessed using quantified reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and sandwich-ELISA based antibody arrays to measure changes in mRNA expression, mor-phology, and cytokine release, respectively. Macrophages cultured with the SCM and HA fibers had significantly reduced M1 gene expression, released lower levels of M1 cytokines (IL-1a, RANTES and TFN-a) and assumed an elongated morphology indicative of M2. These cues also induced changes in the Schwann cells including significantly reduced area, increased elongation, decreased expression of immature genes (GFAP) and increased expression of mature genes (Krox20 and Oct6). These results suggest that the SCM and HA nanofibers could trigger non-neuronal cells towards regenerative programs more quickly than traditional PNI interventions. Changes induced by biomaterials have distinct benefits over the use of immunomodulatory cy-tokines and would be a novel approach to direct repair. Our collective studies offer improved in-sight into the endogenous potential of the injured peripheral nerve and offer ways to incorporate intrinsic repair cues into a biomaterial system for treating large gaps.

  12. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  13. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay - A methodological overview

    Czech Academy of Sciences Publication Activity Database

    Azqueta, A.; Langie, S. A. S.; Slyšková, Jana; Collins, A. R.

    2013-01-01

    Roč. 12, č. 11 (2013), s. 1007-1010 ISSN 1568-7864 Grant - others:EU FP6(XE) LSHB-CT-2006-037575 Institutional support: RVO:68378041 Keywords : comet assay * base excision repair * nucleotide excision repair Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.362, year: 2013

  14. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis.

    Science.gov (United States)

    Morille, Marie; Toupet, Karine; Montero-Menei, Claudia N; Jorgensen, Christian; Noël, Danièle

    2016-05-01

    In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Configuration model of partial repairable spares under batch ordering policy based on inventory state

    Institute of Scientific and Technical Information of China (English)

    Ruan Minzhi; Luo Yi; Li Hua

    2014-01-01

    Rational planning of spares configuration project is an effective approach to improve equipment availability as well as reduce life cycle cost (LCC). With an analysis of various impacts on support system, the spares demand rate forecast model is constructed. According to systemic analysis method, spares support effectiveness evaluation indicators system is built, and then, initial spares configuration and optimization method is researched. To the issue of discarding and con-sumption for incomplete repairable items, its expected backorders function is approximated by Laplace demand distribution. Combining the (s-1, s) and (R, Q) inventory policy, the spares resup-ply model is established under the batch ordering policy based on inventory state, and the optimi-zation analysis flow for spares configuration is proposed. Through application on shipborne equipment spares configuration, the given scenarios are analyzed under two constraint targets:one is the support effectiveness, and the other is the spares cost. Analysis reveals that the result is consistent with practical regulation;therefore, the model’s correctness, method’s validity as well as optimization project’s rationality are proved to a certain extent.

  16. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Weissman, Lior; Yang, JL

    2012-01-01

    Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging...... process and the pathogenesis of several neurodegenerative diseases. Here we have investigated the repair of oxidative base damage, in synaptosomes of mouse brain during normal aging and in an AD model. During normal aging, a reduction in the base excision repair (BER) capacity was observed...... suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms...

  17. Tissue Engineering-based Therapeutic Strategies for Vocal Fold Repair and Regeneration

    Science.gov (United States)

    Li, Linqing; Stiadle, Jeanna M.; Lau, Hang K.; Zerdoum, Aidan B.; Jia, Xinqiao; L.Thibeault, Susan; Kiick, Kristi L.

    2016-01-01

    Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice. PMID:27619243

  18. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  19. Novel biomaterials: plasma-enabled nanostructures and functions

    International Nuclear Information System (INIS)

    Levchenko, Igor; Ostrikov, Kostya; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua

    2016-01-01

    Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials. (topical review)

  20. Distinct spatio temporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    International Nuclear Information System (INIS)

    Campalans, Anna; Kortulewski, Thierry; Amouroux, Rachel; Radicella, J. Pablo; Menoni, Herve; Vermeulen, Wim

    2013-01-01

    Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected. (authors)

  1. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  2. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  3. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  4. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  5. Special Issue “Biomaterials and Bioprinting”

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2016-09-01

    Full Text Available The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.

  6. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  7. Biomaterials and computation: a strategic alliance to investigate emergent responses of neural cells.

    Science.gov (United States)

    Sergi, Pier Nicola; Cavalcanti-Adam, Elisabetta Ada

    2017-03-28

    Topographical and chemical cues drive migration, outgrowth and regeneration of neurons in different and crucial biological conditions. In the natural extracellular matrix, their influences are so closely coupled that they result in complex cellular responses. As a consequence, engineered biomaterials are widely used to simplify in vitro conditions, disentangling intricate in vivo behaviours, and narrowing the investigation on particular emergent responses. Nevertheless, how topographical and chemical cues affect the emergent response of neural cells is still unclear, thus in silico models are used as additional tools to reproduce and investigate the interactions between cells and engineered biomaterials. This work aims at presenting the synergistic use of biomaterials-based experiments and computation as a strategic way to promote the discovering of complex neural responses as well as to allow the interactions between cells and biomaterials to be quantitatively investigated, fostering a rational design of experiments.

  8. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  9. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    2010-08-01

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  10. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  11. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interactions between bone cells and biomaterials: An update.

    Science.gov (United States)

    Beauvais, Sabrina; Drevelle, Olivier; Jann, Jessica; Lauzon, Marc-Antoine; Foruzanmehr, Mohammadreza; Grenier, Guillaume; Roux, Sophie; Faucheux, Nathalie

    2016-06-01

    As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.

  13. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  14. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

    Directory of Open Access Journals (Sweden)

    Gad MM

    2016-10-01

    Full Text Available Mohammed M Gad,1 Ahmed Rahoma,2,3 Ahmad M Al-Thobity,1 Aws S ArRejaie4 1Department of Substitutive Dental Sciences, 2Department of Restorative Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia; 3Department of Dental Materials, College of Dentistry, Al-Azhar University, Assiut, Egypt; 4Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia Background: Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists.Aim of the study: This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2 on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA denture bases.Materials and methods: One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test and divided into three main groups: one control group (intact specimens and two groups divided according to surface design (45° bevels and butt joints, in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant.Results: Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05. The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano

  15. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.

    Science.gov (United States)

    Jammalamadaka, Udayabhanu; Tappa, Karthik

    2018-03-01

    Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  16. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Udayabhanu Jammalamadaka

    2018-03-01

    Full Text Available Three-dimensional printing has significant potential as a fabrication method in creating scaffolds for tissue engineering. The applications of 3D printing in the field of regenerative medicine and tissue engineering are limited by the variety of biomaterials that can be used in this technology. Many researchers have developed novel biomaterials and compositions to enable their use in 3D printing methods. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries, porosities, co-culture of multiple cells, and incorporate growth factors. In this review, recently-developed biomaterials for different tissues are discussed. Biomaterials used in 3D printing are categorized into ceramics, polymers, and composites. Due to the nature of 3D printing methods, most of the ceramics are combined with polymers to enhance their printability. Polymer-based biomaterials are 3D printed mostly using extrusion-based printing and have a broader range of applications in regenerative medicine. The goal of tissue engineering is to fabricate functional and viable organs and, to achieve this, multiple biomaterials and fabrication methods need to be researched.

  17. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  18. Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data Samples

    DEFF Research Database (Denmark)

    Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

    2016-01-01

    Prediction of the duration of a repair and maintenance project of a gas transport system is an important part of planning activities. There exist numerous sources of uncertainties that may result in time overruns possibly leading to multiple negative consequences. Our experience in planning...... this work suggests that accepting the stochastic nature of the project duration is a constructive step towards the preparedness to contingencies and defining penalties for repair companies. To support this approach, one needs to construct probability distributions of the durations of the projects...

  19. Functional, genetic and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Korenková, Vlasta; Collins, A. R.; Procházka, Pavel; Vodičková, Ludmila; Švec, Jiří; Lipská, L.; Levý, M.; Schneiderová, M.; Liška, V.; Holubec, L.; Kumar, R.; Souček, P.; Naccarati, Alessio; Vodička, Pavel

    2012-01-01

    Roč. 18, č. 21 (2012), s. 5878-5887 ISSN 1078-0432 R&D Projects: GA ČR GAP304/12/1585; GA ČR(CZ) GAP304/10/1286; GA MZd NT12025 Grant - others:UICC(XE) ICR/11/068/2011; EEA-research fund:(NO) B/CZ0046/40031 Institutional research plan: CEZ:AV0Z50390512 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : DNA repair capacity * DNA repair gene expression * methylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.837, year: 2012

  20. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Arthroscopic Labral Base Repair in the Hip: 5-Year Minimum Clinical Outcomes.

    Science.gov (United States)

    Domb, Benjamin G; Yuen, Leslie C; Ortiz-Declet, Victor; Litrenta, Jody; Perets, Itay; Chen, Austin W

    2017-10-01

    Arthroscopic labral base repair (LBR) in the hip is a previously described technique designed to restore the native functional anatomy of the labrum by reproducing its seal against the femoral head. LBR has been shown to have good short-term outcomes. Hypothesis/Purpose: The purpose was to evaluate clinical outcomes of an LBR cohort with a minimum 5-year follow-up. It was hypothesized that patients who underwent LBR would continue to have significant improvement from their preoperative scores and maintain scores similar to their 2-year outcomes. Case series; Level of evidence, 4. Data for patients undergoing primary hip arthroscopic surgery with LBR from February 2008 to May 2011 with a minimum 5-year follow-up were prospectively collected and retrospectively reviewed. Patients with preoperative Tonnis osteoarthritis grade ≥2, previous hip conditions (slipped capital femoral epiphysis, avascular necrosis, Legg-Calv-Perthes disease), severe dysplasia (lateral center-edge angle hip surgery were excluded. Statistical equivalence tests evaluated patient-reported outcomes (PROs) including the modified Harris Hip Score (mHHS), Non-Arthritic Hip Score (NAHS), Hip Outcome Score-Sport-Specific Subscale (HOS-SSS), visual analog scale (VAS) for pain, and patient satisfaction (0-10 scale; 10 = very satisfied). Of the 70 patients (74 hips) who met inclusion and exclusion criteria, 60 (85.7%) patients (64 hips) were available at a minimum 5-year follow-up. All PRO scores significantly improved from preoperative values with a mean follow-up of 67.8 ± 7.4 months (range, 60.0-89.7 months). The mean mHHS increased from 64.4 ±13.8 to 85.3 ± 17.7 ( P hip arthroscopic surgery has yet to be determined; however, these midterm results demonstrate the rates of additional procedures (both secondary arthroscopic surgery and conversion to total hip arthroplasty), that may be necessary after 2 years.

  2. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biomaterials use in Mulago National Referral Hospital in Kampala, Uganda: Access and affordability.

    Science.gov (United States)

    Bakwatanisa, Bosco; Enywaku, Alfred; Kiwanuka, Martin; Lamunu, Claire; Mbowa, Nicholas; Mukiibi, Denis; Namayega, Catherine; Ngabirano, Beryl; Ntambi, Henry; Reichert, William

    2016-01-01

    Students in Biomaterials BBE3102 at Makerere University in Kampala, Uganda were assigned semester long group projects in the first semester of the 2014-15 academic year to determine the biomaterials type and usage in Mulago National Referral Hospital, which is emblematic of large public hospitals across East Africa. Information gathering was conducted through student interviews with Mulago physicians because there were no archival records. The students divided themselves into seven project groups covering biomaterials use in the areas of wound closure, dental and oral surgery, cardiology, burn care, bone repair, ophthalmology and total joint replacement. As in the developed world, the majority of biomaterials used in Mulago are basic wound closure materials, dental materials, and bone fixation materials, all of which are comparatively inexpensive, easy to store, and readily available from either the government or local suppliers; however, there were significant issues with the implant supply chain, affordability, and patient compliance and follow-up in cases where specialty expertise and expensive implants were employed. © 2015 Wiley Periodicals, Inc.

  4. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  5. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  6. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  7. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  8. On the effectiveness of recoding-based repair in network coded distributed storage

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Braun, Patrik J.; Roetter, Daniel Enrique Lucani

    2017-01-01

    High capacity storage systems distribute less across several storage devices (nodes) and apply an erasure code to meet availability and reliability requirements. Since devices can lose network connectivity or fail permanently, a dynamic repair mechanism must be put in place. In such cases a new r...

  9. Initial Development of Composite Repair Resins With Low Hazardous Air Pollutant Contents

    National Research Council Canada - National Science Library

    LaScala, John J; Bingham, Scott; Andrews, Kevin S; Sands, James M; Palmese, Guiseppe R

    2008-01-01

    Unsaturated polyester-based repair resins, such a Bondo, are widely used for automotive repair, marine repair, sporting equipment repair, and household repair of metal, composites, plastics, and wood...

  10. Computer-based assessment of right ventricular regional ejection fraction in patients with repaired Tetralogy of Fallot

    Science.gov (United States)

    Teo, S.-K.; Wong, S. T.; Tan, M. L.; Su, Y.; Zhong, L.; Tan, Ru-San

    2015-03-01

    After surgical repair for Tetralogy of Fallot (TOF), most patients experience long-term complications as the right ventricle (RV) undergoes progressive remodeling that eventually affect heart functions. Thus, post-repair surgery is required to prevent further deterioration of RV functions that may result in malignant ventricular arrhythmias and mortality. The timing of such post-repair surgery therefore depends crucially on the quantitative assessment of the RV functions. Current clinical indices for such functional assessment measure global properties such as RV volumes and ejection fraction. However, these indices are less than ideal as regional variations and anomalies are obscured. Therefore, we sought to (i) develop a quantitative method to assess RV regional function using regional ejection fraction (REF) based on a 13-segment model, and (ii) evaluate the effectiveness of REF in discriminating 6 repaired TOF patients and 6 normal control based on cardiac magnetic resonance (CMR) imaging. We observed that the REF for the individual segments in the patient group is significantly lower compared to the control group (P < 0.05 using a 2-tail student t-test). In addition, we also observed that the aggregated REF at the basal, mid-cavity and apical regions for the patient group is significantly lower compared to the control group (P < 0.001 using a 2-tail student t-test). The results suggest that REF could potentially be used as a quantitative index for assessing RV regional functions. The computational time per data set is approximately 60 seconds, which demonstrates our method's clinical potential as a real-time cardiac assessment tool.

  11. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  13. Biomaterials in Cardiovascular Research: Applications and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Saravana Kumar Jaganathan

    2014-01-01

    Full Text Available Cardiovascular biomaterials (CB dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs, is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.

  14. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  15. The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Ida Casorelli

    Full Text Available BACKGROUND: The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/- mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS. The Mutyh(-/- phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/- mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/- mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+ regulatory T cells were observed only in Mutyh(-/- mice. CONCLUSIONS: The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.

  16. The Influence of Hepatitis C Virus Therapy on the DNA Base Excision Repair System of Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Czarny, Piotr; Merecz-Sadowska, Anna; Majchrzak, Kinga; Jabłkowski, Maciej; Szemraj, Janusz; Śliwiński, Tomasz; Karwowski, Bolesław

    2017-07-01

    Hepatitis C virus (HCV) can infect extrahepatic tissues, including lymphocytes, creating reservoir of the virus. Moreover, HCV proteins can interact with DNA damage response proteins of infected cells. In this article we investigated the influence of the virus infection and a new ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin (OBV/PTV/r ± DSV ± RBV) anti-HCV therapy on the PBMCs (peripheral blood mononuclear cells, mainly lymphocytes) DNA base excision repair (BER) system. BER protein activity was analyzed in the nuclear and mitochondrial extracts (NE and ME) of PBMC isolated from patients before and after therapy, and from subjects without HCV, using modeled double-strand DNA, with 2'-deoxyuridine substitution as the DNA damage. The NE and ME obtained from patients before therapy demonstrated lower efficacy of 2'-deoxyuridine removal and DNA repair polymerization than those of the control group or patients after therapy. Moreover, the extracts from the patients after therapy had similar activity to those from the control group. However, the efficacy of apurinic/apyrimidinic site excision in NE did not differ between the studied groups. We postulate that infection of lymphocytes by the HCV can lead to a decrease in the activity of BER enzymes. However, the use of novel therapy results in the improvement of glycosylase activity as well as the regeneration of endonuclease and other crucial repair enzymes.

  17. Polymorphisms in RAI and in genes of nucleotide and base excision repair are not associated with risk of testicular cancer.

    Science.gov (United States)

    Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla

    2005-07-28

    Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.

  18. Omphalocele repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100033.htm Omphalocele repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Omphalocele is an abdominal wall defect at the base ...

  19. Microgel mechanics in biomaterial design.

    Science.gov (United States)

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  20. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    Science.gov (United States)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  1. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  2. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Repair effect on patterned CoFeB-based magnetic tunneling junction using rapid thermal annealing

    International Nuclear Information System (INIS)

    Wu, K.-M.; Wang, Y.-H.; Chen, Wei-Chuan; Yang, S.-Y.; Shen, Kuei-Hung; Kao, M.-J.; Tsai, M.-J.; Kuo, C.-Y.; Wu, J.-C.; Horng, Lance

    2007-01-01

    Rapid thermal treatment without applying magnetic field reconstructing magnetic property of Co 60 Fe 20 B 20 was studied through magnetoresistance (R-H) measurement. In this paper, we report that the switching behaviors of CoFeB were obviously improved through rapid thermal annealing for only a brief 5 min. The squareness and reproduction of minor R-H loops were enhanced from 100 deg. C to 250 deg. C . Tunneling magnetoresistance (TMR) that is about 35% in the as-etched cells increases up to 44% after 250 deg. C rapid annealing and still shows about 25% TMR even after 400 deg. C treating. Therefore, repair purpose annealing is some what different from crystallizing purpose annealing. Applying magnetic field during repair annealing was not necessary. Brief thermal treatment improves CoFeB switching behavior indeed, and causes less damage at high temperature

  4. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  5. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  6. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    Science.gov (United States)

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  7. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  8. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  9. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  10. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    Science.gov (United States)

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. CT-Based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mehrdad Koloushani

    2018-03-01

    Full Text Available In this study, a new numerical approach based on CT-scan images and finite element (FE method has been used to predict the mechanical behavior of closed-cell foams under impact loading. Micro-structural FE models based on CT-scan images of foam specimens (elastic-plastic material model with material constants of bulk aluminum and macro-mechanical FE models (with crushable foam material model with material constants of foams were constructed. Several experimental tests were also conducted to see which of the two noted (micro- or macro- mechanical FE models can better predict the deformation and force-displacement curves of foams. Compared to the macro-structural models, the results of the micro-structural models were much closer to the corresponding experimental results. This can be explained by the fact that the micro-structural models are able to take into account the interaction of stress waves with cell walls and the complex pathways the stress waves have to go through, while the macro-structural models do not have such capabilities. Despite their high demand for computational resources, using micro-scale FE models is very beneficial when one needs to understand the failure mechanisms acting in the micro-structure of a foam in order to modify or diminish them.

  12. Water quality implications of culvert repair options : vinyl ester based and ultraviolet cured-in-place pipe liners.

    Science.gov (United States)

    2012-11-01

    Specifications of the Virginia Department of Transportation (VDOT) allow for the use of several trenchless pipe or : culvert repair technologies whereby existing underground culverts are repaired in place rather than by the use of the conventio...

  13. A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems

    International Nuclear Information System (INIS)

    Attar, Ahmad; Raissi, Sadigh; Khalili-Damghani, Kaveh

    2017-01-01

    A simulation-based optimization (SBO) method is proposed to handle multi-objective joint availability-redundancy allocation problem (JARAP). Here, there is no emphasis on probability distributions of time to failures and repair times for multi-state multi-component series-parallel configuration under active, cold and hot standby strategies. Under such conditions, estimation of availability is not a trivial task. First, an efficient computer simulation model is proposed to estimate the availability of the aforementioned system. Then, the estimated availability values are used in a repetitive manner as parameter of a two-objective joint availability-redundancy allocation optimization model through SBO mechanism. The optimization model is then solved using two well-known multi-objective evolutionary computation algorithms, i.e., non-dominated sorting genetic algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA2). The proposed SBO approach is tested using non-exponential numerical example with multi-state repairable components. The results are presented and discussed through different demand scenarios under cold and hot standby strategies. Furthermore, performance of NSGA-II and SPEA2 are statistically compared regarding multi-objective accuracy, and diversity metrics. - Highlights: • A Simulation-Based Optimization (SBO) procedure is introduced for JARAP. • The proposed SBO works for any given failure and repair times. • An efficient simulation procedure is developed to estimate availability. • Customized NSGA-II and SPEA2 are proposed to solve the bi-objective JARAP. • Statistical analysis is employed to test the performance of optimization methods.

  14. Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice.

    Science.gov (United States)

    Meira, Lisiane B; Moroski-Erkul, Catherine A; Green, Stephanie L; Calvo, Jennifer A; Bronson, Roderick T; Shah, Dharini; Samson, Leona D

    2009-01-20

    Vision loss affects >3 million Americans and many more people worldwide. Although predisposing genes have been identified their link to known environmental factors is unclear. In wild-type animals DNA alkylating agents induce photoreceptor apoptosis and severe retinal degeneration. Alkylation-induced retinal degeneration is totally suppressed in the absence of the DNA repair protein alkyladenine DNA glycosylase (Aag) in both differentiating and postmitotic retinas. Moreover, transgenic expression of Aag activity restores the alkylation sensitivity of photoreceptors in Aag null animals. Aag heterozygotes display an intermediate level of retinal degeneration, demonstrating haploinsufficiency and underscoring that Aag expression confers a dominant retinal degeneration phenotype.

  15. Biomaterials and the U.S. Navy.

    Science.gov (United States)

    1984-07-10

    genetics, immunology, cell biology, micro- biology (including procaryotes and eucaryotes as well as heterotropha and autotrophs), biochemistry...expression in a marine animal and associated cellular events. Metallothionein genes offer a mechanism for detoxification of chemical effluents, as well as...cross-linked, would have interesting structural and cellular effector properties for a biomaterial. In addition, the regular cross-linking sequences

  16. A promising magnetic resonance stem cell tracer based on natural biomaterials in a biological system: manganese (II chelated to melanin nanoparticles

    Directory of Open Access Journals (Sweden)

    Liu SJ

    2018-03-01

    Full Text Available Shi-Jie Liu,1,2,* Ling-Jie Wang,1,* Ying Qiao,1 Hua Zhang,1 Li-Ping Li,1 Jing-Hua Sun,1 Sheng He,1 Wen Xu,1,2 Xi Yang,1 Wen-Wen Cai,2 Jian-Ding Li,1 Bin-Quan Wang,3 Rui-Ping Zhang2 1Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; 2Imaging Department, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; 3Department of Otolaryngology, Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China *These authors contributed equally to the paper Background: Melanin and manganese are both indispensable natural substances that play crucial roles in the human body. Melanin has been used as a multimodality imaging nanoplatform for biology science research because of its natural binding ability with metal ions (eg, 64Cu2+, Fe3+, and Gd3+. Because of its effects on T1 signal enhancement, Mn-based nanoparticles have been used in magnetic resonance (MR quantitative cell tracking in vivo. Stem cell tracking in vivo is an essential technology used to characterize engrafted stem cells, including cellular viability, biodistribution, differentiation capacity, and long-term fate.Methods: In the present study, manganese(II ions chelated to melanin nanoparticles [MNP-Mn(II] were synthesized. The characteristics, stem cell labeling efficiency, and cytotoxicity of the nanoparticles were evaluated. MR imaging of the labeled stem cells in vivo and in vitro were also further performed. In T1 relaxivity (r1, MNP-Mn(II were significantly more abundant than Omniscan. Bone marrow-derived stem cells (BMSCs can be labeled easily by coincubating with MNP-Mn(II, suggesting that MNP-Mn(II had high biocompatibility.Results: Cell Counting Kit-8 assays revealed that MNP-Mn(II had almost no cytotoxicity when used to label BMSCs, even with a very high concentration (1,600 µg/mL. BMSCs labeled with MNP-Mn(II could generate a hyperintense T1 signal both in vitro

  17. Biomechanical properties of Achilles tendon repair augmented with a bioadhesive-coated scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Michael; Vollenweider, Laura; Murphy, John L; Xu Fangmin; Lyman, Arinne; Lew, William D; Lee, Bruce P, E-mail: b-lee@nerites.com [Nerites Corporation, 505 S. Rosa Road, Suite 123, Madison, WI 53719 (United States)

    2011-02-15

    The Achilles tendon is the most frequently ruptured tendon. Both acute and chronic (neglected) tendon ruptures can dramatically affect a patient's quality of life, and require a prolonged period of recovery before return to pre-injury activity levels. This paper describes the use of an adhesive-coated biologic scaffold to augment primary suture repair of transected Achilles tendons. The adhesive portion consisted of a synthetic mimic of mussel adhesive proteins that can adhere to various surfaces in a wet environment, including biologic tissues. When combined with biologic scaffolds such as bovine pericardium or porcine dermal tissues, these adhesive constructs demonstrated lap shear adhesive strengths significantly greater than that of fibrin glue, while reaching up to 60% of the strength of a cyanoacrylate-based adhesive. These adhesive constructs were wrapped around transected cadaveric porcine Achilles tendons repaired with a combination of parallel and three-loop suture patterns. Tensile mechanical testing of the augmented repairs exhibited significantly higher stiffness (22-34%), failure load (24-44%), and energy to failure (27-63%) when compared to control tendons with suture repair alone. Potential clinical implications of this novel adhesive biomaterial are discussed.

  18. Update on biomaterials for prevention of epidural adhesion after lumbar laminectomy

    Directory of Open Access Journals (Sweden)

    Huailan Wang

    2018-04-01

    Full Text Available Summary: Lumbar laminectomy often results in failed back surgery syndrome. Most scholars support the three-dimensional theory of adhesion: Fibrosis surrounding the epidural tissues is based on the injured sacrospinalis behind, fibrous rings and posterior longitudinal ligaments. Approaches including using the minimally invasive technique, drugs, biomaterial and nonbiomaterial barriers to prevent the postoperative epidural adhesion were intensively investigated. Nevertheless, the results are far from satisfactory. Our review is based on various implant biomaterials that are used in clinical applications or are under study. We show the advantages and disadvantages of each method. The summary will help us to figure out ideas towards new techniques.The translational potential of this article: This review summarises recent biomaterials-related clinical and basic research that focuses on prevention of epidural adhesion after lumbar laminectomy. We also propose a novel possible translational method where a soft scaffold acts as a physical barrier in the early stage, engineered adipose tissue acts as a biobarrier in the later stage in the application of biomaterials and adipose-derived mesenchymal stem cells are used for prevention of epidural adhesion. Keywords: Adhesion, Biomaterials, Fibrosis, Implant, Laminectomy

  19. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)