WorldWideScience

Sample records for repair ber pathway

  1. Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Kathryn Hughes Barry; Stella Koutros; Sonja I. Berndt; Gabriella Andreotti; Jane A. Hoppin; Dale P. Sandler; Laurie A. Burdette; Meredith Yeager; Laura E. Beane Freeman; Jay H. Lubin; Xiaomei Ma; Tongzhang Zheng; Michael C. R. Alavanja

    2011-01-01

    .... OBJECTIVES: Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394 tag single-nucleotide polymorphisms (SNPs...

  2. Early Steps in the DNA Base Excision Repair Pathway of a Fission Yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Kyoichiro Kanamitsu

    2010-01-01

    Full Text Available DNA base excision repair (BER accounts for maintaining genomic integrity by removing damaged bases that are generated endogenously or induced by genotoxic agents. In this paper, we describe the roles of enzymes functioning in the early steps of BER in fission yeast. Although BER is an evolutionarily conserved process, some unique features of the yeast repair pathway were revealed by genetic and biochemical approaches. AP sites generated by monofunctional DNA glycosylases are incised mainly by AP lyase activity of Nth1p, a sole bifunctional glycosylase in yeast, to leave a blocked 3′ end. The major AP endonuclease Apn2p functions predominantly in removing the 3′ block. Finally, a DNA polymerase fills the gap, and a DNA ligase seals the nick (Nth1p-dependent or short patch BER. Apn1p backs up Apn2p. In long patch BER, Rad2p endonuclease removes flap DNA containing a lesion after DNA synthesis. A UV-specific endonuclease Uve1p engages in an alternative pathway by nicking DNA on the 5′ side of oxidative damage. Nucleotide excision repair and homologous recombination are involved in repair of BER intermediates including the AP site and single-strand break with the 3′ block. Other enzymes working in 3′ end processing are also discussed.

  3. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  4. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Muralidhar L Hegde; Tapas K Hazra; Sankar Mitra

    2008-01-01

    Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or alkylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA ligase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEl, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E.coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate ter-mini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APEl. Different complexes may utilize distinct DNA polymerases and ligases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organelle targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.

  5. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Directory of Open Access Journals (Sweden)

    Koji eYoshimoto

    2012-12-01

    Full Text Available Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma. Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT has been described as the main modulator to determine the sensitivity of glioblastoma to TMZ, a subset of glioblastoma does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR, and the base-excision repair (BER pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break (SSB repair and double-strand break (DSB repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  6. How to Relate Complex DNA Repair Genotypes to Pathway Function and, Ultimately, Health Risk

    Energy Technology Data Exchange (ETDEWEB)

    Jones, IM

    2002-01-09

    Exposure to ionizing radiation increases the incidence of cancer. However, predicting which individuals are at most risk from radiation exposure is a distant goal. Predictive ability is needed to guide policies that regulate radiation exposure and ensure that medical treatments have maximum benefit and minimum risk. Differences between people in susceptibility to radiation are largely based on their genotype, the genes inherited from their parents. Among the important genes are those that produce proteins that repair DNA damaged by radiation. Base Excision Repair (BER) proteins repair single strand breaks and oxidized bases in DNA. Double Strand Break Repair proteins repair broken chromosomes. Using technologies and information from the Human Genome Project, we have previously determined that the DNA sequence of DNA repair genes varies within the human population. An average of 3-4 different variants were found that affect the protein for each of 37 genes studied. The average frequency of these variants is 5%. Given the many genes in each DNA repair pathway and their many variants, technical ability to determine an individual's repair genotype greatly exceeds ability to interpret the information. A long-term goal is to relate DNA repair genotypes to health risk from radiation. This study focused on the BER pathway. The BER genes are known, variants of the genes have been identified at LLNL, and LLNL had recently developed an assay for BER function using white blood cells. The goal of this initial effort was to begin developing data that could be used to test the hypothesis that many different genotypes have similar DNA repair capacity phenotypes (function). Relationships between genotype and phenotype could then be used to group genotypes with similar function and ultimately test the association of groups of genotypes with health risk from radiation. Genotypes with reduced repair function are expected to increase risk of radiation-induced health effects. The

  7. Targeting base excision repair as a sensitization strategy in radiotherapy.

    NARCIS (Netherlands)

    Vens, C.; Begg, A.C.

    2010-01-01

    Cellular DNA repair determines survival after ionizing radiation. Human tumors commonly exhibit aberrant DNA repair since they drive mutagenesis and chromosomal instability. Recent reports have shown alterations in the base excision repair (BER) and single strand break repair (SSBR) pathways in huma

  8. PCNA Modifications for Regulation of Post-Replication Repair Pathways

    OpenAIRE

    2008-01-01

    Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is ...

  9. X-ray repair cross complementing protein 1 in base excision repair

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Akbari, Mansour;

    2012-01-01

    X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large...

  10. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways.

    Science.gov (United States)

    Redrejo-Rodríguez, Modesto; Saint-Pierre, Christine; Couve, Sophie; Mazouzi, Abdelghani; Ishchenko, Alexander A; Gasparutto, Didier; Saparbaev, Murat

    2011-01-01

    Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5' next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.

  11. New insights in the removal of the hydantoins, oxidation product of pyrimidines, via the base excision and nucleotide incision repair pathways.

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    Full Text Available BACKGROUND: Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER and nucleotide incision repair (NIR. Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd, major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5' next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.

  12. A quantitative model of human DNA base excision repair. I. mechanistic insights

    OpenAIRE

    Sokhansanj, Bahrad A.; Rodrigue, Garry R.; Fitch, J. Patrick; David M Wilson

    2002-01-01

    Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts conside...

  13. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Wilson, David M

    2006-05-01

    Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.

  14. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Mániková, Dominika; Vlasáková, Danusa; Loduhová, Jana; Letavayová, Lucia; Vigasová, Dana; Krascsenitsová, Eva; Vlcková, Viera; Brozmanová, Jela; Chovanec, Miroslav

    2010-03-01

    Selenium (Se) belongs to nutrients that are essential for human health. Biological activity of this compound, however, mainly depends on its dose, with a potential of Se to induce detrimental effects at high doses. Although mechanisms lying behind detrimental effects of Se are poorly understood yet, they involve DNA damage induction. Consequently, DNA damage response and repair pathways may play a crucial role in cellular response to Se. Using Saccharomyces cerevisiae we showed that sodium selenite (SeL), an inorganic form of Se, can be toxic and mutagenic in this organism due to its ability to induce DNA double-strand breaks (DSBs). Moreover, we reported that a spectrum of mutations induced by this compound in the stationary phase of growth is mainly represented by 1-4 bp deletions. Consequently, we proposed that SeL acts as an oxidizing agent in yeast producing oxidative damage to DNA. As short deletions could be anticipated to arise as a result of action of non-homologous end-joining (NHEJ) and oxidative damage to DNA is primarily coped with base excision repair (BER), a contribution of these two pathways towards survival, DSB induction, mutation frequency and types of mutations following SeL exposure was examined in present study. First, we show that while NHEJ plays no role in repairing toxic DNA lesions induced by SeL, cells with impairment in BER are sensitized towards this compound. Of BER activities examined, those responsible for processing of 3'-blocking DNA termini seem to be the most crucial for manifestation of the toxic effects of SeL in yeast. Second, an impact of NHEJ and BER on DSB induction after SeL exposure turned to be inappreciable, as no increase in DNA double-strand breakage in NHEJ and BER single or NHEJ BER double mutant upon SeL exposure was observed. Finally, we demonstrate that impairment in both these pathways does not importantly change mutation frequency after SeL exposure and that NHEJ is not responsible for generation of short

  15. Electronic Pathways in Photoactivated Repair of UV Mutated DNA

    Science.gov (United States)

    Bohr, Henrik; Jalkanen, K. J.; Bary Malik, F.

    An investigation of the physics, underlying the damage caused to DNA by UV radiation and its subsequent repair via a photoreactivation mechanism, is presented in this study. Electronic pathways, starting from the initial damage to the final repair process, are presented. UV radiation is absorbed to create a hole-excited thymine or other pyrimidine that subsequently is responsible for the formation of a dimer. The negative-ion of the cofactor riboflavin, FADH-, formed by the exposure of the photolyase protein to visible light, interacts with the hole-excited electronic orbital of the thymine dimer inducing a photon-less Auger transition, which restores the two thymines to the ground state, thereby detaching the lesion and repairing the DNA. Density functional theoretical calculations supporting the theory are presented. The mechanism involves the least amount of energy dissipation and is charge neutral. It also avoids radiation damage in the repair process. Recent experimental data are compatible with this theory.

  16. Microhomology directs diverse DNA break repair pathways and chromosomal translocations.

    Directory of Open Access Journals (Sweden)

    Diana D Villarreal

    Full Text Available Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called "microhomology," yet the genetic pathway(s responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR events after a DNA double-strand break (DSB in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.

  17. Regulation of DNA double-strand break repair pathway choice

    Institute of Scientific and Technical Information of China (English)

    Meena Shrivastav; Leyma P De Haro; Jac A Nickoloff

    2008-01-01

    DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including large- or small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources includ-ing reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1 (XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.

  18. Repair pathways evident in human liver organ slices

    NARCIS (Netherlands)

    Vickers, Alison E. M.; Fisher, Robyn; Olinga, Peter; Dial, Sharon

    2011-01-01

    The extension of human liver slice culture viability for several days broadens the potential of this ex vivo model for characterizing pathways of organ injury and repair, and allows for the multiple dosing of compounds. Extended viability is demonstrated by continued synthesis of GSH and ATP, and ma

  19. Base excision repair in sugarcane

    Directory of Open Access Journals (Sweden)

    Agnez-Lima Lucymara F.

    2001-01-01

    Full Text Available DNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.

  20. Base excision repair pathway: PARP1 genotypes as modulators of therapy response in cervical cancer patients.

    Science.gov (United States)

    Nogueira, Augusto; Assis, Joana; Faustino, Ilda; Pereira, Deolinda; Catarino, Raquel; Medeiros, Rui

    2017-02-01

    Genetic polymorphisms in genes of the base excision repair (BER) pathway appear to modulate the therapy response of cancer patients. PARP1 protein recognizes the DNA strand damage and facilitates the subsequent recruitment of BER proteins. Few studies have reported an association between PARP1 Val762Ala polymorphism (rs1136410) and cancer therapy response. The purpose of our study was to determine whether PARP1 Val762Ala polymorphism have prognostic value in patients with cervical cancer. Two hundred and sixty adult patients, with histologically confirmed cervical cancer, at FIGO-stages IB2-IVA, primarily treated with concurrent chemotherapy (cisplatin) and radiotherapy. Overall survival (OS) and disease-free survival (DFS) were the primary end points of the analysis. The PARP1 Val762Ala genetic variants were analyzed by allelic discrimination by real-time PCR. We observed that peri- and postmenopausal women carrying the C-allele present a statistically significant lower OS and DFS (log-rank test, p = 0.008 and p = 0.006, respectively) among those with early stage cervical cancer. Cox regression analysis confirmed these results, after adjustment for other prognostic factors (for OS: HR, 3.70; 95%CI, 1.32-10.38; p = 0.013 and for DFS: HR, 3.97; 95%CI, 1.59-9.93; p = 0.003). This is the first study evaluating the effect of PARP1 Val762Ala polymorphism in treatment response in cervical cancer patients. PARP1 genotypes may contribute as an independent prognostic factor in cervical cancer, being useful in predicting the clinical outcome.

  1. Herpes Simplex Virus Latency: The DNA Repair-Centered Pathway

    Directory of Open Access Journals (Sweden)

    Jay C. Brown

    2017-01-01

    Full Text Available Like all herpesviruses, herpes simplex virus 1 (HSV1 is able to produce lytic or latent infections depending on the host cell type. Lytic infections occur in a broad range of cells while latency is highly specific for neurons. Although latency suggests itself as an attractive target for novel anti-HSV1 therapies, progress in their development has been slowed due in part to a lack of agreement about the basic biochemical mechanisms involved. Among the possibilities being considered is a pathway in which DNA repair mechanisms play a central role. Repair is suggested to be involved in both HSV1 entry into latency and reactivation from it. Here I describe the basic features of the DNA repair-centered pathway and discuss some of the experimental evidence supporting it. The pathway is particularly attractive because it is able to account for important features of the latent response, including the specificity for neurons, the specificity for neurons of the peripheral compared to the central nervous system, the high rate of genetic recombination in HSV1-infected cells, and the genetic identity of infecting and reactivated virus.

  2. p53 downregulates the Fanconi anaemia DNA repair pathway.

    Science.gov (United States)

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  3. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...... by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional......Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial...

  4. A non-canonical mismatch repair pathway in prokaryotes

    Science.gov (United States)

    Castañeda-García, A.; Prieto, A. I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E. D.; Herranz, M.; Plociński, P.; Tonjum, T.; García de Viedma, D.; Paget, M.; Waddell, S. J.; Rojas, A. M.; Doherty, A. J.; Blázquez, J.

    2017-01-01

    Mismatch repair (MMR) is a near ubiquitous pathway, essential for the maintenance of genome stability. Members of the MutS and MutL protein families perform key steps in mismatch correction. Despite the major importance of this repair pathway, MutS–MutL are absent in almost all Actinobacteria and many Archaea. However, these organisms exhibit rates and spectra of spontaneous mutations similar to MMR-bearing species, suggesting the existence of an alternative to the canonical MutS–MutL-based MMR. Here we report that Mycobacterium smegmatis NucS/EndoMS, a putative endonuclease with no structural homology to known MMR factors, is required for mutation avoidance and anti-recombination, hallmarks of the canonical MMR. Furthermore, phenotypic analysis of naturally occurring polymorphic NucS in a M. smegmatis surrogate model, suggests the existence of M. tuberculosis mutator strains. The phylogenetic analysis of NucS indicates a complex evolutionary process leading to a disperse distribution pattern in prokaryotes. Together, these findings indicate that distinct pathways for MMR have evolved at least twice in nature. PMID:28128207

  5. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway...... for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...

  6. DNA DSB repair pathway choice: an orchestrated handover mechanism.

    Science.gov (United States)

    Kakarougkas, A; Jeggo, P A

    2014-03-01

    DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch from NHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate extensive chromatin changes in the DSB vicinity.

  7. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne;

    2009-01-01

    , it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA.......T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also...

  8. New tools to study DNA double-strand break repair pathway choice.

    Directory of Open Access Journals (Sweden)

    Daniel Gomez-Cabello

    Full Text Available A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  9. Impact of APEX Ile64val Gene Polymorphisms of DNA Repair Ber System on Modulation of the Risk of Colorectal Cancer in the Polish Population

    Directory of Open Access Journals (Sweden)

    Kabziński Jacek

    2015-03-01

    Full Text Available Colorectal cancer (CRC is one of the deadliest cancers which lie in the incidence of morbidity in second place. Intensive research is to determine and confirm the genetic basis of this disease, which is believed may have a direct relationship with the reduced efficiency of DNA repair systems.

  10. How SUMOylation Fine-Tunes the Fanconi Anemia DNA Repair Pathway

    Directory of Open Access Journals (Sweden)

    Kate eColeman

    2016-04-01

    Full Text Available Fanconi Anemia (FA is a rare human genetic disorder characterized by developmental defects, bone marrow failure and cancer predisposition, primarily due to a deficiency in the repair of DNA interstrand crosslinks (ICLs. ICL repair through the FA DNA repair pathway is a complicated multi-step process, involving at least 19 FANC proteins and coordination of multiple DNA repair activities, including homologous recombination (HR, nucleotide excision repair (NER and translesion synthesis (TLS. SUMOylation is a critical regulator of several DNA repair pathways, however, the role of this modification in controlling the FA pathway is poorly understood. Here, we summarize recent advances in the fine-tuning of the FA pathway by SUMO-targeted ubiquitin ligases (STUbLs and other SUMO-related interactions, and discuss the implications of these findings in the design of novel therapeutics for alleviating FA-associated condition, including cancer.

  11. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    2015-07-01

    Full Text Available Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair. Aberrant activation of the Hedgehog (Hh signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  12. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  13. Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair.

    Directory of Open Access Journals (Sweden)

    Rajendra Prasad

    Full Text Available The apurinic/apyrimidinic- (AP- site in genomic DNA arises through spontaneous base loss and base removal by DNA glycosylases and is considered an abundant DNA lesion in mammalian cells. The base excision repair (BER pathway repairs the AP-site lesion by excising and replacing the site with a normal nucleotide via template directed gap-filling DNA synthesis. The BER pathway is mediated by a specialized group of proteins, some of which can be found in multiprotein complexes in cultured mouse fibroblasts. Using a DNA polymerase (pol β immunoaffinity-capture technique to isolate such a complex, we identified five tightly associated and abundant BER factors in the complex: PARP-1, XRCC1, DNA ligase III, PNKP, and Tdp1. AP endonuclease 1 (APE1, however, was not present. Nevertheless, the complex was capable of BER activity, since repair was initiated by PARP-1's AP lyase strand incision activity. Addition of purified APE1 increased the BER activity of the pol β complex. Surprisingly, the pol β complex stimulated the strand incision activity of APE1. Our results suggested that PARP-1 was responsible for this effect, whereas other proteins in the complex had no effect on APE1 strand incision activity. Studies of purified PARP-1 and APE1 revealed that PARP-1 was able to stimulate APE1 strand incision activity. These results illustrate roles of PARP-1 in BER including a functional partnership with APE1.

  14. Multiple-pathway analysis of double-strand break repair mutations in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dena M Johnson-Schlitz

    2007-04-01

    Full Text Available The analysis of double-strand break (DSB repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.

  15. Analysis of DNA double-strand break repair pathways in mice

    Energy Technology Data Exchange (ETDEWEB)

    Brugmans, Linda [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands); Kanaar, Roland [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands); Department of Radiation Oncology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam (Netherlands); Essers, Jeroen [Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE (Netherlands) and Department of Radiation Oncology, Erasmus MC, PO Box 1738, 3000 DR Rotterdam (Netherlands)]. E-mail: j.essers@erasmusmc.nl

    2007-01-03

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.

  16. Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer.

    Science.gov (United States)

    Liu, Chao; Srihari, Sriganesh; Lal, Samir; Gautier, Benoît; Simpson, Peter T; Khanna, Kum Kum; Ragan, Mark A; Lê Cao, Kim-Anh

    2016-01-01

    The Homologous Recombination (HR) pathway is crucial for the repair of DNA double-strand breaks (DSBs) generated during DNA replication. Defects in HR repair have been linked to the initiation and development of a wide variety of human malignancies, and exploited in chemical, radiological and targeted therapies. In this study, we performed a personalised pathway analysis independently for four large sporadic breast cancer cohorts to investigate the status of HR pathway dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and its impact on tumour characteristics. Specifically, we first manually curated a list of HR genes according to our recent review on this pathway (Liu et al., 2014), and then applied a personalised pathway analysis method named Pathifier (Drier et al., 2013) on the expression levels of the curated genes to obtain an HR score quantifying HR pathway dysregulation in individual tumours. Based on the score, we observed a great diversity in HR dysregulation between and within gene expression-based breast cancer subtypes, and by using two published HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel association between HR pathway dysregulation and chromosomal instability (CIN) in sporadic breast cancer. Although CIN has long been considered as a hallmark of most solid tumours, with recent extensive studies highlighting its importance in tumour evolution and drug resistance, the molecular basis of CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway dysregulation might contribute to CIN in sporadic breast cancer.

  17. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei-Implications for comparative studies

    DEFF Research Database (Denmark)

    Akbari, Mansour; Krokan, Hans E

    2012-01-01

    The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER...... using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore...

  18. Repair Pathway Choices and Consequences at the Double-Strand Break.

    Science.gov (United States)

    Ceccaldi, Raphael; Rondinelli, Beatrice; D'Andrea, Alan D

    2016-01-01

    DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.

  19. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    NARCIS (Netherlands)

    A. Campalans (Anna); R. Amouroux (Rachel); H. Menoni (Hervé); W. Vermeulen (Wim); J.P. Radicella (Pablo)

    2013-01-01

    textabstractSingle-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1,

  20. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Qi-shan Ran

    2015-01-01

    Full Text Available The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  1. A quantitative model of human DNA base excision repair. I. Mechanistic insights.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Rodrigue, Garry R; Fitch, J Patrick; Wilson, David M

    2002-04-15

    Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polbeta-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polbeta-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity.

  2. Initial steps of the base excision repair pathway within the nuclear architecture; Les etapes initiales du mecanisme de reparation par excision de bases au sein de l'architecture nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Amouroux, R

    2009-09-15

    Oxidative stress induced lesions threaten aerobic organisms by representing a major cause of genomic instability. A common product of guanine oxidation, 8-oxo-guanine (8- oxoG) is particularly mutagenic by provoking G to T transversions. Removal of oxidised bases from DNA is initiated by the recognition and excision of the damaged base by a DNA glycosylase, initiating the base excision repair (BER) pathway. In mammals, 8-oxoG is processed by the 8-oxoG-DNA-glycosylase I (OGG1), which biochemical mechanisms has been well characterised in vitro. However how and where this enzyme finds the modified base within the complex chromatin architecture is not yet understood. We show that upon induction of 8-oxoG, OGG1, together with at least two other proteins involved in BER, is recruited from a soluble fraction to chromatin. Formation kinetics of this patches correlates with 8-oxoG excision, suggesting a direct link between presence of this chromatin-associated complexes and 8-oxoG repair. More precisely, these repair patches are specifically directed to euchromatin regions, and completely excluded from heterochromatin regions. Inducing of artificial chromatin compaction results in a complete inhibition of the in vivo repair of 8-oxoG, probably by impeding the access of OGG1 to the lesion. Using OGG1 mutants, we show that OGG1 direct recognition of 8-oxoG did not trigger its re-localisation to the chromatin. We conclude that in response to the induction of oxidative DNA damage, the DNA glycosylase is actively recruited to regions of open chromatin allowing the access of the BER machinery to the lesions. (author)

  3. DNA repair in neurons: So if they don't divide what's to repair?

    Energy Technology Data Exchange (ETDEWEB)

    Fishel, Melissa L. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States) and Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States) and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States)]. E-mail: mkelley@iupui.edu

    2007-01-03

    Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major

  4. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Qi-shan Ran; Yun-hu Yu; Xiao-hong Fu; Yuan-chao Wen

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling path-way using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endo-thelial progenitor cells. Activation of the Notch signaling pathwayin vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These ifndings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  5. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    Science.gov (United States)

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  6. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  7. Current advances in DNA repair: regulation of enzymes and pathways involved in maintaining genomic stability.

    Science.gov (United States)

    Neher, Tracy M; Turchi, John J

    2011-06-15

    Novel discoveries in the DNA repair field have lead to continuous and rapid advancement of our understanding of not only DNA repair but also DNA replication and recombination. Research in the field transcends numerous areas of biology, biochemistry, physiology, and medicine, making significant connections across these broad areas of study. From early studies conducted in bacterial systems to current analyses in eukaryotic systems and human disease, the innovative research into the mechanisms of repair machines and the consequences of ineffective DNA repair has impacted a wide scientific community. This Forum contains a select mix of primary research articles in addition to a number of timely reviews covering a subset of DNA repair pathways where recent advances and novel discoveries are improving our understanding of DNA repair, its regulation, and implications to human disease.

  8. Arsenic exposure disrupts the normal function of the FA/BRCA repair pathway.

    Science.gov (United States)

    Peremartí, Jana; Ramos, Facundo; Marcos, Ricard; Hernández, Alba

    2014-11-01

    Chronic arsenic exposure is known to enhance the genotoxicity/carcinogenicity of other DNA-damaging agents by inhibiting DNA repair activities. Interference with nucleotide excision repair and base excision repair are well documented, but interactions with other DNA repair pathways are poorly explored so far. The Fanconi anemia FA/BRCA pathway is a DNA repair mechanism required for maintaining genomic stability and preventing cancer. Here, interactions between arsenic compounds and the FA/BRCA pathway were explored by using isogenic FANCD2(-/-) (FA/BRCA-deficient) and FANCD2(+/+) (FA/BRCA-corrected) human fibroblasts. To study whether arsenic disrupts the normal FA/BRCA function, FANCD2(+/+) cells were preexposed to subtoxic concentrations of the trivalent arsenic compounds methylarsonous acid (MMA(III)) and arsenic trioxide (ATO) for 2 weeks. The cellular response to mitomicin-C, hydroxyurea, or diepoxybutane, typical inducers of the studied pathway, was then evaluated and compared to that of FANCD2(-/-) cells. Our results show that preexposure to the trivalent arsenicals MMA(III) and ATO induces in corrected cells, a cellular FA/BRCA-deficient phenotype characterized by hypersensitivity, enhanced accumulation in the G2/M compartment and increased genomic instability--measured as micronuclei. Overall, our data demonstrate that environmentally relevant arsenic exposures disrupt the normal function of the FA/BRCA activity, supporting a novel source of arsenic co- and carcinogenic effects. This is the first study linking arsenic exposure with the FA/BRCA DNA repair pathway.

  9. Databases and Bioinformatics Tools for the Study of DNA Repair

    Directory of Open Access Journals (Sweden)

    Kaja Milanowska

    2011-01-01

    Full Text Available DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER and nucleotide excision repair (NER or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS. There are also other mechanisms of DNA repair such as homologous recombination repair (HRR, nonhomologous end-joining repair (NHEJ, or DNA damage response system (DDR. This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.

  10. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  11. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae.

    Science.gov (United States)

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J

    2014-04-01

    The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.

  12. Fanconi DNA repair pathway is required for survival and long-term maintenance of neural progenitors

    NARCIS (Netherlands)

    Sii-Felice, Karine; Etienne, Olivier; Hoffschir, Francoise; Mathieu, Celine; Riou, Lydia; Barroca, Vilma; Haton, Celine; Arwert, Fre; Fouchet, Pierre; Boussin, Francois D.; Mouthon, Marc-Andre

    2008-01-01

    Although brain development abnormalities and brain cancer predisposition have been reported in some Fanconi patients, the possible role of Fanconi DNA repair pathway during neurogenesis is unclear. We thus addressed the role of fanca and fancg, which are involved in the activation of Fanconi pathway

  13. An epidermal barrier wound repair pathway in Drosophila is mediated by grainy head.

    Science.gov (United States)

    Mace, Kimberly A; Pearson, Joseph C; McGinnis, William

    2005-04-15

    We used wounded Drosophila embryos to define an evolutionarily conserved pathway for repairing the epidermal surface barrier. This pathway includes a wound response enhancer from the Ddc gene that requires grainy head (grh) function and binding sites for the Grh transcription factor. At the signaling level, tyrosine kinase and extracellular signal-regulated kinase (ERK) activities are induced in epidermal cells near wounds, and activated ERK is required for a robust wound response. The conservation of this Grh-dependent pathway suggests that the repair of insect cuticle and mammal skin is controlled by an ancient, shared control system for constructing and healing the animal body surface barrier.

  14. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    OpenAIRE

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial pr...

  15. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  16. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  17. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair.

    Directory of Open Access Journals (Sweden)

    Nicole Bennardo

    2008-06-01

    Full Text Available Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ, single-strand annealing (SSA, and homology directed repair (HDR/GC. Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI-induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy.

  18. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  19. Genome engineering with TALENs and ZFNs: repair pathways and donor design.

    Science.gov (United States)

    Carroll, Dana; Beumer, Kelly J

    2014-09-01

    Genome engineering with targetable nucleases depends on cellular pathways of DNA repair after target cleavage. Knowledge of how those pathways work, their requirements and their active factors, can guide experimental design and improve outcomes. While many aspects of both homologous recombination (HR) and nonhomologous end joining (NHEJ) are shared by a broad range of cells and organisms, some features are specific to individual situations. This article reviews the influence of repair mechanisms on the results of gene targeting experiments, with an emphasis on lessons learned from experiments with Drosophila.

  20. Participation of stress-inducible systems and enzymes involved in BER and NER in the protection of Escherichia coli against cumene hydroperoxide.

    Science.gov (United States)

    Asad, L M; Medeiros, D C; Felzenszwalb, I; Leitão, A C; Asad, N R

    2000-09-15

    We studied the participation of the stress-inducible systems, as the OxyR, SoxRS and SOS regulons in the protection of Escherichia coli cells against lethal effects of cumene hydroperoxide (CHP). Moreover, we evaluated the participation of BER and NER in the repair of the DNA damage produced by CHP. Our results suggest that the hypersensitivity observed in the oxyR mutants to the lethal effect of CHP does not appear to be due to SOS inducing DNA lesions, but rather to cell membrane damage. On the other hand, DNA damage induced by CHP appears to be repaired by enzymes involved in BER and NER pathways. In this case, Fpg protein and UvrABC complex could be involved cooperatively in the elimination of a specific DNA lesion. Finally, we have detected the requirement for the uvrA gene function in SOS induction by CHP treatment.

  1. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways

    Science.gov (United States)

    Alencastre, Inês S.; Neto, Estrela; Ribas, João; Ferreira, Sofia; Vasconcelos, Daniel M.; Sousa, Daniela M.; Summavielle, Teresa; Lamghari, Meriem

    2016-01-01

    Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY) neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG) and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair. PMID:27802308

  2. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways.

    Science.gov (United States)

    Machado-Silva, Alice; Cerqueira, Paula Gonçalves; Grazielle-Silva, Viviane; Gadelha, Fernanda Ramos; Peloso, Eduardo de Figueiredo; Teixeira, Santuza Maria Ribeiro; Machado, Carlos Renato

    2016-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is an obligatory intracellular parasite with a digenetic life cycle. Due to the variety of host environments, it faces several sources of oxidative stress. In addition to reactive oxygen species (ROS) produced by its own metabolism, T. cruzi must deal with high ROS levels generated as part of the host's immune responses. Hence, the conclusion that T. cruzi has limited ability to deal with ROS (based on the lack of a few enzymes involved with oxidative stress responses) seems somewhat paradoxical. Actually, to withstand such variable sources of oxidative stress, T. cruzi has developed complex defence mechanisms. This includes ROS detoxification pathways that are distinct from the ones in the mammalian host, DNA repair pathways and specialized polymerases, which not only protect its genome from the resulting oxidative damage but also contribute to the generation of genetic diversity within the parasite population. Recent studies on T. cruzi's DNA repair pathways as mismatch repair (MMR) and GO system suggested that, besides a role associated with DNA repair, some proteins of these pathways may also be involved in signalling oxidative damage. Recent data also suggested that an oxidative environment might be beneficial for parasite survival within the host cell as it contributes to iron mobilization from the host's intracellular storages. Besides contributing to the understanding of basic aspects of T. cruzi biology, these studies are highly relevant since oxidative stress pathways are part of the poorly understood mechanisms behind the mode of action of drugs currently used against this parasite. By unveiling new peculiar aspects of T. cruzi biology, emerging data on DNA repair pathways and other antioxidant defences from this parasite have revealed potential new targets for a much needed boost in drug development efforts towards a better treatment for Chagas disease.

  3. Targeting the DNA repair pathway in Ewing sarcoma.

    Science.gov (United States)

    Stewart, Elizabeth; Goshorn, Ross; Bradley, Cori; Griffiths, Lyra M; Benavente, Claudia; Twarog, Nathaniel R; Miller, Gregory M; Caufield, William; Freeman, Burgess B; Bahrami, Armita; Pappo, Alberto; Wu, Jianrong; Loh, Amos; Karlström, Åsa; Calabrese, Chris; Gordon, Brittney; Tsurkan, Lyudmila; Hatfield, M Jason; Potter, Philip M; Snyder, Scott E; Thiagarajan, Suresh; Shirinifard, Abbas; Sablauer, Andras; Shelat, Anang A; Dyer, Michael A

    2014-11-06

    Ewing sarcoma (EWS) is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis). PARPi-induced cytotoxicity in EWS cells was 10- to 1,000-fold higher after administration of the DNA-damaging agents irinotecan or temozolomide. We developed an orthotopic EWS mouse model and performed pharmacokinetic and pharmacodynamic studies using three different PARPis that are in clinical development for pediatric cancer. Irinotecan administered on a low-dose, protracted schedule previously optimized for pediatric patients was an effective DNA-damaging agent when combined with PARPis; it was also better tolerated than combinations with temozolomide. Combining PARPis with irinotecan and temozolomide gave complete and durable responses in more than 80% of the mice.

  4. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Adel Fahmideh, Maral; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk.The study...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  5. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    DEFF Research Database (Denmark)

    Fahmideh, Maral Adel; Lavebratt, Catharina; Schüz, Joachim

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk. The study...... cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways....

  6. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Chikako Kiyohara, Kouichi Yoshimasu

    2007-01-01

    Full Text Available Various DNA alterations can be caused by exposure to environmental and endogenous carcinogens. Most of these alterations, if not repaired, can result in genetic instability, mutagenesis and cell death. DNA repair mechanisms are important for maintaining DNA integrity and preventing carcinogenesis. Recent lung cancer studies have focused on identifying the effects of single nucleotide polymorphisms (SNPs in candidate genes, among which DNA repair genes are increasingly being studied. Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. We identified a sufficient number of epidemiologic studies on lung cancer to conduct a meta-analysis for genetic polymorphisms in nucleotide excision repair pathway genes, focusing on xeroderma pigmentosum group A (XPA, excision repair cross complementing group 1 (ERCC1, ERCC2/XPD, ERCC4/XPF and ERCC5/XPG. We found an increased risk of lung cancer among subjects carrying the ERCC2 751Gln/Gln genotype (odds ratio (OR = 1.30, 95% confidence interval (CI = 1.14 - 1.49. We found a protective effect of the XPA 23G/G genotype (OR = 0.75, 95% CI = 0.59 - 0.95. Considering the data available, it can be conjectured that if there is any risk association between a single SNP and lung cancer, the risk fluctuation will probably be minimal. Advances in the identification of new polymorphisms and in high-throughput genotyping techniques will facilitate the analysis of multiple genes in multiple DNA repair pathways. Therefore, it is likely that the defining feature of future epidemiologic studies will be the simultaneous analysis of large samples.

  7. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  8. DNA double strand breaks repair pathways in mouse male germ cells

    NARCIS (Netherlands)

    Ahmed, E.A.

    2009-01-01

    DNA double strand breaks (DSBs) are induced by ionizing radiation, and during meiotic recombination. DSBs are repaired via two main pathways, homologous recombination (HR) and non homologous end-joining (NHEJ). There are three main types of male germ cells, spermatogonia, spermatocytes and spermatid

  9. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    Science.gov (United States)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.

  10. Targeting the DNA Repair Pathway in Ewing Sarcoma

    Directory of Open Access Journals (Sweden)

    Elizabeth Stewart

    2014-11-01

    Full Text Available Ewing sarcoma (EWS is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis. PARPi-induced cytotoxicity in EWS cells was 10- to 1,000-fold higher after administration of the DNA-damaging agents irinotecan or temozolomide. We developed an orthotopic EWS mouse model and performed pharmacokinetic and pharmacodynamic studies using three different PARPis that are in clinical development for pediatric cancer. Irinotecan administered on a low-dose, protracted schedule previously optimized for pediatric patients was an effective DNA-damaging agent when combined with PARPis; it was also better tolerated than combinations with temozolomide. Combining PARPis with irinotecan and temozolomide gave complete and durable responses in more than 80% of the mice.

  11. The Fanconi anemia pathway and ICL repair: implications for cancer therapy.

    Science.gov (United States)

    Wang, Lily C; Gautier, Jean

    2010-10-01

    Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and -independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates. However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair, with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition.

  12. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Stergiou, L; Doukoumetzidis, K; Sendoel, A; Hengartner, M O

    2007-06-01

    Ultraviolet (UV) radiation is a mutagen of major clinical importance in humans. UV-induced damage activates multiple signaling pathways, which initiate DNA repair, cell cycle arrest and apoptosis. To better understand these pathways, we studied the responses to UV-C light (254 nm) of germ cells in Caenorhabditis elegans. We found that UV activates the same cellular responses in worms as in mammalian cells. Both UV-induced apoptosis and cell cycle arrest were completely dependent on the p53 homolog CEP-1, the checkpoint proteins HUS-1 and CLK-2, and the checkpoint kinases CHK-2 and ATL-1 (the C. elegans homolog of ataxia telangiectasia and Rad3-related); ATM-1 (ataxia telangiectasia mutated-1) was also required, but only at low irradiation doses. Importantly, mutation of genes encoding nucleotide excision repair pathway components severely disrupted both apoptosis and cell cycle arrest, suggesting that these genes not only participate in repair, but also signal the presence of damage to downstream components of the UV response pathway that we delineate here. Our study suggests that whereas DNA damage response pathways are conserved in metazoans in their general outline, there is significant evolution in the relative importance of individual checkpoint genes in the response to specific types of DNA damage.

  13. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes

    Energy Technology Data Exchange (ETDEWEB)

    Allione, Alessandra, E-mail: alessandra.allione@hugef-torino.org [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Guarrera, Simonetta; Russo, Alessia [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Ricceri, Fulvio [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy); Purohit, Rituraj [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Pagnani, Andrea; Rosa, Fabio; Polidoro, Silvia; Voglino, Floriana [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Matullo, Giuseppe [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy)

    2013-11-15

    Highlights: • We reported a large inter-individual variability of NER capacity. • ERCC4 rs1800124 and MBD4 rs10342 nsSNP variants were associated with DNA repair capacity. • DNA–protein interaction analyses showed alteration of binding for ERCC4 and MBD4 variants. • A new possible cross-talk between NER and BER pathways has been reported. - Abstract: Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype–phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r{sup 2} = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein–DNA and protein–protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA–protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein

  14. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  15. The new base excision repair pathway in mammals mediated by tyrosyl-DNA-phosphodiesterase 1

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Human tyrosyl-DNA phosphodiesterase 1 (Tdp1 hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety and has been implicated in the repair of Topoisomerase I (TopI-DNA covalent complexes. Tdp1 can also hydrolyze other 3' end DNA alterations including 3' phosphoglycolate and 3' abasic (AP sites, and exhibits the 3' nucleosidase activity indicating that it may function as a general 3' end-processing DNA repair enzyme. Recently we have shown a new Tdp1 activity generating DNA strand break with the 3' phosphate termini from the AP site. AP sites are formed spontaneously and are inevitable intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic, and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair, initiated by DNA glycosylases performing beta, delta-elimination cleavage of the AP sites, has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites that is initiated by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap.

  16. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer

    Science.gov (United States)

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-01-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC. PMID:27165003

  17. “Über-Coca”, “Über-Sex”, “Über-Nothingness”

    Directory of Open Access Journals (Sweden)

    Mario Vrbančić

    2015-12-01

    Full Text Available “Über-Coca”, “Über-Sex” and “Über-Nothingness” are metaphors of certain aggregate states: “Über-Coca” refers to Freud's experiments with cocaine, an open possibility of pharmatizing the conception as well as the entirety of psychoanalysis; “Über-Sex” is a constant need of not only controlling, and regulating sexuality, but of using it in production itself, as a particular sort of engine of productive forces; »Über-Nothingness” refers to borderline situations produced in such a control, ontological uncertainties only vaguely discernible from today’s vantage point. This essay tries to answer the question of how these “übers” permeate each other in creation of new sexual identities in the twenty-first century. First part of the essay deals with genesis of biopower which was mapped by Paul Beatriz Preciado in his work Testo Junkie: Sex, Drugs and Biopolitics in the Pharmacopornographic Era. After a brief overview of this type of biopower and capitalism, we are led to the ontological concept on which Preciado concieves his argument regarding pharmaceutical-pornographic capitalism. The issue discussed here is a concept referred to as potentia gaudendi, an orgasmic force which cannot be channeled, which is neither male nor female, a neuter, which permeates the animal realm, too, even the inorganic, therefore, it can almost be understood as a cosmic orgasmic force. Second part of the essay asks the question regarding the ontological merit of potentia gaudendi comparing it to another phantasm of the workings of financial capitalism as portrayed by Martin Scorsese's movie The Wolf of Wall Street, with a focus on analysis of the very performativity of ontological uncertainty which constantly returns. By criticizing Preciado and his/her reading of Lacan, the essay deals with “Über-Nothingness«, which seems to appear only at the end of the linear progressive sequence of »Über-Coca”, “Über-Sex”, “Über

  18. Choreography of oxidative damage repair in mammalian genomes.

    Science.gov (United States)

    Mitra, Sankar; Izumi, Tadahide; Boldogh, Istvan; Bhakat, Kishor K; Hill, Jeff W; Hazra, Tapas K

    2002-07-01

    The lesions induced by reactive oxygen species in both nuclear and mitochondrial genomes include altered bases, abasic (AP) sites, and single-strand breaks, all repaired primarily via the base excision repair (BER) pathway. Although the basic BER process (consisting of five sequential steps) could be reconstituted in vitro with only four enzymes, it is now evident that repair of oxidative damage, at least in mammalian cell nuclei, is more complex, and involves a number of additional proteins, including transcription- and replication-associated factors. These proteins may be required in sequential repair steps in concert with other cellular changes, starting with nuclear targeting of the early repair enzymes in response to oxidative stress, facilitation of lesion recognition, and access by chromatin unfolding via histone acetylation, and formation of metastable complexes of repair enzymes and other accessory proteins. Distinct, specific subclasses of protein complexes may be formed for repair of oxidative lesions in the nucleus in transcribed vs. nontranscribed sequences in chromatin, in quiescent vs. cycling cells, and in nascent vs. parental DNA strands in replicating cells. Characterizing the proteins for each repair subpathway, their signaling-dependent modifications and interactions in the nuclear as well as mitochondrial repair complexes, will be a major focus of future research in oxidative damage repair.

  19. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  20. Modeling damage complexity-dependent non-homologous end-joining repair pathway.

    Directory of Open Access Journals (Sweden)

    Yongfeng Li

    Full Text Available Non-homologous end joining (NHEJ is the dominant DNA double strand break (DSB repair pathway and involves several repair proteins such as Ku, DNA-PKcs, and XRCC4. It has been experimentally shown that the choice of NHEJ proteins is determined by the complexity of DSB. In this paper, we built a mathematical model, based on published data, to study how NHEJ depends on the damage complexity. Under an appropriate set of parameters obtained by minimization technique, we can simulate the kinetics of foci track formation in fluorescently tagged mammalian cells, Ku80-EGFP and DNA-PKcs-YFP for simple and complex DSB repair, respectively, in good agreement with the published experimental data, supporting the notion that simple DSB undergo fast repair in a Ku-dependent, DNA-PKcs-independent manner, while complex DSB repair requires additional DNA-PKcs for end processing, resulting in its slow repair, additionally resulting in slower release rate of Ku and the joining rate of complex DNA ends. Based on the numerous experimental descriptions, we investigated several models to describe the kinetics for complex DSB repair. An important prediction of our model is that the rejoining of complex DSBs is through a process of synapsis formation, similar to a second order reaction between ends, rather than first order break filling/joining. The synapsis formation (SF model allows for diffusion of ends before the synapsis formation, which is precluded in the first order model by the rapid coupling of ends. Therefore, the SF model also predicts the higher number of chromosomal aberrations observed with high linear energy transfer (LET radiation due to the higher proportion of complex DSBs compared to low LET radiation, and an increased probability of misrejoin following diffusion before the synapsis is formed, while the first order model does not provide a mechanism for the increased effectiveness in chromosomal aberrations observed.

  1. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Hegde, Muralidhar L; Chakraborty, Sharmistha; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh, Mayank; Ramnarain, Deepti B; Hittelman, Walter N; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K; Ludwig, Thomas; Pandita, Raj K; Tyler, Jessica K; Pandita, Tej K

    2014-07-10

    Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  2. MOF Phosphorylation by ATM Regulates 53BP1-Mediated Double-Strand Break Repair Pathway Choice

    Directory of Open Access Journals (Sweden)

    Arun Gupta

    2014-07-01

    Full Text Available Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ or homologous recombination (HR. Here, we report that double-strand breaks (DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase phosphorylation (p-T392-MOF and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.

  3. MOF phosphorylation by ATM regulates 53BP1-mediated DSB repair pathway choice

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R.; Hegdec, Muralidhar L.; Chakraborty, Sharmistha; Udayakumar, Durga; Horikoshi, Nobuo; Singh1, Mayank; Ramnarain, Deepti B.; Hittelman, Walter N.; Namjoshi, Sarita; Asaithamby, Aroumougame; Hazra, Tapas K.; Ludwig, Thomas; Pandita, Raj K.; Tyler, Jessica K.; Pandita, Tej K.

    2014-01-01

    Cell cycle phase is a critical determinant of the choice between DNA damage repair by non-homologous end joining (NHEJ) or homologous recombination (HR). Here we report that DSBs induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF co-localizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S- and G2-phase but not G1-phase cells. Expression of MOF-T392A also reverses the reduction in DSB associated 53BP1 seen in wild type S/G2-phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair and decreased cell survival following irradiation. These data support a model whereby ATM mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2-phase. PMID:24953651

  4. Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression.

    Science.gov (United States)

    Turner, Kristen M; Sun, Youting; Ji, Ping; Granberg, Kirsi J; Bernard, Brady; Hu, Limei; Cogdell, David E; Zhou, Xinhui; Yli-Harja, Olli; Nykter, Matti; Shmulevich, Ilya; Yung, W K Alfred; Fuller, Gregory N; Zhang, Wei

    2015-03-17

    Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.

  5. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...... and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. BER gene expression levels were analyzed in 162 carotid plaques, 8...... genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion....

  6. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    Directory of Open Access Journals (Sweden)

    Nathaniel Holcomb

    Full Text Available Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC, a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  7. Signalling pathways that inhibit the capacity of precursor cells for myelin repair.

    Science.gov (United States)

    Sabo, Jennifer K; Cate, Holly S

    2013-01-07

    In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  8. Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair

    Directory of Open Access Journals (Sweden)

    Jennifer K. Sabo

    2013-01-01

    Full Text Available In demyelinating disorders such as Multiple Sclerosis (MS, targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS. Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.

  9. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.

    Science.gov (United States)

    Lee, Kyung-Jong; Saha, Janapriya; Sun, Jingxin; Fattah, Kazi R; Wang, Shu-Chi; Jakob, Burkhard; Chi, Linfeng; Wang, Shih-Ya; Taucher-Scholz, Gisela; Davis, Anthony J; Chen, David J

    2016-02-29

    Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.

  10. A Review of Recent Experiments on Step-to-Step “Hand-off” of the DNA Intermediates in Mammalian Base Excision Repair Pathways1

    OpenAIRE

    Prasad, R.; Beard, W A; Batra, V. K.; Liu, Y.; Shock, D. D.; Wilson, S H

    2011-01-01

    The current “working model” for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apo...

  11. Mitteilungen über Zaglossus

    NARCIS (Netherlands)

    Kerbert, C.

    1913-01-01

    In den Sitzungen der „Nederlandsche Dierkundige Vereeniging” d.d. 25 März und 30 Sept. 1911 und in der biologischen Abteilung des „XVe Vlaamsch Natuur- en Geneeskundig Congres” zu Oostende am 10en Sept. 1911 (1) war ich in der Lage kurze Mitteilungen zu machen über zwei Langschnabeligel (Zaglossus

  12. Mitteilungen über Zaglossus

    NARCIS (Netherlands)

    Kerbert, C.

    1913-01-01

    In den Sitzungen der „Nederlandsche Dierkundige Vereeniging” d.d. 25 März und 30 Sept. 1911 und in der biologischen Abteilung des „XVe Vlaamsch Natuur- en Geneeskundig Congres” zu Oostende am 10en Sept. 1911 (1) war ich in der Lage kurze Mitteilungen zu machen über zwei Langschnabeligel (Zaglossus G

  13. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  14. RAG2’s Acidic Hinge Restricts Repair-Pathway Choice and Promotes Genomic Stability

    Directory of Open Access Journals (Sweden)

    Marc A. Coussens

    2013-09-01

    Full Text Available V(DJ recombination-associated DNA double-strand breaks (DSBs are normally repaired by the high-fidelity classical nonhomologous end-joining (cNHEJ machinery. Previous studies implicated the recombination-activating gene (RAG/DNA postcleavage complex (PCC in regulating pathway choice by preventing access to inappropriate repair mechanisms such as homologous recombination (HR and alternative NHEJ (aNHEJ. Here, we report that RAG2’s “acidic hinge,” previously of unknown function, is critical for several key steps. Mutations that reduce the hinge’s negative charge destabilize the PCC, disrupt pathway choice, permit repair of RAG-mediated DSBs by the translocation-prone aNHEJ machinery, and reduce genomic stability in developing lymphocytes. Structural predictions and experimental results support our hypothesis that reduced flexibility of the hinge underlies these outcomes. Furthermore, sequence variants present in the human population reduce the hinge’s negative charge, permit aNHEJ, and diminish genomic integrity.

  15. CtIP-BRCA1 modulates the choice of DNA double-strand break repair pathway throughout the cell cycle

    OpenAIRE

    Yun, Maximina H.; Hiom, Kevin

    2009-01-01

    The repair of DNA double-strand breaks (DSB) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSB occurs through non-homologous end-joining (NHEJ) or microhomology-mediated end-joining (MMEJ)1. These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional2, there is an increase in repair of DSB by homologous recomb...

  16. DNA repair mechanisms in eukaryotes: Special focus in Entamoeba histolytica and related protozoan parasites.

    Science.gov (United States)

    López-Camarillo, César; Lopez-Casamichana, Mavil; Weber, Christian; Guillen, Nancy; Orozco, Esther; Marchat, Laurence A

    2009-12-01

    Eukaryotic cell viability highly relies on genome stability and DNA integrity maintenance. The cellular response to DNA damage mainly consists of six biological conserved pathways known as homologous recombination repair (HRR), non-homologous end-joining (NHEJ), base excision repair (BER), mismatch repair (MMR), nucleotide excision repair (NER), and methyltransferase repair that operate in a concerted way to minimize genetic information loss due to a DNA lesion. Particularly, protozoan parasites survival depends on DNA repair mechanisms that constantly supervise chromosomes to correct damaged nucleotides generated by cytotoxic agents, host immune pressure or cellular processes. Here we reviewed the current knowledge about DNA repair mechanisms in the most relevant human protozoan pathogens. Additionally, we described the recent advances to understand DNA repair mechanisms in Entamoeba histolytica with special emphasis in the use of genomic approaches based on bioinformatic analysis of parasite genome sequence and microarrays technology.

  17. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    Science.gov (United States)

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  18. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of th...

  19. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclova, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Diez, Orland; Ramon y Cajal, Teresa; Konstantopoulou, Irene; Martinez-Bouzas, Cristina; Conejero, Raquel Andres; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas V. O.; Jonson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herraez, Belen; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Joerg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodriguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gomez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collee, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; Olah, Edith; Lazaro, Conxi; Teule, Alex; Menendez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the c

  20. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclova, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Diez, Orland; Ramon y Cajal, Teresa; Konstantopoulou, Irene; Martinez-Bouzas, Cristina; Conejero, Raquel Andres; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas V. O.; Jonson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herraez, Belen; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Joerg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodriguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldes, Trinidad; Nevanlinna, Heli; Aittomaki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gomez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collee, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; Olah, Edith; Lazaro, Conxi; Teule, Alex; Menendez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Kaulich, Daphne Geschwantler; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the c

  1. XLF/Cernunnos: An important but puzzling participant in the nonhomologous end joining DNA repair pathway.

    Science.gov (United States)

    Menon, Vijay; Povirk, Lawrence F

    2017-10-01

    DNA double strand breaks (DSBs) are one of the most deleterious DNA lesions that promote cell death, genomic instability and carcinogenesis. The two major cellular mechanisms that repair DSBs are Nonhomologous End-Joining (NHEJ) and Homologous Recombination Repair (HRR). NHEJ is the predominant pathway, in which XLF (also called Cernunnos) is a key player. Patients with XLF mutation exhibit microcephaly, lymphopenia, and growth retardation, and are immunodeficient and radiosensitive. During NHEJ, XLF interacts with XRCC4-Ligase IV, stimulates its ligase activity, and forms DNA-binding filaments of alternating XLF and XRCC4 dimers that may serve to align broken DNA and promote ligation of noncomplementary ends. Despite its central role in NHEJ, the effects of XLF deficiency are surprisingly variable in different biological contexts, and different individual cell lines. This review summarizes the role of XLF in NHEJ, and the unexpected complexity of its interplay with other repair factors in supporting radiosurvival and V(D)J recombination. Copyright © 2017. Published by Elsevier B.V.

  2. Genetic and biochemical characterization of human AP endonuclease 1 mutants deficient in nucleotide incision repair activity.

    Directory of Open Access Journals (Sweden)

    Aurore Gelin

    Full Text Available BACKGROUND: Human apurinic/apyrimidinic endonuclease 1 (APE1 is a key DNA repair enzyme involved in both base excision repair (BER and nucleotide incision repair (NIR pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5' to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells. METHODOLOGY/PRINCIPAL FINDING: We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3'-->5' exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase beta and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells. CONCLUSION/SIGNIFICANCE: Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.

  3. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER.

  4. Impaired nucleotide excision repair pathway as a possible factor in pathogenesis of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sliwinski, T. [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Markiewicz, L. [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz (Poland); Rusin, P. [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz (Poland); Kabzinski, J. [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz (Poland); Dziki, L. [Department of General and Colorectal Surgery, Medical University of Lodz, Lodz (Poland); Milonski, J.; Olszewski, J. [Department of Otolaryngology and Oncology, Medical University of Lodz, Lodz (Poland); Blaszczyk, J. [Department of Human Physiology, Medical University of Lodz, Lodz (Poland); Szemraj, J. [Department of Medical Biochemistry, Medical University of Lodz, Lodz (Poland); Majsterek, I., E-mail: ireneusz.majsterek@umed.lodz.pl [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz (Poland)

    2011-11-01

    Tobacco smoking is one of the major risk factors in pathogenesis of head and neck squamous cell carcinomas (HNSCC). Many of the chemical compounds present in tobacco are well-known carcinogens which form adducts with DNA. Cells remove these adducts mainly by the nucleotide excision repair pathway (NER). NER also eliminates a broad spectrum of pyrimidine dimers (CPD) and photo-products (6-4PP) induced by UV-radiation or DNA cross-links after cisplatin anti-cancer treatment. In this study DNA damage and repair was examined in peripheral blood lymphocytes obtained from 20 HNSCC patients and 20 healthy controls as well as HTB-43 larynx and SSC-25 tongue cancer cell lines. DNA repair kinetics in the examined cells after cisplatin or UV-radiation treatment were investigated using alkaline comet assay during 240 min of post-treatment incubation. MTT assay was used to analyse cell viability and the Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis after treating the cells with UV-radiation at dose range from 0.5 to 60 J/m{sup 2}. NER capability was assessed in vitro with cell extracts by the use of a bacterial plasmid irradiated with UV-light as a substrate for the repair. The results show that lymphocytes from HNSCC patients and HTB-43 or SSC-25 cancer cells were more sensitive to genotoxic treatment with UV-radiation and displayed impaired DNA repair. Also evidenced was a higher rate of apoptosis induction after UV-radiation treatment of lymphocytes from the HNSCC patients and the HTB-43 cancer cells than after treatment of those from healthy donors. Finally, our results showed that there was a significant decrease in NER capacity in HTB-43 or SSC-25 cancer cells as well as in peripheral blood lymphocytes of HNSCC patients compared to controls. In conclusion, we suggest that the impaired NER pathway might be a critical factor in pathogenesis of head and neck cancer.

  5. Genetic variation in DNA repair pathways and risk of non-Hodgkin's lymphoma.

    Directory of Open Access Journals (Sweden)

    Justin Rendleman

    Full Text Available Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL. With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13-1.43, p = 6.77×10(-5, which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL and small lymphocytic lymphomas (SLL, however there was no association observed among follicular lymphomas (FL. In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34-0.77, p = 0.0002. Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.

  6. Changes in DNA repair during aging

    Science.gov (United States)

    Gorbunova, Vera; Seluanov, Andrei; Mao, Zhiyong; Hine, Christpher

    2007-01-01

    DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old. PMID:17913742

  7. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  8. The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Romick-Rosendale, Lindsey E. [Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children' s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States); Lui, Vivian W.Y.; Grandis, Jennifer R. [Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Wells, Susanne I., E-mail: Susanne.Wells@cchmc.org [Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children' s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States)

    2013-03-15

    Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.

  9. Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication.

    Science.gov (United States)

    Truong, Lan N; Li, Yongjiang; Sun, Emily; Ang, Katrina; Hwang, Patty Yi-Hwa; Wu, Xiaohua

    2014-10-17

    Re-initiation of DNA replication at origins within a given cell cycle would result in DNA rereplication, which can lead to genome instability and tumorigenesis. DNA rereplication can be induced by loss of licensing control at cellular replication origins, or by viral protein-driven multiple rounds of replication initiation at viral origins. DNA double-strand breaks (DSBs) are generated during rereplication, but the mechanisms of how these DSBs are repaired to maintain genome stability and cell viability are poorly understood in mammalian cells. We generated novel EGFP-based DSB repair substrates, which specifically monitor the repair of rereplication-associated DSBs. We demonstrated that homologous recombination (HR) is an important mechanism to repair rereplication-associated DSBs, and sister chromatids are used as templates for such HR-mediated DSB repair. Micro-homology-mediated non-homologous end joining (MMEJ) can also be used but to a lesser extent compared to HR, whereas Ku-dependent classical non-homologous end joining (C-NHEJ) has a minimal role to repair rereplication-associated DSBs. In addition, loss of HR activity leads to severe cell death when rereplication is induced. Therefore, our studies identify HR, the most conservative repair pathway, as the primary mechanism to repair DSBs upon rereplication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways.

    Science.gov (United States)

    Arnal, Suzzette M; Holub, Abigail J; Salus, Sandra S; Roth, David B

    2010-05-01

    V(D)J recombination entails double-stranded DNA cleavage at the antigen receptor loci by the RAG1/2 proteins, which recognize conserved recombination signal sequences (RSSs) adjoining variable (V), diversity (D) and joining (J) gene segments. After cleavage, RAG1/2 remain associated with the coding and signal ends (SE) in a post-cleavage complex (PCC), which is critical for their proper joining by classical non-homologous end joining (NHEJ). Certain mutations in RAG1/2 destabilize the PCC, allowing DNA ends to access inappropriate repair pathways such as alternative NHEJ, an error-prone pathway implicated in chromosomal translocations. The PCC is thus thought to discourage aberrant rearrangements by controlling repair pathway choice. Since interactions between RAG1/2 and the RSS heptamer element are especially important in forming the RAG-SE complex, we hypothesized that non-consensus heptamer sequences might affect PCC stability. We find that certain non-consensus heptamers, including a cryptic heptamer implicated in oncogenic chromosomal rearrangements, destabilize the PCC, allowing coding and SEs to be repaired by non-standard pathways, including alternative NHEJ. These data suggest that some non-consensus RSS, frequently present at chromosomal translocations in lymphoid neoplasms, may promote genomic instability by a novel mechanism, disabling the PCC's ability to restrict repair pathway choice.

  11. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.; Smogorzewska, Agata; Rudge, Derek G.; Buzovetsky, Olga; Elledge, Stephen J.; Pavletich, Nikola P. (Harvard-Med); (Cornell); (MSKCC)

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  12. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    Energy Technology Data Exchange (ETDEWEB)

    W Joo; G Xu; n Persky; A Smogorzewska; D Rudge; O Buzovetsky; S Elledge; N Pavletich

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.

  13. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells

    OpenAIRE

    Johnson, Roger D.; Jasin, Maria

    2000-01-01

    In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contras...

  14. Preventing damage limitation: targeting DNA-PKcs and DNA double strand break repair pathways for ovarian cancer therapy

    Directory of Open Access Journals (Sweden)

    Daniela A Dungl

    2015-10-01

    Full Text Available Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is are associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumour cell defects in homologous recombination - a repair pathway activated in response to DNA double strand breaks (DSB - are most commonly associated with platinum sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ, another DSB repair pathway. DNA-PKcs is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signalling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease.

  15. Conservation of the nucleotide excision repair pathway: characterization of hydra Xeroderma Pigmentosum group F homolog.

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    Full Text Available Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF gene that encodes a structure-specific 5' endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.

  16. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    Science.gov (United States)

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  17. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A.S.; Campos, V.M.A.; Magalhaes, L.A.G., E-mail: adnfonseca@ig.com.br [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria. Lab. de Ciencias Radiologicas; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Instituto de Ciencias Biologicas. Departamento de Morfologia

    2015-10-15

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T{sub 4} endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T{sub 4} endonuclease V. Low-intensity lasers: i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells, ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, and iv) did not alter the electrophoretic profile of plasmids incubated with T{sub 4} endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. (author)

  18. Measurement of DNA base and nucleotide excision repair activities in mammalian cells and tissues using the comet assay--a methodological overview.

    Science.gov (United States)

    Azqueta, Amaya; Langie, Sabine A S; Slyskova, Jana; Collins, Andrew R

    2013-11-01

    There is an increasing demand for phenotyping assays in the field of human functional genetics. DNA repair activity is representative of this functional approach, being seen as a valuable biomarker related to cancer risk. Repair activity is evaluated by incubating a cell extract with a DNA substrate containing lesions specific for the DNA repair pathway of interest. Enzymic incision at the lesion sites can be measured by means of the comet assay (single cell gel electrophoresis). The assay is particularly applicable for evaluation of base and nucleotide excision repair pathways (BER and NER). Substrate DNA containing oxidised purines gives a measure of BER, while UV-induced photolesions are the substrate for NER. While applications of comet-based DNA repair assays continue to increase, there are no commonly accepted standard protocols, which complicates inter-laboratory comparisons of results. Here we provide a comprehensive summary of protocols for the comet-based BER- and NER-specific in vitro DNA repair assays that can be applied to a wide spectrum of biological material--cultured cell lines, blood cells, animal tissue samples and human biopsies. Our intention is to provide a detailed and user-friendly account of the assays, including practical tips and recommendations to help in setting them up. By proposing standard protocols, we hope to facilitate comparison of results obtained in different laboratories.

  19. Über dieses Heft

    Directory of Open Access Journals (Sweden)

    Herausgeber / Editors

    2016-12-01

    Full Text Available Erzählungen werden in vielen Lebensbereichen und Handlungsfeldern eingesetzt, um bestimmte Ziele im Rahmen einer mehr oder minder umfassenden Strategie zu erreichen. Dieses „strategische Erzählen” lässt sich teilweise in die rhetorische Überzeugungslehre eingliedern; das Spektrum der möglichen Ziele geht jedoch, wie die folgenden Beiträge zeigen, über die klassische Persuasio hinaus. In Konrads Engelhard dient die Art und Weise des Erzählens – laut Eva Lieberich – einer Vorbereitung des Lesers auf den Umgang mit „neidischer Rede”. Ein ähnlich didaktisch-moralisches Ziel verfolgt das bekannte Samaritergleichnis bei Lukas. Jan Rüggemeier arbeitet hier insbesondere heraus, wie diese Wirkungsintention strategisch an unterschiedliche Rezipientenkreise angepasst wird und so zur kollektiven Identitätsbildung religiöser Gemeinschaften beiträgt. Die Wechselwirkung zwischen Erzähler und Angesprochenem wird in dem Beitrag von Mareike von Müller und Matthias Wermeling vertieft, die zugleich die Brücke von Mittelalter zu Gegenwart schlagen: Sie vergleichen aktuelle Mystories, durch welche Patienten ihren Krankheiten erzählerisch Sinn zu geben versuchen, mit mittelalterlichen Erzählschemata. Bei dieser Art von Mystories zeichnen sich die Grenzen des Erzählens ab, die strategische Narrativierung des Geschehens steht in Spannung zu einer antagonistischen Tendenz, die sich den vertrauten Schemata entzieht. Erstaunlicherweise beobachtet ausgerechnet der ganz in der Kultur der Gegenwart verankerte Beitrag, in dem Nancy Menning und Luke Keller den Dokumentarfilm Journey of the Universe (2011 analysieren, wie eine Mischung von wissenschaftlichen Plausibilisierungsstrategien und eher religiös-mythologischen Topoi die Rezipienten überzeugen soll – was von der ungeminderten Aktualität der klassischen rhetorischen Persuasionsstrategien zeugt. Daneben darf man die innovative Kraft der Frage nach dem strategischen Erzählen innerhalb

  20. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    Science.gov (United States)

    Stirling, Peter C; Hieter, Philip

    2016-07-22

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.

  1. Mittheilungen über Scyphomedusen I

    NARCIS (Netherlands)

    Stiasny, G.

    1921-01-01

    Hiemit beabsichtige ich eine Reihe kleinerer Mittheilungen über Semaeostomeen und Rhizostomeen des Rijksmuseums van Natuurlijke Historie in Leiden zu veröffentlichen, welche die Systematik, Biologie, Entwicklungsgeschichte und Anatomie verschiedener Scyphomedusen behandeln. Die vorliegenden beiden

  2. Mittheilungen über Scyphomedusen I

    NARCIS (Netherlands)

    Stiasny, G.

    1921-01-01

    Hiemit beabsichtige ich eine Reihe kleinerer Mittheilungen über Semaeostomeen und Rhizostomeen des Rijksmuseums van Natuurlijke Historie in Leiden zu veröffentlichen, welche die Systematik, Biologie, Entwicklungsgeschichte und Anatomie verschiedener Scyphomedusen behandeln. Die vorliegenden beiden k

  3. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  4. Inflammatory and repair pathways induced in human bronchoalveolar lavage cells with ozone inhalation.

    Directory of Open Access Journals (Sweden)

    Pascale Leroy

    Full Text Available Inhalation of ambient levels of ozone causes airway inflammation and epithelial injury.To examine the responses of airway cells to ozone-induced oxidative injury, 19 subjects (7 with asthma were exposed to clean air (0ppb, medium (100ppb, and high (200ppb ambient levels of ozone for 4h on three separate occasions in a climate-controlled chamber followed by bronchoscopy with bronchoalveolar lavage (BAL 24h later. BAL cell mRNA expression was examined using Affymetrix GeneChip Microarray. The role of a differentially expressed gene (DEG in epithelial injury was evaluated in an in vitro model of injury [16HBE14o- cell line scratch assay].Ozone exposure caused a dose-dependent up-regulation of several biologic pathways involved in inflammation and repair including chemokine and cytokine secretion, activity, and receptor binding; metalloproteinase and endopeptidase activity; adhesion, locomotion, and migration; and cell growth and tumorigenesis regulation. Asthmatic subjects had 1.7- to 3.8-fold higher expression of many DEGs suggestive of increased proinflammatory and matrix degradation and remodeling signals. The most highly up-regulated gene was osteopontin, the protein level of which in BAL fluid increased in a dose-dependent manner after ozone exposure. Asthmatic subjects had a disproportionate increase in non-polymerized osteopontin with increasing exposure to ozone. Treatment with polymeric, but not monomeric, osteopontin enhanced the migration of epithelial cells and wound closure in an α9β1 integrin-dependent manner.Expression profiling of BAL cells after ozone exposure reveals potential regulatory genes and pathways activated by oxidative stress. One DEG, osteopontin, promotes epithelial wound healing in an in vitro model of injury.

  5. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses

    Directory of Open Access Journals (Sweden)

    Robert Hollingworth

    2015-05-01

    Full Text Available With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR. These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers.

  6. Über dieses Heft

    Directory of Open Access Journals (Sweden)

    Editors / Herausgeber

    2016-06-01

    -Sektion dieser Ausgabe findet sich ein Interview mit Susan S. Lanser, einer renommierten Narratologin und Mitbegründerin der feministischen Literaturtheorie. Sie denkt über ihre Einflüsse nach, erklärt, warum sie Bleak House von Charles Dickens als Lektüre auf eine einsame Insel mitnehmen würde, und deutet an, dass die Narratologie eine neue Perspektive auf den israelisch-palästinensischen Konflikt bieten kann.Wir wünschen Ihnen, liebe Leserinnen und Leser, eine anregende Lektüre!

  7. The Hypoxia-Inducible Factor Pathway, Prolyl Hydroxylase Domain Protein Inhibitors, and Their Roles in Bone Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Lihong Fan

    2014-01-01

    Full Text Available Hypoxia-inducible factors (HIFs are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs. PHD inhibitors (PHIs activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF, are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.

  8. Über dieses Heft

    Directory of Open Access Journals (Sweden)

    Editors / Herausgeber

    2013-06-01

    Full Text Available Bilder, audiovisuelle Medien, elektronische Medien, World Wide Web: Das Erzählen vollzieht sich mittlerweile in vielfältigen Formen. Der intensive Gebrauch von neuen Medien in unterschiedlichen Zusammenhängen begegnet, überlagert und vermischt sich mit der Rezeption traditioneller literarischer Medien, die nach wie vor weit verbreitet sind. Für die Erzählforschung ergibt sich aus der veränderten kulturellen Praxis eine Vielzahl von Folgen. Die vorliegende Ausgabe von DIEGESIS soll einen Eindruck davon vermitteln. So rückt etwa ein Korpus in den Vordergrund, das lange Zeit eine Randexistenz führte: Erzählungen, die nicht oder nicht ausschließlich durch Sprache vermittelt werden, und solche, die nicht mehr nur die Kulturtechnik des Lesens und Schreibens voraussetzen. Andere Techniken, andere Gesten begleiten den Umgang mit diesen Erzählungen, und diese Differenz wird an denjenigen Stellen besonders deutlich, wo unterschiedliche Medien ineinander verschachtelt sind. Die Erzeugung von Komplexität durch intermediale Relationen charakterisiert dieses neue Korpus und öffnet für die Erzählforschung neue Arbeitsfelder. Gerade die markanten Medienwechsel, die mit der Vermarktung erfolgreicher Stoffe – als Roman, als Film, als Computerspiel, als Comic, als YouTube-Parodie – einhergehen, werfen die doppelte Frage auf, was in diesen Varianten das gemeinsame narrative Substrat, und was hingegen medienspezifische Erzählverfahren sind. Der ersten Perspektive folgt in der vorliegenden Ausgabe Matthias Brütsch mit einer kritischen Prüfung transmedialer Narrativitätsvergleiche; die zweite entfalten Sebastian Armbrusts Beitrag über Komplexität in bekannten Fernsehserien wie House und The Wire und Markus Kuhns Analyse der narrativen Funktion der Handkamera als spezifischem Verfahren in Spielfilmen und fiktionalen Internetclips. Selbstverständlich haben sich auch bestehende Kategorien der Erzählforschung unter dem Eindruck gewandelt, dass

  9. Relationships between chromatin remodeling and DNA damage repair induced by 8-methoxypsoralen and UVA in yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Lavínia Almeida Cruz

    2012-01-01

    Full Text Available Eukaryotic cells have developed mechanisms to prevent genomic instability, such as DNA damage detection and repair, control of cell cycle progression and cell death induction. The bifunctional compound furocumarin 8-methoxy-psoralen (8-MOP is widely used in the treatment of various inflammatory skin diseases. In this review, we summarize recent data about the role of chromatin remodeling in the repair of DNA damage induced by treatment with 8-methoxypsoralen plus UVA (8-MOP+UVA, focusing on repair proteins in budding yeast Saccharomyces cerevisiae, an established model system for studying DNA repair pathways. The interstrand crosslinks (ICL formed by the 8-MOP+UVA treatment are detrimental lesions that can block transcription and replication, leading to cell death if not repaired. Current data show the involvement of different pathways in ICL processing, such as nucleotide excision repair (NER, base excision repair (BER, translesion repair (TLS and double-strand break repair. 8-MOP+UVA treatment in yeast enhances the expression of genes involved in the DNA damage response, double strand break repair by homologous replication, as well as genes related to cell cycle regulation. Moreover, alterations in the expression of subtelomeric genes and genes related to chromatin remodeling are consistent with structural modifications of chromatin relevant to DNA repair. Taken together, these findings indicate a specific profile in 8-MOP+UVA responses related to chromatin remodeling and DNA repair.

  10. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Glassner, B.J. [Univ. of California, Berkeley, CA (United States); Mortimer, R.K. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1994-07-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs.

  11. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  12. Über dieses Heft

    Directory of Open Access Journals (Sweden)

    Editors / Herausgeber

    2013-12-01

    Full Text Available Das journalistische Erzählen ist nicht erst neu zu entdecken – es besitzt eine lange und prominente eigenständige Tradition, die von so unterschiedlichen Autoren wie Émile Zola, Egon Erwin Kisch, Gabriel García Márquez, Tom Wolfe u.v.a.m. geprägt wurde. Narratologische Zugänge haben jedoch in den letzten Jahren zu einer präziseren Beschreibung der besonderen Leistungen journalistischen Erzählens beigetragen. Das verdeutlichen auch die Beiträge dieses Heftes. Ethische Aspekte journalistischer Texte können eng mit den jeweils verwendeten Erzählverfahren zusammenhängen – so die These Friederike Herrmanns. Sie kritisiert den vermeintlich objektiven, quasi erzählerlosen Darstellungsstil von Nachrichten in Printmedien als einen weit verbreiteten, aber vergeblichen Versuch, mit Hilfe einer unsichtbar gemachten Erzählinstanz das Ideal einer reinen Faktenpräsentation zu erreichen. Stattdessen, so ihr Vorschlag, solle der Reporter die Standpunktgebundenheit seines Nachrichtentextes stilistisch und erzählerisch deutlich machen. Im interaktiven Online-Journalismus seien Ansätze zu einer derartigen Nachrichtenvermittlung auf Augenhöhe mit den Lesern erkennbar. Narrativer Journalismus, führt Marie Vanoost aus, sei als hybrides Genre zwischen fiktionaler Erzählliteratur und konventionellen Pressemeldungen angesiedelt. Er zeichne sich durch ebenso komplexe wie spezifische Plotkonstruktionen aus. In drei Fallanalysen untersucht Vanoost mit Hilfe von Begriffen Raphäel Baronis und Paul Ricoeurs das Zusammenspiel von intriguing function (fonction intriguante, in der die Dynamik des Leseprozesses im Vordergrund stehe, und configuring function (fonction configurante, die eher informativ und explikativ orientiert sei. Plotkonstruktionen stehen auch im Vordergrund von Valérie Roberts Beitrag über den journalistischen Umgang mit der „Wulff-Affäre“, die im Jahr 2012 zum Rücktritt des deutschen Bundespräsidenten Christian Wulff f

  13. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations,

  14. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  16. Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis.

    Science.gov (United States)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike; Dato, Serena; Mengel-From, Jonas; Stevnsner, Tinna; Bohr, Vilhelm A; Kruse, Torben A; Schreiber, Stefan; Nebel, Almut; Christensen, Kaare; Tan, Qihua; Christiansen, Lene

    2014-09-01

    DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10(-5)), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using the competitive gene-set analysis by Wang et al indicated that BER, HRR and RECQ associated stronger with longevity than the respective remaining genes of the pathway (P-values=0.004-0.048). For HRR and RECQ, only one gene contributed to the significance, whereas for BER several genes contributed. These associations did, however, generally not pass correction for multiple testing. Still, these findings indicate that, of the entire pathway, variation in BER might influence longevity the most. These modest sized P-values were not replicated in a German sample. This might, though, be due to differences in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn.

  17. Deutsch lernen über das Internet

    Directory of Open Access Journals (Sweden)

    Engler, Lela-Rose

    2001-01-01

    Full Text Available Seit einigen Jahren wird diskutiert, welche Möglichkeiten die Anwendung und Einbeziehung des "Internet" im Fremdsprachenerwerb bietet. Dabei hat sich das Interesse u. a. darauf gerichtet, welche Potentiale die neuen Medien bei der Gestaltung von fremdsprachlichen Lehr-und Lernprozessen über die Distanz bergen, also über ihren Einsatz im direkten Sprachunterricht hinaus. Erfahrungen mit Sprachkursen auf multimedialer Basis haben zu einer Diskussion über die Veränderungen des Lehrens und Lernens in diesen neuen Umgebungen geführt. Eine große Rolle spielt dabei das autonome Lernen, das durch den Einsatz der neuen Medien im Fremdsprachenunterricht gefördert wird. Noch gibt es nur wenige Untersuchungen zu fremdsprachlichen Lernprozessen in Sprachfernlernkursen. In dem Beitrag sollen neben anderen auch eigene Erfahrungen aus einem Distanzkurs dargestellt werden.

  18. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-01-01

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/− germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse. PMID:28290521

  19. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells.

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-03-14

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.

  20. Importance of the cell cycle phase for the choice of the appropriate DSB repair pathway, for genome stability maintenance: the trans-S double-strand break repair model.

    Science.gov (United States)

    Delacôte, Fabien; Lopez, Bernard S

    2008-01-01

    A DNA double-strand break (DSB) is a highly harmful lesion that can lead to genome rearrangements. Two main pathways compete for DSB repair: homologous recombination (HR) and nonhomologous end-joining (NHEJ). Depending on the cell cycle phase, the choice of one DSB repair pathway over the other will secure genome stability maintenance or in contrast will increase the risk of genetic instability. HR with the sister chromatid is an efficient way to maintain genome stability, for damage occurring at a post-replication stage. However, in G(1) checkpoint-defective cells, DSBs produced in the G(1) phase and not repaired by NHEJ, can progress through S phase and be processed by HR in late S/G(2) phase. We propose the "trans-S DSB repair" model to account for these data. In this situation HR cannot use the sister chromatid (which is also broken at the same locus) and is thus forced to use ectopic homologous sequences dispersed through the genome, increasing the risk of genetic instability. This shows that the two DSB repair pathways can compete through the cell cycle and underlines the importance of the association between the cell cycle checkpoint and the appropriate DNA repair pathway for genome stability maintenance.

  1. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  2. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks.

    Science.gov (United States)

    Boboila, Cristian; Alt, Frederick W; Schwer, Bjoern

    2012-01-01

    Classical nonhomologous end joining (C-NHEJ) is one of the two major known pathways for the repair of DNA double-strand breaks (DSBs) in mammalian cells. Our understanding of C-NHEJ has been derived, in significant part, through studies of programmed physiologic DNA DSBs formed during V(D)J recombination in the developing immune system. Studies of immunoglobulin heavy-chain (IgH) class-switch recombination (CSR) also have revealed that there is an "alternative" end-joining process (A-EJ) that can function, relatively robustly, in the repair of DSBs in activated mature B lymphocytes. This A-EJ process has also been implicated in the formation of oncogenic translocations found in lymphoid tumors. In this review, we discuss our current understanding of C-NHEJ and A-EJ in the context of V(D)J recombination, CSR, and the formation of chromosomal translocations. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  4. PTH1–34 Blocks Radiation-induced Osteoblast Apoptosis by Enhancing DNA Repair through Canonical Wnt Pathway*

    Science.gov (United States)

    Chandra, Abhishek; Lin, Tiao; Zhu, Ji; Tong, Wei; Huo, Yanying; Jia, Haoruo; Zhang, Yejia; Liu, X. Sherry; Cengel, Keith; Xia, Bing; Qin, Ling

    2015-01-01

    Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1–34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1–34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1–34 or Wnt agonist as possible therapy for radiation-induced osteoporosis. PMID:25336648

  5. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Farjana Fattah

    2010-02-01

    Full Text Available The repair of DNA double-strand breaks (DSBs is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR and non-homologous end joining (NHEJ. In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ pathway and an "alternative" NHEJ (A-NHEJ pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs, XLF, and LIGIV, and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.

  6. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Farjana Fattah

    2010-02-01

    Full Text Available The repair of DNA double-strand breaks (DSBs is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR and non-homologous end joining (NHEJ. In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways-the main Ku heterodimer-dependent or "classic" NHEJ (C-NHEJ pathway and an "alternative" NHEJ (A-NHEJ pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PK(cs, XLF, and LIGIV, and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PK(cs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PK(cs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice.

  7. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination.

    Science.gov (United States)

    Cortizas, Elena M; Zahn, Astrid; Hajjar, Maurice E; Patenaude, Anne-Marie; Di Noia, Javier M; Verdun, Ramiro E

    2013-12-01

    Classical nonhomologous end-joining (C-NHEJ) and alternative end-joining (A-EJ) are the main DNA double-strand break (DSB) repair pathways when a sister chromatid is not available. However, it is not clear how one pathway is chosen over the other to process a given DSB. To address this question, we studied in mouse splenic B cells and CH12F3 cells how C-NHEJ and A-EJ repair DSBs initiated by the activation-induced deaminase during IgH (Igh) class-switch recombination (CSR). We show in this study that lowering the deamination density at the Igh locus increases DSB resolution by microhomology-mediated repair while decreasing C-NHEJ activity. This process occurs without affecting 53BP1 and γH2AX levels during CSR. Mechanistically, lowering deamination density increases exonuclease I recruitment and single-stranded DNA at the Igh locus and promotes C-terminal binding protein interacting protein and MSH2-dependent DSB repair during CSR. Indeed, reducing activation-induced deaminase levels increases CSR efficiency in C-NHEJ-defective cells, suggesting enhanced use of an A-EJ pathway. Our results establish a mechanism by which C-NHEJ and this C-terminal binding protein interacting protein/MSH2-dependent pathway that relies on microhomology can act concurrently but independently to repair different types of DSBs and reveal that the density of DNA lesions influences the choice of DSB repair pathway during CSR.

  8. Promotion of Dental Pulp Cell Migration and Pulp Repair by a Bioceramic Putty Involving FGFR-mediated Signaling Pathways.

    Science.gov (United States)

    Zhang, J; Zhu, L X; Cheng, X; Lin, Y; Yan, P; Peng, B

    2015-06-01

    Mineral trioxide aggregate is the currently recommended material of choice for clinical pulp repair despite several disadvantages, including handling inconvenience. Little is known about the signaling mechanisms involved in bioceramic-mediated dental pulp repair-particularly, dental pulp cell (DPC) migration. This study evaluated the effects of iRoot BP Plus, a novel ready-to-use nanoparticulate bioceramic putty, on DPC migration in vitro and pulp repair in vivo, focusing on possible involvement of fibroblast growth factor receptor (FGFR)-related signaling, including mitogen-activated protein kinase and Akt pathways. Treatment with iRoot BP Plus extracts enhanced horizontal and vertical migration of DPCs, which was comparable with the effects induced by mineral trioxide aggregate extracts. The DPCs exposed to iRoot BP Plus extracts demonstrated no evident apoptosis. Importantly, treatment with iRoot BP Plus extracts resulted in rapid activation of FGFR, p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK), and Akt signaling in DPCs. Confocal immunofluorescence staining revealed that iRoot BP Plus stimulated focal adhesion formation and stress fiber assembly in DPCs, in addition to upregulating the expression of focal adhesion molecules, including p-focal adhesion kinase, p-paxillin, and vinculin. Moreover, activation of FGFR, ERK, JNK, and Akt were found to mediate the upregulated expression of focal adhesion molecules, stress fiber assembly, and enhanced DPC migration induced by iRoot BP Plus. Consistent with the in vitro results, we observed induction of homogeneous dentin bridge formation and expression of p-focal adhesion kinase, p-FGFR, p-ERK 1/2, p-JNK, and p-Akt near injury sites by iRoot BP Plus in an in vivo pulp repair model. These data demonstrate that iRoot BP Plus can promote DPC migration and pulp repair involving the FGFR-mediated ERK 1/2, JNK, and Akt pathways. These findings provide

  9. Fused combiners for photonic crystal bers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny

    The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed...

  10. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions.

    Science.gov (United States)

    Chen, Zhangguo; Eder, Maxwell D; Elos, Mihret T; Viboolsittiseri, Sawanee S; Chen, Xiaomi; Wang, Jing H

    2016-03-01

    Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.

  11. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene.

    Science.gov (United States)

    Wang, Qi; Wang, Ai-hong; Tan, Hong-shan; Feng, Nan-nan; Ye, Yun-jie; Feng, Xiao-qing; Liu, Geoffrey; Zheng, Yu-xin; Xia, Zhao-lin

    2010-05-01

    The base excision repair (BER) pathway is important in repairing DNA damage incurred from occupational exposure to 1,3-butadiene (BD). This study examines the relationship between inherited polymorphisms of the BER pathway (x-ray repair cross-complementing group 1 (XRCC1) Arg194Trp, Arg280His, Arg399Gln, T-77C, ADPRT Val762Ala, MGMT Leu84Phe and APE1 Asp148Glu) and chromosomal damage in BD-exposed workers, using the cytokinesis-blocked (CB) micronucleus (MN) assay in peripheral lymphocytes of 166 workers occupationally exposed to BD and 41 non-exposed healthy individuals. The MN frequency of exposed workers (3.39 +/- 2.42) per thousand was higher than that of the non-exposed groups (1.48 +/- 1.26) per thousand (P damage among BD-exposed workers. In workers exposed to BD, multiple BER polymorphisms and a XRCC1 haplotype were associated with differential levels of chromosome damage.

  12. A Cross-Cancer Genetic Association Analysis of the DNA repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast and Colorectal Cancer

    Science.gov (United States)

    Scarbrough, Peter M.; Weber, Rachel Palmieri; Iversen, Edwin S.; Brhane, Yonathan; Amos, Christopher I.; Kraft, Peter; Hung, Rayjean J.; Sellers, Thomas A.; Witte, John S.; Pharoah, Paul; Henderson, Brian E.; Gruber, Stephen B.; Hunter, David J.; Garber, Judy E.; Joshi, Amit D.; McDonnell, Kevin; Easton, Doug F.; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A.; Schildkraut, Joellen M.

    2015-01-01

    Background DNA damage is an established mediator of carcinogenesis, though GWAS have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. Methods We conducted a cross-cancer analysis of 60,297 SNPs, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. Results We identified three susceptibility DNA repair genes, RAD51B (p < 5.09 × 10−6), MSH5 (p < 5.09 × 10−6) and BRCA2 (p = 5.70 × 10−6). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Conclusions Only three susceptibility loci were identified which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Impact Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. PMID:26637267

  13. APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Suk [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Guo, Chunlu; Thompson, Eric L. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Jiang, Yanlin [Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States); Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indianapolis, IN 46202 (United States); Lee, Suk-Hee, E-mail: slee@iu.edu [Department of Biochemistry and Molecular Biology, Indianapolis, IN 46202 (United States)

    2015-09-15

    Peripheral neuropathy is one of the major side effects of treatment with the anticancer drug, cisplatin. One proposed mechanism for this neurotoxicity is the formation of platinum adducts in sensory neurons that could contribute to DNA damage. Although this damage is largely repaired by nuclear excision repair (NER), our previous findings suggest that augmenting the base excision repair pathway (BER) by overexpressing the repair protein APE1 protects sensory neurons from cisplatin-induced neurotoxicity. The question remains whether APE1 contributes to the ability of the NER pathway to repair platinum-damage in neuronal cells. To examine this, we manipulated APE1 expression in sensory neuronal cultures and measured Pt-removal after exposure to cisplatin. When neuronal cultures were treated with increasing concentrations of cisplatin for two or three hours, there was a concentration-dependent increase in Pt-damage that peaked at four hours and returned to near baseline levels after 24 h. In cultures where APE1 expression was reduced by ∼80% using siRNA directed at APE1, there was a significant inhibition of Pt-removal over eight hours which was reversed by overexpressing APE1 using a lentiviral construct for human wtAPE1. Overexpressing a mutant APE1 (C65 APE1), which only has DNA repair activity, but not its other significant redox-signaling function, mimicked the effects of wtAPE1. Overexpressing DNA repair activity mutant APE1 (226 + 177APE1), with only redox activity was ineffective suggesting it is the DNA repair function of APE1 and not its redox-signaling, that restores the Pt-damage removal. Together, these data provide the first evidence that a critical BER enzyme, APE1, helps regulate the NER pathway in the repair of cisplatin damage in sensory neurons.

  14. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taichi [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kondo, Natsuko [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Mori, Eiichiro [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Ken [Department of Biology, Ibaraki Prefectual University of Health Sciences, 4669-2 Ami, Ami-mati, Inasiki-gun, Ibaraki 300-0394 (Japan); Zdzienicka, Malgorzata Z. [Department of Molecular Cell Genetics, Collegium Medicum in Bydgoszcz, Nicolaus-Copernicus-University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz (Poland); Thompson, Larry H. [Biosciences and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Helleday, Thomas [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom); Department of Genetics, Microbiology and Toxicology Stockholm University, SE-106 91 Stockholm (Sweden); Asada, Hideo [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  15. DNA repair: Dynamic defenders against cancer and aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet

  16. TGFβ1 protects cells from γ-IR by enhancing the activity of the NHEJ repair pathway.

    Science.gov (United States)

    Kim, Mi-Ra; Lee, Jeeyong; An, You Sun; Jin, Yeung Bae; Park, In-Chul; Chung, Eunkyung; Shin, Incheol; Barcellos-Hoff, Mary Helen; Yi, Jae Youn

    2015-02-01

    Several groups have reported that TGFβ1 regulates cellular responses to γ-irradiation; however, the exact mechanism has not been fully elucidated. In the current study, the role of TGFβ1 in cellular responses to γ-irradiation was investigated in detail. The data indicate that TGFβ1 pretreatment decreased the aftermath of ionizing radiation (IR)-induced DNA damage in a SMAD-dependent manner. To determine the underlying mechanism for these effects, the extent of IR-induced DNA repair activity in the presence or absence of TGFβ1 was examined. Studies reveal that TGFβ1 upregulated DNA ligase IV (Lig4), augmented IR-induced nuclear retention of the DNA ligase, and enhanced nonhomologous end-joining (NHEJ) repair activity. In addition, knockdown of Lig4 reduced the TGFβ1-induced protection against IR. Overall, these data indicate that TGFβ1 facilitates the NHEJ repair process upon γ-irradiation and thereby enhances long-term survival. These findings provide new insight and a possible approach to controlling genotoxic stress by the TGFβ signaling pathway. ©2014 American Association for Cancer Research.

  17. RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of 'alternative NHEJ'.

    Science.gov (United States)

    Gigi, Vered; Lewis, Susanna; Shestova, Olga; Mijušković, Martina; Deriano, Ludovic; Meng, Wenzhao; Luning Prak, Eline T; Roth, David B

    2014-06-01

    DNA double-stranded breaks (DSBs) can be repaired by several mechanisms, including classical NHEJ (c-NHEJ) and a poorly defined, error-prone process termed alternative NHEJ (a-NHEJ). How cells choose between these alternatives to join physiologic DSBs remains unknown. Here, we show that deletion of RAG2's C-terminus allows a-NHEJ to repair RAG-mediated DSBs in developing lymphocytes from both c-NHEJ-proficient and c-NHEJ-deficient mice, demonstrating that the V(D)J recombinase influences repair pathway choice in vivo. Analysis of V(D)J junctions revealed that, contrary to expectation, junctional characteristics alone do not reliably distinguish between a-NHEJ and c-NHEJ. These data suggest that a-NHEJ is not necessarily mutagenic, and may be more prevalent than previously appreciated. Whole genome sequencing of a lymphoma arising in a p53(-/-) mouse bearing a C-terminal RAG2 truncation reveals evidence of a-NHEJ and also of aberrant recognition of DNA sequences resembling RAG recognition sites.

  18. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer. PMID:20798883

  19. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  20. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India); Choudhuri, Tathagata [Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023 (India); Department of Biotechnology, Visva Bharati University, Santiniketan, West Bengal (India); Kundu, Chanakya Nath, E-mail: cnkundu@gmail.com [Cancer Biology Division, KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024 (India)

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  1. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  2. Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Tao Sun; Jing-hui Li; Ning Zhao; Yong Wang; Hua-lin Yu

    2015-01-01

    Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw-ley rats was clamped for 60 seconds.Dazhui (GV14) andMingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres-sion of serum inlfammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These ifndings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  3. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    Science.gov (United States)

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  4. DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities

    NARCIS (Netherlands)

    A. Shibata (Atsushi); D. Moiani (Davide); A.S. Arvai (Andrew); J. Perry (Jefferson); S.M. Harding (Shane); M.-M. Genois (Marie-Michelle); R. Maity (Ranjan); S.E. van Rossum-Fikkert (Sari); A. Kertokalio (Aryandi); F. Romoli (Filippo); A. Ismail (Amani); E. Ismalaj (Ermal); E. Petricci (Elena); M.J. Neale (Matthew); R.G. Bristow (Robert); J.-Y. Masson (Jean-Yves); C. Wyman (Claire); P.A. Jeggo (Penny); J.A. Tainer (John)

    2014-01-01

    textabstractMRE11 within the MRE11-RAD50-NBS1 (MRN) complex acts in DNA double-strand break repair (DSBR), detection, and signaling; yet, how its endo- and exonuclease activities regulate DSBR by nonhomologous end-joining (NHEJ) versus homologous recombination (HR) remains enigmatic. Here, we employ

  5. DNA Double-Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities

    NARCIS (Netherlands)

    A. Shibata (Atsushi); D. Moiani (Davide); A.S. Arvai (Andrew); J. Perry (Jefferson); S.M. Harding (Shane); M.-M. Genois (Marie-Michelle); R. Maity (Ranjan); S.E. van Rossum-Fikkert (Sari); A. Kertokalio (Aryandi); F. Romoli (Filippo); A. Ismail (Amani); E. Ismalaj (Ermal); E. Petricci (Elena); M.J. Neale (Matthew); R.G. Bristow (Robert); J.-Y. Masson (Jean-Yves); C. Wyman (Claire); P.A. Jeggo (Penny); J.A. Tainer (John)

    2014-01-01

    textabstractMRE11 within the MRE11-RAD50-NBS1 (MRN) complex acts in DNA double-strand break repair (DSBR), detection, and signaling; yet, how its endo- and exonuclease activities regulate DSBR by nonhomologous end-joining (NHEJ) versus homologous recombination (HR) remains enigmatic. Here, we

  6. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    Science.gov (United States)

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G; Daiber, Andreas

    2015-08-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  7. Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways.

    Science.gov (United States)

    Liu, X X; Sun, C; Jin, X D; Li, P; Zheng, X G; Zhao, T; Li, Q

    2016-06-01

    The aim of this work was to investigate the radiosensitization effects of genistein on mice sarcoma cells and the corresponding biological mechanisms in vitro and in vivo Using the non-toxic dosage of 10 μM genistein, the sensitizer enhancement ratios after exposure to X-rays at 50% cell survival (IC50) was 1.45 for S180 cells. For mice cotreated with genistein and X-rays, the excised tumor tissues had reduced blood vessels and decreased size and volume compared with the control and irradiation-only groups. Moreover, a significant increase in apoptosis was accompanied by upregulation of Bax and downregulation of Bcl-2 in the mitochondria, and lots of cytochrome c being transferred to the cytoplasm. Furthermore, X-rays combined with genistein inhibited the activity of DNA-PKcs, so DNA-injured sites were dominated by Ku70/80, leading to incompleteness of homologous recombination (HR) and non-homologous end-joining (NHEJ) repairs and the eventual occurrence of cell apoptosis. Our study, for the first time, demonstrated that genistein sensitized sarcoma cells to X-rays and that this radiosensitizing effect depended on induction of the mitochondrial apoptosis pathway and inhibition of the double-strand break (DSB) repair pathways.

  8. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    Directory of Open Access Journals (Sweden)

    Yuliya Mikhed

    2015-08-01

    Full Text Available Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α and mRNA binding proteins (e.g. GAPDH, HuR is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications. By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  9. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    Directory of Open Access Journals (Sweden)

    Sibel Kucukyildirim

    2016-07-01

    Full Text Available Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP domain, and/or the existence of a uracil-DNA glycosylase B (UdgB homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.

  10. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway.

    Science.gov (United States)

    Faruqi, A F; Datta, H J; Carroll, D; Seidman, M M; Glazer, P M

    2000-02-01

    The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.

  11. A new possibility for repairing the anal dysfunction by promoting regeneration of the reflex pathways in the enteric nervous system.

    Science.gov (United States)

    Katsui, Renta; Kojima, Yu; Kuniyasu, Hiroki; Shimizu, Juichiro; Koyama, Fumikazu; Fujii, Hisao; Nakajima, Yoshiyuki; Takaki, Miyako

    2008-04-01

    Moderate rectal distension elicits recto-rectal reflex contractions and simultaneous recto-internal anal sphincter reflex relaxations that together comprise the defecation reflex. Both reflexes are controlled by 1) pelvic nerves, 2) lumbar colonic nerves, and 3) enteric nervous system. The aim of the present study was to explore a novel approach to repairing the defecation reflex dysfunction by using the plasticity of enteric nervous pathways. Experiments were performed in anesthetized guinea pigs with ethyl carbamate. The rectum 30 mm oral from the anal verge was transected without damage to extrinsic nerves, and subsequent end-to-end one-layer anastomosis was performed. Recovery of the defecation reflex and associated reflex pathways were evaluated. Eight weeks after sectioning of intrinsic reflex nerve pathways in the rectum, the defecation reflex recovered to the control level, accompanied with regeneration of reflex pathways. The 5-HT(4)-receptor agonist mosapride (0.5 and 1.0 mg/kg) significantly (P nervous system with local application of BDNF.

  12. Heterozygous Vangl2Looptail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

    Science.gov (United States)

    Poobalasingam, Thanushiyan; Yates, Laura L.; Walker, Simone A.; Pereira, Miguel; Gross, Nina Y.; Ali, Akmol; Kolatsi-Joannou, Maria; Jarvelin, Marjo-Riitta; Pekkanen, Juha; Papakrivopoulou, Eugenia; Long, David A.; Griffiths, Mark; Wagner, Darcy; Königshoff, Melanie; Hind, Matthew; Minelli, Cosetta; Lloyd, Clare M.

    2017-01-01

    ABSTRACT Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung

  13. BER for recommendations based on local popularity

    CERN Document Server

    Barman, Kishor

    2010-01-01

    Motivated by applications such as recommendation systems, we consider the estimation of a binary random field X obtained by row and column permutations of a block constant random matrix. The estimation of X is based on observations Y, which are obtained by passing entries of X through a binary symmetric channel (BSC) and an erasure channel. We focus on the analysis of a specific algorithm based on local popularity when the erasure rate approaches unity at a specified rate. We study the bit error rate (BER) in the limit as the matrix size approaches infinity. Our main result states that if the cluster size (that is, the size of the constancy blocks in the original matrix) is above a certain threshold, then the BER approaches zero, but below the threshold, the BER is lower bounded away from zero. The lower bound depends on the noise level in the observations and the size of the clusters in relation to the threshold. The threshold depends on the rate at which the erasure probability approaches unity.

  14. DNA repair and damage pathway related cancer suppressor genes in low-dose-rate irradiated AKR/J an IR mice

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyun Soon; Bong, Jin Jong; Kang, Yumi; Choi, Moo Hyun; Lee, Hae Un; Yoo, Jae Young; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Gyeongju (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    It has been reported that low-dose-rate radiation stimulates the immune response, prolongs life span and inhibits carcinogenesis. The high dose-rate radiation influences the expression of DNA repair and damage-related genes. In contrast, DNA repair and damage signaling triggered by low-dose-rate irradiation remain unclear. In the present study, we investigated the differential expression of DNA repair and damage pathway related genes in the thymus of AKR/J and ICR mice after 100th day low-dose-rate irradiation. Our findings demonstrated that low-dose-rate γ -radiation suppressed tumorigenesis.

  15. The type and yield of ionising radiation induced chromosomal aberrations depend on the efficiency of different DSB repair pathways in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T.; Berni, Andrea; Marimuthu, Kodumudi M. [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo (Italy); Palitti, Fabrizio [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo (Italy)], E-mail: palitti@unitus.it

    2008-07-03

    In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G{sub 2}, S and G{sub 1} phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G{sub 1} irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G{sub 1} irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G{sub 1} in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.

  16. RIP4 is a target of multiple signal transduction pathways in keratinocytes: Implications for epidermal differentiation and cutaneous wound repair

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Stephanie [Charite, University Medicine Berlin, Institute of Physiology, Arnimallee 22, D-14195 Berlin (Germany); Munz, Barbara, E-mail: barbara.munz@charite.de [Charite, University Medicine Berlin, Institute of Physiology, Arnimallee 22, D-14195 Berlin (Germany)

    2010-01-01

    Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury and might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.

  17. Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways

    Science.gov (United States)

    Stolk, Lisette; Perry, John RB; Chasman, Daniel I; He, Chunyan; Mangino, Massimo; Sulem, Patrick; Barbalic, Maja; Broer, Linda; Byrne, Enda M; Ernst, Florian; Esko, Tõnu; Franceschini, Nora; Gudbjartsson, Daniel F; Hottenga, Jouke-Jan; Kraft, Peter; McArdle, Patick F; Porcu, Eleonora; Shin, So-Youn; Smith, Albert V; van Wingerden, Sophie; Zhai, Guangju; Zhuang, Wei V; Albrecht, Eva; Alizadeh, Behrooz Z; Aspelund, Thor; Bandinelli, Stefania; Lauc, Lovorka Barac; Beckmann, Jacques S; Boban, Mladen; Boerwinkle, Eric; Broekmans, Frank J; Burri, Andrea; Campbell, Harry; Chanock, Stephen J; Chen, Constance; Cornelis, Marilyn C; Corre, Tanguy; Coviello, Andrea D; d’Adamo, Pio; Davies, Gail; de Faire, Ulf; de Geus, Eco JC; Deary, Ian J; Dedoussis, George VZ; Deloukas, Panagiotis; Ebrahim, Shah; Eiriksdottir, Gudny; Emilsson, Valur; Eriksson, Johan G; Fauser, Bart CJM; Ferreli, Liana; Ferrucci, Luigi; Fischer, Krista; Folsom, Aaron R; Garcia, Melissa E; Gasparini, Paolo; Gieger, Christian; Glazer, Nicole; Grobbee, Diederick E; Hall, Per; Haller, Toomas; Hankinson, Susan E; Hass, Merli; Hayward, Caroline; Heath, Andrew C; Hofman, Albert; Ingelsson, Erik; Janssens, A Cecile JW; Johnson, Andrew D; Karasik, David; Kardia, Sharon LR; Keyzer, Jules; Kiel, Douglas P; Kolcic, Ivana; Kutalik, Zoltán; Lahti, Jari; Lai, Sandra; Laisk, Triin; Laven, Joop SE; Lawlor, Debbie A; Liu, Jianjun; Lopez, Lorna M; Louwers, Yvonne V; Magnusson, Patrik KE; Marongiu, Mara; Martin, Nicholas G; Klaric, Irena Martinovic; Masciullo, Corrado; McKnight, Barbara; Medland, Sarah E; Melzer, David; Mooser, Vincent; Navarro, Pau; Newman, Anne B; Nyholt, Dale R; Onland-Moret, N. Charlotte; Palotie, Aarno; Paré, Guillaume; Parker, Alex N; Pedersen, Nancy L; Peeters, Petra HM; Pistis, Giorgio; Plump, Andrew S; Polasek, Ozren; Pop, Victor JM; Psaty, Bruce M; Räikkönen, Katri; Rehnberg, Emil; Rotter, Jerome I; Rudan, Igor; Sala, Cinzia; Salumets, Andres; Scuteri, Angelo; Singleton, Andrew; Smith, Jennifer A; Snieder, Harold; Soranzo, Nicole; Stacey, Simon N; Starr, John M; Stathopoulou, Maria G; Stirrups, Kathleen; Stolk, Ronald P; Styrkarsdottir, Unnur; Sun, Yan V; Tenesa, Albert; Thorand, Barbara; Toniolo, Daniela; Tryggvadottir, Laufey; Tsui, Kim; Ulivi, Sheila; van Dam, Rob M; van der Schouw, Yvonne T; van Gils, Carla H; van Nierop, Peter; Vink, Jacqueline M; Visscher, Peter M; Voorhuis, Marlies; Waeber, Gérard; Wallaschofski, Henri; Wichmann, H Erich; Widen, Elisabeth; Gent, Colette JM Wijnands-van; Willemsen, Gonneke; Wilson, James F; Wolffenbuttel, Bruce HR; Wright, Alan F; Yerges-Armstrong, Laura M; Zemunik, Tatijana; Zgaga, Lina; Zillikens, M. Carola; Zygmunt, Marek; Arnold, Alice M; Boomsma, Dorret I; Buring, Julie E.; Crisponi, Laura; Demerath, Ellen W; Gudnason, Vilmundur; Harris, Tamara B; Hu, Frank B; Hunter, David J; Launer, Lenore J; Metspalu, Andres; Montgomery, Grant W; Oostra, Ben A; Ridker, Paul M; Sanna, Serena; Schlessinger, David; Spector, Tim D; Stefansson, Kari; Streeten, Elizabeth A; Thorsteinsdottir, Unnur; Uda, Manuela; Uitterlinden, André G; van Duijn, Cornelia M; Völzke, Henry; Murray, Anna; Murabito, Joanne M; Visser, Jenny A; Lunetta, Kathryn L

    2011-01-01

    To identify novel loci for age at natural menopause, we performed a meta-analysis of 22 genome-wide association studies in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 new age at natural menopause loci (P < 5 × 10−8). The new loci included genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG, PRIM1) and immune function (IL11, NLRP11, BAT2). Gene-set enrichment pathway analyses using the full GWAS dataset identified exodeoxyribonuclease, NFκB signalling and mitochondrial dysfunction as biological processes related to timing of menopause. PMID:22267201

  18. Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair

    Science.gov (United States)

    Bulgar, A D; Weeks, L D; Miao, Y; Yang, S; Xu, Y; Guo, C; Markowitz, S; Oleinick, N; Gerson, S L; Liu, L

    2012-01-01

    Uracil DNA glycosylase (UDG) specifically removes uracil bases from DNA, and its repair activity determines the sensitivity of the cell to anticancer agents that are capable of introducing uracil into DNA. In the present study, the participation of UDG in the response to pemetrexed-induced incorporation of uracil into DNA was studied using isogenic human tumor cell lines with or without UDG (UDG+/+/UDG−/−). UDG−/− cells were very sensitive to pemetrexed. Cell killing by pemetrexed was associated with genomic uracil accumulation, stalled DNA replication, and catastrophic DNA strand breaks. By contrast, UDG+/+ cells were >10 times more resistant to pemetrexed due to the rapid removal of uracil from DNA by UDG and subsequent repair of the resultant AP sites (abasic sites) via the base excision repair (BER). The resistance to pemetrexed in UDG+/+ cells could be reversed by the addition of methoxyamine (MX), which binds to AP sites and interrupts BER pathway. Furthermore, MX-bound AP sites induced cell death was related to their cytotoxic effect of dual inactivation of UDG and topoisomerase IIα, two genes that are highly expressed in lung cancer cells in comparison with normal cells. Thus, targeting BER-based therapy exhibits more selective cytotoxicity on cancer cells through a synthetic lethal mechanism. PMID:22237209

  19. BER of subcarrier MPSK and MDPSK systems in atmospheric turbulence

    KAUST Repository

    Song, Xuegui

    2015-01-01

    Bit-error rate (BER) performance of subcarrier $M$-ary phase-shift keying (MPSK) and $M$-ary differential PSK (MDPSK) is analyzed for optical wireless communications over Gamma-Gamma and lognormal turbulence channels. We study the relation between the exact BER and the approximate BER, which is obtained by dividing the symbol-error rate by the number of bits per symbol, for subcarrier MPSK and MDPSK modulations. The asymptotic BER performance gap between the exact and the approximate BERs is quantified analytically through our asymptotic analyses. The accuracy of the approximate BER of both MPSK and MDPSK depends on the channel conditions. Under weak turbulence conditions, the approximate BER expression can be used to predict the system performance with high accuracy, while under strong turbulence conditions the approximate BER becomes inaccurate and can only serve as a loose lower bound of the exact BER. The asymptotic BER performance loss of MDPSK with respect to MPSK is also quantified analytically.

  20. Lipman Bers, a life in mathematics

    CERN Document Server

    Keen, Linda; Rodríguez, Rubí E

    2015-01-01

    The book is part biography and part collection of mathematical essays that gives the reader a perspective on the evolution of an interesting mathematical life. It is all about Lipman Bers, a giant in the mathematical world who lived in turbulent and exciting times. It captures the essence of his mathematics, a development and transition from applied mathematics to complex analysis-quasiconformal mappings and moduli of Riemann surfaces-and the essence of his personality, a progression from a young revolutionary refugee to an elder statesman in the world of mathematics and a fighter for global h

  1. Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes.

    Science.gov (United States)

    Hamadeh, Hisham K; Trouba, Kevin J; Amin, Rupesh P; Afshari, Cynthia A; Germolec, Dori

    2002-10-01

    Human exposure to arsenic, a ubiquitous and toxic environmental pollutant, is associated with an increased incidence of skin cancer. However, the mechanism(s) associated with AsIII-mediated toxicity and carcinogenesis at low levels of exposure remains elusive. Aberrations in cell proliferation, oxidative damage, and DNA-repair fidelity have been implicated in sodium arsenite (AsIII)-mediated carcinogenicity and toxicity, but these events have been examined in isolation in the majority of biological models of arsenic exposure. We hypothesized that the simultaneous interaction of these effects may be important in arsenic-mediated neoplasia in the skin. To evaluate this, normal human epidermal keratinocytes (NHEK) were exposed to nontoxic doses (0.005-5 micro M) of AsIII and monitored for several physiological endpoints at the times when cells were harvested for gene expression measurements (1-24 h). Two-fluor cDNA microarray analyses indicated that AsIII treatment decreased the expression of genes associated with DNA repair (e.g., p53 and Damage-specific DNA-binding protein 2) and increased the expression of genes indicative of the cellular response to oxidative stress (e.g., Superoxide dismutase 1, NAD(P)H quinone oxidoreductase, and Serine/threonine kinase 25). AsIII also modulated the expression of certain transcripts associated with increased cell proliferation (e.g., Cyclin G1, Protein kinase C delta), oncogenes, and genes associated with cellular transformation (e.g., Gro-1 and V-yes). These observations correlated with measurements of cell proliferation and mitotic measurements as AsIII treatment resulted in a dose-dependent increase in cellular mitoses at 24 h and an increase in cell proliferation at 48 h of exposure. Data in this manuscript demonstrates that AsIII exposure simultaneously modulates DNA repair, cell proliferation, and redox-related gene expression in nontransformed, normal NHEK. It is anticipated that data in this report will serve as a

  2. Genotoxic stress and DNA repair in plants: emerging functions and tools for improving crop productivity.

    Science.gov (United States)

    Balestrazzi, Alma; Confalonieri, Massimo; Macovei, Anca; Donà, Mattia; Carbonera, Daniela

    2011-03-01

    Crop productivity is strictly related to genome stability, an essential requisite for optimal plant growth/development. Genotoxic agents (e.g., chemical agents, radiations) can cause both chemical and structural damage to DNA. In some cases, they severely affect the integrity of plant genome by inducing base oxidation, which interferes with the basal processes of replication and transcription, eventually leading to cell death. The cell response to oxidative stress includes several DNA repair pathways, which are activated to remove the damaged bases and other lesions. Information concerning DNA repair in plants is still limited, although results from gene profiling and mutant analysis suggest possible differences in repair mechanisms between plants and other eukaryotes. The present review focuses on the base- and nucleotide excision repair (BER, NER) pathways, which operate according to the most common DNA repair rule (excision of damaged bases and replacement by the correct nucleotide), highlighting the most recent findings in plants. An update on DNA repair in organelles, chloroplasts and mitochondria is also provided. Finally, it is generally acknowledged that DNA repair plays a critical role during seed imbibition, preserving seed vigor. Despite this, only a limited number of studies, described here, dedicated to seeds are currently available.

  3. SELECTIVE-INHIBITION OF REPAIR OF ACTIVE GENES BY HYPERTHERMIA IS DUE TO INHIBITION OF GLOBAL AND TRANSCRIPTION COUPLED REPAIR PATHWAYS

    NARCIS (Netherlands)

    SAKKERS, RJ; FILON, AR; BRUNSTING, JF; KAMPINGA, HH; KONINGS, AWT; MULLENDERS, LHF

    1995-01-01

    Hyperthermia specifically inhibits the repair of UV-induced DNA photolesions in transcriptionally active genes, To define more precisely which mechanisms underlie the heat-induced inhibition of repair of active genes, removal of cyclobutane pyrimidine dimers (CPDs) was studied in human fibroblasts w

  4. Metformin enhances radiosensitivity via inhibition of DNA repair pathway in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youn Kyoung; Kim, Mi Sook; Lee, Ji Young; Song, Kyung Hee; Choi, Kyul; Kim, Eun Ho; Ha, Hun Joo [Ewha Womans University, Seoul (Korea, Republic of)

    2014-04-15

    In this study, we provide a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer. Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Currently, it is one of the commonest chemoradiotherapy worked better than the radiotherapy or chemotherapy in colorectal cancer. To enhance radiosensitivity of tumor cells for chemoradiotherapy, it is to use potential anticancer agents that act as radiosensitizers. Metformin, one of the most widely used antidiabetic drugs, has recently been associated with potential antitumorigenic effects. Our data shows that metformin combined with radiation enhances the efficacy of radiotherapy and down-regulates DNA repair proteins. Therefore, we provides a scientific rationale for the clinical application of metformin as a radiosensitizer in colorectal cancer.

  5. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM r...

  6. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    Science.gov (United States)

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.

  7. Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose-fermenting yeast Pichia stipitis.

    Science.gov (United States)

    Maassen, Nicole; Freese, Stefan; Schruff, Barbara; Passoth, Volkmar; Klinner, Ulrich

    2008-08-01

    Pichia stipitis integrates linear homologous DNA fragments mainly ectopically. High rates of randomly occurring integration allow tagging mutagenesis with high efficiency using simply PCR amplificates of suitable selection markers from the P. stipitis genome. Linearization of an autonomously replicating vector caused a distinct increase of the transformation efficiency compared with the circular molecule. Cotransformation of a restriction endonuclease further enhanced the transformation efficiency. This effect was also observed with integrative vector DNA. In most cases vector integration in chromosomal targets did not depend on microhomologies, indicating that restriction-enzyme-mediated integration (REMI) does not play an essential role in P. stipitis. Small deletions were observed at the ends of the integrated vectors and in the target sites. Disruption of the PsKU80 gene increased the frequency of homologous integration considerably but resulted in a remarkable decrease of the transformation efficiency. These results suggest that in P. stipitis the nonhomologous end joining (NHEJ) pathway obviously predominates the homologous recombination pathway of double-strand break repair.

  8. Optical fiber communication — An overview

    Indian Academy of Sciences (India)

    M Arumugam

    2001-11-01

    This paper deals with the historical development of optical communication systems and their failures initially. Then the different generations in optical fiber communication along with their features are discussed. Some aspects of total internal reflection, different types of fibers along with their size and refractive index profile, dispersion and loss mechanisms are also mentioned. Finally the general system of optical fiber communication is briefly mentioned along with its advantages and limitations. Future soliton based optical fiber communication is also highlighted.

  9. In vitro measurement of DNA base excision repair in isolated mitochondria.

    Science.gov (United States)

    Page, Melissa M; Stuart, Jeffrey A

    2009-01-01

    Mitochondrial DNA (mtDNA) is in relatively close proximity to reactive oxygen species (ROS) arising from spontaneous superoxide formation during respiration. As a result, it sustains oxidative damage that may include base modifications, base loss, and strand breaks. mtDNA replication past sites of oxidative damage can result in the introduction of mutations. mtDNA mutations are associated with various human diseases and can manifest as loss of bioenergetic function. DNA repair processes exist in mitochondria from apparently all metazoans. A fully functional DNA base excision repair (BER) pathway is present in mitochondria of vertebrates. This pathway is catalyzed by a number of DNA glycosylases, an AP endonuclease, polymerase gamma, and a DNA ligase. This chapter outlines the step-by-step protocols for isolating mitochondrial fractions, from a number of different model organisms, of sufficient purity to allow mtDNA repair activities to be measured. It details in vitro assays for the measurement of BER enzyme activities in lysates prepared from isolated mitochondria.

  10. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks

    OpenAIRE

    Yang, Yun-Gui; Saidi, Amal; Frappart, Pierre-Olivier; Min, WooKee; Barrucand, Christelle; Dumon-Jones, Valérie; Michelon, Jocelyne; Herceg, Zdenko; Wang, Zhao-Qi

    2006-01-01

    NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting...

  11. Multiscale Computation. Needs and Opportunities for BER Science

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  12. Calmodulin Mediates DNA Repair Pathways Involving H2AX in Response to Low-Dose Radiation Exposure of RAW 264.7 Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Lopez Ferrer, Daniel; Eberlein, P. Elis; Watson, David J.; Squier, Thomas C.

    2009-02-05

    Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance metastasis. In this respect, we have identified a dose-dependent increase in the abundance of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose exposures. Increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX protein complexes associated with DNA repair following macrophage irradiation, with no change in the extent of double-stranded DNA damage. In comparison, when NFκB-dependent pathways are inhibited, through the expression of a dominant-negative IκB construct, there is no significant increase in phosphorylated H2AX upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX mediated DNA-repair pathways is not the result of nonspecific NFκB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation to enhance macrophage radioresistance through processes that include the upregulation of DNA repair pathways involving histone protein H2AX phosphorylation.

  13. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  14. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  15. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  16. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  17. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ) o

  18. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  19. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway.

    Science.gov (United States)

    Kan, Rui; Sun, Xianfei; Kolas, Nadine K; Avdievich, Elena; Kneitz, Burkhard; Edelmann, Winfried; Cohen, Paula E

    2008-03-01

    The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.

  20. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Genome-wide association studies (GWASs have identified low-penetrance common variants (i.e., single nucleotide polymorphisms, SNPs associated with breast cancer susceptibility. Although GWASs are primarily focused on single-locus effects, gene-gene interactions (i.e., epistasis are also assumed to contribute to the genetic risks for complex diseases including breast cancer. While it has been hypothesized that moderately ranked (P value based weak single-locus effects in GWASs could potentially harbor valuable information for evaluating epistasis, we lack systematic efforts to investigate SNPs showing consistent associations with weak statistical significance across independent discovery and replication stages. The objectives of this study were i to select SNPs showing single-locus effects with weak statistical significance for breast cancer in a GWAS and/or candidate-gene studies; ii to replicate these SNPs in an independent set of breast cancer cases and controls; and iii to explore their potential SNP-SNP interactions contributing to breast cancer susceptibility. A total of 17 SNPs related to DNA repair, modification and metabolism pathway genes were selected since these pathways offer a priori knowledge for potential epistatic interactions and an overall role in breast carcinogenesis. The study design included predominantly Caucasian women (2,795 cases and 4,505 controls from Alberta, Canada. We observed two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; MLH1-rs1799977 and MDM2-rs769412 in logistic regression that conferred elevated risks for breast cancer (P(interaction<7.3 × 10(-3. Logic regression identified an interaction involving four SNPs (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412, BRCA2-rs1799943 (P(permutation = 2.4 × 10(-3. SNPs involved in SNP-SNP interactions also showed single-locus effects with weak statistical significance, while BRCA2-rs1799943 showed stronger statistical significance (P

  1. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test; Phenotypage de la reparation de l'ADN de lignees Xeroderma pigmentosum, par un test in vitro multiparametrique

    Energy Technology Data Exchange (ETDEWEB)

    Raffin, A.L.

    2009-06-15

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  2. Alfredo Häberli ja Iittala : Senta / Piret Veigel

    Index Scriptorium Estoniae

    Veigel, Piret, 1961-

    2004-01-01

    Jaanuaris Pariisi messil Maison & Objet aasta disaineriks kuulutatud Alfredo Häberli esitles veebruaris Frankfurdi messil Ambiente oma neljandat ühisprojekti Soome Iittalaga: Senta-nimelisi valge, punase ja vahuveini klaase

  3. Alfredo Häberli ja Iittala : Senta / Piret Veigel

    Index Scriptorium Estoniae

    Veigel, Piret, 1961-

    2004-01-01

    Jaanuaris Pariisi messil Maison & Objet aasta disaineriks kuulutatud Alfredo Häberli esitles veebruaris Frankfurdi messil Ambiente oma neljandat ühisprojekti Soome Iittalaga: Senta-nimelisi valge, punase ja vahuveini klaase

  4. Robust Cognitive-GN BER Estimator for Dynamic WDM Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert; Caballero Jambrina, Antonio; Arlunno, Valeria;

    2014-01-01

    We introduce and experimentally demonstrate a simple yet reliable and fast tool for estimating BER of lightpaths over uncompensated links. The model provides accurate estimates for capacity upgrade scenarios when modulation format order is increased....

  5. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Yang, Qiaoyun [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Yuxia [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China); Li, Ran [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Ge, Jie [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060 (China); Qiu, Xinghua, E-mail: xhqiu@pku.edu.cn [State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871 (China); Li, Guang, E-mail: lig@tijmu.edu.cn [Basic Medical College, Tianjin Medical University, Tianjin 300070 (China)

    2015-02-15

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights:

  6. Plants Possess a Cyclic Mitochondrial Metabolic Pathway similar to the Mammalian Metabolic Repair Mechanism Involving Malate Dehydrogenase and l-2-Hydroxyglutarate Dehydrogenase.

    Science.gov (United States)

    Hüdig, Meike; Maier, Alexander; Scherrers, Isabell; Seidel, Laura; Jansen, Erwin E W; Mettler-Altmann, Tabea; Engqvist, Martin K M; Maurino, Veronica G

    2015-09-01

    Enzymatic side reactions can give rise to the formation of wasteful and toxic products that are removed by metabolite repair pathways. In this work, we identify and characterize a mitochondrial metabolic repair mechanism in Arabidopsis thaliana involving malate dehydrogenase (mMDH) and l-2-hydroxyglutarate dehydrogenase (l-2HGDH). We analyze the kinetic properties of both A. thaliana mMDH isoforms, and show that they produce l-2-hydroxyglutarate (l-2HG) from 2-ketoglutarate (2-KG) at low rates in side reactions. We identify A. thaliana l-2HGDH as a mitochondrial FAD-containing oxidase that converts l-2HG back to 2-KG. Using loss-of-function mutants, we show that the electrons produced in the l-2HGDH reaction are transferred to the mitochondrial electron transport chain through the electron transfer protein (ETF). Thus, plants possess the biochemical components of an l-2HG metabolic repair system identical to that found in mammals. While deficiencies in the metabolism of l-2HG result in fatal disorders in mammals, accumulation of l-2HG in plants does not adversely affect their development under a range of tested conditions. However, orthologs of l-2HGDH are found in all examined genomes of viridiplantae, indicating that the repair reaction we identified makes an essential contribution to plant fitness in as yet unidentified conditions in the wild.

  7. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Schiestl, R.H.; Prakash, S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA))

    1990-04-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6{Delta}) mutations and show that they also suppress the {gamma}-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of {gamma}-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6{Delta} is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6{Delta} SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.

  8. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  9. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations.

    Science.gov (United States)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu; Yang, Qiaoyun; Zhao, Yuxia; Li, Ran; Ge, Jie; Qiu, Xinghua; Li, Guang

    2015-02-01

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log2 ratio >1 or waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region.

  10. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations.

    Science.gov (United States)

    Iliakis, George; Murmann, Tamara; Soni, Aashish

    2015-11-01

    DNA double strand breaks (DSB) are the most deleterious lesions for the integrity of the genome, as their misrepair can lead to the formation of chromosome translocations. Cells have evolved two main repair pathways to suppress the formation of these genotoxic lesions: homology-dependent, error-free homologous recombination repair (HRR), and potentially error-prone, classical, DNA-PK-dependent non-homologous end-joining (c-NHEJ). The most salient feature of c-NHEJ, speed, will largely suppress chromosome translocation formation, while sequence alterations at the junction remain possible. It is now widely accepted that when c-NHEJ is inactivated, globally or locally, an alternative form of end-joining (alt-EJ) removes DSBs. Alt-EJ operates with speed and fidelity markedly lower than c-NHEJ, causing thus with higher probability chromosome translocations, and generating more extensive sequence alterations at the junction. Our working hypothesis is that alt-EJ operates as a backup to c-NHEJ. Recent results show that alt-EJ can also backup abrogated HRR in G2 phase cells, again at the cost of elevated formation of chromosome translocations. These observations raise alt-EJ to a global rescuing mechanism operating on ends that have lost their chromatin context in ways that compromise processing by HRR or c-NHEJ. While responsible for eliminating from the genome highly cytotoxic DNA ends, alt-EJ provides this function at the price of increased translocation formation. Here, we analyze recent literature on the mechanisms of chromosome translocation formation and propose a functional hierarchy among DSB processing pathways that makes alt-EJ the global backup pathway. We discuss possible ramifications of this model in cellular DSB management and pathway choice, and analyze its implications in radiation carcinogenesis and the design of novel therapeutic approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Fanconi anemia/BRCA pathway is involved in DNA interstrand cross-link repair of adriamycin-resistant leukemia cells.

    Science.gov (United States)

    Yao, Chenjiao; Du, Wei; Chen, Haibing; Xiao, Sheng; Huang, Lihua; Chen, Fangping

    2015-03-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway plays a vital role in DNA damage repair induced by DNA cross-linking agents and is closely related to drug response in cancer treatment. Here we demonstrate that the FA/BRCA pathway contributes to acquired drug resistance in adriamycin (ADR)-resistant leukemia cell lines, and disruption of this pathway partially reverses the drug resistance. We observed that ADR-resistant cells have reduced DNA interstrand cross-links (ICL) compared with ADR-sensitive cells. Western blot studies demonstrated enhanced FA protein expression in ADR-resistant cells. Using siRNA to knock down FANCF in K562/R drug-resistant cells showed increases in sensitivity to ADR and ADR-induced DNA damage, and demonstrated a direct relationship between the FA/BRCA pathway and drug sensitivity. Overexpression of FANCF in K562 drug-sensitive cells partially reproduced the drug-resistant phenotype. These results show that the FA/BRCA pathway is involved in acquired ADR resistance of leukemia cells. The FA/BRCA pathway may be a new target to reverse ADR resistance in leukemia treatment.

  12. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target.

    Science.gov (United States)

    Fishel, Melissa L; Kelley, Mark R

    2007-01-01

    With our growing understanding of the pathways involved in cell proliferation and signaling, targeted therapies, in the treatment of cancer are entering the clinical arena. New and emerging targets are proteins involved in DNA repair pathways. Inhibition of various proteins in the DNA repair pathways sensitizes cancer cells to DNA damaging agents such as chemotherapy and/or radiation. We study the apurinic endonuclease 1/redox factor-1 (Ape1/Ref-1) and believe that its crucial function in DNA repair and reduction-oxidation or redox signaling make it an excellent target for sensitizing tumor cells to chemotherapy. Ape1/Ref-1 is an essential enzyme in the base excision repair (BER) pathway which is responsible for the repair of DNA caused by oxidative and alkylation damage. As importantly, Ape1/Ref-1 also functions as a redox factor maintaining transcription factors in an active reduced state. Ape1/Ref-1 stimulates the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as AP-1 (Fos/Jun), NFkappaB, HIF-1alpha, CREB, p53 and others. We will discuss what is known regarding the pharmacological targeting of the DNA repair activity, as well as the redox activity of Ape1/Ref-1, and explore the budding clinical utility of inhibition of either of these functions in cancer treatment. A brief discussion of the effect of polymorphisms in its DNA sequence is included because of Ape1/Ref-1's importance to maintenance and integrity of the genome. Experimental modification of Ape1/Ref-1 activity changes the response of cells and of organisms to DNA damaging agents, suggesting that Ape1/Ref-1 may also be a productive target of chemoprevention. In this review, we will provide an overview of Ape1/Ref-1's activities and explore the potential of this protein as a target in cancer treatment as well as its role in chemoprevention.

  13. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III

    Directory of Open Access Journals (Sweden)

    Hiroshi Arakawa

    2015-06-01

    Full Text Available Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1, DNA ligase 3 (Lig3 and DNA ligase 4 (Lig4. While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER, homologous recombination repair (HRR and nucleotide excision repair (NER. Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ. Lig3 is implicated in a short-patch base excision repair (BER pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche

  14. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.

    Science.gov (United States)

    Arakawa, Hiroshi; Iliakis, George

    2015-06-23

    Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a

  15. Human Longevity and Variation in GH/IGF-1/Insulin Signaling, DNA Damage Signaling and Repair and Pro/antioxidant Pathway Genes: Cross Sectional and Longitudinal Studies

    Science.gov (United States)

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H. Eka D.; de Craen, Anton J.M.; Westendorp, Rudi G.J.; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A.; Slagboom, P. Eline; Nebel, Almut; Vaupel, James W.; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-01-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92–93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (pbased association study, the largest to date applying a pathway approach, points to potential new longevity loci, but does also underline the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms. PMID:22406557

  16. Presence of base excision repair enzymes in the wheat aleurone and their activation in cells undergoing programmed cell death.

    Science.gov (United States)

    Bissenbaev, Amangeldy K; Ishchenko, Alexander A; Taipakova, Sabira M; Saparbaev, Murat K

    2011-10-01

    Cereal aleurone cells are specialized endosperm cells that produce enzymes to hydrolyze the starchy endosperm during germination. Aleurone cells can undergo programmed cell death (PCD) when incubated in the presence of gibberellic acid (GA) in contrast to abscisic acid (ABA) which inhibits the process. The progression of PCD in aleurone layer cells of wheat grain is accompanied by an increase in deoxyribonuclease (DNase) activities and the internucleosomal degradation of nuclear DNA. Reactive oxygen species (ROS) are increased during PCD in the aleurone cells owing to the β-oxidation of triglycerides and inhibition of the antioxidant enzymes possibly leading to extensive oxidative damage to DNA. ROS generate mainly non-bulky DNA base lesions which are removed in the base excision repair (BER) pathway, initiated by the DNA glycosylases. At present, very little is known about oxidative DNA damage repair in cereals. Here, we study DNA repair in the cell-free extracts of wheat aleurone layer incubated or not with phytohormones. We show, for the first time, the presence of 8-oxoguanine-DNA and ethenoadenine-DNA glycosylase activities in wheat aleurone cells. Interestingly, the DNA glycosylase and AP endonuclease activities are strongly induced in the presence of GA. Based on these data we propose that GA in addition to activation of nuclear DNases also induces the DNA repair activities which remove oxidized DNA bases in the BER pathway. Potential roles of the wheat DNA glycosylases in GA-induced oligonucleosomal fragmentation of DNA and metabolic activation of aleurone layer cells via repair of transcribed regions are discussed.

  17. Impact of two DNA repair pathways, homologous recombination and non-homologous end joining, on bacterial spore inactivation under simulated martian environmental conditions

    Science.gov (United States)

    Moeller, Ralf; Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2011-09-01

    Spores of Bacillus subtilis were used as a model system to study the impact of the two major DNA double-strand break (DSB) repair mechanisms [homologous recombination (HR) and non-homologous end-joining (NHEJ)] on the survivability of air-dried mono- and multilayers of bacterial spores under a simulated martian environment; i.e., an environment with low temperature (-10 °C), pure CO 2 atmosphere (99.99% CO 2), 200-1100 nm UV-VIS-NIR radiation, and 0.69 kPa pressure. Spores in multilayers exhibited low inactivation rates compared to monolayers, mainly due to shadowing effects of overlying spores. Simulated martian UV irradiation reduced dramatically spore viability, whereas when shielded from martian UV radiation, spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to simulated martian environmental conditions than were wild-type spores. In addition, NHEJ-deficient spores were consistently more sensitive than HR-deficient spores to simulated Mars environmental conditions, suggesting that DSBs were an important type of DNA damage. The results indicated that both HR and NHEJ provide an efficient set of DNA repair pathways ensuring spore survival after exposure to simulated martian environmental conditions.

  18. Pathways of homologous recombinantion and DNA interstrand cross-link repair : roles of mammalian RAD54 and SNMI

    NARCIS (Netherlands)

    M.L.G. Dronkert (Mies)

    2002-01-01

    textabstractThe aim of this thesis is to investigate mammalian DNA interstrand cross-link (ICL) repair. ICLs are formed by a number of agents used in tumor therapy, like mitomycin C and cisplatin. They constitute one of the most toxic damages to DNA, as they inhibit DNA strand separation. However, l

  19. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway.

    Science.gov (United States)

    Weeden, Clare E; Chen, Yunshun; Ma, Stephen B; Hu, Yifang; Ramm, Georg; Sutherland, Kate D; Smyth, Gordon K; Asselin-Labat, Marie-Liesse

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC.

  20. Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk.

    Science.gov (United States)

    Sanders, Laurie H; Paul, Kimberly C; Howlett, Evan H; Lawal, Hakeem; Boppana, Sridhar; Bronstein, Jeff M; Ritz, Beate; Greenamyre, J Timothy

    2017-07-01

    Exposure to certain pesticides induces oxidative stress and increases Parkinson's disease (PD) risk. Mitochondrial DNA (mtDNA) damage is found in dopaminergic neurons in idiopathic PD and following pesticide exposure in experimental models thereof. Base excision repair (BER) is the major pathway responsible for repairing oxidative DNA damage in cells. Whether single nucleotide polymorphisms (SNPs) in BER genes alone or in combination with pesticide exposure influence PD risk is unknown. We investigated the contributions of functional SNPs in 2 BER genes (APEX1 and OGG1) and mitochondrial dysfunction- or oxidative stress-related pesticide exposure, including paraquat, to PD risk. We also studied the effect of paraquat on levels of mtDNA damage and mitochondrial bioenergetics. 619 PD patients and 854 population-based controls were analyzed for the 2 SNPs, APEX1 rs1130409 and OGG1 rs1052133. Ambient pesticide exposures were assessed with a geographic information system. Individually, or in combination, the BER SNPs did not influence PD risk. Mitochondrial-inhibiting (OR = 1.79, 95% CI [1.32, 2.42]), oxidative stress-inducing pesticides (OR = 1.61, 95% CI [1.22, 2.11]), and paraquat (OR = 1.54, 95% CI [1.23, 1.93]) were associated with PD. Statistical interactions were detected, including for a genetic risk score based on rs1130409 and rs1052133 and oxidative stress inducing pesticides, where highly exposed carriers of both risk genotypes were at the highest risk of PD (OR = 2.21, 95% CI [1.25, 3.86]); similar interactions were estimated for mitochondrial-inhibiting pesticides and paraquat alone. Additionally, paraquat exposure was found to impair mitochondrial respiration and increase mtDNA damage in in vivo and in vitro systems. Our findings provide insight into possible mechanisms involved in increased PD risk due to pesticide exposure in the context of BER genotype variants. © The Author 2017. Published by Oxford University Press on behalf of the

  1. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    K Porsezian

    2001-11-01

    In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in fibers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear fiber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is briefly discussed.

  2. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    Directory of Open Access Journals (Sweden)

    Anastazja Grabarz

    2013-10-01

    Full Text Available The choice of the appropriate double-strand break (DSB repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp generated by alternative end-joining (A-EJ. BLM represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role for BLM that influences the DSB repair pathway choice: (1 protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2 promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid unscheduled resection that might jeopardize genome integrity.

  3. BER of subcarrier MPSK/MDPSK modulated OWC systems in Gamma-Gamma turbulence

    KAUST Repository

    Song, Xuegui

    2013-12-01

    Bit-error rate (BER) performance of subcarrier Mary phase-shift keying (MPSK) and M-ary differential PSK (MDPSK) is analyzed for optical wireless communications in Gamma-Gamma turbulence. We study the relation between the exact BER and the approximate BER, which is obtained by dividing the symbol error rate by the number of bits per symbol, for subcarrier MPSK and MDPSK modulations. The asymptotic performance gap between the exact and the approximate BERs is quantified analytically through our asymptotic analyses. The accuracy of the approximate BER of both MPSK and MDPSK depends on the channel conditions. Under weak turbulence conditions, the approximate BER expression can be used to predict the system performance with high accuracy, while under strong turbulence conditions the approximate BER becomes inaccurate and can only serve as a loose lower bound of the exact BER. The asymptotic BER performance loss of MDPSK with respect to MPSK is also quantified analytically. © 2013 IEEE.

  4. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways.

    Science.gov (United States)

    Pan, Y; Zhang, Q; Atsaves, V; Yang, H; Claret, F X

    2013-05-30

    Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia and Africa. Radiotherapy and cisplatin-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to cisplatin. Increased DNA damage repair is one of the mechanisms contributing to this resistance. Jab1/CSN5 is a multifunctional protein that participates in controlling cell proliferation and the stability of multiple proteins. Jab1 overexpression has been found to correlate with poor prognosis in several tumor types. However, the biological significance of Jab1 activity in response to cancer treatment is unclear. In this study, we used three NPC cell lines (CNE1, CNE2 and HONE1) to investigate the hypothesis that Jab1 positively regulates the DNA repair protein Rad51 and, in turn, cellular response to treatment with DNA-damaging agents such as cisplatin, ionizing radiation (IR) and ultraviolet (UV) radiation. We found that Jab1 was overexpressed in two relatively cisplatin-, IR- and UV-resistant NPC cell lines, and knocking down its expression conferred sensitivity to cisplatin, IR and UV radiation. By contrast, exogenous Jab1 expression enhanced the resistance of NPC cells to cisplatin, IR and UV radiation. Moreover, we provide a mechanism by which Jab1 positively regulated Rad51 through p53-dependent pathway, and increased ectopic expression of Rad51 conferred cellular resistance to cisplatin, IR and UV radiation in Jab1-deficient cells. Taken together, our findings suggest that Jab1 has an important role in the cellular response to cisplatin and irradiation by regulating DNA damage and repair pathways. Therefore, Jab1 is a novel biomarker for predicting the outcome of patients with NPC who are treated with DNA-damaging agents.

  5. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  6. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Science.gov (United States)

    Osorio, Ana; Milne, Roger L; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón Y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; Swe-Brca; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I; Beattie, Mary S; Domchek, Susan M; Nathanson, Katherine; Rebbeck, Timothy R; Arun, Banu K; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; John, Esther M; Whittemore, Alice S; Daly, Mary B; Southey, Melissa; Hopper, John; Terry, Mary B; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Steele, Linda; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A; van Os, Theo A M; van der Kolk, Lizet; de Lange, J L; Meijers-Heijboer, Hanne E J; van der Hout, A H; van Asperen, Christi J; Gómez Garcia, Encarna B; Hoogerbrugge, Nicoline; Collée, J Margriet; van Deurzen, Carolien H M; van der Luijt, Rob B; Devilee, Peter; Hebon; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Healey, Sue; Investigators, Kconfab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Chenevix-Trench, Georgia; Antoniou, Antonis C; Benitez, Javier

    2014-04-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7 × 10(-3)) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3)). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  7. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers.

    Directory of Open Access Journals (Sweden)

    Ana Osorio

    2014-04-01

    Full Text Available Single Nucleotide Polymorphisms (SNPs in genes involved in the DNA Base Excision Repair (BER pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase, and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2 gene (HR: 1.09, 95% CI (1.03-1.16, p = 2.7 × 10(-3 for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8 × 10(-3. DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.

  8. Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli.

    Science.gov (United States)

    Farr, S B; Natvig, D O; Kogoma, T

    1985-12-01

    Actively growing Escherichia coli cells exposed to plumbagin, a redox cycling quinone that increases the flux of O2- radicals in the cell, were mutagenized or killed by this treatment. The toxicity of plumbagin was not found to be mediated by membrane damage. Cells pretreated with plumbagin could partially reactivate lambda phage damaged by exposure to riboflavin plus light, a treatment that produces active oxygen species. The result suggested the induction of a DNA repair response. Lambda phage damaged by H2O2 treatment were not reactivated in plumbagin-pretreated cells, nor did H2O2-pretreated cells reactivate lambda damaged by treatment with riboflavin plus light. Plumbagin treatment did not induce lambda phage in a lysogen, nor did it cause an increase in beta-galactosidase production in a dinD::Mu d(lac Ap) promoter fusion strain. Cells pretreated with nonlethal doses of plumbagin showed enhanced survival upon exposure to high concentrations of plumbagin, but were unchanged in their susceptibility to far-UV irradiation. polA and recA mutants were not significantly more sensitive than wild type to killing by plumbagin. However, xth-1 mutants were partially resistant to plumbagin toxicity. It is proposed that E. coli has an inducible DNA repair response specific for the type of oxidative damage generated during incubation with plumbagin. Furthermore, this response appears to be qualitatively distinct from the SOS response and the repair response induced by H2O2.

  9. Unraveling the Mystery of Stöber Silica's Microporosity.

    Science.gov (United States)

    Li, Shanshan; Wan, Quan; Qin, Zonghua; Fu, Yuhong; Gu, Yuantao

    2016-09-13

    Puzzling aspects of the microporous structure of Stöber silica, including inconsistencies in the BET specific surface area and the long measurement time required for N2 adsorption, hinder further research on and potential applications of this material. In this work, Stöber silica samples prepared using systematic and detailed post-treatment methods were characterized by N2 adsorption, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectrometry, elemental analysis, and Fourier transform infrared spectroscopy. We have found that the often overlooked sample preparation conditions may be the main causes that perplex the gas adsorption characterization results of Stöber silica samples. The pore-blocking processes associated with a variety of sample treatment methods are discussed in detail. Strong evidence for the particle growth model and pore-blocking mechanism involving ethoxyl groups, Si species, and condensation of silanols is provided. A remarkable result is that the measurement time is shortened from 1 month in our previous work to 2-3 days for samples with large specific surface areas. A suitable post-treatment condition is recommended to obtain microporous Stöber silica with a short measurement time, including water washing, low temperature drying without a vacuum, and a short storage time.

  10. A novel method for monitoring functional lesion-specific recruitment of repair proteins in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Woodrick, Jordan; Gupta, Suhani; Khatkar, Pooja; Dave, Kalpana; Levashova, Darya; Choudhury, Sujata; Elias, Hadi; Saha, Tapas; Mueller, Susette; Roy, Rabindra, E-mail: rr228@georgetown.edu

    2015-05-15

    Highlights: • A method of monitoring lesion-specific recruitment of proteins in vivo is described. • Recruitment of repair enzymes to abasic sites is monitored by co-localization. • Repair protein recruitment is consistent with known protein–protein relationships. • Cells demonstrated complete repair of abasic sites by 90 min. - Abstract: DNA–protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polβ, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA–protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.

  11. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  12. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Ngo, Hien-Ping; Hickson, Ian D

    2009-01-01

    Esc2 is a member of the RENi family of SUMO-like domain proteins and is implicated in gene silencing in Saccharomyces cerevisiae. Here, we identify a dual role for Esc2 during S-phase in mediating both intra-S-phase DNA damage checkpoint signaling and preventing the accumulation of Rad51-dependen......, and sgs1esc2 cells attempt to undergo mitosis with unprocessed HRR intermediates. We propose a model whereby Esc2 acts in an Mph1-dependent process, separately from Sgs1, to influence the repair/tolerance of MMS-induced lesions during S-phase....

  13. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    Science.gov (United States)

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5(ERCC2 (AA)) as compared to UV5(ERCC2 (CC)) after cisplatin treatment. The DNA damage level of UV5(ERCC2 (AA)) was significant decreased compared to UV5(ERCC2 (CC)) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5(ERCC2 (AA)) alleviated the apoptosis compared to UV5(ERCC2 (CC)), meanwhile P53mRNA levels in UV(ERCC2 (AA)) was also lower when compared UV5(ERCC2 (CC)). It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism.

  14. WEIGHTED COMPOSITION OPERATORS BETWEEN BERS-TYPE SPACES AND BERGMAN SPACES

    Institute of Scientific and Technical Information of China (English)

    Tang Xiaomin

    2007-01-01

    This paper characterizes the boundedness and compactness of weighted composition operators between Bers-type space (or little Bers-type space) and Bergman space. Some estimates for the norm of weighted composition operators between those spaces are obtained.

  15. Synthetic lethal targeting of DNA double strand break repair deficient cells by human apurinic/apyrimidinic endonuclease (APE1) inhibitors

    OpenAIRE

    Sultana, Rebeka; McNeill, Daniel R.; Abbotts, Rachel; Mohammed, Mohammed Z.; Zdzienicka, Małgorzata Z.; Qutob, Haitham; Seedhouse, Claire; Charles A. Laughton; Fischer, Peter M.; Patel, Poulam M.; Wilson, David M.; Madhusudan, Srinivasan

    2012-01-01

    An apurinic/apyrimidinic (AP) site is an obligatory cytotoxic intermediate in DNA Base Excision Repair (BER) that is processed by human AP endonuclease 1 (APE1). APE1 is essential for BER and an emerging drug target in cancer. We have isolated novel small molecule inhibitors of APE1. In the current study we have investigated the ability of APE1 inhibitors to induce synthetic lethality in a panel of DNA double strand break (DSB) repair deficient and proficient cells; a) Chine...

  16. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin.

    Science.gov (United States)

    Herrero, Ana B; Martín-Castellanos, Cristina; Marco, Esther; Gago, Federico; Moreno, Sergio

    2006-08-15

    Trabectedin (Yondelis) is a potent antitumor drug that has the unique characteristic of killing cells by poisoning the DNA nucleotide excision repair (NER) machinery. The basis for the NER-dependent toxicity has not yet been elucidated but it has been proposed as the major determinant for the drug's cytotoxicity. To study the in vivo mode of action of trabectedin and to explore the role of NER in its cytotoxicity, we used the fission yeast Schizosaccharomyces pombe as a model system. Treatment of S. pombe wild-type cells with trabectedin led to cell cycle delay and activation of the DNA damage checkpoint, indicating that the drug causes DNA damage in vivo. DNA damage induced by the drug is mostly caused by the NER protein, Rad13 (the fission yeast orthologue to human XPG), and is mainly repaired by homologous recombination. By constructing different rad13 mutants, we show that the DNA damage induced by trabectedin depends on a 46-amino acid region of Rad13 that is homologous to a DNA-binding region of human nuclease FEN-1. More specifically, an arginine residue in Rad13 (Arg961), conserved in FEN1 (Arg314), was found to be crucial for the drug's cytotoxicity. These results lead us to propose a model for the action of trabectedin in eukaryotic cells in which the formation of a Rad13/DNA-trabectedin ternary complex, stabilized by Arg961, results in cell death.

  17. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.L.; Sugawara, N.; Haber, J.E. [Brandeis Univ., Waltham, MA (United States)] [and others

    1996-03-01

    HO endonuclease-induced double-strand breaks (DSBs) within a direct duplication of Escherichia coli lacZ genes are repaired either by gene conversion or by single-strand annealing (SSA), with >80% being SSA. Previously it was demonstrated that the RAD52 gene is required for DSB-induced SSA. In the present study, the effects of other genes belonging to the RAD52 epistasis group were analyzed. We show that RAD51, RAD54, RAD55, and RAD57 genes are not required for SSA irrespective of whether recombination occurred in plasmid or chromosomal DNA. In both plasmid and chromosomal constructs with homologous sequences in direct orientation, the proportion of SSA events over gene conversion was significantly elevated in the mutant strains. However, gene conversion was not affected when the two lacZ sequences were in inverted orientation. These results suggest that there is a competition between SSA and gene conversion processes that favors SSA in the absence of RAD51, RAD54, RAD55 and RAD57. Mutations in RAD50 and XRS2 genes do not prevent the completion, but markedly retard the kinetics, of DSB repair by both mechanisms in the lacZ direct repeat plasmid, a result resembling the effects of these genes during mating-type (MAT) switching. 43 refs., 8 figs., 3 tabs.

  18. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Directory of Open Access Journals (Sweden)

    Catherine E Smith

    2013-10-01

    Full Text Available Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  19. Aberrant expression of proteins involved in signal transduction and DNA repair pathways in lung cancer and their association with clinical parameters.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available BACKGROUND: Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues. METHODOLOGY/ PRINCIPAL FINDINGS: We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA assay. The results showed that 18 molecules were significantly different (p<0.05 by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery. CONCLUSIONS/ SIGNIFICANCE: Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers.

  20. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner

    Science.gov (United States)

    Xu, Zhu; Zhang, Lei; Zhang, Wenjun; Meng, Du; Zhang, Hongxia; Jiang, Ying; Xu, Xiaojun; Van Meter, Michael; Seluanov, Andrei; Gorbunova, Vera; Mao, Zhiyong

    2015-01-01

    In principle, a decline in base excision repair (BER) efficiency with age should lead to genomic instability and ultimately contribute to the onset of the aging phenotype. Although multiple studies have indicated a negative link between aging and BER, the change of BER efficiency with age in humans has not been systematically analyzed. Here, with foreskin fibroblasts isolated from 19 donors between 20 and 64 y of age, we report a significant decline of BER efficiency with age using a newly developed GFP reactivation assay. We further observed a very strong negative correlation between age and the expression levels of SIRT6, a factor which is known to maintain genomic integrity by improving DNA double strand break (DSB) repair. Our mechanistic study suggests that, similar to the regulatory role that SIRT6 plays in DNA DSB repair, SIRT6 regulates BER in a PARP1-depdendent manner. Moreover, overexpression of SIRT6 rescues the decline of BER in aged fibroblasts. In summary, our results uncovered the regulatory mechanisms of BER by SIRT6, suggesting that SIRT6 reactivation in aging tissues may help delay the process of aging through improving BER. PMID:25607651

  1. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Stine F; Satir, Peter

    2008-01-01

    Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present...... with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration....... an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact...

  2. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, J.; Ravanat, J.L. [CEA Grenoble, Inst Nanosci and Cryogenie, SCIB-UMR-E 3, Lab Les Acides Nucl, UJF, F-38054 Grenoble 9 (France); Carell, T. [Univ Munich, Dept Chem and Biochem, Ctr Integrat Prot Sci, D-81377 Munich (Germany); Cellai, L. [CNR, Ist Cristalog, Monterotondo Stn, I-00016 Rome (Italy); Chatgilialoglu, Ch. [CNR, ISOF, I-40129 Bologna, (Italy); Gimisis, Th. [Univ Athens, Dept Chem, Organ Chem Lab, Athens 15784, (Greece); Miranda, M. [Univ Politecn Valencia, Inst Technol Quim, Dept Quim, Valencia 46022 (Spain); O' Neill, P. [Univ Oxford, Oxford OX3 7DQ (United Kingdom); Robert, M. [Univ Paris 07, CNRS, UMR 7591, Electrochim Mol Lab, F-75251 Paris 05 (France)

    2008-07-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH){sup {center_dot}} radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  3. Crystallization of a member of the recFOR DNA repair pathway, RecO, with and without bound oligonucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Aono, Shelly; Hartsch, Thomas; Schulze-Gahmen, Ursula

    2003-01-22

    RecFOR proteins are important for DNA repair by homologous recombination in bacteria. The RecO protein from Thermus thermophilus was cloned, purified and characterized for its binding to oligonucleotides. The protein was crystallized alone and in complex with a 14-mer oligonucleotide. Both crystal forms grow under different crystallization conditions in the same space group, P3121 or P3221, with almost identical unit cell parameters. Complete data sets were collected to 2.8 Angstrom and 2.5 Angstrom for RecO alone and the RecO-oligonucleotide complex, respectively. Visual comparison of the diffraction patterns between the two crystal forms and calculation of an Rmerge of 33.9 percent on F indicate that one of the crystal forms is indeed a complex of RecO with bound oligonucleotide.

  4. Energy-efficient cooperative routing in BER constrained multihop networks

    Institute of Scientific and Technical Information of China (English)

    Behrouz MAHAM; Mérouane DEBBAH; Are HJ(φ)RUNGNES

    2009-01-01

    Due to the limited energy supplies of nodes, in many applications like wireless sensor networks energy-efficiency is crucial for extending the lifetime of these net-works. We study the routing problem for multihop wireless ad hoc networks based on cooperative transmission. The source node wants to transmit messages to a single destina-tion. Other nodes in the network may operate as relay nodes.In this paper, we propose a cooperative multihop routing for the purpose of power savings, constrained on a required bit error rate (BER) at the destination. We derive analytical re-sults for line and grid network topologies. It is shown that energy savings of 100% are achievable in line and grid net-works with a large number of nodes for BER = 10-4 con-straint at the destination.

  5. Dynamic Frequency Allocation in SLICE Considering both BER and Distance

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2012-11-01

    Full Text Available Proposed in this paper is a dynamic resource-aware routing and frequency slots allocation scheme with consideration of both BER requirement and distance adaptive modulation (RA-BERR-DA for spectrum-sliced elastic optical path networks (SLICE.Numerical simulations are conducted to analysis network performance such as blocking rate and the number of used frequency slots. The results demonstrate that this scheme is able to decrease traffic blocking and improve resource utilization in dynamic spectrum assignment.

  6. Study of bit error rate (BER) for multicarrier OFDM

    Science.gov (United States)

    Alshammari, Ahmed; Albdran, Saleh; Matin, Mohammad

    2012-10-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier technique that is being used more and more in recent wideband digital communications. It is known for its ability to handle severe channel conditions, the efficiency of spectral usage and the high data rate. Therefore, It has been used in many wired and wireless communication systems such as DSL, wireless networks and 4G mobile communications. Data streams are modulated and sent over multiple subcarriers using either M-QAM or M-PSK. OFDM has lower inter simple interference (ISI) levels because of the of the low data rates of carriers resulting in long symbol periods. In this paper, BER performance of OFDM with respect to signal to noise ratio (SNR) is evaluated. BPSK Modulation is used in s Simulation based system in order to get the BER over different wireless channels. These channels include additive white Gaussian Noise (AWGN) and fading channels that are based on Doppler spread and Delay spread. Plots of the results are compared with each other after varying some of the key parameters of the system such as the IFFT, number of carriers, SNR. The results of the simulation give visualization of what kind of BER to expect when the signal goes through those channels.

  7. A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.

    Science.gov (United States)

    Voter, Andrew F; Manthei, Kelly A; Keck, James L

    2016-07-01

    Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.

  8. Slit-Robo Signal Pathway in Tissue Injury and Repair%Slit-Robo信号传导通路与组织损伤修复

    Institute of Scientific and Technical Information of China (English)

    刘丽华

    2012-01-01

    Slit proteins are secreted ligands that interact with Roundabout (Robo) receptors and have an important role in axon guidance , axonal migration, leukocyte chemotaxis, and cell migration. Current research of the Slit-Robo signal pathway shows expression in many types of injured tissues including traumas, inflammations and tumors. This article reviews current research of the Slit-Robo signal pathway with regards to tissue injury and repair.%Slit是一种分泌型的细胞外基质蛋白,它通过与其受体Roundabout( Roundabout,Robo)结合而发挥生物活性.早期研究发现Slit-Robo是神经轴突导向分子、神经元迁移的排斥因子,对白细胞趋化也有抑制作用;近年来发现Slit-Robo信号通路还能调节全身多个系统的多种细胞迁移.随着对Slit-Robo信号通路的深入研究,发现其在各种损伤、感染及肿瘤组织及其修复过程中都有表达,且其功能不尽相同.现就其在各种异常组织中的研究做一总结和回顾.

  9. SNR and BER Models and the Simulation for BER Performance of Selected Spectral Amplitude Codes for OCDMA

    Directory of Open Access Journals (Sweden)

    Abdul Latif Memon

    2014-01-01

    Full Text Available Many encoding schemes are used in OCDMA (Optical Code Division Multiple Access Network but SAC (Spectral Amplitude Codes is widely used. It is considered an effective arrangement to eliminate dominant noise called MAI (Multi Access Interference. Various codes are studied for evaluation with respect to their performance against three noises namely shot noise, thermal noise and PIIN (Phase Induced Intensity Noise. Various Mathematical models for SNR (Signal to Noise Ratios and BER (Bit Error Rates are discussed where the SNRs are calculated and BERs are computed using Gaussian distribution assumption. After analyzing the results mathematically, it is concluded that ZCC (Zero Cross Correlation Code performs better than the other selected SAC codes and can serve larger number of active users than the other codes do. At various receiver power levels, analysis points out that RDC (Random Diagonal Code also performs better than the other codes. For the power interval between -10 and -20 dBm performance of RDC is better ZCC. Their lowest BER values suggest that these codes should be part of an efficient and cost effective OCDM access network in the future.

  10. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition.

    Directory of Open Access Journals (Sweden)

    Jun Suzuki

    2009-04-01

    Full Text Available Long interspersed elements (LINEs are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s in retrotransposition has been extensively investigated, the participation of host-encoded factors in retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally different LINEs--zebrafish ZfL2-2 and human L1--in knockout chicken DT40 cell lines deficient in genes involved in the non-homologous end-joining (NHEJ repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict their full-length formation.

  11. Direct detection and quantification of abasic sites for in vivo studies of DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanming [Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, OH 44122 (United States)], E-mail: yanming.wang@case.edu; Liu Lili [Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44122 (United States); Wu Chunying [Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, OH 44122 (United States); Bulgar, Alina [Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44122 (United States); Somoza, Eduardo; Zhu Wenxia [Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, OH 44122 (United States); Gerson, Stanton L. [Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44122 (United States)

    2009-11-15

    Use of chemotherapeutic agents to induce cytotoxic DNA damage and programmed cell death is a key strategy in cancer treatments. However, the efficacy of DNA-targeted agents such as temozolomide is often compromised by intrinsic cellular responses such as DNA base excision repair (BER). Previous studies have shown that BER pathway resulted in formation of abasic or apurinic/apyrimidinic (AP) sites, and blockage of AP sites led to a significant enhancement of drug sensitivity due to reduction of DNA base excision repair. Since a number of chemotherapeutic agents also induce formation of AP sites, monitoring of these sites as a clinical correlate of drug effect will provide a useful tool in the development of DNA-targeted chemotherapies aimed at blocking abasic sites from repair. Here we report an imaging technique based on positron emission tomography (PET) that allows for direct quantification of AP sites in vivo. For this purpose, positron-emitting carbon-11 has been incorporated into methoxyamine ([{sup 11}C]MX) that binds covalently to AP sites with high specificity. The binding specificity of [{sup 11}C]MX for AP sites was demonstrated by in vivo blocking experiments. Using [{sup 11}C]MX as a radiotracer, animal PET studies have been conducted in melanoma and glioma xenografts for quantification of AP sites. Following induction of AP sites by temozolomide, both tumor models showed significant increase of [{sup 11}C]MX uptake in tumor regions in terms of radioactivity concentration as a function of time, which correlates well with conventional aldehyde reactive probe (ARP)-based bioassays for AP sites.

  12. Effect of the XRCC1 codon 399 polymorphism on the repair of vinyl chloride metabolite-induced DNA damage

    Directory of Open Access Journals (Sweden)

    Li Yongliang

    2009-01-01

    Full Text Available Background: Recent epidemiologic evidence suggests that the common polymorphism at amino acid residue 399 of the x-ray cross complementing-1 (XRCC1 protein, a key component of the base excision repair (BER pathway for DNA damage, plays a significant role in the genetic variability of individuals in terms of the mutagenic damage they experience following exposure to the carcinogen vinyl chloride (VC. The aim of this study was to provide support for the biological plausibility of these epidemiologic observations with experimental data derived from cell lines in culture from individuals who were either homozygous wild-type or homozygous variant for this XRCC1 polymorphism following exposure to chloroethylene oxide (CEO, the active metabolite of VC, with measurement of the induced etheno-DNA adducts before and after repair. Materials and Methods: Immortalized lymphoblast cell lines from seven VC workers (four homozygous wild-type and three homozygous variant for the 399 XRCC1 polymorphism were exposed to CEO, and etheno-adenosine (εA adduct levels were determined by enzyme-linked immunosorbent assay (ELISA pre-exposure and at 0, 4, 8 and 24 h following exposure. Results: The average εA adduct levels were statistically significantly higher in the variant cells compared to the wild-type cells at 8 and 24 h following exposure (P< 0.05 with an overall average repair efficiency of 32% in the variant cells compared to 82% in the wild-type cells. Conclusion: These results are consistent with the epidemiologic findings of the types of VC-induced biomarkers observed in exposed individuals and the mutational spectra found in the resultant tumors as well as the key role that BER, especially XRCC1, plays in this carcinogenic pathway.

  13. Upregulated Ras/Raf/ERK1/2 signaling pathway: a new hope in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2015-01-01

    Full Text Available An increasing number of studies report that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2 signaling pathway has a death-promoting apoptotic function in neural cells. We hypothesized that the Ras/Raf/ERK1/2 signaling pathway may be abnormally regulated in rat injured spinal cord models. The weight drop method was used to establish rat spinal cord injury at T 9 . Western blot analysis and immunohistochemical staining revealed Ras expression was dramatically elevated, and the phosphorylations of A-Raf, B-Raf and C-Raf were all upregulated in the injured spinal cord. Both mitogen-activated protein kinase kinase 1/2 and ERK1/2, which belong to the Ras/Raf signaling kinases, were upregulated. These results indicate that Ras/Raf/ERK1/2 signaling may be upregulated in injured spinal cord and are involved in recovery after spinal cord injury.

  14. Base excision repair of 8-oxoG in dinucleosomes

    NARCIS (Netherlands)

    H. Menoni (Hervé); M.S. Shukla (Manu Shubhdarshan); V. Gerson (Véronique); S. Dimitrov (Stefan); D. Angelov (Dimitar)

    2012-01-01

    textabstractIn this work we have studied the effect of chromatin structure on the base excision repair (BER) efficiency of 8-oxoG. As a model system we have used precisely positioned dinucleosomes assembled with linker histone H1. A single 8-oxoG was inserted either in the linker or the core particl

  15. Modulation of DNA base excision repair during neuronal differentiation

    DEFF Research Database (Denmark)

    Sykora, Peter; Yang, Jenq-Lin; Ferrarelli, Leslie K

    2013-01-01

    Neurons are terminally differentiated cells with a high rate of metabolism and multiple biological properties distinct from their undifferentiated precursors. Previous studies showed that nucleotide excision DNA repair is downregulated in postmitotic muscle cells and neurons. Here, we characterize...... DNA damage susceptibility and base excision DNA repair (BER) capacity in undifferentiated and differentiated human neural cells. The results show that undifferentiated human SH-SY5Y neuroblastoma cells are less sensitive to oxidative damage than their differentiated counterparts, in part because...

  16. Confirmatory Factor Analysis of the Behavioral and Emotional Rating Scale-2 (BERS-2) Parent and Youth Rating Scales

    Science.gov (United States)

    Buckley, Jacquelyn A.; Ryser, Gail; Reid, Robert; Epstein, Michael H.

    2006-01-01

    We confirmed the factor structure of the Behavioral and Emotional Rating Scale-2nd Edition (BERS-2) with a normative parent and youth sample. The BERS-2, based on the Behavioral and Emotional Rating Scale (BERS), is a standardized instrument that assesses children's emotional and behavioral strengths. The original BERS was renormed to create a…

  17. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant.

    Directory of Open Access Journals (Sweden)

    Martina Bauer

    Full Text Available Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs. In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs. Furthermore, monocytes accumulated DNA double-strand breaks (DSBs following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective

  18. Isolation of a small molecule inhibitor of DNA base excision repair.

    Science.gov (United States)

    Madhusudan, Srinivasan; Smart, Fiona; Shrimpton, Paul; Parsons, Jason L; Gardiner, Laurence; Houlbrook, Sue; Talbot, Denis C; Hammonds, Timothy; Freemont, Paul A; Sternberg, Michael J E; Dianov, Grigory L; Hickson, Ian D

    2005-01-01

    The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3'-phosphodiesterase and 3'-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy.

  19. DNA双链断裂NHEJ修复及其与肿瘤的研究%Non-homologous end joining pathway of DSB repair and cancer

    Institute of Scientific and Technical Information of China (English)

    张耀伟

    2010-01-01

    非同源末端连接是哺乳动物最主要的DNA双链断裂(DSB)连接方式.肿瘤细胞非同源末端连接能力的提高与其放化疗抵抗有关,抑制肿瘤细胞非同源末端连接能力,可能增加其对放化疗的敏感性.因此,参与非同源末端连接的修复因子可能成为肿瘤分子靶向治疗及放化疗增敏的新治疗点.%Non-homologous end joining (NHEJ) is the major pathway for repairing DNA doublestrand break (DSB) in mammalian species. The capacity of NHEJ increases in tumor cell,which plays a role in radiation/chemotherapy-resistant agent Inhibiting DSB rejoining may play a crucial role in the enhancement of cellular radiation/chemotherapy-sensitizing. Thus, the protein molecule enrolled in NHEJ may be new potential targets for radiation/chemotherapy -sensitizing.

  20. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    Science.gov (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy.

  1. BER evaluations for multimode beams in underwater turbulence

    Science.gov (United States)

    Altay Arpali, Serap; Baykal, Yahya; Arpali, Çağlar

    2016-07-01

    In underwater optical communication links, bit error rate (BER) is an important performance criterion. For this purpose, the effects of oceanic turbulence on multimode laser beam incidences are studied and compared in terms of average BER (), which is related to the scintillation index. Based on the log-normal distribution, is analysed for underwater turbulence parameters, including the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, the parameter that determines the relative strength of temperature and salinity in driving index fluctuations, the Kolmogorov microscale length and other link parameters such as link length, wavelength and laser source size. It is shown that use of multimode improves the system performance of optical wireless communication systems operating in an underwater medium. For all the investigated multimode beams, decreasing link length, source size, the relative strength of temperature and salinity in driving the index fluctuations, the rate of dissipation of the mean squared temperature and Kolmogorov microscale length improve the . Moreover, lower values are obtained for the increasing wavelength of operation and the rate of dissipation of the turbulent kinetic energy in underwater turbulence.

  2. ROLE OF MISMATCH REPAIR PROTEINS IN THE PROCESSING OF CISPLATIN INTERSTRAND CROSS-LINKS

    Science.gov (United States)

    Sawant, Akshada; Kothandapani, Anbarasi; Zhitkovich, Anatoly; Sobol, Robert W.; Patrick, Steve M.

    2015-01-01

    Mismatch repair (MMR) deficiency gives rise to cisplatin resistance and can lead to poor prognosis in cancers. Various models have been proposed to explain this low level of resistance caused due to loss of MMR proteins. We have shown that MMR proteins are required to maintain cisplatin interstrand cross-links (ICLs) on the DNA leading to increased cellular sensitivity. In our previous studies, we have shown that BER processing of the cisplatin ICLs is mutagenic. Polymerase β (Polβ) can generate mismatches which leads to the activation and the recruitment of mismatch repair proteins. In this paper, we distinguished between the requirement of different downstream MMR proteins for maintaining cisplatin sensitivity. We show that the MutSα (MSH2-MSH6) heterocomplex is required to maintain cisplatin sensitivity, whereas the Mutsβ complex has no effect. These results can be correlated with the increased repair of cisplatin ICLs and ICL induced DNA double strand breaks (DSBs) in the resistant cells. Moreover, we show that MLH1 proficient cells displayed a cisplatin sensitive phenotype when compared with the MLH1 deficient cells and the ATPase activity of MLH1 is essential to mediate this effect. Based on these results, we propose that MutSα as well as the downstream MMR pathway proteins are essential to maintain a cisplatin sensitive phenotype as a consequence of processing Polβ induced mismatches at sites flanking cisplatin ICLs. PMID:26519826

  3. BER Science Network Requirements Workshop -- July 26-27,2007

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L.; Dart, Eli

    2008-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In July 2007, ESnet and the Biological and Environmental Research (BER) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the BER Program Office. These included several large programs and facilities, including Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility (ACRF), Bioinformatics and Life Sciences Programs, Climate Sciences Programs, the Environmental Molecular Sciences Laboratory at PNNL, the Joint Genome Institute (JGI). National Center for Atmospheric Research (NCAR) also participated in the workshop and contributed a section to this report due to the fact that a large distributed data repository for climate data will be established at NERSC, ORNL and NCAR, and this will have an effect on ESnet. Workshop participants were asked to codify their requirements in a 'case study' format, which summarizes the instruments and facilities necessary for the science and the process by which the science is done, with emphasis on the network services needed and the way in which the network is used. Participants were asked to consider three time scales in their case studies--the near term (immediately and up to 12 months in the future), the medium term (3-5 years in the future), and the long term (greater than 5 years in the future). In addition to achieving its goal of collecting and

  4. A Novel Uncoded SER/BER Estimation Method

    Directory of Open Access Journals (Sweden)

    Mahesh Patel

    2015-06-01

    Full Text Available Due to the rapidly increasing data speed requirement, it has become essential to smartly utilize the available frequency spectrum. In wireless communications systems, channel quality parameters are often used to enable resource allocation techniques that improve system capacity and user quality. The uncoded bit or symbol error rate (SER is specified as an important parameter in the second and third generation partnership project (3GPP. Nonetheless, techniques to estimate the uncoded SER are usually not much published. This paper introduces a novel uncoded bit error rate (BER estimation method using the accurate-bits sequence of the new channel codes over the AWGN channel. Here, we have used the new channel codes as a forward error correction coding scheme for our communication system. This paper also presents the simulation results to demonstrate and compare the estimation accuracy of the proposed method over the AWGN channel.

  5. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging

    NARCIS (Netherlands)

    Y. Kamenisch (York); M.I. Fousteri (Maria); J. Knoch (Jennifer); A.K. Von Thaler (Anna Katherina); B. Fehrenbacher (Birgit); H. Kato (Hiroki); T. Becker (Tim); M.E.T. Dollé (Martijn); R. Kuiper (Ruud); M. Majora (Marc); M. Schaller (Martin); G.T.J. van der Horst (Gijsbertus); H. van Steeg (Harry); M. Röcken (Martin); D. Rapaport (Doron); J. Krutmann (Jean); L.H.F. Mullenders (Leon); M. Berneburg (Mark)

    2010-01-01

    textabstractDefects in the DNA repair mechanism nucleotide excision repair (NER) may lead to tumors in xeroderma pigmentosum (XP) or to premature aging with loss of subcutaneous fat in Cockayne syndrome (CS). Mutations of mitochondrial (mt)DNA play a role in aging, but a link between the

  6. The role of base excision repair in the development of primary open angle glaucoma in the Polish population

    Energy Technology Data Exchange (ETDEWEB)

    Cuchra, Magda; Markiewicz, Lukasz; Mucha, Bartosz [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland); Pytel, Dariusz [The Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 (United States); Szymanek, Katarzyna [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Szemraj, Janusz [Department of Medical Biochemistry, Medical University of Lodz, Lodz (Poland); Szaflik, Jerzy; Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Majsterek, Ireneusz, E-mail: ireneusz.majsterek@umed.lodz.pl [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland)

    2015-08-15

    Highlights: • We suggested the association of XRCC1 gene with the increase risk of POAG development. • We indicated the association of clinical factor and XRCC1, MUTYH, ADPRT and APE1 genes with POAG progression. • We postulated the increase level of oxidative DNA damage in group of patients with POAG in relation to healthy controls. • We suggested the slightly decrease ability to repair of oxidative DNA damage. • This is the first data that showed the role of BER mechanism in POAG pathogenesis. - Abstract: Glaucoma is a leading cause of irreversible blindness in developing countries. Previous data have shown that progressive loss of human TM cells may be connected with chronic exposure to oxidative stress. This hypothesis may suggest a role of the base excision repair (BER) pathway of oxidative DNA damage in primary open angle glaucoma (POAG) patients. The aim of our study was to evaluate an association of BER gene polymorphism with a risk of POAG. Moreover, an association of clinical parameters was examined including cup disk ratio (c/d), rim area (RA) and retinal nerve fiber layer (RNFL) with glaucoma progression according to BER gene polymorphisms. Our research included 412 patients with POAG and 454 healthy controls. Gene polymorphisms were analyzed by PCR-RFLP. Heidelberg Retinal Tomography (HRT) clinical parameters were also analyzed. The 399Arg/Gln genotype of the XRCC1 gene (OR 1.38; 95% CI 1.02–1.89 p = 0.03) was associated with an increased risk of POAG occurrence. It was indicated that the 399Gln/Gln XRCC1 genotype might increase the risk of POAG progression according to the c/d ratio (OR 1.67; 95% CI 1.07–2.61 P = 0.02) clinical parameter. Moreover, the association of VF factor with 148Asp/Glu of APE1 genotype distribution and POAG progression (OR 2.25; 95% CI 1.30–3.89) was also found. Additionally, the analysis of the 324Gln/His MUTYH polymorphism gene distribution in the patient group according to RNFL factor showed that it might

  7. Ein Überblick über die Sprechakttheorie von Austin und Searle

    Institute of Scientific and Technical Information of China (English)

    周婧

    2016-01-01

    Die Sprechakttheorie ist ein bedeutender Teilbereich von der linguistischen Pragmatik, die sich seit den 50er und 60er Jahren des letzten Jahrhunderts entwickelte. Die berühmten Sprachwissenschaftler Austin und Searle legten den Grundstein zu Sprechakttheorie. Dieser Text liefert einen Überblick ü ber die Forschungsergebnisse von den beiden Forschern. Dadurch kann man die Entwicklung der Sprechakttheorie gut erkennen.

  8. Phosphorylation: The Molecular Switch of Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    K. C. Summers

    2011-01-01

    Full Text Available Repair of double-stranded breaks (DSBs is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ, homologous recombination (HR, or the inclusive DNA damage response (DDR. These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.

  9. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  10. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  11. Impairment of the non-homologous end joining and homologous recombination pathways of DNA double strand break repair: Impact on spontaneous and radiation-induced mammary and intestinal tumour risk in Apc min/+ mice.

    Science.gov (United States)

    Haines, Jackie W; Coster, Margaret; Bouffler, Simon D

    2015-11-01

    Female Apc(min/+) mice carrying the BALB/c variant of Prkdc or heterozygous knockout for Xrcc2, were sham- or 2 Gy X-irradiated as adults to compare the effect of mild impairments of double-strand break (DSB) repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR) respectively on spontaneous and radiation-induced mammary and intestinal tumorigenesis. Mice with impaired NHEJ showed no difference in incidence of spontaneous mammary tumours, compared with matched controls, (2.46 fold, P=0.121) and significantly less following irradiation (radiation-induced excess; 0.35 fold, P=0.008). In contrast mice with impaired HR presented with significantly less spontaneous mammary tumours than matched controls (0.33 fold, P=0.027) and significantly more following irradiation (radiation-induced excess; 3.3 fold, P=0.016). Spontaneous and radiation-induced intestinal adenoma multiplicity in the same groups were significantly greater than matched controls for mice with impaired NHEJ (sham; 1.29 fold, P<0.001, radiation-induced excess; 2.55 fold, P<0.001) and mice with impaired HR showed no significant differences (sham; 0.92 fold, P=0.166, radiation-induced excess; 1.16, P=0.274). Genetic insertion events were common in spontaneous tumours from NHEJ impaired mice compared with matched controls. γH2AX foci analysis suggests a significantly faster rate of DSB repair (MANOVA P<0.001) in intestinal than mammary tissue; apoptosis was also higher in irradiated intestine. To conclude, results suggest that pathway of choice for repair of spontaneous and radiation-induced DSBs is influenced by tissue type. NHEJ appears to play a greater role in DSB repair in intestinal tissue since impairment by functional change of Prkdc significantly increases the rate of mis-repair in intestinal but not mammary tissue. HR appears to play a greater role in DSB repair in adult mammary tissue since impaired HR results in significant changes in mammary but not in the intestinal

  12. Tendon repair

    Science.gov (United States)

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  13. The role of base excision repair in the development of primary open angle glaucoma in the Polish population.

    Science.gov (United States)

    Cuchra, Magda; Markiewicz, Lukasz; Mucha, Bartosz; Pytel, Dariusz; Szymanek, Katarzyna; Szemraj, Janusz; Szaflik, Jerzy; Szaflik, Jacek P; Majsterek, Ireneusz

    2015-08-01

    Glaucoma is a leading cause of irreversible blindness in developing countries. Previous data have shown that progressive loss of human TM cells may be connected with chronic exposure to oxidative stress. This hypothesis may suggest a role of the base excision repair (BER) pathway of oxidative DNA damage in primary open angle glaucoma (POAG) patients. The aim of our study was to evaluate an association of BER gene polymorphism with a risk of POAG. Moreover, an association of clinical parameters was examined including cup disk ratio (c/d), rim area (RA) and retinal nerve fiber layer (RNFL) with glaucoma progression according to BER gene polymorphisms. Our research included 412 patients with POAG and 454 healthy controls. Gene polymorphisms were analyzed by PCR-RFLP. Heidelberg Retinal Tomography (HRT) clinical parameters were also analyzed. The 399 Arg/Gln genotype of the XRCC1 gene (OR 1.38; 95% CI 1.02-1.89 p = 0.03) was associated with an increased risk of POAG occurrence. It was indicated that the 399 Gln/Gln XRCC1 genotype might increase the risk of POAG progression according to the c/d ratio (OR 1.67; 95% CI 1.07-2.61 P = 0.02) clinical parameter. Moreover, the association of VF factor with 148 Asp/Glu of APE1 genotype distribution and POAG progression (OR 2.25; 95% CI 1.30-3.89) was also found. Additionally, the analysis of the 324 Gln/His MUTYH polymorphism gene distribution in the patient group according to RNFL factor showed that it might decrease the progression of POAG (OR 0.47; 95% CI 0.30-0.82 P = 0.005). We suggest that the 399 Arg/Gln polymorphism of the XRCC1 gene may serve as a predictive risk factor of POAG.

  14. Several pathways of hydrogen peroxide action that damage the E. coli genome

    Directory of Open Access Journals (Sweden)

    Nasser Ribeiro Asad

    2004-01-01

    Full Text Available Hydrogen peroxide is an important reactive oxygen species (ROS that arises either during the aerobic respiration process or as a by-product of water radiolysis after exposure to ionizing radiation. The reaction of hydrogen peroxide with transition metals imposes on cells an oxidative stress condition that can result in damage to cell components such as proteins, lipids and principally to DNA, leading to mutagenesis and cell death. Escherichia coli cells are able to deal with these adverse events via DNA repair mechanisms, which enable them to recover their genome integrity. These include base excision repair (BER, nucleotide excision repair (NER and recombinational repair. Other important defense mechanisms present in Escherichia coli are OxyR and SosRS anti-oxidant inducible pathways, which are elicited by cells to avoid the introduction of oxidative lesions by hydrogen peroxide. This review summarizes the phenomena of lethal synergism between UV irradiation (254 nm and H2O2, the cross-adaptive response between different classes of genotoxic agents and hydrogen peroxide, and the role of copper ions in the lethal response to H2O2 under low-iron conditions.

  15. Conspectus revisited: Bestandesentwicklung über Conspectusvergabe auf Exemplarniveau

    Directory of Open Access Journals (Sweden)

    Wolfram Lutterer

    2014-12-01

    Full Text Available Im Allgemeinen dient das in den USA entwickelte Conspectusverfahren dazu, die Sammelintensität von Bibliotheken hinsichtlich des jeweiligen Spezialisierungsgrads einzelner Sammelgebiete zu beschreiben. Häufig geschieht dies auch in Zusammenhang mit der Entwicklung von Approval Plans. An der Zentral- und Hochschulbibliothek Luzern wurde hierbei ein etwas anderer Weg begangen. Im Rahmen eines über zwölf Jahre angelegten Projektes wurde für jedes einzelne erworbene Medium eine Klassifikation im Rahmen des Conspectus vorgenommen. Ergebnisse dieser Studie werden vorgestellt. Damit ergibt sich ein differenzierterer Blick auf das Conspectusverfahren sowie eine Klärung zur Relevanz und Leistungskraft von Fachprofilen. A conspectus is used to describe the collection strength of a library in terms of the respective degree of specialization of its collections. This often happens in combination with the development of approval plans. At the Central and University Library Lucerne in Switzerland a somewhat different approach was used. In a project lasting twelve years each individual item acquired was classified in accordance with the conspectus. The results of this study will be presented. A much more differentiated view of the conspectus is one of the results, as well as a clarification of the relevance and performance of collection profiles.

  16. Rethinking transcription coupled DNA repair.

    Science.gov (United States)

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. DNA Repair and Genome Maintenance in Bacillus subtilis

    OpenAIRE

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutage...

  18. Analysis Of Impact Of Various Parameters On BER Performance For IEEE 802.11b

    Directory of Open Access Journals (Sweden)

    Nilesh B. Kalani

    2015-08-01

    Full Text Available Abstract This paper discusses about IEEE 802.11b simulation model implemented using LabVIEW software and its analyses for impact on bit error rate BER for different parameters as channel type channel number data transmission rate and packet size. Audio file is being transmitted processed and analyzed using the model for various parameters. This paper gives analysis of BER verses ESN0 for various parameter like data rate packet size and communication channel for the IEEE 802.11b simulation model generated using LabVIEW. It is proved that BER can be optimized by tweaking different parameters of wireless communication system.

  19. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    : homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage......Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...

  20. Bladder exstrophy repair

    Science.gov (United States)

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... Bladder exstrophy repair involves two surgeries. The first surgery is to repair the bladder and the second one is to attach ...

  1. The role of DNA base excision repair in brain homeostasis and disease

    DEFF Research Database (Denmark)

    Akbari, Mansour; Morevati, Marya; Croteau, Deborah;

    2015-01-01

    Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function...... of proteins required for BER or proteins that regulate BER have been consistently associated with neurological dysfunction and disease in humans. Recent studies suggest that DNA lesions in the nuclear and mitochondrial compartments and the cellular response to those lesions have a profound effect on cellular...... energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease....

  2. Biomolecular Simulation of Base Excision Repair and Protein Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; McCammon, J A; Miller, John H; Smith, Paul E; Vorpagel, Erich R; Wong, Chung F; Zacharias, Martin W

    2006-03-03

    The goal of the Biomolecular Simulation of Base Excision Repair and Protein Signaling project is to enhance our understanding of the mechanism of human polymerase-β, one of the key enzymes in base excision repair (BER) and the cell-signaling enzymes cyclic-AMP-dependent protein kinase. This work used molecular modeling and simulation studies to specifically focus on the • dynamics of DNA and damaged DNA • dynamics and energetics of base flipping in DNA • mechanism and fidelity of nucleotide insertion by BER enzyme human polymerase-β • mechanism and inhibitor design for cyclic-AMP-dependent protein kinase. Molecular dynamics simulations and electronic structure calculations have been performed using the computer resources at the Molecular Science Computing Facility at the Environmental Molecular Sciences Laboratory.

  3. Impact of Mutual Coupling and Polarization of Antennas on BER Performances of Spatial Multiplexing MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jianfeng Zheng

    2012-01-01

    Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.

  4. MIMO-OFDM Precoding Technique for Minimizing BER Upper Bound of MLD

    Science.gov (United States)

    Pitakdumrongkija, Boonsarn; Fukawa, Kazuhiko; Suzuki, Hiroshi; Hagiwara, Takashi

    This paper proposes a new MIMO-OFDM precoding technique that aims to minimize a bit error rate (BER) upper bound of the maximum likelihood detection (MLD) in mobile radio communications. Using a steepest descent algorithm, the proposed method estimates linear precoding matrices that can minimize the upper bound of BER under power constraints. Since the upper bound is derived from all the pairwise error probabilities, this method can effectively optimize overall Euclidean distances between signals received by multiple antennas and their replicas. Computer simulations evaluate the BER performance and channel capacity of the proposed scheme for 2×2 and 4×4 MIMO-OFDM systems with BPSK, QPSK, and 16QAM. It is demonstrated that the proposed precoding technique is superior in terms of average BER to conventional precoding methods including a precoder which maximizes only the minimum Euclidean distance as the worst case.

  5. Bulgarian Emergency Response System (BERS) in case of nuclear accident with exposure doses estimation

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, D.; Prodanova, M.; Slavov, K.; Veleva, B.

    2015-07-01

    A PC-oriented Emergency Response System in case of nuclear accident (BERS) is developed and works operationally in the National Institute of Meteorology and Hydrology (NIMH). The creation and development of BERS was highly stimulated by the ETEX (European Tracer Experiment) project. BERS comprises two main parts - the operational and the accidental ones. The operational part, run automatically every 12 hours, prepares the input meteorological file used by both trajectory and dispersion models, runs the trajectory models, visualizes the results and uploads the maps of trajectories to a dedicated web-site. The accidental part is activated manually when a real radioactive releases occur or during emergency exercises. Its core is the Bulgarian dispersion models EMAP. Outputs are concentration, accumulated deposition and selected doses fields. In the paper, the BERS overall structure is described and examples of its products are presented. Key words: nuclear accident, emergency response, early warning system, air dispersion models, radioactive exposure dose. (Author)

  6. Bulgarian Emergency Response System (BERS) in case of nuclear accident with exposure doses’estimation

    Energy Technology Data Exchange (ETDEWEB)

    Syrakov, M.; Prodanova, M.; Slavov, K.; Veleva, B.

    2015-07-01

    A PC-oriented Emergency Response System in case of nuclear accident (BERS) is developed and works operationally in the National Institute of Meteorology and Hydrology (NIMH). The creation and development of BERS was highly stimulated by the ETEX (European Tracer Experiment) project. BERS comprises two main parts - the operational and the accidental ones. The operational part, run automatically every 12 hours, prepares the input meteorological file used by both trajectory and dispersion models, runs the trajectory models, visualizes the results and uploads the maps of trajectories to a dedicated web-site. The accidental part is activated manually when a real radioactive releases occur or during emergency exercises. Its core is the Bulgarian dispersion models EMAP. Outputs are concentration, accumulated deposition and selected doses fields. In the paper, the BERS overall structure is described and examples of its products are presented. (Author)

  7. BER Performance of Frequency Domain Differential Demodulation OFDM in Flat Fading Channel

    Institute of Scientific and Technical Information of China (English)

    SONG Lijun; TANG Youxi; LI Shaoqian; HUANG Shunji

    2003-01-01

    A closed form expression for the bit error rate (BER) performance of frequency domain differential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fading channel is derived. The performance is evaluated by computer simulation and compared with the time domain differential demodulation(TDDD). The results indicate that the performance of FDDD is better than that of TDDD, and the lower band of BER in the former is lower than that of the latter.

  8. The clinical pathway of tension-free inguinal hernia repair under local anesthesia%局部麻醉下腹股沟疝无张力修补术临床路径及其应用

    Institute of Scientific and Technical Information of China (English)

    石华伟; 汤汉林; 姜海平; 祁应才; 李新军

    2014-01-01

    Objective To explore the clinical pathway of tension-free inguinal hernia repair under local anesthesia.Methods The clinical pathway of tension-free inguinal hernia repair was set up under local anesthesia.Time of hospitalization stay,hospitalization costs and complications were observed in 56 cases.Results There were totally 56 cases with 54 cases (96.4%)who completed the clinical pathway and 2 cases were withdrawal.Time of hospitalization stay was shortened and the costs were reduced in the cases with clinical pathway.Fourteen cases had postoperative short-term complications without recurrence after treatment.Conclusions The clinical pathway of tension-free inguinal hernia repair under local anesthesia is easy to operate,which can significantly shorten the time of hospitalization,reduce the medical costs,and reduce the patient and social burdens.%目的:探讨局部麻醉下腹股沟疝无张力修补术的临床路径及其应用。方法观察局部麻醉下腹股沟疝无张力修补术临床路径的56例患者住院时间、住院各项费用及并发症情况。结果进入临床路径56例患者中,54例完成临床路径,2例退出,完成率为96.4%;纳入临床路径的患者住院时间明显缩短,各项费用显著降低;有14例患者出现术后近期并发症,无复发。结论局部麻醉下腹股沟疝无张力修补术临床路径操作简单,能明显缩短住院时间、降低住院医疗成本,减轻患者和社会负担,值得推广。

  9. Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array

    DEFF Research Database (Denmark)

    Saunders, Edward J; Dadaev, Tokhir; Leongamornlert, Daniel A

    2016-01-01

    BACKGROUND: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identif...

  10. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    Science.gov (United States)

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  11. Das Volkslied in Deutschland, Frankreich, Belgien und Holland. Untersuchungen über die Auffassung des Begriffes; Über die traditionellen Zeilen, die Zahlen-, Blumen- und Farbensymbolik

    NARCIS (Netherlands)

    Brouwer, Cornelis

    1930-01-01

    Wenn man die gewaltige Menge Publikationen über das Volkslied, die im Laufe des 19. und 20. Jahrhunderts in Deutschland, Frankreich, Belgien und Holland erschienen sind, vergleicht, springen zwei Punkte sofort ins Auge: 1. der Unterschied zwischen den verschiedenen Auffassungen vom Begriff Volkslied

  12. Beobachtungen über die Fortpflanzung und Verdauung des Unaus (Zweizehen-Faultier = Choloepus didactylus Linné) nebst einigen Bemerkungen über sein Verhalten

    NARCIS (Netherlands)

    Schneider, Karl Max

    1939-01-01

    Die folgenden Beobachtungen habe ich im Leipziger Zoologischen Garten gemacht. Im Mai 1912 kaufte dieser von der Königlichen Zoologischen Gesellschaft „Natura Artis Magistra” zu Amsterdam eine Faultier-Familie (Choloepus didactylus Linné), wovon das Männchen — sich am längsten haltend — über 8 Jahre

  13. Über die Bedeutung von Magnesium bei der Tumorgenese

    Directory of Open Access Journals (Sweden)

    Golf SW

    2001-01-01

    Full Text Available Magnesium (Mg und die Tumorgenese sind in funktioneller wie in struktureller Hinsicht vielseitig miteinander verknüpft. Die Tumorzelle ist befähigt, Mg zu Lasten der Mg-Pools des Organismus in überhöhter Konzentration zu speichern, auch wenn für den Organismus eine negative Mg-Bilanz vorliegt. Durch diese Veränderung der Mg-Verteilung wird die Zelle in die Lage versetzt, den erhöhten Enegiebedarf bei Zellwachstum, z.B. durch eine induzierte Proteinbiosynthese und RNA-/DNA-Biosynthese, sowie gesteigerte Transportvorgänge zu decken. Andererseits verlaufen zahlreiche Vorgänge bei der Protein-, RNA-/DNA-Synthese, bei der Signalentstehung und -Propagation, bei Teilen der Mitose (Umbau der nukleären Struktur, Meta- und Anaphase sowie bei der Metastase in einem akzelerierten Modus kalziumabhängig, was diese Reaktionen stark Mg-abhängig gestaltet. Ca verbleibt nur wenige Sekunden funktional und wird durch Influx in das endoplasmatische Retikulum (ER aus dem Zytosol eliminiert, wodurch die Prozesse gebremst oder sogar unterbrochen werden. Für den Rücktransport von Ca in die intrazellulären Speicher wird Mg benötigt; somit kann Mg auch als Inhibitor dieser Vorgänge betrachtet werden. Auch die biologische Zytostase z. B. durch alpha-Tumornekrosefaktor (alphaTNF verläuft Mg-abhängig, da eine gesteigerte Resistenz der Tumorzelle gegenüber alphaTNF bei Mg-Mangel besteht. In struktureller Hinsicht kommen Mg bedeutende Wirkungen bei der Tumorgenese zu. Klassisch sind die schützenden Effekte von Mg bei der durch kanzerogene Metalle, z.B. Arsen, Beryllium, Chrom, Blei, Quecksilber und Nickel, ausgelösten Tumorgenese. Eine Schutzwirkung tritt vor allem bei einem Ungleichgewicht zwischen dem kanzerogenen Metall und dem Mg-Status des Organismus ein. In analoger Weise sind auch die Stabilität von DNA und RNA sowie Reparaturmechanismen von DNA-Schäden nur in ausreichender Gegenwart von funktionellem Mg optimiert. Hinsichtlich der Immunkompetenz

  14. DNA repair in Chromobacterium violaceum.

    Science.gov (United States)

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  15. Investigation of DNA repair in human oocytes and preimplantation embryos

    OpenAIRE

    Jaroudi, S.

    2010-01-01

    DNA repair genes are expressed in mammalian embryos and in human germinal vesicles, however, little is known about DNA repair in human preimplantation embryos. This project had three aims: 1) to produce a DNA repair profile of human MII oocytes and blastocysts using expression arrays and identify repair pathways that may be active before and after embryonic genome activation; 2) to design an in vitro functional assay that targeted mismatch repair and which could be applied to human oocytes...

  16. Hypospadias repair

    Science.gov (United States)

    ... the problem. If the repair is not done, problems may occur later on such as: Difficulty controlling and directing urine stream A curve in the penis during erection Decreased fertility Embarrassment about appearance of penis Surgery ...

  17. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  18. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina

    DEFF Research Database (Denmark)

    Soerensen, Mette; Gredilla, Ricardo; Müller-Ohldach, Mathis

    2009-01-01

    . anserina genome revealed high homology. We report for the first time the presence of BER activities in P. anserina mitochondrial extracts. DNA glycosylase activities decrease with age, suggesting that the increased mtDNA instability with age may be caused by decreased ability to repair mtDNA damage......The free radical theory of ageing states that ROS play a key role in age-related decrease in mitochondrial function via the damage of mitochondrial DNA (mtDNA), proteins and lipids. In the sexually reproducing ascomycete Podospora anserina ageing is, as in other eukaryotes, associated with mtDNA...... instability and mitochondrial dysfunction. Part of the mtDNA instabilities may arise due to accumulation of ROS induced mtDNA lesions, which, as previously suggested for mammals, may be caused by an age-related decrease in base excision repair (BER). Alignments of known BER protein sequences with the P...

  19. Do berço ao berçário: a instituição como morada e lugar de contato

    Directory of Open Access Journals (Sweden)

    Marta Nörnberg

    2013-12-01

    Full Text Available Este ensaio aborda o sentido da instituição infantil a partir de uma perspectiva ético-estético-afetiva do viver humano. A abordagem ampara-se em perspectivas filosóficas sobre a existência humana. Os argumentos apresentam o berçário como morada, lugar do viver juntos, instituição que se faz em coletividade, nela e com ela, decorrente do encontro de bebês e adultos. Ao constituir-se como morada dos bebês, o berçário ritualiza e reatualiza a prática pedagógica como lugar de relação entre bebês e adultos, requerendo uma pedagogia do contato.

  20. El latín y su influencia en el beréber (The Latin and its influence in the Berber

    Directory of Open Access Journals (Sweden)

    Karima Bouallal

    2013-06-01

    Full Text Available En el presente artículo se realizará un estudio sobre la influencia del latín en el beréber. Para ello expondremos las diferentes etapas de la influencia. En definitiva, el objetivo que se persigue con este artículo es ofrecer algunos términos prestados del latín debido al contacto de estas lenguas. (The present article carries out a study on the influence of Latin in Berber. For this purpose, we expose the different stages of this influence. In short, the objective pursued with this article is to offer some borrowed terms from Latin because of the contact between these two languages.

  1. Purification, crystallization and initial crystallographic characterization of brazil-nut allergen Ber e 2

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng; Jin, Tengchuan; Howard, Andrew; Zhang, Yu-Zhu, E-mail: zhangy@iit.edu [Department of Biology, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2007-11-01

    The crystallization of the brazil nut allergen Ber e 2 is reported. Peanut and tree-nut allergies have attracted considerable attention because of their frequency and their lifelong persistence. Brazil-nut (Bertholletia excelsa) allergies have been well documented and the 11S legumin-like seed storage protein Ber e 2 (excelsin) is one of the two known brazil-nut allergens. In this study, Ber e 2 was extracted from brazil-nut kernels and purified to high purity by crystalline precipitation and gel-filtration chromatography. Well diffracting single crystals were obtained using the hanging-drop vapour-diffusion method. A molecular-replacement structural solution has been obtained. Refinement of the structure is currently under way.

  2. THE THEORETICAL BER PERFORMANCE ANALYSIS OF A COOPERATIVE DIVERSITY SCHEME IN FREQUENCY SELECTIVE FADING CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Furthermore, the simulations coincide with the theoretical results well.

  3. Fully coupled Lattice Boltzmann simulation of fiber reinforced self compacting concrete flow

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik;

    To correctly predict the casting process of a fiber reinforced self compacting concrete on a structural level is a challenging task since the distribution and orientation of fibers influence the global flow pattern and vice versa. In this contribution, a modeling approach capable to represent...... accurately the most important phenomena is introduced. A conventional Lattice Boltzmann method has been chosen as a fluid dynamics solver of the non-Newtonian fluid. A Mass Tracking Algorithm has been implemented to correctly represent a free surface and a modified Immersed Boundary Method (IBM) with direct...... the final dispersion and orientation of fibers during a real casting process....

  4. BER analysis of IM/DD FSO system with APD receiver over gamma-gamma turbulence

    Directory of Open Access Journals (Sweden)

    Petković Milica I.

    2014-01-01

    Full Text Available In this paper, the bit-error rate (BER performance of intensity modulated with direct detection (IM/DD free space optical (FSO system using the on-off keying (OOK and avalanche photodiode (APD receiver is analyzed. The intensity fluctuations of the received optical signal are modeled by gamma gamma distribution, while both zero and nonzero inner scale models are observed. The total receiver noise includes APD shot noise and thermal noise. The BER expression is theoretically derived and numerical results are presented. The results illustrate the BER dependence on the turbulence strength, propagation path length, APD gain and noise temperature. [Projekat Ministarstva nauke Republike Srbije, br. TR-32028 i br. III-44006

  5. Bers型空间和复合算子%Bers-type Spaces and Composition Operators

    Institute of Scientific and Technical Information of China (English)

    姜立建; 李叶舟

    2002-01-01

    For α∈ (0, ∞), let H∞α (or H∞α,0) denote the collection of all functionsf which are analytic on the unit disc D and satisfy |f(z)|(1 -|z|2)α = O(1) (or|f(z)|(1 -|z|2)α = o(1) as |z| → 1). H∞α(or H∞α,0) is called a Bers-type space(or a little Bers-type space).In this paper, we give some basic properties of H∞α.Cψ,the composition operator associated with a symbol function ψ which is an analyticself map of D, is difined by Cψf = f o ψ. We characterize the boundedness andcompactness of Cψ which sends one Bers-type space to another function space.

  6. On the BER and capacity analysis of MIMO MRC systems with channel estimation error

    KAUST Repository

    Yang, Liang

    2011-10-01

    In this paper, we investigate the effect of channel estimation error on the capacity and bit-error rate (BER) of a multiple-input multiple-output (MIMO) transmit maximal ratio transmission (MRT) and receive maximal ratio combining (MRC) systems over uncorrelated Rayleigh fading channels. We first derive the ergodic (average) capacity expressions for such systems when power adaptation is applied at the transmitter. The exact capacity expression for the uniform power allocation case is also presented. Furthermore, to investigate the diversity order of MIMO MRT-MRC scheme, we derive the BER performance under a uniform power allocation policy. We also present an asymptotic BER performance analysis for the MIMO MRT-MRC system with multiuser diversity. The numerical results are given to illustrate the sensitivity of the main performance to the channel estimation error and the tightness of the approximate cutoff value. © 2011 IEEE.

  7. BER of asymmetrical optical beams in oceanic and marine atmospheric media

    Science.gov (United States)

    Baykal, Yahya

    2017-06-01

    The average bit-error-rate (BER) performances of asymmetrical optical Gaussian beams propagating in oceanic and marine atmospheric turbulence are examined. Both type of media are assumed to exhibit weak turbulence. The effect of asymmetry factor on the BER performance are investigated in conjunction with the oceanic turbulence parameters of the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of mean-squared temperature and the rate of dissipation of kinetic energy per unit mass of fluid, and with the marine atmospheric link parameters of the link length and the structure constant. Also, the variations of the BER against the source size of various asymmetrical beams are scrutinized in both oceanic and marine atmospheric media.

  8. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts.

    Science.gov (United States)

    Necchi, Daniela; Pinto, Antonella; Tillhon, Micol; Dutto, Ilaria; Serafini, Melania Maria; Lanni, Cristina; Govoni, Stefano; Racchi, Marco; Prosperi, Ennio

    2015-10-01

    Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.

  9. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways

    Directory of Open Access Journals (Sweden)

    Juliana H. Osaki

    2016-01-01

    Full Text Available Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR and nonhomologous end joining (NHEJ. These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.

  10. Nucleotide sequence, DNA damage location and protein stoichiometry influence base excision repair outcome at CAG/CTG repeats

    Science.gov (United States)

    Goula, Agathi-Vasiliki; Pearson, Christopher E.; Della Maria, Julie; Trottier, Yvon; Tomkinson, Alan E.; Wilson, David M.; Merienne, Karine

    2012-01-01

    Expansion of CAG/CTG repeats is the underlying cause of >fourteen genetic disorders, including Huntington’s disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights as to how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely due to the lower level of APE1, FEN1 and LIG1. Damage located towards the 5’ end of the repeat tract was poorly repaired accumulating incompletely processed intermediates as compared to an AP lesion in the centre or at the 3’ end of the repeats or within a control sequences. Moreover, repair of lesions at the 5’ end of CAG or CTG repeats involved multinucleotide synthesis, particularly under the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that BER stoichiometry, nucleotide sequence and DNA damage position modulate repair outcome, and suggest that a suboptimal LP-BER activity promotes CAG/CTG repeat instability. PMID:22497302

  11. DNA repair activity in fish and interest in ecotoxicology: a review.

    Science.gov (United States)

    Kienzler, Aude; Bony, Sylvie; Devaux, Alain

    2013-06-15

    The knowledge of DNA repair in a target species is of first importance as it is the primary line of defense against genotoxicants, and a better knowledge of DNA repair capacity in fish could help to interpret genotoxicity data and/or assist in the choice of target species, developmental stage and tissues to focus on, both for environmental biomonitoring studies and DNA repair testing. This review focuses in a first part on what is presently known on a mechanistic basis, about the various DNA repair systems in fish, in vivo and in established cell lines. Data on base excision repair (BER), direct reversal with O⁶-alkylguanine transferase and double strand breaks repair, although rather scarce, are being reviewed, as well as nucleotide excision repair (NER) and photoreactivation repair (PER), which are by far the most studied repair mechanisms in fish. Most of these repair mechanisms seem to be strongly species and tissue dependent; they also depend on the developmental stage of the organisms. BER is efficient in vivo, although no data has been found on in vitro models. NER activity is quite low or even inexistent depending on the studies; however this lack is partly compensated by a strong PER activity, especially in early developmental stage. In a second part, a survey of the ecotoxicological studies integrating DNA repair as a parameter responding to single or mixture of contaminant is realized. Three main approaches are being used: the measurement of DNA repair gene expression after exposure, although it has not yet been clearly established whether gene expression is indicative of repair capacity; the monitoring of DNA damage removal by following DNA repair kinetics; and the modulation of DNA repair activity following exposure in situ, in order to assess the impact of exposure history on DNA repair capacity. Since all DNA repair processes are possible targets for environmental pollutants, we can also wonder at which extent such a modulation of repair capacities

  12. Horacio Castellanos Moya und die Kunst des ÜberLebens

    OpenAIRE

    2007-01-01

    Diese Homepage präsentiert die Ergebnisse eines Seminars über den mittelamerikanischen Schriftsteller Horacio Castellanos Moya, das im Sommersemester 2006 an der Universität Potsdam stattfand. Sie richtetet sich sowohl an interessierte Leser seiner Bücher, als auch an die akademische Öffentlichkeit, die sich dem Werk Castellanos Moyas bisher in z.T. nicht leicht zugänglichen Einzelanalysen gewidmet hat. Über verschiedene Einstiegsmöglichkeiten (Zitate – Bibliographie - Interviews) können die ...

  13. The upgraded cold neutron three axis spectrometer FLEXX at BER II at HZB

    OpenAIRE

    Le, M. D.; Skoulatos, M.; Quintero Castro, D.L.; Toft Petersen, R.; Groitl, F.; Rule, K. C.; Habicht, K.

    2014-01-01

    The cold neutron three axis spectrometer FLEXX is a work horse instrument for inelastic neutron scattering matching the sample environment capabilities for high magnetic fields up to 17.5 T and low temperatures down to 30 mK at the BER II neutron source at HZB. During the upgrade of the BER II neutron source and its instruments the primary spectrometer of FLEX [1] was completely rebuilt leading to a substantial increase in the flux reaching the sample [2]. The major benefit from the exchange ...

  14. Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity

    Science.gov (United States)

    Patrono, Clarice; Sterpone, Silvia; Testa, Antonella; Cozzi, Renata

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. The aetiology and carcinogenesis of BC are not clearly defined, although genetic, hormonal, lifestyle and environmental risk factors have been established. The most common treatment for BC includes breast-conserving surgery followed by a standard radiotherapy (RT) regimen. However, radiation hypersensitivity and the occurrence of RT-induced toxicity in normal tissue may affect patients’ treatment. The role of DNA repair in cancer has been extensively investigated, and an impaired DNA damage response may increase the risk of BC and individual radiosensitivity. Single nucleotide polymorphisms (SNPs) in DNA repair genes may alter protein function and modulate DNA repair efficiency, influencing the development of various cancers, including BC. SNPs in DNA repair genes have also been studied as potential predictive factors for the risk of RT-induced side effects. Here, we review the literature on the association between SNPs in base excision repair (BER) genes and BC risk. We focused on X-ray repair cross complementing group 1 (XRCC1), which plays a key role in BER, and on 8-oxoguanine DNA glycosylase 1, apurinic/apyrimidinic endonuclease 1 and poly (ADP-ribose) polymerase-1, which encode three important BER enzymes that interact with XRCC1. Although no association between SNPs and radiation toxicity has been validated thus far, we also report published studies on XRCC1 SNPs and variants in other BER genes and RT-induced side effects in BC patients, emphasising that large well-designed studies are needed to determine the genetic components of individual radiosensitivity. PMID:25493225

  15. Femoral hernia repair

    Science.gov (United States)

    Femorocele repair; Herniorrhaphy; Hernioplasty - femoral ... During surgery to repair the hernia, the bulging tissue is pushed back in. The weakened area is sewn closed or strengthened. This repair ...

  16. Undescended testicle repair

    Science.gov (United States)

    Orchidopexy; Inguinal orchidopexy; Orchiopexy; Repair of undescended testicle; Cryptorchidism repair ... first year of life without treatment. Undescended testicle repair surgery is recommended for patients whose testicles do ...

  17. DNA repair and gene therapy: implications for translational uses.

    Science.gov (United States)

    Limp-Foster, M; Kelley, M R

    2000-01-01

    Gene therapy has been proposed to have implications in the treatment of cancer. By genetically manipulating the hematopoietic stem cell compartment with genes that confer resistance to chemotherapeutic agents, the dose escalation that is necessary to effectively treat the cancers could potentially be achieved. DNA repair genes are some of the potential candidates to confer increased resistance to chemotherapeutic agents. Although initial focus in this area has been on the direct reversal protein (MGMT), its protective ability is limited to those agents that produce O(6)-methylGuanine cross-links-agents that are not extensively used clinically (e.g., nitrosoureas). Furthermore, most alkylating agents attack more sites in DNA other than O(6)-methylGuanine, such that the protections afforded by MGMT may prevent the initial cytotoxicity, but at a price of increased mutational burden and potential secondary leukemias. Therefore, some of the genes that are being tested as candidates for gene transfer are base excision repair (BER) genes. We and others have found that overexpression of selective BER genes confers resistance to chemotherapeutic agents such as thiotepa, ionizing radiation, bleomycin, and other agents. As these "proof of concept" analyses mature, many more clinically relevant chemotherapeutic agents can be tested for BER protective ability.

  18. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis.

    Science.gov (United States)

    Gonçalves, Ana Cristina; Alves, Raquel; Baldeiras, Inês; Cortesão, Emília; Carda, José Pedro; Branco, Claudia C; Oliveiros, Bárbara; Loureiro, Luísa; Pereira, Amélia; Nascimento Costa, José Manuel; Sarmento-Ribeiro, Ana Bela; Mota-Vieira, Luisa

    2017-01-01

    Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) share common features: elevated oxidative stress, DNA repair deficiency, and aberrant DNA methylation. We performed a hospital-based case-control study to evaluate the association in variants of genes involved in oxidative stress, folate metabolism, DNA repair, and DNA methylation with susceptibility and prognosis of these malignancies. To that end, 16 SNPs (one per gene: CAT, CYBA, DNMT1, DNMT3A, DNMT3B, GPX1, KEAP1, MPO, MTRR, NEIL1, NFE2F2, OGG1, SLC19A1, SOD1, SOD2, and XRCC1) were genotyped in 191 patients (101 MDS and 90 AML) and 261 controls. We also measured oxidative stress (reactive oxygen species/total antioxidant status ratio), DNA damage (8-hydroxy-2'-deoxyguanosine), and DNA methylation (5-methylcytosine) in 50 subjects (40 MDS and 10 controls). Results showed that five genes (GPX1, NEIL1, NFE2L2, OGG1, and SOD2) were associated with MDS, two (DNMT3B and SLC19A1) with AML, and two (CYBA and DNMT1) with both diseases. We observed a correlation of CYBA TT, GPX1 TT, and SOD2 CC genotypes with increased oxidative stress levels, as well as NEIL1 TT and OGG1 GG genotypes with higher DNA damage. The 5-methylcytosine levels were negatively associated with DNMT1 CC, DNMT3A CC, and MTRR AA genotypes, and positively with DNMT3B CC genotype. Furthermore, DNMT3A, MTRR, NEIL1, and OGG1 variants modulated AML transformation in MDS patients. Additionally, DNMT3A, OGG1, GPX1, and KEAP1 variants influenced survival of MDS and AML patients. Altogether, data suggest that genetic variability influence predisposition and prognosis of MDS and AML patients, as well AML transformation rate in MDS patients. © 2016 Wiley Periodicals, Inc.

  19. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain

    Directory of Open Access Journals (Sweden)

    Tardón Adonina

    2007-08-01

    Full Text Available Abstract Background Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Nucleotide excision repair (NER, base excision repair (BER, and double-strand break repair (DSBR are the main DNA repair pathways. We investigated the relationship between polymorphisms in two NER genes, XPC (poly (AT insertion/deletion: PAT-/+ and XPD (Asp312Asn and Lys751Gln, the BER gene XRCC1 (Arg399Gln, and the DSBR gene XRCC3 (Thr241Met and the risk of developing lung cancer. Methods A hospital-based case-control study was designed with 516 lung cancer patients and 533 control subjects, matched on ethnicity, age, and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusting for age, gender and pack-years. Results Borderline association was found for XPC and XPD NER genes polymorphisms, while no association was observed for polymorphisms in BER and DSBR genes. XPC PAT+/+ genotype was associated with no statistically significant increased risk among ever smokers (OR = 1.40; 95%CI = 0.94–2.08, squamous cell carcinoma (OR = 1.44; 95%CI = 0.85–2.44, and adenocarcinoma (OR = 1.72; 95%CI = 0.97–3.04. XPD variant genotypes (312Asn/Asn and 751Gln/Gln presented a not statistically significant risk of developing lung cancer (OR = 1.52; 95%CI = 0.91–2.51; OR = 1.38; 95%CI = 0.85–2.25, respectively, especially among ever smokers (OR = 1.58; 95%CI = 0.96–2.60, heavy smokers (OR = 2.07; 95%CI = 0.74–5.75, and adenocarcinoma (OR = 1.88; 95%CI = 0.97–3.63. On the other hand, individuals homozygous for the XRCC1 399Gln allele presented no risk of developing lung cancer (OR = 0.87; 95%CI = 0.57–1.31 except for individuals carriers of 399Gln/Gln genotype and without family history of cancer (OR = 0.57; 95%CI = 0.33–0.98 and no association was found between XRCC3 Thr241Met

  20. Investigation on the BER performance of the MSK space downlink laser communication system with a power EDFA

    Science.gov (United States)

    Jiao, Wenxiang; Li, Mi; Zhang, Xuping; Dong, Shandong; Song, Yuejiang; Lu, Yuangang

    2014-10-01

    For a space downlink laser communication system with an EDFA as a power amplifier, the performance of its BER deteriorates because the EDFA's characteristics are badly impacted by space radiation. As is investigated in this paper, small divergence-angle, lower than 30μrad, assures that the BER is lower than10-20 although the increase of radiation dose from 0Gy to 250Gy leads to 20 orders of magnitude increase of the BER. Such perfection results from our selection of optimal parameters. In the case of zenith angle, the BER increases smoothly when the zenith angle is lower than 10 degrees. After the point of 10 degrees, however, the BER starts its linearly fast increase. Increasing the radiation dose makes the BER increase and such evolution trend more smooth. Moreover, the increase of receiving diameter leads to linear reduce of BER. It is interesting to note that the evolution becomes nonlinear in region of low receiving diameter when we change the divergence-angle to a higher value 60μrad. Besides, suffering radiation makes the non-linearity mentioned above more apparent. Another try to change the zenith angle to higher value 45° does not show obvious nonlinear effect but it worsens the performance of BER quite a lot. Commonly, the impact of radiation will reach its saturation when the dose of radiation continues to increase. The work will benefit the design of practical space laser communication system with EDFAs.

  1. Confirmatory Factor Analysis of the "Preschool Behavioral and Emotional Rating Scale" (PreBERS) with Preschool Children with Disabilities

    Science.gov (United States)

    Cress, Cynthia J.; Synhorst, Lori; Epstein, Michael H.; Allen, Elizabeth

    2012-01-01

    The "Preschool Behavioral and Emotional Rating Scale" (PreBERS) is a standardized, norm-referenced instrument that assesses emotional and behavioral strengths of preschool children. This study investigated whether the PreBERS four-factor structure (i.e., emotional regulation, school readiness, social confidence, and family involvement)…

  2. Polarization modulational instability in a birefringent optical fiber with fourth order dispersion

    Indian Academy of Sciences (India)

    R Ganapathy; V C Kuriakose

    2001-10-01

    We obtain conditions for the occurrence of polarization modulational instability in the anomalous and normal dispersion regimes for the coupled nonlinear Schrödinger equation modelling fourth order dispersion effects when the linearly polarized pump is oriented at arbitrary angles with respect to the slow and fast axes of the birefringent fiber.

  3. Behavioral and Emotional Strength-Based Assessment of Finnish Elementary Students: Psychometrics of the BERS-2

    Science.gov (United States)

    Sointu, Erkko Tapio; Savolainen, Hannu; Lambert, Matthew C.; Lappalainen, Kristiina; Epstein, Michael H.

    2014-01-01

    When rating scales are used in different countries, thorough investigation of the psychometric properties is needed. We examined the internal structure of the Finnish translated Behavioral and Emotional Rating Scale-2 (BERS-2) using Rasch and confirmatory factor analysis approaches with a sample of youth, parents, and teachers. The results…

  4. Symposium on Operations Research <6, 1981, Augsburg>: 6. Symposium über Operations Research

    OpenAIRE

    Bamberg, Günter

    1981-01-01

    Symposium on Operations Research : 6. Symposium über Operations Research : Univ. Augsburg, Sept. 7-9, 1981 / ed. by Günter Bamberg ... - Pt. 1-2. - Königstein/Ts. : Verl.-Gruppe Athenäum ..., 1981. - XXI, 468, 695 S. - (Methods of operations research ; 43.44)

  5. Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing.

    Science.gov (United States)

    Vanin, Evgeny; Jacobsen, Gunnar

    2010-03-01

    The Bit-Error-Ratio (BER) floor caused by the laser phase noise in the optical fiber communication system with differential quadrature phase shift keying (DQPSK) and coherent detection followed by digital signal processing (DSP) is analytically evaluated. An in-phase and quadrature (I&Q) receiver with a carrier phase recovery using DSP is considered. The carrier phase recovery is based on a phase estimation of a finite sum (block) of the signal samples raised to the power of four and the phase unwrapping at transitions between blocks. It is demonstrated that errors generated at block transitions cause the dominating contribution to the system BER floor when the impact of the additive noise is negligibly small in comparison with the effect of the laser phase noise. Even the BER floor in the case when the phase unwrapping is omitted is analytically derived and applied to emphasize the crucial importance of this signal processing operation. The analytical results are verified by full Monte Carlo simulations. The BER for another type of DQPSK receiver operation, which is based on differential phase detection, is also obtained in the analytical form using the principle of conditional probability. The principle of conditional probability is justified in the case of differential phase detection due to statistical independency of the laser phase noise induced signal phase error and the additive noise contributions. Based on the achieved analytical results the laser linewidth tolerance is calculated for different system cases.

  6. Grossforschung in neuen Dimensionen : Denker unserer Zeit über die aktuelle Elementarteilchenphysik am CERN

    CERN Document Server

    Blanchard, Philippe; Kommer, Christoph; ZiF-Konferenz 2013; CERN : Large-scale Research in New Dimension

    2015-01-01

    Der 4. Juli 2012 stellt ein historisches Datum für das Europäische Kernforschungszentrum CERN in Genf dar: die Verkündung der Entdeckung des letzten, vorhergesagten, noch fehlenden und lange gesuchten Elementarteilchens, des Higgs-Bosons. Ein Jahr später kommen im Rahmen der Konferenz des Zentrums für interdisziplinäre Forschung (ZiF) in Bielefeld eine Vielzahl der mit dem Großprojekt am CERN verbundenen Wissenschaftler zusammen, um nicht nur über die Entdeckung des Teilchens, sondern vor allem über die Realisierung und Bedeutung eines derart ungeheuren Unterfangens für solch ein wissenschaftliches Großprojekt zu berichten. Der Generaldirektor des CERN, Prof. Dr. Rolf-Dieter Heuer, liefert in seinem Eröffnungsvortrag die Grundlage für die Diskussion der vielerlei Aspekte, die dabei ins Spiel kommen. So finden sich im vorliegenden Band zum einen Berichte über die Großforschung selbst: von der Entdeckung des Higgs-Teilchens über die Erforschung des Quark-Gluon-Plasmas und die Bedeutung von Th...

  7. Analysis of BER Performance of the Spread Spectrum Communication System with Constrained Spreading Code

    OpenAIRE

    長谷川, 孝明; 羽渕, 裕真

    1996-01-01

    Copyright notice. c1996 IEICE All rights reserved. "Analysis of BER Performance of the Spread Spectrum Communication System with Constrained Spreading Code"Hiromasa HABUCHI, Toshio TAKEBAYASHI, Takaaki HASEGAWA. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences ,1996 Vol.E79-A No.12 pp. 2078-2080 許諾No.07RB0055.

  8. Ein Lehrbuch über Psychiatrie und Psychotherapie – Geschlechtsunterschiede unter der Lupe?

    Directory of Open Access Journals (Sweden)

    Isabella Heuser

    2007-07-01

    Full Text Available Anke Rohde und Andreas Marneros haben sich ein hohes Ziel gesetzt: ein übersichtliches Lehrbuch für Psychiatrie und Psychotherapie, das erstmals eine systematische Zusammenstellung des Wissens über geschlechtsspezifische Aspekte von Symptomatologie, Epidemiologie, Diagnostik, Pharmakotherapie und Psychotherapie psychischer Störungen enthält. Bemerkenswert ist dabei zweierlei: Erstens werden bei der Betrachtung geschlechtsspezifischer Unterschiede im Sinne der Genderforschung Frauen und Männer berücksichtigt, zweitens wird ein vollständiger Überblick sowohl über die häufigen und bekannten psychischen Störungen als auch die äußerst seltenen psychiatrischen Erkrankungen der gesamten Altersspanne gegeben. Wenngleich die Qualität der einzelnen Beiträge deutlich zwischen sehr differenzierter und leider auch für ein Handbuch eindeutig zu oberflächlicher Betrachtung variiert, liegt in dem Band ein weitgehend informatives Nachschlagewerk vor, das einen ersten Überblick über die geschlechtsspezifische Psychiatrie gibt.

  9. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  10. Intestinal obstruction repair

    Science.gov (United States)

    Repair of volvulus; Intestinal volvulus - repair; Bowel obstruction - repair ... Intestinal obstruction repair is done while you are under general anesthesia . This means you are asleep and DO NOT feel pain. ...

  11. Aortic aneurysm repair - endovascular

    Science.gov (United States)

    EVAR; Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... Endovascular aortic repair is done because your aneurysm is very large, growing quickly, or is leaking or bleeding. You may have ...

  12. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  13. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  14. The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide.

    Directory of Open Access Journals (Sweden)

    Anthony R Richardson

    2009-05-01

    Full Text Available Intracellular pathogens must withstand nitric oxide (NO. generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS and possesses multiple systems to detoxify NO.. Consequently, the level of NO. stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO. sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO. fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO.-dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO.. These observations demonstrate that host-derived NO. damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity.

  15. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer's disease.

    Science.gov (United States)

    Gredilla, Ricardo; Weissman, Lior; Yang, Jenq-Lin; Bohr, Vilhelm A; Stevnsner, Tinna

    2012-04-01

    Brain aging is associated with synaptic decline and synaptic function is highly dependent on mitochondria. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of several neurodegenerative diseases. Here we have investigated the repair of oxidative base damage, in synaptosomes of mouse brain during normal aging and in an AD model. During normal aging, a reduction in the base excision repair (BER) capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of presymptomatic and symptomatic AD mice harboring mutated amyolid precursor protein (APP), Tau, and presinilin-1 (PS1) (3xTgAD). Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed.

  16. Analisis Parameter Ber Dan C/N Dengan Lnb Combo Pada Teknologi Dvb-S2

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2013-11-01

    Full Text Available Instalasi antena parabola berfungsi untuk memudahkan pada saat pengarahan pointing antena ke satelit yang dituju. Permasalahan yang diketahui yaitu bagaimana perilaku parameter Bit Error Rate (BER dan Carrier to Noise (C/N pada LNB Combo yang menggunakan teknologi DVB-S2. Setelah instalasi antena parabola dilakukan dan sukses, maka langkah selanjutnya yaitu melakukan pointing antena. Pointing antena diarahkan pada posisi satelit yang akan dituju. Satelit yang akan dituju yaitu Palapa D menggunakan frekuensi C-Band sedangkan Ku-Band diarahkan pada satelit NSS 6. Setelah pointing selesai dilakukan maka langkah selanjutnya yaitu menghubungkan dengan Digital Video Broadcasting Satellite Second Generation (DVB-S2. DVB-S2 merupakan receiver. Parameter yang diamati yaitu parameter BER dan C/N. Parameter BER merupakan perbandingan dengan jumlah bit yang diterima secara tidak benar dengan jumlah bit informasi yang ditransmisikan pada selang waktu tertentu. Parameter C/N merupakan perbandingan nilai pada carrier yang diterima dengan nilai sinyal noise yang dihasilkan dalam suatu link. Diperlukan juga Low Noise Block (LNB Combo yang berguna untuk mentransmisikan sinyal ke receiver. LNB yang digunakan merupakan LNB Combo, dimana dua buah frekuensi yakni C-Band dan KU-Band menjadi satu dalam sebuah LNB. Setelah melakukan pengukuran dan melihat hasil pengukuran, dapat disimpulkan bahwa LNB Combo berpengaruh pada sinyal C-Band yang dihasilkan, sinyal C-Band akan mengalami penurunan kualitas, ini dibuktikan dari hasil pengukuran yang telah dilakukan bahwa nilai parameter C/N dan BER pada Ku-Band lebih baik daripada nilai parameter C/N dan BER pada CBand.

  17. Berbamine Exerts Anti-Inflammatory Effects via Inhibition of NF-κB and MAPK Signaling Pathways.

    Science.gov (United States)

    Jia, Xiao-Jian; Li, Xi; Wang, Feng; Liu, Han-Qing; Zhang, Da-Jun; Chen, Yun

    2017-01-01

    This study aimed to investigate the anti-inflammatory activity of Berbamine (BER), a bisbenzylisoquinoline alkaloid extracted from Berberis amurensis (Xiao Bo An), and the underlying mechanisms. Macrophages and neutrophils were treated with BER in vitro and stimulated with LPS and fMLP. The effects of BER on the expression of pro-inflammatory mediators in macrophages were evaluated with quantitative RT-PCR and ELISA. The effects of BER on the activation and superoxide release of neutrophils were determined with flow cytometry and WST-1 reduction test. The inhibitory effects of BER on the activation of signaling pathways related to inflammatory response in macrophages were evaluated by western blot analysis. In addition, a mouse peritonitis model was made by peritoneal injection of thioglycollate medium and anti-inflammatory effects of BER were investigated in vivo by quantitative analysis of pro-inflammatory factor production and leukocyte exudation. BER significantly inhibited inflammatory factor expression by LPS-stimulated macrophages and suppressed activation and superoxide release of fMLP-stimulated neutrophils. In the mouse peritonitis model, BER significantly inhibited the activation of macrophages and exudation of neutrophils. According to analysis, BER significantly suppressed phosphorylation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways in LPS-stimulated macrophages. Collectively, data from this study suggest that BER has anti-inflammatory potential, which is effected via inhibition of NF-κB and MAPK signaling pathways, and thus holds promise for treatment of inflammatory disease. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Mammalian mismatch repair

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Jiricny, Josef

    2012-01-01

    A considerable surge of interest in the mismatch repair (MMR) system has been brought about by the discovery of a link between Lynch syndrome, an inherited predisposition to cancer of the colon and other organs, and malfunction of this key DNA metabolic pathway. This review focuses on recent...... advances in our understanding of the molecular mechanisms of canonical MMR, which improves replication fidelity by removing misincorporated nucleotides from the nascent DNA strand. We also discuss the involvement of MMR proteins in two other processes: trinucleotide repeat expansion and antibody maturation...

  19. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice.

    Science.gov (United States)

    Ghosh, Somnath; Canugovi, Chandrika; Yoon, Jeong Seon; Wilson, David M; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2015-07-01

    Oxidative DNA damage is mainly repaired by base excision repair (BER). Previously, our laboratory showed that mice lacking the BER glycosylases 8-oxoguanine glycosylase 1 (Ogg1) or nei endonuclease VIII-like 1 (Neil1) recover more poorly from focal ischemic stroke than wild-type mice. Here, a mouse model was used to investigate whether loss of 1 of the 2 alleles of X-ray repair cross-complementing protein 1 (Xrcc1), which encodes a nonenzymatic scaffold protein required for BER, alters recovery from stroke. Ischemia and reperfusion caused higher brain damage and lower functional recovery in Xrcc1(+/-) mice than in wild-type mice. Additionally, a greater percentage of Xrcc1(+/-) mice died as a result of the stroke. Brain samples from human individuals who died of stroke and individuals who died of non-neurological causes were assayed for various steps of BER. Significant losses of thymine glycol incision, abasic endonuclease incision, and single nucleotide incorporation activities were identified, as well as lower expression of XRCC1 and NEIL1 proteins in stroke brains compared with controls. Together, these results suggest that impaired BER is a risk factor in ischemic brain injury and contributes to its recovery.

  20. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells.

    Science.gov (United States)

    Jugan, Mary-Line; Barillet, Sabrina; Simon-Deckers, Angelique; Herlin-Boime, Nathalie; Sauvaigo, Sylvie; Douki, Thierry; Carriere, Marie

    2012-08-01

    Titanium dioxide nanoparticles (TiO(2)-NPs) are produced in large quantities, raising concerns about their impact for human health. The aim of this study was to deeply characterize TiO(2)-NPs genotoxic potential to lung cells, and to link genotoxicity to physicochemical characteristics, e.g., size, specific surface area, crystalline phase. A549 cells were exposed to a panel of TiO(2)-NPs with diameters ranging from 12 to 140 nm, either anatase or rutile. A set of complementary techniques (comet and micronucleus assays, gamma-H2AX immunostaining, 8-oxoGuanine analysis, H2-DCFDA, glutathione content, antioxidant enzymes activities) allowed us to demonstrate that small and spherical TiO(2)-NPs, both anatase and rutile, induce single-strand breaks and oxidative lesions to DNA, together with a general oxidative stress. Additionally we show that these NPs impair cell ability to repair DNA, by inactivation of both NER and BER pathways. This study thus confirms the genotoxic potential of TiO(2)-NPs, which may preclude their mutagenicity and carcinogenicity.

  1. Eight joint BER II and BESSY II users meeting. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The following topics were dealt with: Accelerator operation and projecs, photon science and instrumentation at BESSY II, status of energy materials in-situ Lab at BESSY II, high resolution spectrometer PEAXIS at BESSY II, sample environment at BESSY II, molecular control mechanisms in the Brr2 RNA helicase for efficient and regulated splicing, the Li conversion reaction of 4CoFe{sub 2}O{sub 4} nanoparticles, buried interfaces in lithium ion batteries probed with HAXPES, ARPES studies of the STO(001) 2DEG, all-in/all-out magnetic order in rare earth iridates, oxygen reduction reaction on graphene in Li-air batteries, electronic order in high-T{sub c} superconductors, in-siu observation of novel switching phenomena in highly porous metal-organic frameworks, photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO{sub 3} thin films, ARPES measurement of the ferroelectric bulk Rashba system GeTe, bisphenol A on Cu(111) and Ag(111), reverse water-gas shift or Sabathier methanation on N(110), structural studies of molecular machines, multi-MHz time-of-flight electronic band-structure imaging of graphene on Ir(111), diffusion pathways in ion conductors, ground-state potential energy surfaces around selected atoms from resonant inelastic X-ray scattering, solar energy in an emerging country, in-situ neutron analysis of electrode materials for electrochemical energy storage, structure and transport properties in thermoelectric skutterudites, investigation of the interphase formation on solid lithium-ion conductors by neutron reflectometry, load partitin and damage characterization of cast AlSi{sub 12}CuMgNi alloy with ceramic reinforcement, methane adsorption in highly porous metal-organics, structure and magnetic interactions in dimer system Ba{sub (3-x)}Sr{sub x}Cr{sub 2}O{sub 8}, distribution of S in C-S nanocomposites, current status of HFM-EXED FACITIY; SPIN NEAMTICITY IN s=1/2 frustrated zigzag chaIN β-TeVO{sub 4}, electronic

  2. Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity

    Science.gov (United States)

    Prasad, Rajendra; Poltoratsky, Vladimir; Hou, Esther W.; Wilson, Samuel H.

    2016-01-01

    Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity. PMID:27683219

  3. NPRL2 sensitizes human non-small cell lung cancer (NSCLC cells to cisplatin treatment by regulating key components in the DNA repair pathway.

    Directory of Open Access Journals (Sweden)

    Gitanjali Jayachandran

    Full Text Available NPRL2, one of the tumor suppressor genes residing in a 120-kb homozygous deletion region of human chromosome band 3p21.3, has a high degree of amino acid sequence homology with the nitrogen permease regulator 2 (NPR2 yeast gene, and mutations of NPRL2 in yeast cells are associated with resistance to cisplatin-mediated cell killing. Previously, we showed that restoration of NPRL2 in NPRL2-negative and cisplatin-resistant cells resensitize lung cancer cells to cisplatin treatment in vitro and in vivo. In this study, we show that sensitization of non-small cell lung cancer (NSCLC cells to cisplatin by NPRL2 is accomplished through the regulation of key components in the DNA-damage checkpoint pathway. NPRL2 can phosphorylate ataxia telangiectasia mutated (ATM kinase activated by cisplatin and promote downstream gamma-H2AX formation in vitro and in vivo, which occurs during apoptosis concurrently with the initial appearance of high-molecular-weight DNA fragments. Moreover, this combination treatment results in higher Chk1 and Chk2 kinase activity than does treatment with cisplatin alone and can activate Chk2 in pleural metastases tumor xenograft in mice. Activated Chk1 and Chk2 increase the expression of cell cycle checkpoint proteins, including Cdc25A and Cdc25C, leading to higher levels of G2/M arrest in tumor cells treated with NPRL2 and cisplatin than in tumor cells treated with cisplatin only. Our results therefore suggest that ectopic expression of NPRL2 activates the DNA damage checkpoint pathway in cisplatin-resistant and NPRL2-negative cells; hence, the combination of NPRL2 and cisplatin can resensitize cisplatin nonresponders to cisplatin treatment through the activation of the DNA damage checkpoint pathway, leading to cell arrest in the G2/M phase and induction of apoptosis. The direct implication of this study is that combination treatment with NPRL2 and cisplatin may overcome cisplatin resistance and enhance therapeutic efficacy.

  4. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin.

    Science.gov (United States)

    Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V

    2011-02-17

    Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics.

  5. Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth.

    Science.gov (United States)

    Louveau, Antoine; Nerrière-Daguin, Véronique; Vanhove, Bernard; Naveilhan, Philippe; Neunlist, Michel; Nicot, Arnaud; Boudin, Hélène

    2015-12-01

    Among the costimulatory factors widely studied in the immune system is the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA4)-CD80/CD86 pathway, which critically controls the nature and duration of the T-cell response. In the brain, up-regulated expression of CD80/CD86 during inflammation has consistently been reported in microglia. However, the role of CD80/CD86 molecules has mainly been studied in a context of microglia-T cell interactions in pathological conditions, while the function of CD80/CD86 in the regulation of intrinsic brain cells remains largely unknown. In this study, we used a transgenic pig line in which neurons express releasable CTLA4-Ig, a synthetic molecule mimicking CTLA4 and binding to CD80/CD86. The effects of CTLA4-Ig on brain cells were analyzed after intracerebral transplantation of CTLA4-Ig-expressing neurons or wild-type neurons as control. This model provided in vivo evidence that CTLA4-Ig stimulated axonal outgrowth, in correlation with a shift of the nearby microglia from a compact to a ramified morphology. In a culture system, we found that the CTLA4-Ig-induced morphological change of microglia was mediated through CD86, but not CD80. This was accompanied by microglial up-regulated expression of the anti-inflammatory molecule Arginase 1 and the neurotrophic factor BDNF, in an astrocyte-dependent manner through the purinergic P2Y1 receptor pathway. Our study identifies for the first time CD86 as a key player in the modulation of microglia phenotype and suggests that CTLA4-Ig-derived compounds might represent new tools to manipulate CNS microglia.

  6. DNA-Protein Crosslink Proteolysis Repair.

    Science.gov (United States)

    Vaz, Bruno; Popovic, Marta; Ramadan, Kristijan

    2017-06-01

    Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Effects of Continuous and Interrupted Episiotomy Repair on Pain Severity and Rate of Perineal Repair: A Controlled Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shirin Hasanpoor

    2012-08-01

    Full Text Available Introduction: Perineal pain is the most common complaint after episiotomy. It imposes extra pressure on mothers who attempt to adapt to their new conditions. Therefore, the present study was performed to compare pain severity and perineal repair in two episiot-omy repair methods. Methods: In this clinical trial, 100 primiparous women who re-ferred to hospitals of Tabriz (Iran for delivery were randomly allocated into two groups of 50 to undergo either continuous or interrupted episiotomy repair. A visual analogue scale (VAS was used to evaluate pain severity 12-18 hours after episiotomy repair and also 10 days after delivery. Perineal repair rate was also assessed using the REEDA (redness, edema, ecchymosis, discharge, and approximation scoring scale. The obtained data was analyzed in SPSS15. Results: Statistical tests did not show significant differ-ences between the 2 groups in pain severity variations or REEDA scores at 12-18 hours and the 10th day after delivery. However, the mean required time for repair and the num-ber of used threads were significantly lower in the continuous repair group (p < 0.001. Conclusion: The results of this study showed that pain severity and episiotomy repair rate were similar in the two methods. Nevertheless, shorter time of repair and fewer threads were required using the continuous repair method. Therefore, this method would provide better services for mothers and reduce the required time, energy, and costs.

  8. Rational Inhibitors of DNA Base Excision Repair Enzymes: New Tools for Elucidating the Role of BER in Cancer Chemotherapy. Addendum

    Science.gov (United States)

    2006-11-01

    PROCEDURES2 Materials. The 2′-deoxynucleoside phosphoramidites, CPG supports, and DNA synthesis reagents were purchased from Glen Research (Sterling, VA...flipping enzymes (28). EXPERIMENTAL PROCEDURES Materials. The 2′-deoxynucleoside phosphoramidites, CPG supports, and DNA synthesis reagents were...28425. (21) Klarmann, G. J.; Chen, X.; North, T. W.; Preston, B. D. J. Biol. Chem. 2003, 278, 7902- 7909 . (22) Mansky, L. M.; Preveral, S.; Selig, L

  9. DNA repair in species with extreme lifespan differences

    Science.gov (United States)

    MacRae, Sheila L.; Croken, Matthew McKnight; Calder, R.B.; Aliper, Alexander; Milholland, Brandon; White, Ryan R.; Zhavoronkov, Alexander; Gladyshev, Vadim N.; Seluanov, Andrei; Gorbunova, Vera; Zhang, Zhengdong D.; Vijg, Jan

    2015-01-01

    Differences in DNA repair capacity have been hypothesized to underlie the great range of maximum lifespans among mammals. However, measurements of individual DNA repair activities in cells and animals have not substantiated such a relationship because utilization of repair pathways among animals—depending on habitats, anatomical characteristics, and life styles—varies greatly between mammalian species. Recent advances in high-throughput genomics, in combination with increased knowledge of the genetic pathways involved in genome maintenance, now enable a comprehensive comparison of DNA repair transcriptomes in animal species with extreme lifespan differences. Here we compare transcriptomes of liver, an organ with high oxidative metabolism and abundant spontaneous DNA damage, from humans, naked mole rats, and mice, with maximum lifespans of ∼120, 30, and 3 years, respectively, with a focus on genes involved in DNA repair. The results show that the longer-lived species, human and naked mole rat, share higher expression of DNA repair genes, including core genes in several DNA repair pathways. A more systematic approach of signaling pathway analysis indicates statistically significant upregulation of several DNA repair signaling pathways in human and naked mole rat compared with mouse. The results of this present work indicate, for the first time, that DNA repair is upregulated in a major metabolic organ in long-lived humans and naked mole rats compared with short-lived mice. These results strongly suggest that DNA repair can be considered a genuine longevity assurance system. PMID:26729707

  10. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest.

    Science.gov (United States)

    Niu, Yujie; Zhang, Xing; Zheng, Yuxin; Zhang, Rong

    2013-09-01

    γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.

  11. Cu-Al-O Nanofi bers Fabricated by Electrospinning and Their Ozone Sensing Properties at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    L Mo; CAO Jiajia; WANG Yu; SHEN Hongzhi; WANG Yiding

    2015-01-01

    Cu-Al-O nanofibers are synthesized by an electrospinning method. After electrospinning process, these nanofi bers were thermally treated at different temperatures from 900 to 1 100ć. The morphology and crystal structure of thefi bers were analyzed by scanning electron microscopy and X-ray diffraction. Thick fi lm gas sensors were fabricated by spinning the nanofi bers on a ceramic substrate with Au-Pt interdigitated electrodes. These sensors exhibited high ozone sensing properties at room temperature. When the sensors were exposed to 100 ppm ozone, the response time was about 2.74 s, and the recovery was about 12.68 s.

  12. Controlling particle size in the Stöber process and incorporation of calcium.

    Science.gov (United States)

    Greasley, Sarah L; Page, Samuel J; Sirovica, Slobodan; Chen, Shu; Martin, Richard A; Riveiro, Antonio; Hanna, John V; Porter, Alexandra E; Jones, Julian R

    2016-05-01

    The Stӧber process is commonly used for synthesising spherical silica particles. This article reports the first comprehensive study of how the process variables can be used to obtain monodispersed particles of specific size. The modal particle size could be selected within in the range 20-500 nm. There is great therapeutic potential for bioactive glass nanoparticles, as they can be internalised within cells and perform sustained delivery of active ions. Biodegradable bioactive glass nanoparticles are also used in nanocomposites. Modification of the Stӧber process so that the particles can contain cations such as calcium, whilst maintaining monodispersity, is desirable. Here, whilst calcium incorporation is achieved, with a homogenous distribution, careful characterisation shows that much of the calcium is not incorporated. A maximum of 10 mol% CaO can be achieved and previous reports are likely to have overestimated the amount of calcium incorporated.

  13. Performance Improvement of BER in MIMO Systems with SVD-Based Precoding Approach

    Directory of Open Access Journals (Sweden)

    Akash Sethi

    2013-10-01

    Full Text Available Interference is the factor which limits the performance in cellular network. Empowered by precoding and decoding, a spatially multiplexed Multiple-Input Multiple-Output (MIMO system becomes a convenient framework to offer high data rate, diversity and interference management. In this paper, we discuss precoding scheme to mitigate the effect of channel fading in MIMO system where there is no limit in number of antennas at transmitter and receiver. With the knowledge of channel state information (CSI the transmitted signal is defined such that the channel fading effect is greatly mitigated. This will improve the BER performance of the MIMO system. For our proposed scheme, we use the Singular Value Decomposition (SVD based approach to design the transmitted signal such that it mitigate the effect of channel fading. After simulation, we observe that the BER performance of MIMO system is better than when equalization technique used alone.

  14. Benzo[a]pyrene induced p53-mediated cell cycle arrest, DNA repair, and apoptosis pathways in Chinese rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Yuan, Lilai; Lv, Biping; Zha, Jinmiao; Wang, Zijian

    2017-03-01

    The p53 pathways play an important role in carcinogenesis. In mammals, p53 and p53 target genes have been extensively studied, but little is known about their functions and regulation in fish. In this study, the cDNA fragments of p53 network genes, including p53, p21, mdm2, gadd45α, gadd45β, igfbp-3, and bax, were cloned from Chinese rare minnow (Gobiocypris rarus). These genes displayed high amino acid sequence identities with their zebrafish orthologs. The mRNA levels of p53 network genes and pathological changes in the liver were determined after adult rare minnow were exposed to 0.4, 2, and 10 µg/L of benzo[a]pyrene (BaP) for 28 days. The results showed that p53, p21, mdm2, gadd45α, and bax mRNA expressions in the livers from males and females were significantly upregulated compared with those of the controls (p p53 network genes in the livers suggest that rare minnow is suitable as an experimental fish to screen environmental carcinogens. In addition, the p53 network genes in rare minnow could feasibly be used to identify the mechanism of environmental carcinogenesis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 979-988, 2017.

  15. Theoria cum praxi? Über die (Un-?) Vereinbarkeit wissenschaftlicher und ökonomischer Anforderungen

    OpenAIRE

    Kritzmöller, Monika

    2004-01-01

    Gottfried Wilhelm LEIBNIZ maß der Zusammenarbeit und wechselseitigen Befruchtung von Theorie und Praxis ein derart hohes Gewicht bei, dass er das Motto "Theoria cum praxi" bereits 1696 als Wahlspruch über sein Gesamtwerk stellte. An der Notwendigkeit einer Kooperation zwischen Praxis – und damit zumeist: Wirtschaft – und Wissenschaft hat sich seither nicht viel geändert. Dennoch wäre es ein Trugschluss zu glauben, dass die vergangenen drei Jahrhunderte zu einem Kraftschluss zwischen beiden Sp...

  16. Laktoseintoleranz bei Morbus Crohn und Colitis ulcerosa unter Berücksichtigung der ethnischen Herkunft

    OpenAIRE

    Demirci, Ilknur

    2007-01-01

    Die Frage der Inzidenz einer Laktosemalabsorption bei Morbus Crohn und Colitis ulcerosa wurde retrospektiv unter Berücksichtigung der ethnischen Herkunft untersucht. Bei 243 Patienten wurden zur Diagnose einer Laktosemalabsorption der Laktosetoleranztest und der H2-Atemtest durchgeführt. Dabei fand sich bei 23 (14,3%) von 161 Morbus Crohn Patienten eine Laktosemalabsorption. Nach ethnischer Differenzierung, zeigte sich in der mitteleuropäischen Population eine Häufigkeit von 13,2%...

  17. Studie über die Erzeugungs- und Vermarktungsstruktur des Bienenzuchtsektors in Deutschland

    OpenAIRE

    Efken, Josef; Bernhardt, Angelina

    2016-01-01

    Die Studie hat zum Ziel, einen Überblick über den deutschen Markt für Honig zu geben. Es werden die Imkereistruktur und die Beziehungen zwischen den Marktpartnern dargestellt. Daneben werden die Versorgungsbilanz sowie die Nachfrage betrachtet, bei der Deutschland als einer der größten Konsumenten auch weltweit eine entscheidende Rolle spielt. Zu unterscheiden sind hierbei Honige, die via Direktvermarktung vom Imker vertrieben werden, und Honige aus dem Einzelhandel. Diese Segmente existieren...

  18. A survey of BER Performance of Generalized MC DS - CDMA System

    Directory of Open Access Journals (Sweden)

    Rishi Choubey

    2013-06-01

    Full Text Available n today’s eramultipleaccess interferenceinmulticarrier direct sequence-code division multipleaccess (MC DS-CDMA is the most importantdifficulty that dependsmainly on the correlationproperties of the spreadingsequences as well as theshape of the chip waveforms.In this paper wepresent a survey on BER performance ofgeneralized MC DS-CDMA. We study and analysedthe performance measurement with theiradvantages and limitations. Based on study we alsosuggest some future suggestions which are usefulfor future research.

  19. Über das Selbstverständnis der Pädagogik als Wissenschaft

    OpenAIRE

    Wüst, Andrea

    2011-01-01

    Was ist Pädagogik? Eine der vielleicht wichtigsten Fragen wissenschaftlicher Pädagogik ist die nach ihrem Wissenschaftscharakter und nach ihrem eigenen Selbstverständnis. Denn nicht zuletzt wird daran ihre Bedeutung für die pädagogische und gesellschaftliche Praxis gemessen und ihre Stellung gegenüber den anderen Wissenschaften ausgewiesen. Angesichts der Erwartungen und der Kritik, mit der sich wissenschaftliche Pädagogik immer wieder konfrontiert sieht, angesichts der Vielzahl unterschiedli...

  20. Kaposi Sarcoma Herpesvirus (KSHV Latency-Associated Nuclear Antigen (LANA recruits components of the MRN (Mre11-Rad50-NBS1 repair complex to modulate an innate immune signaling pathway and viral latency.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mariggiò

    2017-04-01

    Full Text Available Kaposi Sarcoma Herpesvirus (KSHV, a γ2-herpesvirus and class 1 carcinogen, is responsible for at least three human malignancies: Kaposi Sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. Its major nuclear latency protein, LANA, is indispensable for the maintenance and replication of latent viral DNA in infected cells. Although LANA is mainly a nuclear protein, cytoplasmic isoforms of LANA exist and can act as antagonists of the cytoplasmic DNA sensor, cGAS. Here, we show that cytosolic LANA also recruits members of the MRN (Mre11-Rad50-NBS1 repair complex in the cytosol and thereby inhibits their recently reported role in the sensing of cytoplasmic DNA and activation of the NF-κB pathway. Inhibition of NF-κB activation by cytoplasmic LANA is accompanied by increased lytic replication in KSHV-infected cells, suggesting that MRN-dependent NF-κB activation contributes to KSHV latency. Cytoplasmic LANA may therefore support the activation of KSHV lytic replication in part by counteracting the activation of NF-κB in response to cytoplasmic DNA. This would complement the recently described role of cytoplasmic LANA in blocking an interferon response triggered by cGAS and thereby promoting lytic reactivation. Our findings highlight a second point at which cytoplasmic LANA interferes with the innate immune response, as well as the importance of the recently discovered role of cytoplasmic MRN complex members as innate sensors of cytoplasmic DNA for the control of KSHV replication.

  1. BER Performance Analysis of Rake Receiver in Rayleigh Fading Channel for UMTS environment

    Directory of Open Access Journals (Sweden)

    Pravindra Kumar

    2010-06-01

    Full Text Available The goal for the third generation of mobile communications system is to integrate a wide variety of communication services such as high speed data, video and multimedia traffic as well as voice signals. Under the Universal Mobile Telecommunication System (UMTS environment the Third Generation (3G has many advantages such as highly efficient spectrum utilisation and variable user data rates. In this paper, we present the bit error rate (BER performance analysis of Rake Receiver under UMTS environment with BPSK modulation technique and the convolutional coding at the transmitter and viterbi decoding at the receiver side. The Standard Gaussian Approximation (SGA is used to evaluate the performance of Rake Receiver over a frequency selective Rayleigh fading channel. The data is modulated, encoded, spread and transmitted through a frequency selective Rayleigh fading channel. The transmitted signal is corrupted by multiple access interference, and is further corrupted by AWGNat the receiver. In the receiver, dispreading, decoded and demodulated. Rake Receiver, directive antenna are employed to improve the system performance. We examined the BER performance of Rake Receiver with, varying the number of users, spreading factor, Rake fingers, Interfering Cells, and the value of directivity of antenna at base Station. From the results we have seen that the BER performance of Rake Receiver is affected by varying these parameters and gives useful results.

  2. Power Consumption and BER of Flip-Flop Inserted Global Interconnect

    Directory of Open Access Journals (Sweden)

    Jingye Xu

    2007-01-01

    Full Text Available In nanometer scale integrated circuits, concurrent insertion of repeaters and sequential elements into the global interconnect lines has been proposed to support multicycle communication—a concept known as interconnect pipelining. The design targets of an interconnect-pipelining scheme are to ensure high reliability, low-power consumption, and less delay cycles. This paper presents an in-depth analysis of the reliability in terms of bit error rate (BER and the power consumption of wire-pipelining scheme. In this analysis, the dependencies of power consumption and BER on the number of inserted flip-flops, and the size of repeaters are illustrated. To trade off the design targets (wire delay, BER, and power consumption, a methodology is developed to optimize the repeater size and the number of flip-flops inserted which maximize a user-specified figure of merit. The methodology is demonstrated by calculating optimal solutions for interconnect pipelining for some International Technology Roadmap for Semiconductor technology nodes.

  3. Nachrichtenberichterstattung über Terrorismus. Eine Analyse der TV-Nachrichten über die Terroranschläge in Kenia 2002

    Directory of Open Access Journals (Sweden)

    Nicole Haußecker

    2007-04-01

    Full Text Available Nach der starken Kritik der Medienberichterstattung über Terrorismus, besonders nach dem 11.09.2001, werden die theoretischen Hintergründe ausgewählter Kritikpunkte betrachtet und ein weiteres terroristisches Ereignis, die Anschläge in Kenia am 28.11.2002, inhaltsanalytisch untersucht. Ziel dabei ist es, Aussagen bezüglich inhaltlicher und formaler Merkmale der Fernseh-berichterstattung über ein terroristisches Ereignis zu treffen. Deshalb liegt der Fokus auf den folgenden drei Forschungsfragen: 1. Welche Nachrichtenfaktoren spielen für die Selektion und Intensität der Berichterstattung über das terroristische Ereignis eine Rolle? 2. Wird mit Emotionalisierung gearbeitet? 3. Liegen negative Stereotype und/oder Feindbilder bezüglich der islamischen und arabischen Welt vor? Die Ergebnisse der Untersuchung zeigen erwartete Tendenzen sowohl die Merkmale der Terrorismusberichterstattung als auch die Senderkonvergenzen und -divergenzen im dualen System betreffend. Der Nachrichtenwert eines terroristischen Ereignisses ist anfänglich sehr hoch, jedoch verliert das Ereignis ab dem dritten Tag aufgrund diverser Nachrichtenfaktoren deutlich an Beachtung in der Berichterstattung. Das Vorkommen emotionalisierender Mittel wird empirisch bestätigt. Nicht nur emotionale Sprache und Sprechweise, sondern vor allem Formen der expliziten Emotionalisierung sind vertreten. Damit wird die Vermutung bekräftigt, dass die Medien die mit den terroristischen Ereignissen verbundene beängstigende Stimmung senderabhängig unterschiedlich stark aufgreifen. Ein direkter islamischer Feindbildaufbau ist in der Berichterstattung nicht zu verzeichnen. Allerdings liegen latente negative Bewertungstendenzen sowie negative Stereotype bezüglich der arabischen und islamischen Welt vor, die das seit dem 11.09.2001 negativ geprägte Bild festigen. Die meist narrativ inszenierte Fixierung auf Bin Laden und al Qaida erfolgt oberflächlich und vernachlässigt m

  4. Eye muscle repair - discharge

    Science.gov (United States)

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  5. Ventral hernia repair

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007661.htm Ventral hernia repair To use the sharing features on this page, please enable JavaScript. Ventral hernia repair is surgery to repair a ventral hernia. ...

  6. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  7. The Fanconi anaemia pathway: new players and new functions.

    Science.gov (United States)

    Ceccaldi, Raphael; Sarangi, Prabha; D'Andrea, Alan D

    2016-06-01

    The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.

  8. ρ(C)/ρ(N)对3 BER-S工艺特性及反硝化细菌群落特征的影响%Influence of ρ(C)/ρ(N) Ratio on Technology Characteristics and Denitrifying Bacteria Community for 3 BER-S

    Institute of Scientific and Technical Information of China (English)

    郝瑞霞; 任晓克; 孟成成; 王建超; 王润众; 赵文莉

    2015-01-01

    In order to improve the nitrogen removal efficiency of three-dimension-electrode biofilm process, the effects of ρ( C )/ρ( N ) on operation characteristics and denitrifying bacteria population community characteristics of a coupled 3-dimensional biofilm-electrode with sulfur autotrophic denitrification technology ( 3DBER-S ) were investigated at different ρ( C )/ρ( N ) conditions. The operating result indicates that there is no significant impact ofρ( C)/ρ( N) on denitrification performance in 3BER-S. And the TN removal efficiency is more than 80% at different ρ( C)/ρ( N) conditions. Moreover, the effects ofρ(C)/ρ(N) on denitrifying bacteria population and denitrification nutrition types in 3BER-S system were found. At high ρ( C)/ρ( N) condition, there is less species of denitrifying bacteria in 3BER-S system, where the Thauera acts as the dominant bacteria and heterotrophic denitrification is the main process. When the ρ( C )/ρ( N ) is reduced, both the denitrifying bacteria species and the proportion of sulfur autotrophic denitrification bacteria increase. In a word, the 3BER-S system maintains high and stable nitrogen removal efficiency at differentρ( C)/ρ( N) conditions, because the sulfur makes up for the deficiency of the denitrifying electronic donor in 3BER-S at low ρ(C)/ρ(N)condition.%为提高三维电极生物膜工艺脱氮效率,通过运行不同TOC与TN的质量浓度比(ρ( C)/ρ( N))条件下三维电极生物膜-硫自养耦合工艺(3BER-S),并建立基于反硝化特异性基因 nirS克隆文库,研究了ρ(C)/ρ(N)对3BER-S运行特性及反硝化细菌群落的影响。结果表明:ρ( C)/ρ( N)对3BER-S工艺的脱氮效率影响较小,不同ρ(C)/ρ(N)条件下的TN去除效率基本稳定在80%以上。ρ(C)/ρ(N)对3BER-S体系内的反硝化细菌种群结构和营养类型均有一定影响。高ρ(C)/ρ(N)条件下,反硝化细菌种类较少,Thauera(陶厄氏菌属)是体系内的优势菌群,脱氮作用以异养

  9. The role of polymorphisms of genes repair pathway to the radiotoxicity in patients with cancer of the cervix; O papel dos polimorfismos de genes da via de reparo com a radiotoxidade em pacientes com cancer de colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Terra Silva

    2012-07-01

    Background: In Brazil, cervical cancer is the second most common among women. Radiation therapy is part of its interdisciplinary management, playing an important role in their loco regional control. The major challenge of modern medicine in radiotherapy is to develop predictive methods that can determine the level of radiosensitivity of the patient and the healthy surrounding tissue in order to individualize the prescribed radiation dose, to prevent severe side effects and promoting better local tumor control. This study evaluated the acute and chronic adverse effects on the skin, lower gastrointestinal tract and urinary tract of radiotherapy in 47 cervical cancer patients. Methods and Materials: Biological material was collected and DNA from peripheral blood was extracted of ali patients studied. The fragments of TP53 and ATM were amplified to be sequenced, to verify if there are any polymorphisms witch could be responsible to the radiosensitivity of the patients. Results and Discussion: In a univariate analysis, the variable age was strongly associated with a risk of acute toxicity skin (p=O,023). Patients that received a high dose of external beam radiation and patients who have undergone brachytherapy, showed a significantly higher incidence of chronic urinary tract toxicity (p=O,031) and (p=O,019), respectively. The exchange G>A in the position 5557 of the A TM gene was significantly associated with the risk of acute lower gastrointestinal tract (p=O,008). There wasn't association between the other TP53 polymorphisms analyzed and the frequency of side effects (p>O,05). Our data revealed that patients who evolved significant association presented death (p=O,019) with the increase of chronic skin radiossensitivity. Conclusions: These observations corroborate the importance of investigating the genetic profile to predict adverse side effects in cervical cancer patients undergoing radiotherapy. These genes have an important role in DNA repair pathways and

  10. BER Analysis Of IEEE802.11n MIMO System Using MMSE And ZF Detectors

    Directory of Open Access Journals (Sweden)

    Ye Lwin Oo

    2015-06-01

    Full Text Available Abstract With the increasing demand of higher data rate for telecommunication the IEEE802.11n standard was constituted in 2009. The most important character of the standard is MIMO-OFDM which not only improves the throughput but also the spectrum efficiency and channel capacity. And in wireless communication the role of MIMO detectors plays an important part to remove inter-symbol interference ISI caused by multipath fading channel. In this paper the BER performance of IEEE 802.11n for 3x2 4x2 and 4x3 antennas are compared using MMSE and ZF detectors in Matlab Simulink.

  11. Anthropologie des Gedenkens: Beobachtungen zu und Reflektionen über amerikanische Todesrituale

    OpenAIRE

    Hemmingson, Michael

    2009-01-01

    Dieser Beitrag befasst sich mit zeitgenössischen amerikanischen Todesritualen, konkreter mit der Kultur des Gedenkens. Hierzu greife ich auf den Vorschlag von David R. MAINES zurück, Erzählungen zu verwenden, um soziale (und für die Anthropologie relevante) Ereignisse zu untersuchen. In Bezug auf Gedenken und Gedenkstätten gibt es spezifische soziale Erwartungen, es gibt Rituale, über Tote nur Gutes zu berichten, Rituale von Trauer. Bekannte und Familienangehörige kommen zusammen und sprec...

  12. Étude critique du doublage des films de Francis Véber en espagnol

    OpenAIRE

    Scarampi, Patricia

    2004-01-01

    Francis Véber, conocido hoy en día como director de cine, empezó en el mundo del cine siendo guionista. En sus películas, es fácil darse cuenta de que todo el peso de la comedia recae en la particularidad de los diálogos con sus juegos de palabras, sus marcas culturales y su humor imposible de traducir algunas veces. ¿Qué ocurre entonces cuando algunos de estos aspectos se pierden en la traducción? Para que el espectador pueda recibir de la versión doblada el mensaje que ...

  13. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers

    Indian Academy of Sciences (India)

    Ajit Kumar

    2001-11-01

    Switching between the bistable soliton states in a doubly and inhomogeneously doped fiber system is studied numerically. Both the cases of lossless as well as lossy couplers are considered. It is shown that both up-switching (from the low state to the high state) and down-switching (from the high state to the low state) of solitons between bistable states are realizable, if the amplification of the input soliton for up-switching and the extraction of energy from it for down-switching are suitably adjusted.

  14. Blinde Mimesis. Über Ordo und Kontingenz in der literaturgeschichtlichen Traditionsbildung (Horaz und Petron

    Directory of Open Access Journals (Sweden)

    Jürgen Paul Schwindt

    2010-11-01

    Full Text Available me truncus illapsus cerebro / sustulerat, nisi Faunus ictum / dextra levasset, Mercurialium / custos virorum.(Hor. carm. 2, 17, 27–30... et ipse Trimalchio capillatus caduceum tenebat Minervaque ducente Romam intrabat.(Petron. 29, 3Es ist zuweilen das Schicksal besonders gut erforschter Texte, daß sie im System der Bezüge, der Quellen und Verweise, das die gelehrte Erklärung über, neben und unter ihnen errichtet hat (Hyper-, Para-, Prae- oder Subtext, zu verschwimmen, konturlos zu werden, ...

  15. A survey of BER Performance of Generalized MC DS-CDMA System

    Directory of Open Access Journals (Sweden)

    Rishi Choubey

    2013-06-01

    Full Text Available In today’s era multiple access interference in multicarrier direct sequence-code division multiple access (MC DS-CDMA is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms. In this paper we present a survey on BER performance of generalized MC DS-CDMA. We study and analysed the performance measurement with their advantages and limitations. Based on study we also suggest some future suggestions which are useful for future research.

  16. BER analysis of DS-UWB system employing a laplace distribution model

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-01

    This letter takes a new approach to extract a closed-form expression for the bit error rate (BER) of direct-sequence ultra wideband (DS-UWB) system. In the analysis, the main signal is impaired by multi-user interference (MUI) and an external source of interference originated by simultanously transmitting multiband orthogonal frequency division multiplexing (MB-OFDM) systems which are located in the vicinity of the DS-UWB receiver. All the transmission channels are affected by Nakagami-m fading. A Laplacian distribution is considered for MUI to comply more with real statistical behaviors of this kind of interference. © IEICE 2011.

  17. Outage and BER analysis for ultrawideband-based WPAN in Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    This paper presents a performance analysis of multiband orthogonal frequency-division multiplexing (MB-OFDM) in ultra wideband (UWB)-based personal area networks (UPANs). A UPAN consists of devices with different UWB technologies at the physical layer. Approximate expressions for the outage probability and average bit error rate (BER) are derived in closed form for the MB-OFDM target receiver, taking into account multi-user interference (MUI), as well as external interference in the form of time-hopping (TH) and direct-sequence (DS) UWB signals. © 2010 IEEE.

  18. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Wojcik

    2014-10-01

    Full Text Available Keratoconus (KC is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER. Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1 were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1 nor the c.2285T>C polymorphism of the poly(ADP-ribose polymerase-1 (PARP-1 was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.

  19. DNA repair. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals. (HLW)

  20. Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel

    Directory of Open Access Journals (Sweden)

    R. Yao

    2016-12-01

    Full Text Available Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD. Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM and 3D-Turbo code to improve the Bit Error Rate (BER performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.

  1. LDPC Decoder with an Adaptive Wordwidth Datapath for Energy and BER Co-Optimization

    Directory of Open Access Journals (Sweden)

    Tinoosh Mohsenin

    2013-01-01

    (LDPC decoder using an adaptive wordwidth datapath is presented. The decoder switches between a Normal Mode and a reduced wordwidth Low Power Mode. Signal toggling is reduced as variable node processing inputs change in fewer bits. The duration of time that the decoder stays in a given mode is optimized for power and BER requirements and the received SNR. The paper explores different Low Power Mode algorithms to reduce the wordwidth and their implementations. Analysis of the BER performance and power consumption from fixed-point numerical and post-layout power simulations, respectively, is presented for a full parallel 10GBASE-T LDPC decoder in 65 nm CMOS. A 5.10 mm2 low power decoder implementation achieves 85.7 Gbps while operating at 185 MHz and dissipates 16.4 pJ/bit at 1.3 V with early termination. At 0.6 V the decoder throughput is 9.3 Gbps (greater than 6.4 Gbps required for 10GBASE-T while dissipating an average power of 31 mW. This is 4.6 lower than the state of the art reported power with an SNR loss of 0.35 dB at .

  2. Analysis of BER of OFDM in Optical Domain with Different Modulation Techniques

    Directory of Open Access Journals (Sweden)

    A. R. Gifty Arul Marin

    2013-01-01

    Full Text Available In OFDM system, the subcarrier frequencies are chosen so that the subcarriers are orthogonal to each other, meaning that cross talk between the sub channels is eliminated. Priority of OFDM system is given to minimizing the interference or crosstalk among the channels and symbols comprising the data stream. The primary advantage of OFDM is its ability to cope with severe channel conditions like attenuation of high frequencies, narrowband interference and frequency selective fading due to multipath. The existing OFDM systems were modelled based on frequency domain using various modulation techniques in AWGN channel. This is a research analysis to calculate the efficient BER of the OFDM system in the optical domain using BPSK and QPSK modulation techniques. This project can be used for high speed applications requiring more band width. Finally, performance comparison of BPSK and QPSK modulation schemes in OFDM system and the calculation of BER (Bit Error Rate using these modulation techniques is to be done. The entire OFDM system is implemented using SIMULINK tool in MATLAB

  3. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  4. Envisioning the molecular choreography of DNA base excision repair.

    Science.gov (United States)

    Parikh, S S; Mol, C D; Hosfield, D J; Tainer, J A

    1999-02-01

    Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.

  5. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  6. Effects of post mortem interval and gender in DNA base excision repair activities in rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Soltys, Daniela Tathiana; Pereira, Carolina Parga Martins; Ishibe, Gabriela Naomi; Souza-Pinto, Nadja Cristhina de, E-mail: nadja@iq.usp.br

    2015-06-15

    Most human tissues used in research are of post mortem origin. This is the case for all brain samples, and due to the difficulty in obtaining a good number of samples, especially in the case of neurodegenerative diseases, male and female samples are often included in the same experimental group. However, the effects of post mortem interval (PMI) and gender differences in the endpoints being analyzed are not always fully understood, as is the case for DNA repair activities. To investigate these effects, in a controlled genetic background, base excision repair (BER) activities were measured in protein extracts obtained from Wistar rat brains from different genders and defined PMI up to 24 hours, using a novel fluorescent-based in vitro incision assay. Uracil and AP-site incision activity in nuclear and mitochondrial extracts were similar in all groups included in this study. Our results show that gender and PMI up to 24 hours have no influence in the activities of the BER proteins UDG and APE1 in rat brains. These findings demonstrate that these variables do not interfere on the BER activities included in these study, and provide a security window to work with UDG and APE1 proteins in samples of post mortem origin.

  7. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest.

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish K; Jeevarajan, Antony S; Pierson, Duane L; Wu, Honglu

    2008-11-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that

  8. Orale Kontrazeptiva: Hohe Sicherheit unter Berücksichtigung diverser Wechselwirkungen

    Directory of Open Access Journals (Sweden)

    Gruber ChJ

    2001-01-01

    Full Text Available Die Anfänge der Kontrazeption und Familienplanung reichen fast bis an die Anfänge der Menschheitsgeschichte zurück. Viele altertümliche, medizinische Dokumente geben uns über die Entwicklung der Kontrazeption Auskunft. Von einem gewissen Zeitpunkt an hatte man herausgefunden, daß die Ejakulation des Mannes in unmittelbarem Zusammenhang mit dem Zeugen von Kindern stand. Daher beschränkte sich die Kontrazeption auf Maßnahmen, die verhinderten, daß das Ejakulat weiter in die Vagina vordringen konnte. Die allerersten Aufzeichnungen über Pessare findet man im alten Ägypten im Jahre 1850 a.C. Sie wurden aus dem Kot von Elefanten oder Krokodilen hergestellt, vermischt mit Honig, Teebaumöl und Schwefel. Es ist erstaunlich, wieviele dieser Methoden doch einen biologischen Sinn gemacht haben. Ein solches Beispiel wäre die Einführung einer halben Zitrone in die obere Vagina, um die Zervix zu bedecken. Es handelt sich dabei nicht nur um eine Barriere, sondern heute ist bekannt, daß die Zitronensäure spermizid wirkt. Auch die Geschichte der Kondome reicht schon sehr weit zurück. Man verwendete Harnblasen von verschiedensten Tieren oder auch das Caecum von Schafen. Viele kontrazeptive Versuche endeten jedoch tragisch, wie das Schlucken von Arsen, Blei oder Strychnin oder die Anwendung von Gewalt auf das Abdomen der Frauen, um das Kind und alle Organe, die für die Schwangerschaft nötig sind, zu zerstören. In der modernen Zeit hat das ständig akkumulierende Wissen über die Funktion des männlichen und weiblichen Genitaltraktes, sowie das zunehmende Verständnis der molekularen und physiologischen Mechanismen des weiblichen Zyklus dazu geführt, sehr verträgliche und effiziente Formen der Kontrazeption zu entwickeln. Den größten Beitrag hierbei leistete wohl Carl Djerassi, der "Erfinder" der Antibabypille.

  9. Mfd as a central partner of transcription coupled repair.

    Science.gov (United States)

    Monnet, Jordan; Grange, Wilfried; Strick, Terence R; Joly, Nicolas

    2013-01-01

    Transcription-coupled repair (TCR) is one of the key of the nucleotide excision repair (NER) pathways required to preserve genome integrity. Although understanding TCR is still a major challenge, recent single-molecule experiments have brought new insights into the initial steps of TCR leading to new perspectives.

  10. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC.

    Science.gov (United States)

    Charles Richard, John Lalith; Shukla, Manu Shubhdarshan; Menoni, Hervé; Ouararhni, Khalid; Lone, Imtiaz Nisar; Roulland, Yohan; Papin, Christophe; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-07-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.

  11. Transcription-coupled repair: an update.

    Science.gov (United States)

    Spivak, Graciela

    2016-11-01

    Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.

  12. Epigenetic reduction of DNA repair in progression togastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-linemutations in DNA repair genes cause increased risk ofgastrointestinal (GI) cancer. In sporadic GI cancers,mutations in DNA repair genes are relatively rare.However, epigenetic alterations that reduce expressionof DNA repair genes are frequent in sporadic GI cancers.These epigenetic reductions are also found in fielddefects that give rise to cancers. Reduced DNA repairlikely allows excessive DNA damages to accumulatein somatic cells. Then either inaccurate translesionsynthesis past the un-repaired DNA damages or errorproneDNA repair can cause mutations. ErroneousDNA repair can also cause epigenetic alterations (i.e. ,epimutations, transmitted through multiple replicationcycles). Some of these mutations and epimutations maycause progression to cancer. Thus, deficient or absentDNA repair is likely an important underlying cause ofcancer. Whole genome sequencing of GI cancers showthat between thousands to hundreds of thousands ofmutations occur in these cancers. Epimutations thatreduce DNA repair gene expression and occur early inprogression to GI cancers are a likely source of this highgenomic instability. Cancer cells deficient in DNA repairare more vulnerable than normal cells to inactivation byDNA damaging agents. Thus, some of the most clinicallyeffective chemotherapeutic agents in cancer treatmentare DNA damaging agents, and their effectivenessoften depends on deficient DNA repair in cancer cells.Recently, at least 18 DNA repair proteins, each activein one of six DNA repair pathways, were found to besubject to epigenetic reduction of expression in GIcancers. Different DNA repair pathways repair differenttypes of DNA damage. Evaluation of which DNA repairpathway(s) are deficient in particular types of GI cancerand/or particular patients may prove useful in guidingchoice of therapeutic agents in cancer therapy.

  13. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  14. DNA repair genes in the Megavirales pangenome.

    Science.gov (United States)

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  15. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  16. Upper Bounds on the BER Performance of MTCM-STBC Schemes over Shadowed Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    M. Uysal

    2004-08-01

    Full Text Available Space-time block coding (STBC provides substantial diversity advantages with a low decoding complexity. However, these codes are not designed to achieve coding gains. Outer codes should be concatenated with STBC to provide additional coding gain. In this paper, we analyze the performance of concatenated trellis-coded STBC schemes over shadowed Rician frequency-flat fading channels. We derive an exact pairwise error probability (PEP expression that reveals the dominant factors affecting performance. Based on the derived PEP, in conjunction with the transfer function technique, we also present upper bounds on the bit error rate (BER, which are further shown to be tight through a Monte-Carlo simulation study.

  17. CSO/CTB/BER performances improvement in a bi-directional hybrid DWDM system

    Institute of Scientific and Technical Information of China (English)

    Hai-Han Lu(吕海涵); Hsu-Hung Huang(黄旭弘); Ming-Chuan Wang(王明傅); Heng-Sheng Su(蘇(恒)生)

    2003-01-01

    Experimental verifications of the feasibility of using chirped fiber grating (CFG) as the dispersion compen-sation device in a bi-directional hybrid dense-wavelength-division-multiplexing (DWDM) system to reducethe dispersion and cross-phase modulation (XPM) induced crosstalk were proposed and demonstrated.Not only channel capacity was increased, but also good performances of carrier-to-noise ratio (CNR) ≥ 50dB, composite second order (CSO) ≥72 dB, composite triple beat (CTB) ≥69 dB and low bit error rate(BER) < 10-9 were achieved in our proposed system over a 50-km single-mode fiber (SMF) transport.

  18. BER Performance for Downlink MC-CDMA Systems over Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Vimal K. Dubey

    2005-04-01

    Full Text Available We consider downlink multicarrier code-division multiple-access (MC-CDMA systems using binary phase-shift keying (BPSK modulation scheme and maximal ratio combining (MRC in frequency-selective Rician fading channels. A time-domain method to obtain bit error rate (BER by calculating moment generating function (MGF of the decision variable for a tapped-delay-line channel model is proposed. This method does not require any assumption regarding the statistical or spectral distribution of multiple access interference (MAI, and it is also not necessary to assume that the fading encountered by the subcarriers is independent of each other. The analytical formula is also verified by simulations.

  19. Über die Verknüpfung von Hörspiel und Pädagogik

    Directory of Open Access Journals (Sweden)

    Leah Lobensommer

    2013-09-01

    Full Text Available Dieser Artikel legt die Ergebnisse einer Bachelorarbeit zum Thema „Hörspiel als Lernmethode unter besonderer Berücksichtigung sonderpädagogischer Aspekte“ dar. Die Beziehung von Hörspiel und Pädagogik wird durchleuchtet und zeitgemäße Ansätze zur Verwirklichung eines Hörspielprojektes mit Jugendlichen werden dargestellt. Mit Hilfe der Aussagen der qualitativen Forschung wird ein Fazit und ein Ausblick in die Zukunft gewagt.The following article focuses on the results of a Bachelor’s thesis on the subject of "Radio drama as a learning method in supportive educational settings". The link between pedagogics and radio drama and contemporary efforts to create radio dramas in class will be shown. The statements obtained by empiric research have the goal to transport insights of radio drama professionals in order to enlighten the subject. Finally, on the basis of the gained knowledge a conclusion will be made.

  20. Hybridverfahren zur EMV-Analyse elektrischer Leitungen über geschlitztem Grund

    Science.gov (United States)

    Ter Haseborg, J. R.; Brüns, H.-D.; Singer, H.

    2006-09-01

    Die Betrachtung niedrig geführter elektrischer Leitungen über leitendem Grund stellt besondere Anforderungen an die numerische Feldanalyse. Insbesondere für Fälle ungleichförmiger Leitungsführung oder ungleichförmigen Grunds werden Verfahren benötigt, die eine effektive EMV-Analyse zulassen. Die Verwendung von volldiskretisierten Modellen erfordert aufwändige Diskretisierungen, große Ressourcen und hohe Rechenzeiten. Daher werden Möglichkeiten gesucht, die effektive Leitungstheorie auf Anordnungen anzuwenden, deren direkte Berechnung in klassischer Betrachtungsweise nicht möglich ist. In der vorliegenden Arbeit wird ein Hybridverfahren vorgestellt, um den Einfluss von Schlitzen unterhalb von Leitungen in einer approximativen EMV-Analyse zu untersuchen. Hierzu dient neben der Leitungstheorie zur Berechnung des Leiterstroms eine momententheoretische Simulation auf Basis von magnetischen Linienströmen.

  1. Hybridverfahren zur EMV-Analyse elektrischer Leitungen über geschlitztem Grund

    Directory of Open Access Journals (Sweden)

    J. R. ter Haseborg

    2006-01-01

    Full Text Available Die Betrachtung niedrig geführter elektrischer Leitungen über leitendem Grund stellt besondere Anforderungen an die numerische Feldanalyse. Insbesondere für Fälle ungleichförmiger Leitungsführung oder ungleichförmigen Grunds werden Verfahren benötigt, die eine effektive EMV-Analyse zulassen. Die Verwendung von volldiskretisierten Modellen erfordert aufwändige Diskretisierungen, große Ressourcen und hohe Rechenzeiten. Daher werden Möglichkeiten gesucht, die effektive Leitungstheorie auf Anordnungen anzuwenden, deren direkte Berechnung in klassischer Betrachtungsweise nicht möglich ist. In der vorliegenden Arbeit wird ein Hybridverfahren vorgestellt, um den Einfluss von Schlitzen unterhalb von Leitungen in einer approximativen EMV-Analyse zu untersuchen. Hierzu dient neben der Leitungstheorie zur Berechnung des Leiterstroms eine momententheoretische Simulation auf Basis von magnetischen Linienströmen.

  2. Relevance Vector Machines for Enhanced BER Probability in DMT-Based Systems

    Directory of Open Access Journals (Sweden)

    Ashraf A. Tahat

    2010-01-01

    Full Text Available A new channel estimation method for discrete multitone (DMT communication system based on sparse Bayesian learning relevance vector machine (RVM method is presented. The Bayesian frame work is used to obtain sparse solutions for regression tasks with linear models. By exploiting a probabilistic Bayesian learning framework, sparse Bayesian learning provides accurate models for estimation and consequently equalization. We consider frequency domain equalization (FEQ using the proposed channel estimate at both the transmitter (preequalization and receiver (postequalization and compare the resulting bit error rate (BER performance curves for both approaches and various channel estimation techniques. Simulation results show that the proposed RVM-based method is superior to the traditional least squares technique.

  3. BER Performance Evaluation of two Types of Antenna Array-Based Receivers in a Multipath Channel

    Directory of Open Access Journals (Sweden)

    Rim Haddad

    2010-11-01

    Full Text Available Smart antennasystems have received much attention in the last few years because they can increasesystem capacity by dynamically tuning out interference while focusing on the intended user.In this paper, we focused our research on the performance of two kinds of smart antenna receivers. Ananalytical model is proposed for evaluating the BER performance using a closed-form expression. Also,for the adaptive array, a simple way to account the multi-access interference can be exploited to evaluatethe average probability of error when the users are randomly distributed within an angular sector.The proposed model confirms the benefits of adaptive antennas in reducing the overall interference level(intercell/intracell and to find an accurate approximation of the error probability.In the two kinds of receivers, we assessed the impact of smart antenna systems and we considered thecase of conventional single antenna receiver model as reference (single user/single antenna.

  4. Pectus excavatum repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002949.htm Pectus excavatum repair To use the sharing features on this page, please enable JavaScript. Pectus excavatum repair is surgery to correct pectus excavatum . This ...

  5. Mediennutzung und Informationsbeschaffung über Studium- bzw. Berufswahl - Ingenieurberufe in den Medien

    Directory of Open Access Journals (Sweden)

    Amina Ovcina Cajacob

    2014-06-01

    Full Text Available Diese Publikation basiert auf der Befragung von 4 125 Jugendlichen (SchülerInnen der Altersgruppe 12 bis 21 Jahre. Dafür wurden im Zeitraum vom 22. Oktober bis 12. November 2013 Jugendliche befragt, um Antworten auf folgenden Fragen zu bekommen: Welches Bild haben die Schüler vom Ingenieurberuf? Wie ist ihr allgemeines Mediennutzungsverhalten und wie beeinflussen Medien das Bild des Ingenieurs? Welche Berufe interessieren Jugendliche und wie informieren sie sich über Studien- bzw. Berufswahl? Welche Einflüsse spielen bei den Jugendlichen bezüglich der eigenen Berufs- und Studienwahl eine Rolle? Die Ergebnisse dieser umfassenden Analyse sind Grundlage für die Konzeption einer crossmedialen Sensibilisierungskampage, die zum Ziel hat, Vorurteile über den Ingenieurberuf abzubauen, Wissen und ein zeitgemässes Berufsbild zu vermitteln sowie Neugier auf ein Ingenieurstudium zu wecken. This publication is based on a survey of 4125 young people (pupils and students aged 12 to 21 years. In the period from October 22 to November 12, 2013 young people were interviewed to obtain answers to the following questions: . What an idea do young people have about an engineer and his profession? . What is their general media usage behavior? . How do media influence the image of the engineer? . Which professions are the most attractive for young people and how do they inform themselves about study or career choices? . Which influences are important for the study and career choice of young people? The results of this comprehensive analysis are the basis for the conception of a cross-media awareness campaign, which aims to reduce prejudices about the engineering profession, to impart knowledge as well as a contemporary professional image of engineer and to arouse interest for an engineering degree.

  6. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  7. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.

    Science.gov (United States)

    Goula, Agathi-Vassiliki; Berquist, Brian R; Wilson, David M; Wheeler, Vanessa C; Trottier, Yvon; Merienne, Karine

    2009-12-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5'-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5'-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP-BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLbeta was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLbeta strand displacement activity during LP-BER promotes the formation of stable 5'-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical

  8. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Agathi-Vassiliki Goula

    2009-12-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5'-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1, the main enzyme responsible for 5'-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP-BER, were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLbeta was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLbeta strand displacement activity during LP-BER promotes the formation of stable 5'-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes

  9. When "Other" Initiate Repair.

    Science.gov (United States)

    Schegloff, Emanuel A.

    2000-01-01

    Elaborates on the locus of other-initiated repair, and reports on a number of environments in which others initiate repair turns later than the one directly following the trouble-source turn. Describes several ways that other initiation of repair, which occurs in next-turn position, may be delayed within that position. (Author/VWL)

  10. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.

    Science.gov (United States)

    Hegde, Pavana M; Dutta, Arijit; Sengupta, Shiladitya; Mitra, Joy; Adhikari, Sanjay; Tomkinson, Alan E; Li, Guo-Min; Boldogh, Istvan; Hazra, Tapas K; Mitra, Sankar; Hegde, Muralidhar L

    2015-08-21

    The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.

  11. Double-strand break repair and G4 DNA stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Pontier, D.B.

    2010-01-01

    DNA double-strand breaks (DSBs) can be repaired by three canonical repair pathways. Homologous recombination (HR) uses the sister chromatid or homologous chromosome as a template to repair the DSB in an error-free manner. In non-homologous end-joining (NHEJ), the broken ends are ligated with little

  12. Double-strand break repair and G4 DNA stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Pontier, D.B.

    2010-01-01

    DNA double-strand breaks (DSBs) can be repaired by three canonical repair pathways. Homologous recombination (HR) uses the sister chromatid or homologous chromosome as a template to repair the DSB in an error-free manner. In non-homologous end-joining (NHEJ), the broken ends are ligated with little

  13. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  14. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  15. Understanding the molecular mechanism of formaldehyde-induced DNA-protein crosslink repair

    Science.gov (United States)

    Formaldehyde induces DNA-protein crosslinks (DPCs) in several experimental in vitro and in vivo test systems, as well as in exposed human workers. DPCs are repaired by several DNA repair pathways in different species, but the molecular understanding of DPC repair in human tissues...

  16. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  17. Rezension: Daten, Drohnen, Disziplin. Ein Gespräch über flüchtige Überwachung.

    Directory of Open Access Journals (Sweden)

    Valeska Ringhof

    2014-03-01

    Full Text Available Ein Gespräch über Überwachung und Macht in unserer Gegenwart. Die Soziologen Zygmunt Bauman und David Lyon zeigen wie breit dieses Thema gefächert ist und beleuchten unterschiedliche historische Aspekte, aktuelle Tendenzen und mögliche Weiterentwicklungen.

  18. Convergent Validity with the BERS-2 Teacher Rating Scale and the Achenbach Teacher's Report Form: A Replication and Extension

    Science.gov (United States)

    Benner, Gregory J.; Beaudoin, Kathleen; Mooney, Paul; Uhing, Brad M.; Pierce, Corey D.

    2008-01-01

    In the present study, we sought to extend instrument validation research for a strength-based emotional and behavior rating scale, the "Teacher Rating Scale of the Behavior and Emotional Rating Scale-Second Edition" (BERS-2; Epstein, M. H. (2004). "Behavioral and emotional rating scale" (2nd ed.). Austin, TX: PRO-ED) through…

  19. A dualidade cuidado x educação no cotidiano do berçário

    Directory of Open Access Journals (Sweden)

    Fabiana C. F. de Vitta

    2004-08-01

    Full Text Available Esse trabalho objetivou verificar conceitos relativos ao cuidar e educar, junto a profissionais de berçário. Foram estudados documentos sobre educação infantil e realizadas entrevistas e observações da prática de sete profissionais de berçários, com enfoque nas atividades de cuidados desenvolvidas com as crianças. Os dados foram organizados segundo categorias: função do berçário, conceito de educar e de cuidar e sofreram análise qualitativa, permitindo a confrontação entre o material empírico e o teórico. Os resultados mostraram que os documentos oficiais pouco discutem a fase em questão, deixando imprecisa a relação entre as atividades de cuidado e seu papel educacional. Essa imprecisão se reflete no discurso das profissionais do berçário. As atividades de cuidados passam a estar contidas na educação da criança, na medida em que, na visão das profissionais, têm função disciplinadora. Esse aspecto justifica-se pela falta de formação e pelo fato de vincularem esta atividade às suas experiências de mães.

  20. Visum repertum über den Leichnam des seligen Herrn Hofraths Senckenberg des Stifters des Bürgerhospitals

    OpenAIRE

    2006-01-01

    Handschriftlicher Leichenschaubericht über den verunglückten Johann Christian Senckenberg: 18.11.1772. Unterzeichnet von den Ärzten: Behrends, I. A. ; Krisner, I.C. ; Müller, F. S. ; Giese, J. G. ; Behrends, J. C. ; Jonas, A. I. G. ; Meyer, C. F. ; Bucher, J. L. ; Grasemann, Ch. F.

  1. The influence of PRF on BER performance of THSS UWB radio system with PPM in dense multipath fading environments

    Institute of Scientific and Technical Information of China (English)

    Jia Lin; Zhang Zhongzhao

    2005-01-01

    The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly investigated. The receiver used in this UWB system is a hybrid selection/maximal-ratio combining(H-S/MRC) diversity receiver in which L strongest multipath components out of N multipath diversity branches are selected and combined using maximal-ratio combining. The exact expressions for the bit error rate(BER) of this UWB system are firstly derived by using the virtual branch technique in term of PRF, the number of multipath components selected and combined L,and multipath spread of the channel and then this BER performance is evaluated. With the computer simulation for impulses having different pulse shapes, numerical results show that PRF, as well as pulse shape and the number of multipath diversity branches selected and combined L, has much effect on the BER performance of this UWB system in dense multipath fading environments. As PRF increases, the BER performance of this UWB system is much degraded under the conditions of fixed L and pulse shape.

  2. Vorläufige Mitteilung über die Beschaffenheit der Ovarialtasche von Chrysochloris, Galeopithecus und Tupaja

    NARCIS (Netherlands)

    Lange, de Daniel

    1922-01-01

    Im Jahre 1917 ist in den Anatomischen Heften die bekannte und schöne Arbeit Sobotta’s erschienen über das Vorkommen und die Bedeutung der Ovarialtasche bei den Säugetieren ¹). Das Hauptergebniss dieser Arbeit ist, dass bei alien Säugetieren (vielleicht mit Ausnahne der Primaten und des Menschen) die

  3. Vorläufige Mitteilung über die Beschaffenheit der Ovarialtasche von Chrysochloris, Galeopithecus und Tupaja

    NARCIS (Netherlands)

    Lange, de Daniel

    1922-01-01

    Im Jahre 1917 ist in den Anatomischen Heften die bekannte und schöne Arbeit Sobotta’s erschienen über das Vorkommen und die Bedeutung der Ovarialtasche bei den Säugetieren ¹). Das Hauptergebniss dieser Arbeit ist, dass bei alien Säugetieren (vielleicht mit Ausnahne der Primaten und des Menschen) die

  4. Convergent Validity with the BERS-2 Teacher Rating Scale and the Achenbach Teacher's Report Form: A Replication and Extension

    Science.gov (United States)

    Benner, Gregory J.; Beaudoin, Kathleen; Mooney, Paul; Uhing, Brad M.; Pierce, Corey D.

    2008-01-01

    In the present study, we sought to extend instrument validation research for a strength-based emotional and behavior rating scale, the "Teacher Rating Scale of the Behavior and Emotional Rating Scale-Second Edition" (BERS-2; Epstein, M. H. (2004). "Behavioral and emotional rating scale" (2nd ed.). Austin, TX: PRO-ED) through…

  5. Die Umsetzung der EU-Richtlinie über Wohnimmobilienkredite: Zur Notwendigkeit einer Gesetzesänderung

    National Research Council Canada - National Science Library

    Meyer, Dirk

    2017-01-01

    Die Richtlinie über Wohnimmobilienkreditverträge für Verbraucher wurde bei ihrer Umsetzung in deutsches Recht um neue Regelungen zur Kreditwürdigkeitsprüfung ergänzt. Die „außergewöhnliche...

  6. Demonstration of Record BER and Number of Users for Optical CDMA (O-CDMA), with Implications to Secure Communications

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Bennett, C V; Gagliardi, R M; Lennon, W J

    2005-02-25

    We demonstrate a BER of 10{sup -11} for 16 simultaneous users, using wavelength/time O-CDMA. We show the extent to which severe multi-access interference can be used to mask and/or degrade the signal from an intruder.

  7. Identification of Pathways Required for the Coordination of Late Mitotic Events in Animal Cells

    Science.gov (United States)

    2006-08-01

    prevent the recognition of chromosome ends by DNA repair pathways. Repair of telomeres as DSBs can lead to dicentric chromosomes , which are very...a more appropriate telomere-specific pathway. If telomeres are repaired by NHEJ, dicentric chromosomes are created, which lead to breakage-fusion...chromatin structures that protect chromosomes ends from the DNA repair pathways. Telomeres are re-formed after each round of DNA replication. The

  8. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA.

    Directory of Open Access Journals (Sweden)

    Kouichi Kitamura

    Full Text Available The covalently closed circular DNA (cccDNA of the hepatitis B virus (HBV plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC DNA (partially double-stranded DNA into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG, a host factor for base excision repair (BER. When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI, hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.

  9. Percutaneous mitral valve repair.

    Science.gov (United States)

    Gillinov, A Marc; Liddicoat, John R

    2006-01-01

    Surgical mitral valve repair is the procedure of choice to treat mitral regurgitation of all etiologies. Whereas annuloplasty is the cornerstone of mitral valve repair, a variety of other surgical techniques are utilized to correct dysfunction of the leaflets and subvalvular apparatus; in most cases, surgical repair entails application of multiple repair techniques in each patient. Preclinical studies and early human experience have demonstrated that some of these surgical repair techniques can be performed using percutaneous approaches. Specifically, there has been great progress in the development of novel technology to facilitate percutaneous annuloplasty and percutaneous edge-to-edge repair. The objectives of this report were to (1) discuss the surgical foundations for these percutaneous approaches; (2) review device design and experimental and clinical results of percutaneous valve repair; and (3) address future directions, including the key challenges of patient selection and clinical trial design.

  10. Diagnostic accuracy of Ber-EP4 for metastatic adenocarcinoma in serous effusions: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available Numerous studies have investigated the utility of Ber-EP4 in differentiating metastatic adenocarcinoma (MAC from malignant epithelial mesothelioma (MM and/or reactive mesothelial cells (RM in serous effusions. However, the results remain controversial. The aim of this study is to determine the overall accuracy of Ber-EP4 in serous effusions for MAC through a meta-analysis of published studies. Publications addressing the accuracy of Ber-EP4 in the diagnosis of MAC were selected from the Pubmed, Embase and Cochrane Library. Data from selected studies were pooled to yield summary sensitivity, specificity, positive and negative likelihood ratio (LR, diagnostic odds ratio (DOR, and receiver operating characteristic (SROC curve. Statistical analysis was performed by Meta-Disc 1.4 and STATA 12.0 softwares. 29 studies, based on 2646 patients, met the inclusion criteria and the summary estimating for Ber-EP4 in the diagnosis of MAC were: sensitivity 0.8 (95% CI: 0.78-0.82, specificity 0.94 (95% CI: 0.93-0.96, positive likelihood ratio (PLR 12.72 (95% CI: 8.66-18.7, negative likelihood ratio (NLR 0.18 (95% CI: 0.12-0.26 and diagnostic odds ratio 95.05 (95% CI: 57.26-157.77. The SROC curve indicated that the maximum joint sensitivity and specificity (Q-value was 0.91; the area under the curve was 0.96. Our findings suggest that BER-EP4 may be a useful diagnostic adjunctive tool for confirming MAC in serous effusions.

  11. Diagnostic accuracy of Ber-EP4 for metastatic adenocarcinoma in serous effusions: a meta-analysis.

    Science.gov (United States)

    Wang, Bo; Li, Diandian; Ou, Xuemei; Yi, Qun; Feng, Yulin

    2014-01-01

    Numerous studies have investigated the utility of Ber-EP4 in differentiating metastatic adenocarcinoma (MAC) from malignant epithelial mesothelioma (MM) and/or reactive mesothelial cells (RM) in serous effusions. However, the results remain controversial. The aim of this study is to determine the overall accuracy of Ber-EP4 in serous effusions for MAC through a meta-analysis of published studies. Publications addressing the accuracy of Ber-EP4 in the diagnosis of MAC were selected from the Pubmed, Embase and Cochrane Library. Data from selected studies were pooled to yield summary sensitivity, specificity, positive and negative likelihood ratio (LR), diagnostic odds ratio (DOR), and receiver operating characteristic (SROC) curve. Statistical analysis was performed by Meta-Disc 1.4 and STATA 12.0 softwares. 29 studies, based on 2646 patients, met the inclusion criteria and the summary estimating for Ber-EP4 in the diagnosis of MAC were: sensitivity 0.8 (95% CI: 0.78-0.82), specificity 0.94 (95% CI: 0.93-0.96), positive likelihood ratio (PLR) 12.72 (95% CI: 8.66-18.7), negative likelihood ratio (NLR) 0.18 (95% CI: 0.12-0.26) and diagnostic odds ratio 95.05 (95% CI: 57.26-157.77). The SROC curve indicated that the maximum joint sensitivity and specificity (Q-value) was 0.91; the area under the curve was 0.96. Our findings suggest that BER-EP4 may be a useful diagnostic adjunctive tool for confirming MAC in serous effusions.

  12. Replication protein A: single-stranded DNA's first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair.

    Science.gov (United States)

    Chen, Ran; Wold, Marc S

    2014-12-01

    Replication protein A (RPA), the major single-stranded DNA-binding protein in eukaryotic cells, is required for processing of single-stranded DNA (ssDNA) intermediates found in replication, repair, and recombination. Recent studies have shown that RPA binding to ssDNA is highly dynamic and that more than high-affinity binding is needed for function. Analysis of DNA binding mutants identified forms of RPA with reduced affinity for ssDNA that are fully active, and other mutants with higher affinity that are inactive. Single molecule studies showed that while RPA binds ssDNA with high affinity, the RPA complex can rapidly diffuse along ssDNA and be displaced by other proteins that act on ssDNA. Finally, dynamic DNA binding allows RPA to prevent error-prone repair of double-stranded breaks and promote error-free repair. Together, these findings suggest a new paradigm where RPA acts as a first responder at sites with ssDNA, thereby actively coordinating DNA repair and DNA synthesis. © 2014 WILEY Periodicals, Inc.

  13. Is the Oxidative DNA Damage Level of Human Lymphocyte Correlated with the Antioxidant Capacity of Serum or the Base Excision Repair Activity of Lymphocyte?

    Directory of Open Access Journals (Sweden)

    Yi-Chih Tsai

    2013-01-01

    Full Text Available A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP or Hepatitis B virus (HBV tend to give higher levels of oxidative DNA damage (P<0.05. Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P<0.05. Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.

  14. DNA repair variants and breast cancer risk.

    Science.gov (United States)

    Grundy, Anne; Richardson, Harriet; Schuetz, Johanna M; Burstyn, Igor; Spinelli, John J; Brooks-Wilson, Angela; Aronson, Kristan J

    2016-05-01

    A functional DNA repair system has been identified as important in the prevention of tumour development. Previous studies have hypothesized that common polymorphisms in DNA repair genes could play a role in breast cancer risk and also identified the potential for interactions between these polymorphisms and established breast cancer risk factors such as physical activity. Associations with breast cancer risk for 99 single nucleotide polymorphisms (SNPs) from genes in ten DNA repair pathways were examined in a case-control study including both Europeans (644 cases, 809 controls) and East Asians (299 cases, 160 controls). Odds ratios in both additive and dominant genetic models were calculated separately for participants of European and East Asian ancestry using multivariate logistic regression. The impact of multiple comparisons was assessed by correcting for the false discovery rate within each DNA repair pathway. Interactions between several breast cancer risk factors and DNA repair SNPs were also evaluated. One SNP (rs3213282) in the gene XRCC1 was associated with an increased risk of breast cancer in the dominant model of inheritance following adjustment for the false discovery rate (P breast cancer risk or their modification by breast cancer risk factors were observed.

  15. The complex choreography of transcription-coupled repair.

    Science.gov (United States)

    Spivak, Graciela; Ganesan, Ann K

    2014-07-01

    A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.

  16. Immunobiology of Facial Nerve Repair and Regeneration

    Institute of Scientific and Technical Information of China (English)

    QUAN Shi-ming; GAO Zhi-qiang

    2006-01-01

    Immunobiological study is a key to revealing the important basis of facial nerve repair and regeneration for both research and development of clinic treatments. The microenvironmental changes around an injuried facial motoneuron, i.e., the aggregation and expression of various types of immune cells and molecules in a dynamic equilibrium, impenetrate from the start to the end of the repair of an injured facial nerve. The concept of "immune microenvironment for facial nerve repair and regeneration", mainly concerns with the dynamic exchange between expression and regulation networks and a variaty of immune cells and immune molecules in the process of facial nerve repair and regeneration for the maintenance of a immune microenvironment favorable for nerve repair.Investigation on microglial activation and recruitment, T cell behavior, cytokine networks, and immunological cellular and molecular signaling pathways in facial nerve repair and regeneration are the current hot spots in the research on immunobiology of facial nerve injury. The current paper provides a comprehensive review of the above mentioned issues. Research of these issues will eventually make immunological interventions practicable treatments for facial nerve injury in the clinic.

  17. Optimality in DNA repair.

    Science.gov (United States)

    Richard, Morgiane; Fryett, Matthew; Miller, Samantha; Booth, Ian; Grebogi, Celso; Moura, Alessandro

    2012-01-07

    DNA within cells is subject to damage from various sources. Organisms have evolved a number of mechanisms to repair DNA damage. The activity of repair enzymes carries its own risk, however, because the repair of two nearby lesions may lead to the breakup of DNA and result in cell death. We propose a mathematical theory of the damage and repair process in the important scenario where lesions are caused in bursts. We use this model to show that there is an optimum level of repair enzymes within cells which optimises the cell's response to damage. This optimal level is explained as the best trade-off between fast repair and a low probability of causing double-stranded breaks. We derive our results analytically and test them using stochastic simulations, and compare our predictions with current biological knowledge.

  18. BER Performance of IEEE 802.11ad for Single Carrier and Multi Carrier

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Gupta

    2012-05-01

    Full Text Available In present scenario 802.11n is one of the fastest standards which is widely popular. It provides a theoretical maximum of 450 megabits per second (Mbps, with a typical throughput of 100Mbps. As we know, there is high demand for higher speed due to an increasing of high definition (HD video on smart phone usage and home entertainment. As 802.11n is not able to provide the required speed needed for these uses, thus there is need for technologies which can meet therequirement. IEEE 802.11ad is one of such standards which meet the requirement needed for the above. IEEE 802.11ad standard operates at 60 GHz frequency, promise to deliver from 1 to 7 Gbps. 60 GHz band is one of the largest unlicensed bandwidth with availability of at least 5 GHz of continuous bandwidth worldwide. In this paper we have tested the IEEE 802.11ad system model Bits Error Rate (BER for different modulation technique under several coding scheme for both Single Carrier and Multi Carriers. In this model the modulation technique mainly used are Binary Phase Shift Keying (BPSK, Quaternary Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM, 64-Quadrature Amplitude Modulation (QAM and the coding scheme used is Low Density Parity Check (LDPC code with different code rate.

  19. Echt und modern? Diskurse über Männlichkeit

    Directory of Open Access Journals (Sweden)

    Florian Kahofer

    2014-09-01

    Full Text Available Der vorliegende Artikel befasst sich mit Repräsentationen von Männlichkeit im österreichischen Lifestyle-Magazin für Männer Wiener. Durch eine korpusbasierte Diskursanalyse wird ein umfassendes Korpus aller Ausgaben des Wieners von Anfang 2002 bis Ende 2012 untersucht. Auf theoretischer Ebene wird dabei eine Verbindung von Kritischer Männlichkeitsforschung (KMF und Feministisch Kritischer Diskursanalyse (FCDA unternommen. Es werden aktuelle Veröffentlichungen zu Kritischer Diskursanalyse und Männlichkeit vorgestellt und diskutiert. Durch den Einsatz einer Konkordanzsoftware werden Konkordanzen des Nomens MANN analysiert. Diese werden allerdings insofern eingeschränkt betrachtet, als nur Nominationen in der Form der häufigsten Adjektiv-Konstruktionen untersucht werden. Die Ergebnisse zeigen, dass neben den Diskursen über Krise und Neue Männlichkeit Themen wie Alter, Körper oder Beziehung auftauchen. Männlichkeit wird als ambivalent und vielfältig dargestellt. Deutungskämpfe um Männlichkeit lassen sich ausmachen.

  20. BER IMPROVEMENT OF WIRELESS LAN IEEE 802.11 STANDARD USING WAVELET PACKET TRANSFORMS

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    2012-09-01

    Full Text Available High data rates and spectral efficiency is the main requirements for wireless communication systems. Orthogonal Frequency Division Multiplexing (OFDM is a special form of multi carrier transmission used to achieve high data rates of the various WLAN standards. WLAN uses an Inverse Fast Fourier Transform (IFFT at the transmitter to modulate a high bit-rate signal onto a number of carriers and ensure orthogonality between the carriers. The FFT-OFDM has a disadvantage that it is inherently inflexible and requires a complex IFFT core. Recently, Wavelet Packet Transform is proposed as an alternate to FFT. It is a multiplexing method in which data is assigned to wavelet sub bands having different time and frequency resolutions. This paper presents a BER analysis of Fourier-based OFDM (FFT-OFDM and Wavelet Packet based OFDM (WPT-OFDM in WLAN standard (IEEE 802.11a. The performance of FFT and WPT OFDM for various modulation techniques such as PSK, DPSK and QAM for varying values of M was evaluated in AWGN Channel.

  1. BER Analysis Using Beat Probability Method of 3D Optical CDMA Networks with Double Balanced Detection

    Directory of Open Access Journals (Sweden)

    Chih-Ta Yen

    2015-01-01

    Full Text Available This study proposes novel three-dimensional (3D matrices of wavelength/time/spatial code for code-division multiple-access (OCDMA networks, with a double balanced detection mechanism. We construct 3D carrier-hopping prime/modified prime (CHP/MP codes by extending a two-dimensional (2D CHP code integrated with a one-dimensional (1D MP code. The corresponding coder/decoder pairs were based on fiber Bragg gratings (FBGs and tunable optical delay lines integrated with splitters/combiners. System performance was enhanced by the low cross correlation properties of the 3D code designed to avoid the beat noise phenomenon. The CHP/MP code cardinality increased significantly compared to the CHP code under the same bit error rate (BER. The results indicate that the 3D code method can enhance system performance because both the beating terms and multiple-access interference (MAI were reduced by the double balanced detection mechanism. Additionally, the optical component can also be relaxed for high transmission scenery.

  2. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  3. BER PERFORMANCE COMPARISON OF MIMO SYSTEMS USING OSTBC WITH ZF AND ML DECODING

    Directory of Open Access Journals (Sweden)

    Zenitha Rehman

    2014-12-01

    Full Text Available Multiple Input Multiple Output (MIMO systems with multiple antenna elements at both transmitter and receiver ends are an efficient solution for wireless communication systems. They provide high data rates by exploiting the spatial domain under the constraints of limited bandwidth and transmit power. Space-Time Block Coding (STBC is a MIMO transmit strategy which exploits transmit diversity and provides high reliability. Implementation of orthogonal space-time block codes (OSTBCs for a two transmitter–two receiver system under AWGN (Additive White Gaussian Noise channel and flat fading channel is performed. Alamouti code is employed for the STBC. The modulation techniques used are BPSK, QPSK and 16-QAM. Decoding is done using the Zero Forcing (ZF algorithm and Maximum Likelihood (ML algorithm. The BER Performance of each modulation scheme is compared with the un-coded version of the same. Performance comparison between the two decoding techniques is also done. It is found that ML detection offers a slightly better performance for BPSK and QPSK system than ZF detection.

  4. EVALUATION OF BER FOR VARIOUS FADING CHANNEL IN DWT BASED MIMO-OFDM SYSTEM

    Directory of Open Access Journals (Sweden)

    D. Meenakshi

    2013-04-01

    Full Text Available MIMO communication is mainly use in the OFDM to improve the communication performance and capacity. DWT based MIMO-OFDM is used in this paper. Compare to the FFT based MIMO-OFDM it has lot advantages. There is no need for cyclic prefix, flexibility and optimal resolution. Ripple(Wavelet concept has developed as a fresh scientific implement with the aim of preserve be functional in several applications such as processing of image, biomedical manufacturing, radar, physics, organize systems also message systems. The essential region of purpose of ripples in communication system: numerous accesses. A fresh modulation/multiplexing scheme consuming ripple transform remained planned for (3rd production organization project 3GPP systems. This fresh modulation system implemented in (orthogonal frequency division multiplexing OFDM scheme in addition to conventional based(FFT transform blocks is replaced by wavelet transform blocks. There are many multiplicity of ripple transforms are offered, out of which four were chosen. They are Haar, Daubechies, Bi-orthogonal and reverse Bi-orthogonal transforms. Haar wavelet is best one of among all types of wavelet. The performance of DWT based MIMO-OFDM is calculated by bit error rate (BER in various channel that is AWGN channel and Rayleigh channel. Using MATLAB-Simulation which channel is best for the DWT based MIMO-OFDM.

  5. BER of flat-topped Gaussian beam in slant path turbulent atmosphere

    Science.gov (United States)

    Lu, Fang; Han, Yanyan; Han, Xiang-e.; Yang, Rui-ke

    2013-08-01

    Based on the theory of optical wave propagation in the slant path and the ITU-R turbulence structure constant model which is dependent on altitude, the on-axis scintillation index of the flat-topped Gaussian beam at the receiver plane in slant path turbulence was given by using Kolmogorov atmospheric turbulence power spectrum model. The influences of the link altitudes, atmospheric refractive index structure constant C0 at the ground,the source size and the beam order on scintillation index of the flat-topped Gaussian beam are discussed in detail. The result shows that the scintillation index increased first and then decreased with the increase of the beam order. The advantage of a flat-topped Gaussian beam over a single Gaussian beam is restricted to small source sizes, which is consistent with the case of the horizontal path. To find the average bit error rate under weak slant path turbulence, the log-normal distribution model of the intensity fluctuation was used. The influence of beam order and source size on BER was discussed. The result indicates that the smaller sized flat-topped Gaussian beam will bring average bit error rate advantage over the same size Gaussian beam. Our results correctly reduce to the result of the horizontal path with atmospheric structure constant fixed.

  6. Zyklisches Erbrechens-Syndrom beim Erwachsenen: Kasuistik über 5 Patienten

    Directory of Open Access Journals (Sweden)

    Keller K

    2013-01-01

    Full Text Available Hintergründe: Das zyklische Erbrechens- Syndrom (CVS ist eine funktionelle Störung, die aus rezidivierenden stereotypen Erbrechensepisoden besteht, die Stunden bis Tage anhalten, mit dazwischen liegenden symptomfreien Intervallen. Die Diagnose wird häufig erst nach Jahren gestellt. Methoden: Im Zeitraum von Mai 2007 bis November 2010 waren 5 erwachsene Patienten in unserer Behandlung, die den ROME-III-Kriterien eines CVS entsprachen. Sie wurden anamnestiziert, körperlich, laborchemisch, sonographisch und teilweise mittels Ösophago-Gastro-Duodenoskopie (ÖGD untersucht. Ergebnisse: Das CVS hielt bei Diagnosestellung im Durchschnitt 7,5 Jahre an und hatte sich mit durchschnittlich 26 Jahren manifestiert. Die Erbrechensepisoden traten im Durchschnitt 1×/Monat auf und dauerten 3,5 Tage. Symptome waren Übelkeit, Erbrechen sowie Abdomen- und Kopfschmerzen. Die durchgeführten Untersuchungen konnten die Symptomatik nicht erklären. Schlussfolgerungen: Die Diagnose eines CVS wird anhand der typischen Anamnese nach Ausschluss anderer Ursachen eines rezidivierenden Zyklisches Erbrechens-Syndrom beim Erwachsenen: Kasuistik über 5 Patienten K. Keller1, J. Beule2, M. Scholz3, M. Pfnür2, W. Dippold2 Erbrechens gestellt. Es existiert bisher keine evidenzbasierte Standardtherapie, weder zur Akutbehandlung der Erbrechensepisode noch zur Prophylaxe. Zur Akutbehandlung werden Antiemetika, Sedativa und Migränetherapeutika eingesetzt, zur Prophylaxe Amitriptylin und Propranolol.

  7. Online-Jugendberatung. Eine kommunikationswissenschaftliche Arbeit über eMail-, Chat- und Forenberatung

    Directory of Open Access Journals (Sweden)

    Selina Englmayer

    2006-03-01

    Full Text Available Gegenstand dieser kommunikationswissenschaftlichen Diplomarbeit sind eMail-, Chat- und Foren-Beratung für Jugendliche in Österreich. Nach einer Auseinandersetzung mit herkömmlichen Formen von Beratung (face-to-face- und Telefonberatung sowie Ratgeberjournalismus geht es um Definition und Formen der Online-Beratung. Des weiteren werden u.a. spezifische Beratungsstrategien und -methoden aus Theorie und Praxis, AkteurInnen und Rollen, Vor- und Nachteile sowie Qualitätskriterien dieser Beratungsform thematisiert. Weiters setzt sich die Autorin mit Jugendlichen und Internet (Nutzungsverhalten, Mediensozialisation, soziale Beziehungen im Internet auseinander. In der Folge geht es um herkömmliche und computervermittelte Kommunikation (CvK: Kommunikationsformen und -typen, Mediencharakteristika und Spezifika, Modelle der CVK etc. sind in diesem Zusammenhang unter besonderer Berücksichtigung der Online-Jugendberatung Thema. Abschließend stellt die Autorin in Reflexion auf den vorangegangenen theoretischen Teil drei österreichische Fallbeispiele der Online-Beratung für Jugendliche vor. Dabei handelt es sich um eine eMail-Beratungseinrichtung (ChEck iT!, einen Beratungschat (Kinderschutzzentrum Wien sowie ein Online-Forum (wienXtra.

  8. Studien über die deutschen. Machtkämpfe und Habitusentwicklung im 19 und 20

    Directory of Open Access Journals (Sweden)

    Vera Weiler

    1996-01-01

    Full Text Available Norbert Elias. Studien über die Deutschen. Machtkümpfe und Habitusentwicklung im 19. und 20. Jahrhundert, Frankfurt/ M: Suhrkamp, 1992,555 páginas / El libro Los estudios sobre los alemanes. Luchas de poder y desarrollo de los hábitos en el siglo XIX y XX. Reúne trabajos elaborados entre 1961 y 1980 en forma independiente. Los títulos principales en español son: I. Civilización e informalización, II. Un ensayo sobre el nacionalismo, III. Civilización y violencia. Acerca del monopolio de la violencia fisica y sus rupturas, IV. El derrumbe de la civilización, V. Reflexiones acerca de la RFA. La preparación editorial del conjunto y la traducción del segundo ensayo del inglés al alemán estuvieron a cargo de Michael Schróter. Este además inspiró el proyecto del libro y le propuso a Elias la selección para la cual éste escribió una nueva introducción.

  9. Studien über die deutschen. Machtkämpfe und Habitusentwicklung im 19 und 20

    Directory of Open Access Journals (Sweden)

    Vera Weiler

    2010-07-01

    Full Text Available Norbert Elias. Studien über die Deutschen. Machtkümpfe und Habitusentwicklung im 19. und 20. Jahrhundert, Frankfurt/ M: Suhrkamp, 1992,555 páginas / El libro Los estudios sobre los alemanes. Luchas de poder y desarrollo de los hábitos en el siglo XIX y XX. Reúne trabajos elaborados entre 1961 y 1980 en forma independiente. Los títulos principales en español son: I. Civilización e informalización, II. Un ensayo sobre el nacionalismo, III. Civilización y violencia. Acerca del monopolio de la violencia fisica y sus rupturas, IV. El derrumbe de la civilización, V. Reflexiones acerca de la RFA. La preparación editorial del conjunto y la traducción del segundo ensayo del inglés al alemán estuvieron a cargo de Michael Schróter. Este además inspiró el proyecto del libro y le propuso a Elias la selección para la cual éste escribió una nueva introducción.

  10. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    Science.gov (United States)

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-04

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  11. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.

  12. Licence to Mine? Ein Überblick über Rahmenbedingungen von Text and Data Mining und den aktuellen Stand der Diskussion.

    OpenAIRE

    Christian Winterhalter

    2016-01-01

    Der Artikel gibt einen Überblick über die Möglichkeiten der Anwendung von Text and Data Mining (TDM) und ähnlichen Verfahren auf der Grundlage bestehender Regelungen in Lizenzverträgen zu kostenpflichtigen elektronischen Ressourcen, die Debatte über zusätzliche Lizenzen für TDM am Beispiel von Elseviers TDM Policy und den Stand der Diskussion über die Einführung von Schrankenregelungen im Urheberrecht für TDM zu nichtkommerziellen wissenschaftlichen Zwecken. The article gives a survey abou...

  13. Platinum drugs and DNA repair mechanisms in lung cancer.

    Science.gov (United States)

    Bonanno, Laura; Favaretto, Adolfo; Rosell, Rafael

    2014-01-01

    The standard first-line treatment for around 80% of newly-diagnosed advanced non-small cell lung cancer (NSCLC) is chemotherapy. Currently, patients are allocated to chemotherapy on the basis of clinical conditions, comorbidities and histology. If feasible, platinum-based chemotherapy is considered as the most efficacious option. Due to the heterogeneity in terms of platinum-sensitivity among patients with NSCLC, great efforts have been made in order to identify molecular predictive markers of platinum resistance. Based on the mechanism of action of platinum, several components of DNA repair pathways have been investigated as potential predictive markers. The main DNA repair pathways involved in the repair of platinum-induced DNA damage are nucleotide excision repair and homologous recombination. The most studied potential predictive markers of platinum-sensitivity are Excision Repair Cross Complementing-1 (ERCC1) and Brest Cancer Type-I Susceptibility protein (BRCA1); however, increasing biological knowledge about DNA repair pathways suggests the potential clinical usefulness of integrated analysis of multiple DNA repair components.

  14. BER Performance Simulation of Generalized MC DS-CDMA System with Time-Limited Blackman Chip Waveform

    Directory of Open Access Journals (Sweden)

    I. Develi

    2010-09-01

    Full Text Available Multiple access interference encountered in multicarrier direct sequence-code division multiple access (MC DS-CDMA is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms employed. In this paper, bit error rate (BER performance of the generalized MC DS-CDMA system that employs time-limited Blackman chip waveform is presented for Nakagami-m fading channels. Simulation results show that the use of Blackman chip waveform can improve the BER performance of the generalized MC DS-CDMA system, as compared to the performances achieved by using timelimited chip waveforms in the literature.

  15. Repairs of composite structures

    Science.gov (United States)

    Roh, Hee Seok

    Repair on damaged composite panels was conducted. To better understand adhesively bonded repair, the study investigates the effect of design parameters on the joint strength. The design parameters include bondline length, thickness of adherend and type of adhesive. Adhesives considered in this study were tested to measure their tensile material properties. Three types of adhesively bonded joints, single strap, double strap, and single lap joint were considered under changing bondline lengths, thickness of adherend and type of adhesive. Based on lessons learned from bonded joints, a one-sided patch repair method for composite structures was conducted. The composite patch was bonded to the damaged panel by either film adhesive FM-73M or paste adhesive EA-9394 and the residual strengths of the repaired specimens were compared under varying patch sizes. A new repair method using attachments has been suggested to enhance the residual strength. Results obtained through experiments were analyzed using finite element analysis to provide a better repair design and explain the experimental results. It was observed that the residual strength of the repaired specimen was affected by patch length. Method for rapid repairs of damaged composite structures was investigated. The damage was represented by a circular hole in a composite laminated plate. Pre-cured composite patches were bonded with a quick-curing commercial adhesive near (rather than over) the hole. Tensile tests were conducted on specimens repaired with various patch geometries. The test results showed that, among the methods investigated, the best repair method restored over 90% of the original strength of an undamaged panel. The interfacial stresses in the adhesive zone for different patches were calculated in order to understand the efficiencies of the designs of these patch repairs. It was found that the composite patch that yielded the best strength had the lowest interfacial peel stress between the patch and

  16. Über das schwierige Verhältnis von Ökonomie der Konventionen und Neoinstitutionalismus : review essay

    OpenAIRE

    Grüttner, Michael Siegfried

    2013-01-01

    "Mit 'Über die Rechtfertigung wirtschaftlichen Handelns' legt Lisa KNOLL eine der umfangreichsten und anspruchsvollsten empirischen Anwendungen der Ökonomie der Konventionen vor, die bisher im deutschsprachigen Raum erschienen ist. Das Buch legt den Fokus auf die praktische Bearbeitung von 'Heterogenität' in Bezug auf unterschiedliche Rationalitäten und deren Realisierung in wirtschaftlichen Organisationen. Konkret rekonstruiert die Autorin die Umsetzung des CO2-Emissionshandels in kommunalen...

  17. Ethik als soziale Praxis: Einführung zur Debatte über qualitative Forschung und Ethik

    OpenAIRE

    Roth, Wolff-Michael

    2005-01-01

    Ethische Fragen sind in der Humanforschung zunehmend wichtig geworden. Aus diesem Grund erscheint es angebracht, dass FQS den Fragen eine Debatte widmet, die sich mit den vielen ethischen Entscheidungsebenen in der qualitativen Forschung befassen. In diesem Beitrag greife ich auf persönliche Erfahrungen zurück, um die Ethikdebatte formell im Allgemeinen und die Beiträge im Besonderen einzuleiten. Ich lade unsere Leser und Leserinnen ein, an dieser Debatte über ethische Fragen in der qualitati...

  18. Johannes Sobotta (1869-1945) - Leben und Wirken unter besonderer Berücksichtigung seiner Würzburger Zeit

    OpenAIRE

    Kayßer, Katharina

    2004-01-01

    Professor Johannes Sobotta (1869 - 1945) forschte und lehrte als Anatom in Berlin, Würzburg, Königsberg und Bonn. Sein 1904 erstmalig erschienener "Atlas der deskriptiven Anatomie des Menschen" wurde in 14 Sprachen übersetzt und gehört auch in der 21.Auflage noch immer zur Standard-Literatur der medizinischen Ausbildung. Die vorliegende Dissertation gibt einen umfassenden Einblick in Sobottas Lebenswerk unter besonderer Berücksichtigung seiner Würzburger Zeit.

  19. Johannes Sobotta (1869-1945) - Leben und Wirken unter besonderer Berücksichtigung seiner Würzburger Zeit

    OpenAIRE

    Kayßer, Katharina

    2004-01-01

    Professor Johannes Sobotta (1869 - 1945) forschte und lehrte als Anatom in Berlin, Würzburg, Königsberg und Bonn. Sein 1904 erstmalig erschienener "Atlas der deskriptiven Anatomie des Menschen" wurde in 14 Sprachen übersetzt und gehört auch in der 21.Auflage noch immer zur Standard-Literatur der medizinischen Ausbildung. Die vorliegende Dissertation gibt einen umfassenden Einblick in Sobottas Lebenswerk unter besonderer Berücksichtigung seiner Würzburger Zeit.

  20. Weighted composition operators from F(p, q, s) spaces to Bers-type spaces in the unit ball

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-fen

    2009-01-01

    This paper deals with the boundedness and compactness of the weighted compo-sition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Q~p space,BMOA space, Besov space and α-Bloch space, to Bers-type spaces H_ν~∞( or little Bets-type spaces H_(ν,0)~∞ ), where ν is normal.

  1. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Rajesh P. Rastogi

    2010-01-01

    Full Text Available DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR (mainly UV-B: 280–315 nm is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs, 6-4 photoproducts (6-4PPs, and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER, nucleotide excision repair (NER, and mismatch repair (MMR. Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining, SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms.

  2. Average BER and outage probability of the ground-to-train OWC link in turbulence with rain

    Science.gov (United States)

    Zhang, Yixin; Yang, Yanqiu; Hu, Beibei; Yu, Lin; Hu, Zheng-Da

    2017-09-01

    The bit-error rate (BER) and outage probability of optical wireless communication (OWC) link for the ground-to-train of the curved track in turbulence with rain is evaluated. Considering the re-modulation effects of raining fluctuation on optical signal modulated by turbulence, we set up the models of average BER and outage probability in the present of pointing errors, based on the double inverse Gaussian (IG) statistical distribution model. The numerical results indicate that, for the same covered track length, the larger curvature radius increases the outage probability and average BER. The performance of the OWC link in turbulence with rain is limited mainly by the rain rate and pointing errors which are induced by the beam wander and train vibration. The effect of the rain rate on the performance of the link is more severe than the atmospheric turbulence, but the fluctuation owing to the atmospheric turbulence affects the laser beam propagation more greatly than the skewness of the rain distribution. Besides, the turbulence-induced beam wander has a more significant impact on the system in heavier rain. We can choose the size of transmitting and receiving apertures and improve the shockproof performance of the tracks to optimize the communication performance of the system.

  3. BER analysis of MPSK space-time code with differential detection over correlated block-fading Rayleigh channel

    Institute of Scientific and Technical Information of China (English)

    ZOU Yu-long; ZHENG Bao-yu

    2008-01-01

    MIMO technology proposed in recent years can effectively combat the multipath fading of wireless channel and can considerably enlarge the channel capacity, which has been investigated widely by researchers. However, its performance analysis over correlated block-fading Rayleigh channel is still an open and challenging objective. In this article, an analytic expression of bit error rate (BER) is presented for multiple phase shift keying (MPSK) space-time code, with differential detection over correlated block-fading Rayleigh channel. Through theoretical analysis of BER, it can be found that the differential space-time scheme without the need for channel state information (CSI) at receiver achieves distinct performance gain compared with the traditional nonspace-time system. And then, the system simulation is complimented to verify the above result, showing that the diversity system based on the differential space-time block coding (DSTBC) outperforms the traditional nonspace- time system with diversity gain in terms of BER. Furthermore, the numerical results also demonstrate that the error floor of the differential space-time system is much lower than that of the differential nonspace-time system.

  4. BER and optimal power allocation for amplify-and-forward relaying using pilot-aided maximum likelihood estimation

    KAUST Repository

    Wang, Kezhi

    2014-10-01

    Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB\\'s in effective signal-to-noise ratio.

  5. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Directory of Open Access Journals (Sweden)

    Maria E Morales

    Full Text Available Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR and single strand annealing (SSA, which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  6. Workshop on DNA repair.

    NARCIS (Netherlands)

    A.R. Lehmann (Alan); J.H.J. Hoeijmakers (Jan); A.A. van Zeeland (Albert); C.M.P. Backendorf (Claude); B.A. Bridges; A. Collins; R.P.D. Fuchs; G.P. Margison; R. Montesano; E. Moustacchi; A.T. Natarajan; M. Radman; A. Sarasin; E. Seeberg; C.A. Smith; M. Stefanini (Miria); L.H. Thompson; G.P. van der Schans; C.A. Weber (Christine); M.Z. Zdzienika

    1992-01-01

    textabstractA workshop on DNA repair with emphasis on eukaryotic systems was held, under the auspices of the EC Concerted Action on DNA Repair and Cancer, at Noordwijkerhout (The Netherlands) 14-19 April 1991. The local organization of the meeting was done under the auspices of the Medical Genetic C

  7. Laparoscopic lumbar hernia repair.

    Science.gov (United States)

    Madan, Atul K; Ternovits, Craig A; Speck, Karen E; Pritchard, F Elizabeth; Tichansky, David S

    2006-04-01

    Lumbar hernias are rare clinical entities that often pose a challenge for repair. Because of the surrounding anatomy, adequate surgical herniorraphy is often difficult. Minimally invasive surgery has become an option for these hernias. Herein, we describe two patients with lumbar hernias (one with a recurrent traumatic hernia and one with an incisional hernia). Both of these hernias were successfully repaired laparoscopically.

  8. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Science.gov (United States)

    SPYRIDES, Silvana Marques Miranda; do PRADO, Maíra; de ARAUJO, Joyce Rodrigues; SIMÃO, Renata Antoun; BASTIAN, Fernando Luis

    2015-01-01

    ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM), and chemically by X-ray photoelectron spectroscopy (XPS). For bending analysis, one indirect composite (Signum) was reinforced with polyethylene fiber (Connect, Construct, or InFibra). The InFibra fiber was subjected to three different treatments: (1) single application of silane, (2) oxygen or argon plasma for 1 or 3 min, (3) oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm), 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS) analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min. PMID:26814463

  9. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Directory of Open Access Journals (Sweden)

    Silvana Marques Miranda SPYRIDES

    2015-12-01

    Full Text Available ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM, and chemically by X-ray photoelectron spectroscopy (XPS. For bending analysis, one indirect composite (Signum was reinforced with polyethylene fiber (Connect, Construct, or InFibra. The InFibra fiber was subjected to three different treatments: (1 single application of silane, (2 oxygen or argon plasma for 1 or 3 min, (3 oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm, 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.

  10. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  11. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  12. The Functions of BMP3 in Rabbit Articular Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2015-10-01

    Full Text Available Bone morphogenetic proteins (BMPs play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2 induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs, and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair.

  13. Cancer TARGETases: DSB repair as a pharmacological target.

    Science.gov (United States)

    Samadder, Pounami; Aithal, Rakesh; Belan, Ondrej; Krejci, Lumir

    2016-05-01

    Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.

  14. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  15. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  16. Narzissmus und Subjektivität : psychoanalytische Betrachtungen eines zeitgemäßen Erscheinungsbildes unter Berücksichtigung der zugrunde liegenden Dialektik zwischen Gesellschaft und Individuum

    OpenAIRE

    Bornhauser,Niklas

    2005-01-01

    Der Narzissmus ist ein zentraler Begriff psychoanalytischer Praxis und Theoriebildung. Vorwiegend klinisch orientierte Begriffsbestimmungen des Narzissmus tendieren naturgemäß dazu, gesellschaftliche, kulturelle oder erkenntniswissenschaftliche Mutationen nicht ausreichend zu berücksichtigen. Die Beachtung des kulturellen und sozialen Kontexts der Emergenz des Narzissmus sowie die Berücksichtigung des zugrunde liegenden epochalen Wandels, die Ablösung der Moderne durch die einsetzende Postmod...

  17. Wie die Medienberichterstattung über die Wirtschaft das Bild der Menschen von der Wirtschaft prägt. Eine Analyse zur Rezeption von Wirtschaftsnachrichten

    OpenAIRE

    Müller-Klier, Maike

    2012-01-01

    Was Menschen über die Welt wissen, hat im Prinzip drei Quellen: eigene Erfahrung, personale Kommunikation und mediale Information. Die Arbeit geht der Frage nach, was die Menschen über den Weltausschnitt wissen, der gemeinhin als „Wirtschaft“ bezeichnet wird, und inwieweit dieses Wissen seinen Ursprung in den Massenmedien hat. Da es zu dieser Frage kaum relevante Forschung gibt, aus der sich themaspezifische Annahmen ableiten ließen, basiert die Arbeit im Wesentlichen auf Theorien und Erkennt...

  18. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining

    OpenAIRE

    Bowater, Richard; Doherty, Aidan J.

    2006-01-01

    DNA double-strand breaks (DSBs) are one of the most dangerous forms of DNA lesion that can result in genomic instability and cell death. Therefore cells have developed elaborate DSB-repair pathways to maintain the integrity of genomic DNA. There are two major pathways for the repair of DSBs in eukaryotes: homologous recombination and non-homologous end-joining (NHEJ). Until very recently, the NHEJ pathway had been thought to be restricted to the eukarya. However, an evolutionarily related NHE...

  19. The impact of heterochromatin on DSB repair.

    Science.gov (United States)

    Goodarzi, Aaron A; Noon, Angela T; Jeggo, Penny A

    2009-06-01

    DNA NHEJ (non-homologous end-joining) is the major DNA DSB (double-strand break) repair pathway in mammalian cells. Although NHEJ-defective cell lines show marked DSB-repair defects, cells defective in ATM (ataxia telangiectasia mutated) repair most DSBs normally. Thus NHEJ functions independently of ATM signalling. However, approximately 15% of radiation-induced DSBs are repaired with slow kinetics and require ATM and the nuclease Artemis. DSBs persisting in the presence of an ATM inhibitor, ATMi, localize to heterochromatin, suggesting that ATM is required for repairing DSBs arising within or close to heterochromatin. Consistent with this, we show that siRNA (small interfering RNA) of key heterochromatic proteins, including KAP-1 [KRAB (Krüppel-associated box) domain-associated protein 1], HP1 (heterochromatin protein 1) and HDAC (histone deacetylase) 1/2, relieves the requirement for ATM for DSB repair. Furthermore, ATMi addition to cell lines with genetic alterations that have an impact on heterochromatin, including Suv39H1/2 (suppressor of variegation 3-9 homologue 1/2)-knockout, ICFa (immunodeficiency, centromeric region instability, facial anomalies syndrome type a) and Hutchinson-Guilford progeria cell lines, fails to have an impact on DSB repair. KAP-1 is a highly dose-dependent, transient and ATM-specific substrate, and mutation of the ATM phosphorylation site on KAP-1 influences DSB repair. Collectively, the findings show that ATM functions to overcome the barrier to DSB repair posed by heterochromatin. However, even in the presence of ATM, gamma-H2AX (phosphorylated histone H2AX) foci form on the periphery rather than within heterochromatic centres. Finally, we show that KAP-1's association with heterochromatin is diminished as cells progress through mitosis. We propose that KAP-1 is a critical heterochromatic factor that undergoes specific modifications to promote DSB repair and mitotic progression in a manner that allows localized and transient

  20. Repair of ultraviolet-light-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.

    1981-01-01

    Studies are reviewed which present three major new findings in the photobiology of skin. First, detectable numbers of dimers are formed even at sub-erythymal doses. Second, excision of dimers is much more rapid than would be predicted from results obtained in cell culture. Third, comparison of the rates of excision and photoreactivation in skin indicates that in normal sunlight exposure, photoreactivation may well be the predominant repair pathway in skin. (ACR)

  1. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  2. Control of gene editing by manipulation of DNA repair mechanisms.

    Science.gov (United States)

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  3. Salvage hypospadias repairs

    Directory of Open Access Journals (Sweden)

    Sripathi V

    2008-01-01

    Full Text Available Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5-15 years (mean 4.5. Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50% with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  4. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  5. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors.

    Science.gov (United States)

    Brown, Jessica S; O'Carrigan, Brent; Jackson, Stephen P; Yap, Timothy A

    2017-01-01

    Germline aberrations in critical DNA-repair and DNA damage-response (DDR) genes cause cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2-mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell-cycle checkpoint activation, trigger apoptosis, and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations.

  6. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  7. Progress of peripheral nerve repair

    Institute of Scientific and Technical Information of China (English)

    陈峥嵘

    2002-01-01

    Study on repair of peripheral nerve injury has been proceeding over a long period of time. With the use of microsurgery technique since 1960s,the quality of nerve repair has been greatly improved. In the past 40 years, with the continuous increase of surgical repair methods, more progress has been made on the basic research of peripheral nerve repair.

  8. Achilles tendon repair

    Science.gov (United States)

    Achilles tendon rupture-surgery; Percutaneous Achilles tendon rupture repair ... To fix your torn Achilles tendon, the surgeon will: Make a cut down the back of your heel Make several small cuts rather than one large cut ...

  9. Diaphragmatic hernia repair - slideshow

    Science.gov (United States)

    ... presentations/100014.htm Diaphragmatic hernia repair - series—Normal anatomy To use the sharing ... Overview The chest cavity includes the heart and lungs. The abdominal cavity includes the liver, the stomach, ...

  10. Eye muscle repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  11. Tracheoesophageal fistula repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100103.htm Tracheoesophageal fistula repair - series—Normal anatomy To use the sharing ... Editorial team. Related MedlinePlus Health Topics Esophagus Disorders Fistulas Tracheal Disorders A.D.A.M., Inc. is ...

  12. Inguinal hernia repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100027.htm Inguinal hernia repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview A hernia occurs when part of an organ protrudes through ...

  13. INTERNAL REPAIR OF PIPELINES

    Energy Technology Data Exchange (ETDEWEB)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created

  14. Pectus excavatum repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100035.htm Pectus excavatum repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Pectus excavatum is a deformity of the front of the ...

  15. Hiatal hernia repair - slideshow

    Science.gov (United States)

    ... presentations/100028.htm Hiatal hernia repair - series—Normal anatomy To use the sharing features on ... Overview The esophagus runs through the diaphragm to the stomach. It functions to carry food from the mouth ...

  16. Repairing ceramic insulating tiles

    Science.gov (United States)

    Dunn, B. R.; Laymance, E. L.

    1980-01-01

    Fused-silica tiles containing large voids or gauges are repaired without adhesives by plug insertion method. Tiles are useful in conduits for high-temperature gases, in furnaces, and in other applications involving heat insulation.

  17. Rotator cuff repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...

  18. Cleft lip repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100010.htm Cleft lip repair - series—Normal anatomy To use the sharing ... abnormal opening in the middle of the upper lip. A cleft palate is an opening in the roof of ...

  19. Berättelser som redskap för att föra och följa resonemang

    Directory of Open Access Journals (Sweden)

    Camilla Björklund

    2016-10-01

    Full Text Available Abstract: The aim of this study is to identify different ways of reasoning when preschool children create stories based on a given theme and with both a traditional and an unfamiliar framework for stories. 17 children participated in the study and the analysis shows three different ways to create stories: 1 stories with a fairy tale structure; 2 expressionist and fragmented accounts; 3 stories focusing on weather and seasonal changes. The cultural tools that children are offered (structure of a story are used by some children to create traditional stories, but not as a tool for creating new forms of stories. The results show that children’s knowledge of the content within the stories and their conceptual understanding seem to play an important role for the ways in which the structure of stories are used as tools for reasoning.Sammadrag: Syftet med denna studie är att klargöra olika sätt att resonera när förskolebarn själva konstruerar berättelser utifrån ett givet tema och inför en traditionell och en mer kontroversiell form för berättelser. 17 barn deltog i studien och analysen visar på tre olika sätt att konstruera berättelser: 1 Berättelser med sagostruktur; 2 Expressionistiska och fragmentariska redogörelser; 3 Berättelser med fokus på väder- och årstidsväxlingar. Det kulturella redskap som barnen erbjuds (berättelsestrukturen används av en del av barnen för att skapa traditionella berättelser, men inte som stöd för nyskapade former av berättelser. Resultaten visar att barn kunnande om innehållet i berättelserna och begreppsförståelse tycks spela en betydelsefull roll för hur barns berättelser används som redskap för resonemang.

  20. Grey Repairable System Analysis

    Institute of Scientific and Technical Information of China (English)

    Renkuan Guo; Charles Ernie Love

    2006-01-01

    In this paper, we systematically discuss the basic concepts of grey theory, particularly the grey differential equation and its mathematical foundation, which is essentially unknown in the reliability engineering community. Accordingly,we propose a small-sample based approach to estimate repair improvement effects by partitioning system stopping times into intrinsic functioning times and repair improvement times. An industrial data set is used for illustrative purposes in a stepwise manner.