WorldWideScience

Sample records for repacked soil columns

  1. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  2. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, T. K. K. Deepagoda; Hamamoto, S.

    2013-01-01

    The soil-gas diffusion is a primary driver of transport, reactions, emissions, and uptake of vadose zone gases, including oxygen, greenhouse gases, fumigants, and spilled volatile organics. The soil-gas diffusion coefficient, Dp, depends not only on soil moisture content, texture, and compaction...... but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...... air) in repacked soils containing between 0 and 54% clay. With Cm = 2.1, the SWLR model on average gave excellent predictions for 290 intact soils, performing well across soil depths, textures, and compactions (dry bulk densities). The SWLR model generally outperformed similar, simple Dp/Do models...

  3. Influence of porewater advection on denitrification in carbonate sands: Evidence from repacked sediment column experiments

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.

    2012-01-01

    Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Re...

  4. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  5. The Repack Challenge

    Science.gov (United States)

    Kruse, Daniele Francesco

    2014-06-01

    Physics data stored in CERN tapes is quickly reaching the 100 PB milestone. Tape is an ever-changing technology that is still following Moore's law in terms of capacity. This means we can store every year more and more data in the same amount of tapes. However this doesn't come for free: the first obvious cost is the new higher capacity media. The second less known cost is related to moving the data from the old tapes to the new ones. This activity is what we call repack. Repack is vital for any large tape user: without it, one would have to buy more tape libraries and more floor space and, eventually, data on old non supported tapes would become unreadable and be lost forever. In this paper we describe the challenge of repacking 115 PB before LHC data taking starts in the beginning of 2015. This process will have to run concurrently with the existing experiment tape activities, and therefore needs to be as transparent as possible for users. Making sure that this works out seamlessly implies careful planning of the resources and the various policies for sharing them fairly and conveniently. To tackle this problem we need to fully exploit the speed and throughput of our modern tape drives. This involves proper dimensioning and configuration of the disk arrays and all the links between them and the tape servers, i.e the machines responsible for managing the tape drives. It is also equally important to provide tools to improve the efficiency with which we use our tape libraries. The new repack setup we deployed has on average increased tape drive throughput by 80%, allowing them to perform closer to their design specifications. This improvement in turn means a 48% decrease in the number of drives needed to achieve the required throughput to complete the full repack on time.

  6. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.

    Science.gov (United States)

    Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W

    2006-07-01

    Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.

  7. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  8. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    Science.gov (United States)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  9. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K

    2010-04-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate in the environment. It is also known to have adverse effects such as toxicity and suspected endocrine disruption. This study was carried out to study the fate of TCC in soil aquifer treatment (SAT) through laboratory simulations in a soil column. The system performance was evaluated with regards to TCC influent concentration, sand (column) depth, and residence time. Results obtained confirmed the ability of SAT to reduce TCC concentrations in wastewater. Sorption and biodegradation were responsible for TCC removal, the latter mechanism however being unsustainable. The removal efficiency was found to be dependent on concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance through a reduction in COD removals observed in the column. © IWA Publishing 2010.

  10. Behaviour of normal reinforced concrete columns exposed to different soils

    Directory of Open Access Journals (Sweden)

    Rasheed Laith

    2018-01-01

    Full Text Available Concrete resistance to sulfate attack is one of the most important characteristics for maintaining the durability of concrete. In this study, the effect of the attack of sulfate salts on normal reinforced concrete column was investigated by burying these columns in two types of soils (sandy and clayey in two pits at a depth of 3 m in one of the agricultural areas in the holy city of Karbala, one containing sandy soil (SO3 = 10.609% and the other containing clayey soil with (SO3 = 2.61%. The tests were used (pure axial compression test of reinforced concrete columns, compressive strength test, and splitting tensile strength test, absorption, voids ratio and finally density. It`s found that the strength of RC columns decreasing by (12.51% for age (240 days, for columns buried in clayey soil, where the strength increased by (11.71% for the same period, for columns buried in sandy soils, with respect to the reference column.

  11. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  12. Modeling atrazine transport in soil columns with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2011-09-01

    Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.

  13. 19 CFR 134.34 - Certain repacked articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certain repacked articles. 134.34 Section 134.34... TREASURY COUNTRY OF ORIGIN MARKING Exceptions to Marking Requirements § 134.34 Certain repacked articles. (a) Exception for repacked articles. An exception under § 134.32(d) may be authorized in the...

  14. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: bwen@rcees.ac.cn; Lin Jinming [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2009-04-15

    The stability of TiO{sub 2} nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO{sub 2} could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO{sub 2} contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO{sub 2} (18.8-83.0%) readily passed through the soils columns, while TiO{sub 2} was significantly retained by soils with higher clay contents and salinity. TiO{sub 2} aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO{sub 2} in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO{sub 2} nanoparticles to deep soil layers. - TiO{sub 2} nanoparticles could efficiently suspend in soil suspensions and potentially transport to deeper soil layers.

  15. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns

    International Nuclear Information System (INIS)

    Fang Jing; Shan Xiaoquan; Wen Bei; Lin Jinming; Owens, Gary

    2009-01-01

    The stability of TiO 2 nanoparticles in soil suspensions and their transport behavior through saturated homogeneous soil columns were studied. The results showed that TiO 2 could remain suspended in soil suspensions even after settling for 10 days. The suspended TiO 2 contents in soil suspensions after 24 h were positively correlated with the dissolved organic carbon and clay content of the soils, but were negatively correlated with ionic strength, pH and zeta potential. In soils containing soil particles of relatively large diameters and lower solution ionic strengths, a significant portion of the TiO 2 (18.8-83.0%) readily passed through the soils columns, while TiO 2 was significantly retained by soils with higher clay contents and salinity. TiO 2 aggregate sizes in the column outflow significantly increased after passing through the soil columns. The estimated transport distances of TiO 2 in some soils ranged from 41.3 to 370 cm, indicating potential environmental risk of TiO 2 nanoparticles to deep soil layers. - TiO 2 nanoparticles could efficiently suspend in soil suspensions and potentially transport to deeper soil layers

  16. Translocation of labelled fertilizer nitrogen in soil columns

    International Nuclear Information System (INIS)

    Haunold, E.; Zvara, J.

    1975-01-01

    The translocation of 15 labeled ammonium and nitrate fertilizer was studied under normal weather conditions for two years in columns filled with different soils. At the end of the experimental period, which usually lasted for 9 months, between 5.9-10.3% of the ammonium fertilizer was leached out, 33.7-50.1% remained in the soil and 39.5-59.7% was lost as gas. For nitrate nitrogen the figures were: 22.6-47.3% leached out, 16.7-40% remaining in the soil, 12.7-60.0% lost as gas. The ammonium fertilizer moving through the soil interchanged with 1-13% of the soil nitrogen, the nitrate fertilizer with only 0.5-2%

  17. Effect of sulfate fertilization on soil biota in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Donohue, John; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    Sulfur (S) is an important macronutrient element in plant nutrition as a component of protein, enzymes, enzyme cofactors as well as being the major constituent of the amino acids cysteine and methionine. Organically bound S is the predominant form of S in the soil constituting up to 95% of S in agricultural soils. The most important form of S in terms of plant nutrition is inorganic sulfate which forms only about 5% of the total soil S content. Air pollution was the major source of S (as SO2) for plants, with up to 80% of the S obtained from this source. However, common effects of S limitation on crops such as chlorosis, yield reduction, and decrease in crop quality are becoming increasingly evident as atmospheric S supply has decreased in recent years. Recent research has shown that organically-bound S in soils is also plant-bioavailable, likely due to interconversion of organic S forms to inorganic sulfate by soil microbes. In this study, soil columns were setup in a greenhouse using moderate S (equivalent to Wisconsin S soil availability index of below 30) soils. The columns were planted with Lolium perenne and fertilized with 0 (control), 5 (low), 10 (medium) and 20 (high) kg/ha sulfate S alongside a full complement of other nutrients. Results after 14 weeks of management show a significant decrease (Pbacterial abundance of heterotrophs and aromatic sulfonate-utilizing bacteria upon S fertilization. In addition, soil from the top 20 cm of the column had significantly higher sulfatase activity compared to the bottom 20 cm. The medium and high S treatments had significantly higher grass dry matter yield compared to the control and low S treatments. All S treatments significantly shifted the bacterial community structure compared to the control. Overall, our preliminary results suggest that applying 5 kg/ ha S had similar effects on the soil biota as the control while the application of medium and high S had similar effects on most parameters. Moreover, this study

  18. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2010-01-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate

  19. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  20. Nondestructive measurement for radionuclide concentration distribution in soil column

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1985-01-01

    A nondestructive method has been studied for determining the concentration of radionuclide (Cs-137) distributed in a soil column. The concentration distribution was calculated from the counting rate distribution using the efficiency matrix of a detector. The concentration distribution obtained by this method, with measuring efficiencies of theoretical calculation, coincides well with that obtained by the destructive sampling method. This method is, therefore, found to be effective for the measurement of one dimensional concentration distribution. The measuring limit of this method is affected not only by the radionuclide concentration but also by the shape of concentration distribution in a soil column and also by the way it is divided into concentration blocks. It is found that, the radioactive concentration up to 2.6 x 10 -4 μCi/g (9.62 Bq/g), and also the distribution up to where the concentration reduces to half at every 1 cm of depth, can be measured by this system. The concentration blocks can be divided into 1 cm of thickness as a minimum value. (author)

  1. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  2. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  3. Unsaturated transport of inorganic cations in undisturbed soil columns

    International Nuclear Information System (INIS)

    Jardine, P.M.; Jacobs, G.K.

    1990-01-01

    The unsaturated transport of Sr, Co, and Ca were studied in undisturbed soil columns (14 x 40 cm) of saprolitic shale to evaluate the significance of time dependent mass transfer and multispecies competitive exchange during transport. Observed breakthrough curves (BTCs) for Sr and Co were delayed relative to nonreactive Br BTC indicating that the former tracers were adsorbed by the soil. Effluent concentrations of Sr and Co were modeled with the classical convective dispersive (CD) equation and nonequilibrium mass transfer considerations did not appear necessary. Cation exchange equilibria relationships obtained from both shake batch and miscible displacement methods adequately described the thermodynamic processes which were prevalent during transport. These results suggest that the preferential transport of a reactive tracer is negligible for the realistic unsaturated conditions used in the study, and that the massive saprolite within the soil is a chemically active constituent during transport of reactive solutes. The implications of these findings for modeling in-situ subsurface contaminant transport are discussed. 7 refs., 9 figs

  4. Monitoring changes in soil water content on adjustable soil slopes of a soil column using time domain reflectometry (TDR) techniques

    International Nuclear Information System (INIS)

    Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif

    2004-01-01

    Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions

  5. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    International Nuclear Information System (INIS)

    Kasel, Daniela; Bradford, Scott A.; Šimůnek, Jiří; Pütz, Thomas; Vereecken, Harry; Klumpp, Erwin

    2013-01-01

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. -- Highlights: •Investigation of undisturbed soil columns and lysimeter. •Transport experiments under water-unsaturated conditions. •Retention profiles were measured and numerically modeled. •Complete retention of MWCNT in undisturbed and repacked soil columns. -- In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions

  6. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil: An undisturbed soil column study

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Leoz, Borja [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain); Antigueedad, Inaki [Department of Geodynamic, University of the Basque Country, UPV/EHU, E-48940 Leioa (Spain); Garbisu, Carlos [Department of Ecosystems, NEIKER-Tecnalia, E-48160 Derio (Spain); Ruiz-Romera, Estilita, E-mail: estilita.ruiz@ehu.es [Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, E-48013 Bilbao (Spain)

    2011-01-15

    Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO{sub 2} and N{sub 2}O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO{sub 3}{sup -} L{sup -1} solution (rate: 90 mL day{sup -1}) for 125 days at two different temperatures (10 and 20 {sup o}C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO{sub 3}{sup -} concentration, NH{sub 4}{sup +} concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO{sub 2} and N{sub 2}O) were determined in the undisturbed soil columns. The A horizon at 20 {sup o}C showed the highest rates of NO{sub 3}{sup -} removal (1.56 mg N-NO{sub 3}{sup -} kg{sup -1} DW soil day{sup -1}) and CO{sub 2} and N{sub 2}O production (5.89 mg CO{sub 2} kg{sup -1} DW soil day{sup -1} and 55.71 {mu}g N-N{sub 2}O kg{sup -1} DW soil day{sup -1}). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO{sub 3}{sup -} ha{sup -1} year{sup -1}, and potential greenhouse gas emissions of 5620 kg CO{sub 2} ha{sup -1} year{sup -1} and 240 kg N-N{sub 2}O ha{sup -1} year{sup -1}. - Research Highlights: {yields}A new experimental design is proposed for leaching assays to simulate nitrogen transformations in riparian wetland soil. {yields}Denitrification is the main process responsible for nitrate removal in the riparian zone of Salburua wetland. {yields

  7. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    International Nuclear Information System (INIS)

    Crancon, P.; Pili, E.; Charlet, L.

    2010-01-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the 238 U initially present in the soil column and 233 U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  8. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    Directory of Open Access Journals (Sweden)

    Daniel P. Treese

    2012-01-01

    Full Text Available Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

  9. Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils

    Science.gov (United States)

    Arthur, Jennifer D.; Mark, Noah W.; Taylor, Susan; Šimunek, J.; Brusseau, M. L.; Dontsova, Katerina M.

    2017-04-01

    The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h- 1 and 0.0068 h- 1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g- 1, and Freundlich coefficients between 1.3 and 34 mg1 - n Ln kg- 1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to

  10. Determination of the hydraulic conductivity in column of undeformed soil by gamma rays transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Cavalcante, Fabio H.M.; Portezan Filho, Otavio; Coimbra, Melayne M.; Appoloni, Carlos Roberto

    2000-01-01

    The water infiltration process in undeformed soil column and the measurement of redistribution process by gamma rays transmission in different depth allow the determination of Hydraulic Conductivity K(Θ) function, using the Sisson et al. (1980) method. A LRd (dystrophic dark red soil) soil column with 60 cm of height, 10 cm of width and 5 cm of thickness, was analyzed in laboratory, reproducing the field conditions concerning to the water infiltration and redistribution in the soil. The soil moisture content data was obtained with a radioactivity source 241 Am (100 mCi; 59,6 keV), NaI (Tl) 2x2 detector, coupled to an gamma rays spectrometric electronic chain and a measurement table that allowed the vertical displacement of the soil column. The results indicate a growing behavior for K(Θ) in relation to the depth. The collimators had 2 mm and 5 mm diameter for radioactivity source and detector respectively. (author)

  11. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  12. Infiltration of water in disturbed soil columns as affected by clay dispersion and aggregate slaking

    OpenAIRE

    Amezketa, E.; Aragües, R.; Gazol, R.

    2004-01-01

    Soil crusting negatively affects the productivity and sustainability of irrigated agriculture, reducing water infiltration and plant emergence, and enhancing surface runoff and erosion. Clay dispersion and slaking of the aggregates at the soil surface are the main processes responsible for crusting. The infiltration rates (IR) of ten arid-zone soils in disturbed soil columns were measured and their relative susceptibilities to dispersion and slaking were determined. It was also examined wheth...

  13. Improved removal of iodine-125 from effluents by the soil column method using a laterite soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S H [Malaysian Inst. for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    1997-02-01

    The soil column experiments were conducted to treat the liquid wastes from hospitals containing {sup 125}I. Three sorbent samples of laterite clay materials with different content of iron oxides (geothite, {alpha}-FeOOH) and hydroxides were used to sorb anionic iodate. Post-treatment of the liquid wastes with sodium hypochlorite (redox reagent) oxidized the iodide to the desirable iodate ion. pH after treatment ranges between 4.8 to 5.8 that is not very much different from the initial value pH4.5. The results show that 90 to 97% sorption of iodine with the decontamination factor between 10-32 could be obtained after the first two hours of experiments. The concentration has decreased from an initial value of 10 Bq{center_dot}mL{sup -1} to the concentration ranges 0.3 to 0.9 Bq{center_dot}mL{sup -1}. For the soil at pH between 4.5 to 6.0, positive charges predominated on the kaolinite, geothite and aluminum hydroxides. The negative {sup 125}I anions were electrostatically held by the positive charges on the mineral components of the laterite clay materials. The treated effluents could be released to the environment safely after further dilution and decay. The storage period will decrease tremendously providing better management for the disposal of the wastes by generators. The batch experiments conducted using different sorbent masses of soils, show that there was a drop in sorption where the mass of soils falls below approximately between 0 to 0.25 g. The sorption remains constant with the soil mass above 0.25 g. Another batch experiment using different concentration, shows that adsorption capacity of the laterite soil was 1.1 {mu}Ci/g. The adsorption is about 96% with a distribution coefficient of 1170. The experiments conducted show that anionic iodate in the liquid wastes can be removed by the laterite soil material. The column treatment method was more effective, easy to handle, and has low a capital and maintenance cost. (author). 9 refs, 10 figs, 2 tabs.

  14. Hydraulic conductivity of indeformed soil columns determination by gamma ray transmission

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo; Moraes Cavalcante, Fabio Henrique de; Rocha, Marcos Correa da; Filho, Otavio Portezan; Quinones, Fernando Rodolfo Espinosa; Appoloni, Carlos Roberto

    2000-01-01

    The spatial variation of the soil structure influences the water movement through its porous geometry, which could cause problems in the development of agricultural cultures and also accelerate processes of soil erosion. The gamma ray transmission method has established efficiency for the non-destructive measurement of moisture temporal and space evolution, and consequently in the determination of the hydraulic conductivity of the soil, K(θ). Columns of undisturbed soil (approximately 0.11 x 0.06 x 0.60 m) were removed from a trench in the Campus of Londrina State University. The used soil was classified like distrophic dark red soil (LRd). The indeformed soil columns were wrapped up with paraffin and gauze and were fixed on the table of measurement. The water vertical infiltration in the soil was accomplished by maintaining a water layer of approximately 0.01 m over an area of soil of 75 x 10 -4 m 2 . Layers of filter papers and foam controlled the flow of water in the soil surface. After the conclusion of the infiltration, began the process of redistribution of the water in the soil column, with the objective to determine the function K(θ) in relation to the depth in the column. The moisture profiles θ(z,t) are obtained using a radioactive source of 241 Am (3.7 x 10 9 Bq; 0.0596 MeV), spectrometric electronic chain, a 2x2'' NaI(Tl) detector and a measurements table , which allows the sample to move vertically. The hydraulic conductivity function was determined, applying the Sisson model , at 10 levels in the soil column and the results exhibit an increase of K(θ) with depth. (author)

  15. Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils.

    Science.gov (United States)

    Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimunek, J; Brusseau, M L; Dontsova, Katerina M

    2017-04-01

    The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h -1 and 0.0068h -1 . DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg -1 , and Freundlich coefficients between 1.3 and 34mg 1 - n L n kg -1 . Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to

  16. Transport of copper as affected by titania nanoparticles in soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shan Xiaoquan, E-mail: xiaoquan@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Lin Jinming [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou Shuairen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-05-15

    The effects of TiO{sub 2} nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO{sub 2} nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO{sub 2} nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO{sub 2} nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO{sub 2} nanoparticles-facilitated Cu transport. The TiO{sub 2}-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO{sub 2} could be 'stripped' from nanoparticles depending on soil, where Cu desorption from TiO{sub 2} nanoparticles increased with decreasing flow velocity and soil pH. - Highlights: > TiO{sub 2} nanoparticles could facilitate or retard the transport of Cu in soils. > Soil properties primarily governed TiO{sub 2}-facilitated Cu transport. > Cu initially adsorbed onto TiO{sub 2} could be 'stripped' duing transport. - TiO{sub 2} nanoparticles play an important role in mediating and transporting Cu in soil columns.

  17. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  18. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis.

    Directory of Open Access Journals (Sweden)

    Jiangbao Xia

    Full Text Available Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL, soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC declined significantly, whereas the salt content (SC and absolute soil solution concentration (CS decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9-1.2 m and shallow water levels (0.6 m respectively, whereas the CS presented the greatest variation at the deep water level (1.5-1.8 m.The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5-1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions.

  19. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    Science.gov (United States)

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  20. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    Science.gov (United States)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurries.

    Science.gov (United States)

    Petersen, Heidi H; Enemark, Heidi L; Olsen, Annette; Amin, M G Mostofa; Dalsgaard, Anders

    2012-09-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry.

  2. Organic amendments and nutrient leaching in soil columns

    Science.gov (United States)

    The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...

  3. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    Science.gov (United States)

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  4. Dynamic chemical characteristics of soil solution after pig manure application: a column study.

    Science.gov (United States)

    Hao, Xiuzhen; Zhou, Dongmei; Sun, Lei; Li, Lianzhen; Zhang, Hailin

    2008-06-01

    When manures from intensive livestock operations are applied to agricultural or vegetable fields at a high rate, large amounts of salts and metals will be introduced into soils. Using a column leaching experiment, this study assessed the leaching potential of the downward movement of Cu and Zn as well as some salt ions after an intensive farm pig manure at rates of 0%, 5% and 10% (w/w) were applied to the top 20 cm of two different textured soils (G soil -sandy loam soil; H soil-silty clay loam soil), and investigated the growth of amaranth and Cu and Zn transfer from soil to amaranth (Amaranthus tricolor). Soil solutions were obtained at 20, 40 and 60 cm depth of the packed column and analyzed for pH, electrical conductivity (EC), dissolved organic matter (DOC) and Cu and Zn concentrations. The results indicated that application of pig manure containing Cu and Zn to sandy loam soil might cause higher leaching and uptake risk than silty clay loam soil, especially at high application rates. And manure amendment at 5% and 10% significantly decreased the biomass of amaranth, in which the salt impact rather than Cu and Zn toxicity from manures played more important role in amaranth growth. Thus the farmer should avoid application the high rate of pig manure containing metal and salt to soil at a time, especially in sandy soil.

  5. Removal of radium-226 from radium-contaminated soil using humic acid by column leaching method

    International Nuclear Information System (INIS)

    Esther Phillip; Muhamad Samudi Yasir

    2012-01-01

    In this study, evaluation of radium-226 removal from radium-contaminated soil using humic acid extracted from peat soil by column leaching method was carried out. Humic acid of concentration 100 ppm and pH 7 was leached through a column packed with radium-contaminated soil and leachates collected were analysed with gamma spectrometer to determine the leached radium-226. Results obtained indicated low removal of radium-226 between 1 - 4 %. Meanwhile, leaching profile revealed that radium-226 was bound to soil components with three different strength, thus resulting in three phases of radium-226 removal. It was estimated that the total removal of radium-226 from 10 g radium-contaminated soil sample studied could be achieved using approximately 31500 - 31850 ml HA solutions with leaching rate of 1 ml/ min. (author)

  6. Ureic nitrogen transformation in multi-layer soil columns treated with urease and nitrification inhibitors.

    Science.gov (United States)

    Giovannini, Camilla; Garcia-Mina, Josè M; Ciavatta, Claudio; Marzadori, Claudio

    2009-06-10

    The use of N-(n-butyl)thiophosphoric triamide (NBPT), as a urease inhibitor, is one of the most successful strategies utilized to increase the efficiency of urea-based fertilization. To date, NBPT has been added to the soil incorporated in fertilizers containing either urea or the inhibitor at a fixed percentage on the urea weight. The possibility of using NBPT physically separated from urea-based fertilizers could make its use more flexible. In particular, a granulated product containing NBPT could be utilized in soils treated with different urea-based fertilizers including livestock urine, the amount depending on soil characteristics and/or the urea source (e.g., mineral fertilizer, organo-mineral fertilizer, or animal slurry). In this study, a multilayer soil column device was used to investigate the influence of an experimental granular product (RV) containing NBPT and a garlic extract, combining the ability to protect NBPT by oxidation and nitrification inhibition activity, on (a) spatial variability of soil urease and nitrification activities and (b) timing of urea hydrolysis and mineral-N form accumulation (NO(2)(-), NO(3)(-), NH(4)(+)) in soil treated with urea. The results clearly demonstrated that RV can, effectively, inhibit the soil urease activity along the soil column profile up to 8-10 cm soil layer depth and that the inhibition power of RV was dependent on time and soil depth. However, nitrification activity is not significantly influenced by RV addition. In addition, the soil N transformations were clearly affected by RV; in fact, RV retarded urea hydrolysis and reduced the accumulation of NH(4)(+)-N and NO(2)(-)-N ions along the soil profile. The RV product was demonstrated to be an innovative additive able to modify some key ureic N trasformation processes correlated with the efficiency of the urea-based fertilization, in a soil column higher than 10 cm.

  7. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette

    2012-01-01

    to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry.......The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period......, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method although recovery rates were low (liquid slurry leached 73% and 90% more oocysts compared with columns with injected and surface applied raw slurry, respectively...

  9. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P.; Pili, E. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Charlet, L. [Univ Grenoble 1, Lab Geophys Interne and Tectonophys LGIT OSUG, CNRS, UJF, UMR5559, F-38041 Grenoble 9 (France)

    2010-07-01

    The transport of uranium through a sandy podsolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the {<=} 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean pore-water velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source. (authors)

  10. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P., E-mail: pierre.crancon@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Pili, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT-OSUG), University of Grenoble-I, UMR5559-CNRS-UJF, BP53, 38041 Grenoble cedex 9 (France)

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the < 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  11. Phosphorus leaching from cow manure patches on soil columns

    NARCIS (Netherlands)

    Chardon, W.J.; Aalderink, G.H.; Salm, van der C.

    2007-01-01

    The loss of P in overland flow or leachate from manure patches can impair surface water quality. We studied leaching of P from 10-cmhigh lysimeters filled with intact grassland soil or with acid-washed sand. A manure patch was created on two grassland and two sandfilled lysimeters, and an additional

  12. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid

    International Nuclear Information System (INIS)

    Jean-Soro, Liliane; Bordas, François; Bollinger, Jean-Claude

    2012-01-01

    This study investigates the column leaching of a soil contaminated mainly with Cr and Ni by using two chelants: citric acid (biodegradable) and EDTA (non-biodegradable) followed with water rinse. The chelants lead to Cr and Ni leaching, in addition to major elements (Ca, Fe, Mg, Al, Mn and Zn) showing the dissolution of soil mineral constituents. EDTA leaches more major elements and Ni than citric acid related to the respective stability of metal–chelant complexes; citric acid leaches more Cr than EDTA, certainly because of a substitution reaction with Cr(VI). In the case of alternating chelant/water applications, leaching occurs during the chelant applications, but also during water applications. In the case of chelant/water applications followed by continuous water application, both Cr and Ni leach over time. This increased mobility could be due to the residual chelant present in soil as well as to the dissolution/mobilization of mineral or organic soil fractions. - Highlights: ► Column leaching of an industrial soil contaminated with chromium and nickel. ► Citric acid or EDTA were used alternatively or followed with water rinse. ► Chelants lead to Cr and Ni leaching and the dissolution of soil mineral constituents. ► Leaching of these two metals proceeds continuously during water rinse. ► Chelants deeply impacted Cr and Ni mobility. - Citric acid or EDTA application deeply impact Cr and Ni mobility during column leaching of a contaminated soil.

  13. Unsaturated hydraulic conductivity of sandy soil columns packed to different bulk densities and water uptake by plantroots

    NARCIS (Netherlands)

    Rossi-Pisa, P.

    1978-01-01

    This paper describes a laboratory metbod used to determine both the soil moisture retention curve and the unsaturated hydraulic conductivity in soil columns under transient flow conditions during evaporation.

  14. Storage duration effect on deformation recovery of repacked alginates

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2009-09-01

    Full Text Available Background: Manufacturers supply alginate impression materials as a powder that is packaged in bulk and in individual container. Some Indonesian dental suppliers often repackage the bulk alginate into individual plastic packages which are not tied tightly and stored in the display room without air conditioner. It is known that critical factors to the shelf life of alginate includer avoidance of moisture contamination which may lead to premature setting of the alginate and avoidance of high temperature which may cause depolymerization of the alginate. Purpose: The aim of this study was to determine storage duration effect of repacked alginates on deformation recovery. Methods: Two brands of alginates (Tulip®TU, and Aroma Fine DF III®AF were repacked into 120 plastic containers. The samples were stored in room condition (temperature 29° C ± 1° C, relative humidity 60% ± 10% for 1, 2, 3, 4 and 5 weeks. The alginates setting time and recovery from deformation were measured according to the ANSI/ADA specification number 18 (ISO 1563. result: The results revealed that there was decreased setting time during 5 weeks but there was slight decreased in deformation recovery after 3 weeks storage. The ANOVA showed there was no significant difference of alginates deformation recovery among the storage times (p > 0.05. Conclusion: Storage duration of repacked alginates in plastic containers during 5 weeks in room condition do not influence the alginate deformation recovery.

  15. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  16. Reproducibility of up-flow column percolation tests for contaminated soils.

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasutaka

    Full Text Available Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III to determine the reproducibility (variability inter laboratory of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268-3. This procedure consists of percolating solution (calcium chloride 1 mM from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research. For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean, as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean was observed in the test results related to Soils II and III, with a variability lower than 30

  17. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  18. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  19. Practical issues relating to soil column chromatography for sorption parameter determination.

    Science.gov (United States)

    Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B

    2010-08-01

    Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Land application of sewage sludge: A soil columns study | Gascó ...

    African Journals Online (AJOL)

    Sewage sludge was mixed into the top 100 mm of each column at the rates of 357 (H), 223 (M) and 22 Mg·ha-1 (L). Treatment H was calculated according to the critical soil concentration and treatments M and L were calculated according to the amount of metals which may be added to agricultural land on 10 yr average

  1. Deposition of gamma emitters from Chernobyl accident and their transfer in lichen-soil columns.

    Science.gov (United States)

    Lehto, Jukka; Paatero, Jussi; Pehrman, Reijo; Kulmala, Seija; Suksi, Juhani; Koivula, Teija; Jaakkola, Timo

    2008-10-01

    Lichen-soil column samples were taken from several locations in the Southern Finland between 1986 and 2006. Columns were divided into three parts, upper lichen, lower lichen and underlying soil, and their gamma emitting radionuclides, 134Cs, 137Cs, 103Ru, 95Zr, 106Ru, 110mAg, 125Sb and 144Ce, were measured with gamma spectrometry. Deposition values were calculated as Bq/m2 for each sampling site. Distribution of various radionuclides in the three compartments as a function of time was determined. Both effective and ecological half-lives of all radionuclides were calculated for upper lichen, whole lichen and whole lichen-soil column. A linear relation was derived between the physical half-lives and effective half-lives for whole lichen and for whole lichen-soil column. Reindeer meat activity concentrations of various radionuclides and ensuing radiation doses to reindeer-herding people were also estimated for a hypothetical case where a similar high radioactive pollution, as was taken place in the Southern Finland, would have occurred in the reindeer-herding areas in the Finnish Lapland.

  2. Experimental and modelling studies of radionuclide uptake in vegetated soil columns

    International Nuclear Information System (INIS)

    Marchant, J. K.; Butler, A. P.

    1995-01-01

    Investigations are currently being conducted at Imperial College into the upward migration of radionuclides from a contaminated water table and their subsequent uptake by plant root systems. This programme includes both experimental studies and related mathematical modelling. Previous work has been primarily with lysimeters. However, these experiments are expensive and somewhat lengthy and the alteration of key features is difficult. Therefore, an experimental research programme using smaller scale columns where conditions can be readily altered has been set up under a NERC studentship. This paper presents both the observed and simulated results from some preliminary column experiments involving the movement of two different radionuclides. It will be shown that physically-based mathematical models developed for field scale problems are readily applicable at the scale of the experimental columns. Work is currently in hand to demonstrate the validity of the column experiments for determining parameters associated with various soil, plant and radionuclide types. (author)

  3. Continuous treatment of heavy metal contaminated clay soils by extraction in stirred tanks and in a countercurrent column

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1991-01-01

    Extn. of metals from 2 contaminated waste site clay soils by 0.1-0.3 N HCl solns. was tested in 3 lab. scale, continuous processes: 2 stirred tank reactors (CSTR' s) in series; a countercurrent sieve-plate column fed with flocculated clay soil materials; and a combination of tank reactor and column.

  4. Biodegradation of No. 2 diesel fuel in the vadose zone: A soil column study

    International Nuclear Information System (INIS)

    Widrig, D.L.; Manning, J.F. Jr.

    1995-01-01

    Packed soil columns were used to simulate and investigate in situ biological remediation of soil contaminated with diesel fuel. The authors investigated and evaluated several operating strategies, including continuous flooding of the column soil with nutrient solution, and periodic operating cycles consisting of flooding followed by draining and aeration. The objectives were: (a) to determine the extent of diesel fuel degradation in soil columns under four operating conditions (biologically inhibited control; continuous saturation with nitrogen and phosphorus amendments; periodic operation, consisting of flooding with nitrogen and phosphorus, followed by draining and forced aeration; and periodic operation, consisting of flooding with nitrogen phosphorus, and calcium and magnesium amendments, followed by draining and forced aeration); (b) to evaluate CO 2 production and oxygen consumption as indicators of biodegradation; (c) to monitor hydraulic conductivity under different operating strategies; and (d) to examine the system requirements for nitrogen and phosphorus. The results showed that periodic operation promoted higher rates of biodegradation of diesel fuel in soil and minimized the use of water containing nutrient amendments, and consequently the possible need to collect and treat such water. The authors believe that monitoring CO 2 and O 2 levels in situ may provide a means of optimizing the timing of flooding and aeration events to increase degradation rates. Results of this laboratory study will aid in improving the design and operation of field-scale bioremediation systems

  5. The influence of mass transfer on solute transport in column experiments with an aggregated soil

    Science.gov (United States)

    Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter

    1987-06-01

    The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.

  6. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...

  7. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  8. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2009-01-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  9. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Science.gov (United States)

    Aktar, Md. Wasim; Sengupta, Dwaipayan; Purkait, Swarnali; Chowdhury, Ashim

    2008-01-01

    A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability) through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin at doses of 10.0, 10.0 and 7.7 kg/ha, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0–6, 6–12, 12–18, 18–24 and 24–30 cm) for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD) and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0–6 cm). Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids. PMID:21218121

  10. Vertical migration of some herbicides through undisturbed and homogenized soil columns

    Directory of Open Access Journals (Sweden)

    Md. Wasim Aktar

    2008-12-01

    Full Text Available A laboratory experiment was conducted by using three herbicides, two from dinitroaniline group and one from thiocarbamate group to know their degree of downward movement (leachability through soil columns and their contribution in ground water contamination. Soil columns were loaded with Pendimethalin, Benthiocarb and Oryzalin @ 10.0, 10.0 and 7.7 kg a.i. ha-1, respectively. After 30 days soil samples were analyzed from each segments (i.e. 0-6, 6-12, 12-18, and 18-24 and 24-30 cm for Benthiocarb and Pendimethalin by GLC equipped with Ni63 electron capture detector (ECD and for Oryzalin by HPLC coupled with UV-VIS detector. The results obtained in the present study reveal that the residues of the three herbicides under investigation were predominantly confined to the upper soil layer (0-6 cm. Comparatively, low mobility of these herbicides in soils could be due to strong adsorption of these chemical to soil colloids.

  11. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhan

    2014-01-01

    Full Text Available A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the response acceleration increases rapidly and reaches its peak, and the shear displacement of silty soil increases significantly. At 0.325 g loading acceleration, the integral rigidity of foundation decreases greatly, which reduces its capability of vibration transmission and result in the response acceleration amplification coefficient is less than that at the former loading acceleration, but the shear displacement of silty soil further increases. The stone column composite foundation can greatly reduce both the shear displacement and the settlement of ground compared with untreated foundation. Under the condition of 7-degree seismic fortification, the design meets seismic resistance requirements.

  12. Strengthening and Stabilization of the Weak Water Saturated Soils Using Stone Columns

    Directory of Open Access Journals (Sweden)

    Sinyakov Leonid

    2016-01-01

    Full Text Available The article considers innovative modern materials and structures for strengthening of weak soils. In this paper describes a method of strengthening of weak saturated soils using stone columns. The method of calculating the physical-mechanical characteristics of reinforced soil mass is presented. Two approaches to determining the stress-strain state and timeframe of consolidation of strengthened soil foundation using the finite element technique in two-dimensional formulation are proposed. The first one approach it is a modeling of reinforced soil mass, where each pile is represented as a separate 2D stripe. The second approach is to the simulation of the strengthened mass the equivalent composite block with improved physical-mechanical characteristics. The use of the equivalent composite block can significantly reduce the time spent on the preparation of a design scheme. The results of calculations were compared. They show the allowable divergence of results of calculation by two methods were presented, and the efficiency of the strengthening of weak water saturated soils by stone column is proved.

  13. Two approaches for sequential extraction of radionuclides in soils: batch and column methods

    International Nuclear Information System (INIS)

    Vidal, M.; Rauret, G.

    1993-01-01

    A three-step sequential extraction designed by Community Bureau of Reference (BCR) is applied to two types of soil (sandy and sandy-loam) which had been previously contaminated with a radionuclide aerosol containing 134 Cs, 85 Sr and 110m Ag. This scheme is applied using both batch and column methods. The radionuclide distribution obtained with this scheme depends both on the method and on soil type. Compared with the batch method, column extraction is an inadvisable method. Kinetic aspects seem to be important, especially in the first and third fractions. The radionuclide distribution shows that radiostrontium has high mobility, radiocaesium is highly retained by clay minerals whereas Fe/Mn oxides and organic matter have an important role in radiosilver retention. (Author)

  14. Transport and survival of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi H.; Enemark, Heidi; Olsen, Annette

    The widespread waterborne pathogen Cryptosporidium parvum is frequently transmitted to humans via contaminated drinking and recreational water. Nearly all drinking water in Denmark is groundwater, which can be contaminated with oocysts e.g. from application of contaminated manure to the field...... in the leachates from soil columns to which Cryptosporidium positive slurry had been injected. Although recovery rates were low, regardless of slurry type, C. parvum oocysts were detected from all soil columns. Variations in the leachate patterns were recorded between soil columns added raw and liquid slurry...

  15. Transport and survival of Cryptosporidium Parvum Oocysts in Soil Columns Following Applications of Raw and Separated Liquid Slurry

    DEFF Research Database (Denmark)

    Petersen, H.H.; Enemark, Heidi L.; Olsen, A.

    The widespread waterborne pathogen Cryptosporidium parvum is primarily transmitted to humans via contaminated drinking and recreational water. Nearly all drinking water in Denmark is groundwater, but this can be contaminated with oocysts from application of contaminated manure to the field. Oocysts...... in the leachates from soil columns to which Cryptosporidium positive slurry had been injected. Although recovery rates were low, regardless of slurry type, C. parvum oocysts were detected from all soil columns. Variations in the leachate patterns were recorded between soil columns added raw and liquid slurry...

  16. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    Science.gov (United States)

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  17. Managed aquifer recharge: the fate of pharmaceuticals from infiltrated treated wastewater investigated through soil column experiments

    Science.gov (United States)

    Silver, Matthew; Selke, Stephanie; Balsaa, Peter; Wefer-Roehl, Annette; Kübeck, Christine; Schüth, Christoph

    2017-04-01

    The EU FP7 project MARSOL addresses water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. Within this framework, column experiments were conducted to investigate the fate of pharmaceuticals when secondary treated wastewater (TWW) is infiltrated through a natural soil (organic matter content 6.8%) being considered for MAR. Three parallel experiments were run under conditions of continuous infiltration (one column) and wetting-drying cycles (two columns, with different analytes) over a 16 month time period. The pharmaceuticals diclofenac, ibuprofen, carbamazepine, naproxen, gemfibrozil, and fenoprofen, as well as the antibiotics doxycycline, sulfadimidine, and sulfamethoxazole, are commonly present in treated wastewater in varying concentrations. For the experiments, concentration variability was reduced by spiking the column inflow water with these compounds. Concentrations were periodically analyzed at different depths in each column and the mass passing each depth over the duration of the experiment was calculated. At the end of the experiments, sorbed pharmaceuticals were extracted from soil samples collected from different depths. A pressurized liquid extraction method was developed and resulted in recoveries from spiked post-experiment soil samples ranging from 64% (gemfibrozil) to 82% (carbamazepine) for the six non-antibiotic compounds. Scaling results by these recovery rates, the total mass of pharmaceuticals sorbed to the soil in the columns was calculated and compared to the calculated attenuated mass (i.e. mass that left the water phase). The difference between the attenuated mass and the sorbed mass is considered to be mass that degraded. Results for continuous infiltration conditions indicate that for carbamazepine and diclofenac, sorption is the primary attenuation mechanism, with missing (i.e. degraded) mass lying within the propagated

  18. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  19. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  20. Adsorption and desorption for dynamics transport of hexavalent chromium Cr(Ⅵ) in soil column

    Science.gov (United States)

    Tong, J.

    2017-12-01

    Batch experiments have been carried out to study the adsorption of heavy metals in soils, and the migration and transformation of hexavalent chromium Cr(Ⅵ) in the soil of a vegetable base were studied by dynamic adsorption and desorption soil column experiments. The aim of this study was to investigate the effect of initial concentration and pH value on the adsorption process of Cr(Ⅵ). Breakthrough curve were used to evaluate the capacity of Cr(Ⅵ) adsorption in soil columns. The results show that the higher the initial concentration, the worse the adsorption capacity of Cr(Ⅵ). The adsorption of Cr(Ⅵ) was strongly sensitive to pH value. The capacity of Cr(Ⅵ) adsorption is maximized at very low pH value. This may be due to changes in pH that cause a series of complex reactions in Cr(Ⅵ). In a strongly acidic environment, the reaction of Cr(Ⅵ) with hydrogen ions is accompanied by the formation of Cr3+, which reacts with the soil free iron-aluminum oxide to produce hydroxide in the soil. The results of the desorption experiments indicate that Cr(Ⅵ) is more likely to leach from this soil, but if the eluent is strong acid solution, the leaching process will be slow and persistent. The program CXTFIT was used to fit the breakthrough curve to estimate parameters. The results of the calculation of the dispersion coefficient (D) can be obtained by this program. The two-site model fit the breakthrough curve data of Cr(Ⅵ) well, and the parameters calculated by CXTFIT can be used to explain the behavior of Cr(Ⅵ) migration and transformation in soil columns. When pH=2, the retardation factor (R) reach at 79.71 while the value of the R is generally around 10 in other experiments. The partitioning coefficient β shows that more than half of the adsorption sites are rate-limited in this adsorption process and non-equilibrium effects the Cr(Ⅵ) transport process in this soil.

  1. Effects of the Length of Jet Grouted Columns and Soil Profile on the Settlement of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-07-01

    Full Text Available In this paper, the effect of length of jet grouted columns and varying soil profile under shallow foundations of buildings constructed on the liquefiable ground was studied. The isolated shallow footing pad which supports a typical simple frame structure was constructed on the liquefiable ground. This ground was reinforced with jet grouted column rows under the shallow foundations of structure. The system was modeled as plane-strain using the FLAC 2D (Fast Lagrangian Analysis of Continua dynamic modelling and analysis code. This case focuses on the length of jet grouted columns in a soil profile and the effect of soil profiles of varying thickness on the settlements of building structure when the soil is liquefied during an earthquake. The results show that liquefaction-induced large settlements of shallow foundation of building decrease to tolerable limits with the increase in the length of columns. For soil profiles, with a relatively thinner liquefiable layer, a certain minimum length of columns (extended in base non liquefiable layer is required to meet the settlement tolerable limits. For soil profiles, with a relatively thicker liquefiable layer, this length should be equal to the thickness of the liquefiable layer from the footing base plus some extension in the base non liquefiable dense layer. In the soil profile with the base liquefiable layer underlying the non liquefiable layer, settlements could not be reduced to the tolerable limits even with columns of relatively larger length which may be critical.

  2. Migration of Co and Cs radionuclides through a loam soil column

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma bin Syed Ahmad; Shimooka, K.

    1990-01-01

    A soil column experiment was conducted to determine the migration of Co and Cs radionuclides through a loam soil. The different migration rates of the radionuclides at low and high concentrations were determined at pH 7. Retardation factor (Rf) both the radionuclides at low and high concentrations were determined by fitting adsorbed concentration distribution equations to observed values. The calculation shows that the Rf1=500 and Rf2=3 for Co at high and low concentrations, respectively. For Cs, the Rf1=600 and Rf2=5 at high and low concentrations, respectively. The results shows that major portions of both the radionuclides were adsorbed onto the soil layer at the top by ion exchange mechanism which resulted in the high retardation factor values. Minor portions had migrated downwards as insoluble cations, pseudocolloids and very fine silt particles resulting in the low retardation factor

  3. Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model

    Directory of Open Access Journals (Sweden)

    Omar Khaleel Ismael Al-Kubaisi

    2018-05-01

    Full Text Available Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite element models have been conducted to evaluate the behavior of a circular footing with different stone column configurations. Moreover, an Artificial Neural Network (ANN model has been generated for predicting these effects. The results showed a reduction in the bending moment, the settlement, and the vertical stresses with the increment of the stone column length, while both the horizontal stress and the shear force were increased. ANN model showed a good relationship between the predicted and the calculated results.

  4. Mobility of heavy metals through granitic soils using mini column infiltration test

    Science.gov (United States)

    Zarime, Nur'Aishah; Yaacob, W. Z. W.

    2014-09-01

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%-63% and 46%-54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50-2.59 and 2.45-2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35-5.85 for BGR and pH 5.32-5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%-0.34% and 0.39%- 0.50% respectively for organic matter test, 17.96 m2/g-21.93 m2/g and 25.76 m2/g-26.83 m2/g respectively for SSA test and 0.79 meq/100g-1.35 meq/100g and 1.31 meq/100g-1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes.

  5. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  6. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  7. Column leaching from a Danish forest soil amended with wood ashes: fate of major and trace elements

    DEFF Research Database (Denmark)

    Maresca, Alberto; Hansen, M.; Ingerslev, M.

    2018-01-01

    Application of wood ashes onto two Danish forest soil horizons (A- and O-horizons) was investigated through a series of column experiments for ash dosages of 3, 9 and 30 Mg ha−1. Developments in the composition of the percolating soil solutions were investigated both in a short- (below 0.5 m3 m−2...

  8. Implications of soil mixing for NAPL source zone remediation: Column studies and modeling of field-scale systems.

    Science.gov (United States)

    Olson, Mitchell R; Sale, Tom C

    2015-01-01

    Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Numerical Simulation Of The Treatment Of Soil Swelling Using Grid Geocell Columns

    Directory of Open Access Journals (Sweden)

    Fattah Mohammed Y.

    2015-06-01

    Full Text Available In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model increase, the axial movement (swelling movement and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.

  10. An elastoplastic homogenization procedure for predicting the settlement of a foundation on a soil reinforced by columns

    OpenAIRE

    ABDELKRIM, Malek; DE BUHAN, Patrick

    2007-01-01

    This paper presents an elastoplastic homogenization method applied to a soil reinforced by regularly distributed columns. According to this method, the composite reinforced soil is regarded, from a macroscopic point of view, as a homogeneous anisotropic continuous medium, the elastic as well as plastic properties of which can be obtained from the solution to an auxiliary problem attached to the reinforced soil representative cell. Based upon an approximate solution to this problem, in which p...

  11. The response of soil biota to phosphate fertilization in grassland columns

    Science.gov (United States)

    Ikoyi, Israel; Winstanley, Henry; Fowler, Andrew; Schmalenberger, Achim

    2017-04-01

    The United Nations has predicted that food production is expected to rise by 50% in the year 2020 to feed the increasing world population. Grasslands play significant roles in food production and occupy about 70% of the world's agricultural land. However, intensive use of inorganic fertilizers often associated with increased food production can lead to poor soil quality and environmental pollution. For instance, excessive phosphorus (P) application can lead to eutrophication in surface waters. Although P plays vital roles in many metabolic processes in plants, its primary source rock phosphate is finite. Consequently, the development of more P efficient agricultural systems is paramount. P cycling within the microbial biomass is essential to the P cycle within the soil with its key pathways for P mobilization and mineralization from various soil pools into plant available forms. In this study, soil columns were setup in a greenhouse using a P deficient Irish soil (P index 1). The columns were planted with Lolium perenne and fertilized with 0, 5, 10 and 20 kg/ha inorganic P representing control, low, medium and high rates respectively alongside a full complement of other nutrients. Each treatment was replicated six times and managed for 14 weeks. Results after 14 weeks showed that the weekly measurements of phosphate at different soil depths identified only traces of P in soil solution for the duration of 14 weeks, even after P application. There was a significant increase in alkaline and acid phosphatase activities with the high P compared to the control but no significant effect on plant shoot and root biomass, abundances of cultivable calcium phosphate-, phytate- and phosphonate-utilizing bacteria upon P fertilization. L. perenne rhizosphere of the highest P treatment had significantly lower abundance of bacterial phoD genes, mycorrhizal hyphal and arbuscular colonization rates compared to the control. Likewise, the abundance of bacterial- and fungal

  12. Mobility of heavy metals through granitic soils using mini column infiltration test

    International Nuclear Information System (INIS)

    Zarime, Nur 'Aishah; Yaacob, W. Z.W.

    2014-01-01

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%–63% and 46%–54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50–2.59 and 2.45–2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35–5.85 for BGR and pH 5.32–5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%–0.34% and 0.39%– 0.50% respectively for organic matter test, 17.96 m 2 /g–21.93 m 2 /g and 25.76 m 2 /g–26.83 m 2 /g respectively for SSA test and 0.79 meq/100g–1.35 meq/100g and 1.31 meq/100g–1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes

  13. Gamma ray transmission for hydraulic conductivity measurement of undisturbed soil columns

    Directory of Open Access Journals (Sweden)

    Anderson Camargo Moreira

    2007-03-01

    Full Text Available This work had the objective to determine the Hydraulic Conductivity K(theta function for different depth levels z, of columns of undisturbed soil, using the gamma ray transmission technique applied to the Sisson method. The results indicated a growing behavior for K(theta and a homogeneous soil density, both in relation to the increase of the depth. The methodology of gamma ray transmission showed satisfactory results on the determination of the hydraulic conductivity in columns of undisturbed soil, besides being very reliable and a nondestructive method.O estudo da condutividade hidráulica para solos não saturados é essencial quando aplicado às situações relacionadas à irrigação, drenagem e transporte de nutrientes no solo, é uma importante propriedade para desenvolvimentos de culturas agrícolas. Este trabalho tem o objetivo de determinar a função Condutividade Hidráulica K(teta, em diferentes níveis z de profundidade, em colunas de solo indeformado, utilizando a transmissão de raios gama aplicada ao método de Sisson. Os resultados indicam um comportamento crescente para K(teta e uma densidade de solo homogênea, ambos em relação ao aumento da profundidade. A metodologia de transmissão de raios gama mostrou resultados bastante satisfatórios na determinação da condutividade hidráulica em colunas de solo indeformado, além de ser muito confiável e não destrutivo.

  14. Transport of sulfadiazine in soil columns — Experiments and modelling approaches

    Science.gov (United States)

    Wehrhan, Anne; Kasteel, Roy; Simunek, Jirka; Groeneweg, Joost; Vereecken, Harry

    2007-01-01

    Antibiotics, such as sulfadiazine, reach agricultural soils directly through manure of grazing livestock or indirectly through the spreading of manure or sewage sludge on the field. Knowledge about the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to the groundwater. Transport of 14C-labelled sulfadiazine was investigated in disturbed soil columns at a constant flow rate of 0.26 cm h - 1 near saturation. Sulfadiazine was applied in different concentrations for either a short or a long pulse duration. Breakthrough curves of sulfadiazine and the non-reactive tracer chloride were measured. At the end of the leaching period the soil concentration profiles were determined. The peak maxima of the breakthrough curves were delayed by a factor of 2 to 5 compared to chloride and the decreasing limbs are characterized by an extended tailing. However, the maximum relative concentrations differed as well as the eluted mass fractions, ranging from 18 to 83% after 500 h of leaching. To identify relevant sorption processes, breakthrough curves of sulfadiazine were fitted with a convective-dispersive transport model, considering different sorption concepts with one, two and three sorption sites. Breakthrough curves can be fitted best with a three-site sorption model, which includes two reversible kinetic and one irreversible sorption site. However, the simulated soil concentration profiles did not match the observations for all of the used models. Despite this incomplete process description, the obtained results have implications for the transport behavior of sulfadiazine in the field. Its leaching may be enhanced if it is frequently applied at higher concentrations.

  15. Remobilization of americium in soil columns under experimental rhizo-spheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, T.; Martin-Garin, A.; Morello, M. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The biogeochemical behaviour of americium in subsurface soils plays a dominant role on the potential migration of this actinide, but is currently poorly known. The identification and understanding of these processes is of major concern for this highly (radio)toxic element and can allow the determination of its impact on the natural media. This research investigates the relevant processes controlling americium biogeochemical speciation in the rhizosphere of an agricultural soil. Lixiviation tests were performed on columns packed with a 2 mm-sieved calcareous soil contaminated with {sup 241}Am (500 Bq.g{sup -1}), under steady-state unsaturated or saturated hydric flow conditions. The columns were percolated with soil solution of varied compositions, containing citrate and/or glucose simulating root exudates in non-sterile conditions. The physico-chemical parameters of the outlet solution (pH, conductivity, major ions, organic acids) were monitored, as well as the microbial activity. Inorganic and organic speciation of {sup 241}Am is supported by geochemical modeling with JChess, using a thermodynamic database based on NEA database and the latest PSI recommendations. The percolation of a solution in equilibrium with the soil released small amount of americium (<5 mBq/cm{sup 3}), as predicted by the high {sup 241}Am K{sub d} values. 10{sup -4} M concentrations of citrate, glucose or both combined did not enhance remobilization either. Poor remobilization was also observed at high glucose concentrations (10{sup -2} M), despite an effective glucose microbial degradation, the production of ligands such as acetate, and important changes in the chemistry of the solution. On the contrary, high concentrations of citrate (10{sup -2} M) released 1000 times more americium, which is in accordance with previous studies. Even greater releases (10000 times) were observed when 10{sup -2} M glucose was added to 10{sup -2} M citrate. The remobilization of americium resulting from the

  16. Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling

    International Nuclear Information System (INIS)

    Abriola, L.M.; Dekker, T.J.; Pennell, K.D.

    1993-01-01

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Rate-limited solubilization and surfactant sorption are represented by a linear driving force expression and a Langmuir isotherm, respectively. The model is implemented in a one-dimensional Galerkin finite element simulator which idealizes the entrapped residual organic as a collection of spherical globules. Soil column data for the solubilization of residual dodecane by an aqueous solution of polyoxyethylene (20) sorbitan monooleate are used to evaluate the conceptual model. Input parameters were obtained, where possible, from independent batch experiments. Calibrated model simulations exhibit good agreement with measured effluent concentrations, supporting the utility of the conceptual modeling approach. Sensitivity analyses explore the influence of surfactant concentration and flushing strategy on NAPL recovery. 45 refs., 6 figs., 3 tabs

  17. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Pallud, C.; Bertolla, F.

    2005-01-01

    Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has...... rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell......-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially...

  18. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  19. Methane Transmission and Oxidation throughout the Soil Column from Three Central Florida Sites

    Science.gov (United States)

    Bond-Lamberty, B. P.; Fansler, S.; Becker, K. E.; Hinkle, C. R.; Bailey, V. L.

    2015-12-01

    When methane (CH4) is generated in anoxic soil sites, it may be subsequently re-oxidized to carbon dioxide (CO2). Understanding the controls on, and magnitudes of, these processes is necessary to accurately represent greenhouse gas production and emission from soils. We used a laboratory incubation to examine the influence of variable conditions on methane transmission and oxidation, and identify critical reaction zones throughout the soil column. Sandy soils were sampled from three different sites at Disney Wilderness Preserve (DWP), Florida, USA: a depression marsh characterized by significant surface organic matter accumulation, a dry pine flatwood site with water intrusion and organic horizon at depth (200+ cm); and an intermediate-drainage site. Contiguous, 30-cm long cores were sampled from N=4 random boreholes at each site, from the surface to the water table (varying from 90 to 240 cm). In the lab, each core was monitored for 50 hours to quantify baseline (pretreatment) gas fluxes before injection with 6 ml CH4 (an amount commensurate with previous field collar measurements) at the base of each core. We then monitored CH4 and CO2 evolution for 100 hours after injection, calculating per-gas and total C evolution. Methane emissions spiked ~10 hours after injection for all cores, peaking at 0.001 μmol/g soil/hr, ~30x larger than pre-injection flux rates. On a C basis, CO2 emissions were orders of magnitude larger, and rose significantly after injection, with elevated rates generally sustained throughout the incubation. Cores from the depression marsh and shallower depths had significantly higher fluxes of both gases. We estimate that 99.1% of the original CH4 injection was oxidized to CO2. These findings suggest either that the methane measured in the field at DWP originates from within a few centimeters of the surface, or that it is produced in much larger quantities deeper in the profile before most is subsequently oxidized. This highlights the need for

  20. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    NARCIS (Netherlands)

    Moreira, Paulo H S; Van Genuchten, Martinus Th; Orlande, Helcio R B; Cotta, Renato M.

    2016-01-01

    In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical

  1. Leaching of Uranium from pit-water application to soil columns. Effect of vegetation, phosphate fertilizer and amendment

    International Nuclear Information System (INIS)

    Bonetto, Juan P.

    2006-01-01

    Pit-water accumulated in the San Rafael uranium (U) Mining and Processing Facility (CMFSR) poses a risk of contaminant dispersion and hinders mining labours in the flooded pits. Soil application of the pit-water may be a way of eliminating it through evapotranspiration, but it requires minimization of U migration to the subsurface water courses in order to be considered an adequate disposal practice. The pH > 7 and carbonate content of the soil may induce the formation of uranyl-carbonate complexes, which have high mobility in soils. Furthermore, its physical and chemical characteristics suggest low metal retention capabilities. A 30 cm long soil column experiment was carried out irrigating pit-water on CMFSR soil with the aim of knowing its U retention capacity, as well as the effect of a phosphate fertilizer, an organic amendment and of vegetation cover on such retention. It was concluded that soil alone was able to retain 60 % of the applied U mass in its first 3 centimeters, leaching 0,6 %. Plant presence enhanced U mobility. However, reduced leachate volume caused by higher evapotranspiration rates balanced this mobility, producing a decrease in the mass of leached U. Phosphate fertilizer incorporated to the soil increased U retention in tits upper centimeters. It also increased vegetation growth, and, accordingly, evapotranspiration in the columns. On the contrary, the use of ground plant material as soil amendment increased U migration. (author) [es

  2. Effect of grass cover on water and pesticide transport through undisturbed soil columns, comparison with field study (Morcille watershed, Beaujolais)

    Energy Technology Data Exchange (ETDEWEB)

    Dousset, S., E-mail: sylvie.dousset@limos.uhp-nancy.f [Nancy-Universite, CNRS, LIMOS, BP 70239, 54506 Vandoeuvre-les-Nancy (France); Thevenot, M. [Universite de Lille 1, CNRS, Geosystemes, 59655 Villeneuve d' Ascq (France); Schrack, D. [INRA-SAD ASTER, 88500 Mirecourt (France); AFSSA, Laboratoire d' Etudes et de Recherches en Hydrologie, 54000 Nancy (France); Gouy, V.; Carluer, N. [UR Milieux Aquatiques, Ecologie et Pollution, Cemagref, 69336 Lyon Cedex (France)

    2010-07-15

    The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone. - Grass-covered soils reduce the amount of pesticide leaching, due mainly to their higher organic matter contents, thereby reducing the risk of groundwater contamination.

  3. Effect of grass cover on water and pesticide transport through undisturbed soil columns, comparison with field study (Morcille watershed, Beaujolais)

    International Nuclear Information System (INIS)

    Dousset, S.; Thevenot, M.; Schrack, D.; Gouy, V.; Carluer, N.

    2010-01-01

    The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone. - Grass-covered soils reduce the amount of pesticide leaching, due mainly to their higher organic matter contents, thereby reducing the risk of groundwater contamination.

  4. Biological nitrogen removal using soil columns for the reuse of reclaimed water: Performance and microbial community analysis.

    Science.gov (United States)

    Sun, Jiaji; Chen, Lei; Rene, Eldon R; Hu, Qian; Ma, Weifang; Shen, Zhenyao

    2018-07-01

    The main aim of this study was to remove nitrogen compounds from reclaimed water and reuse the water in semi-arid riverine lake systems. In order to assess the nitrogen removal efficiencies in different natural environments, laboratory scale column experiments were performed using sterilized soil (SS), silty clay (SC), soil with submerged plant (SSP) and biochar amendment soil (BCS). The initial concentration of NO 3 - -N and the flow rate was maintained constant at 15 mg L -1 and 0.6 ± 0.1 m d -1 , respectively. Among the tested columns, both SSP and BCS were able to achieve NO 3 - -N levels <0.2 mg L -1 in the treated reclaimed water. The results from bacterial community structure analysis, using 454 pyrosequencing of 16s rRNA genes, showed that the dominant denitrifier was Bacillus at the genera level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Examination of Technetium Transport Through Soils Under Contrasting Redox Conditions: Batch and Column Work

    Science.gov (United States)

    Dozier, R.; Montgomery, D.; Wylie, E. M.; Dogan, M.; Moysey, S. M.; Powell, B. A.; Martinez, N. E.

    2015-12-01

    Experiments were performed under various reducing conditions to evaluate the transport behavior of technetium-99 (99Tc) in the presence of sandy clay loam soil from the Savannah River Site (SRS) and goethite, magnetite, and iron sulfide, which were selected for their increasing reducing potential. The experiments were conducted to investigate how redox reaction equilibria and rates affect the overall mobility of 99Tc as it transitions between the mobile Tc(VII) and immobile Tc(IV). Under oxygen-rich conditions, batch sorption isotherms measured for TcO4- across the concentration range 0.5 to 50 μg/L were linear with distribution coefficients (Kd) of 0.78 mL/g or lower, with decreasing sorption for goethite, magnetite, and iron sulfide, respectively. Addition of Na2S resulted in a marked increase in apparent 99Tc sorption to the solid phase, with Kd of 43 mL/g, 35 mL/g, and 29 mL/g, following the same mineral trend as previously. The increased Kd values are possibly due to reduction of Tc(VII) to Tc(IV), resulting in the formation of TcO2(s). SRS soil batch sorption isotherms measured for TcO4- across the same concentration range were also linear, with Kd of 0.7 mL/g for unadjusted pH, 5.1 mL/g for pH of around 6, and 6.7 mL/g for pH of around 4. Kinetic batch sorption tests showed less than 10% 99Tc sorption in an oxidizing environment and greater than 95% sorption in a reducing environment, with both reactions occurring on the order of minutes. In contrast, desorption experiments initiated by transferring the samples from a reducing environment (0.1% H2(g)/99.9% N2(g)) to atmospheric conditions resulted in a slow desorption step on the order of days. Column experiments conducted with the SRS sands indicate a retardation factor of 1.17 for 99Tc under oxygen rich conditions. Additional column experiments are being conducted to evaluate 99Tc transport dependencies on transitions between oxygen rich and poor conditions.

  6. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    Science.gov (United States)

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( leaching with cover crops compared with no cover but showed only small and periodically significant ( leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Zaheer

    2017-01-01

    Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.

  8. A Low-Cost Automated Test Column to Estimate Soil Hydraulic Characteristics in Unsaturated Porous Media

    Directory of Open Access Journals (Sweden)

    J. Salas-García

    2017-01-01

    Full Text Available The estimation of soil hydraulic properties in the vadose zone has some issues, such as accuracy, acquisition time, and cost. In this study, an inexpensive automated test column (ATC was developed to characterize water flow in a homogeneous unsaturated porous medium by the simultaneous estimation of three hydraulic state variables: water content, matric potential, and water flow rates. The ATC includes five electrical resistance probes, two minitensiometers, and a drop counter, which were tested with infiltration tests using the Hydrus-1D model. The results show that calibrations of electrical resistance probes reasonably match with similar studies, and the maximum error of calibration of the tensiometers was 4.6% with respect to the full range. Data measured by the drop counter installed in the ATC exhibited a high consistency with the electrical resistance probes, which provides an independent verification of the model and indicates an evaluation of the water mass balance. The study results show good performance of the model against the infiltration tests, which suggests a robustness of the methodology developed in this study. An extension to the applicability of this system could be successfully used in low-budget projects in large-scale field experiments, which may be correlated with resistivity changes.

  9. Root induced changes of effective 1D hydraulic properties in a soil column.

    Science.gov (United States)

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  10. Effect of grass cover on water and pesticide transport through undisturbed soil columns, comparison with field study (Morcille watershed, Beaujolais).

    Science.gov (United States)

    Dousset, S; Thévenot, M; Schrack, D; Gouy, V; Carluer, N

    2010-07-01

    The purpose of this work is to assess the effectiveness of two grass covers (buffer zone and grass-covered inter-row), to reduce pesticide leaching, and subsequently to preserve groundwater quality. Lower amounts of pesticides leached through grass-cover soil columns (2.7-24.3% of the initial amount) than the bare soil columns (8.0-55.1%), in correspondence with their sorption coefficients. Diuron was recovered in higher amounts in leachates (8.9-32.2%) than tebuconazole (2.7-12.9%), in agreement with their sorption coefficients. However, despite having a sorption coefficient similar to that of diuron, more procymidone was recovered in the leachates (10.2-55.1%), probably due to its facilitated transport by dissolved organic matter. Thus even in this very permeable soil, higher organic matter contents associated with grass-cover reduce the amount of pesticide leaching and limit the risk of groundwater contamination by the pesticides. The results of diuron and tebuconazole transfer through undisturbed buffer zone soil columns are in agreement with field observations on the buffer zone. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Feedback of the behaviour of a silo founded on a compressible soil improved by floating stone columns

    Directory of Open Access Journals (Sweden)

    Bahar Ramdane

    2018-01-01

    Full Text Available The coastal city of Bejaia, located 250 kilometers east of the capital Algiers, Algeria, is characterized by soft soils. The residual grounds encountered on the first 40 meters usually have a low bearing capacity, high compressibility, insufficient strength, and subject to the risk of liquefaction. These unfavorable soil conditions require deep foundations or soil improvement. Since late 1990s, stone columns technique is used to improve the weak soils of the harbor area of the city. A shallow raft foundation on soft soil improved by stone columns was designed for a heavy storage steel silo and two towers. The improvement of 18m depth have not reached the substratum located at 39m depth. The stresses transmitted to the service limit state are variable 73 to 376 kPa. A rigorous and ongoing monitoring of the evolution of loads in the silo and settlements of the soil was carried out during 1400 days that is from the construction of foundations in 2008 to 2012. After the loading of the silo in 2010, settlement occurred affecting the stability of the towers due to excessive differential settlements. Consequently, the towers were inclined and damaged the transporter. This paper presents and discusses the experience feedback of the behavior of these structures. Numerical calculations by finite elements have been carried and the results are compared with the measurements.

  12. 21 CFR 801.150 - Medical devices; processing, labeling, or repacking.

    Science.gov (United States)

    2010-04-01

    ... originally processed or packed, shall be exempt, during the time of introduction into and movement in... otherwise accounting for the number of units in each shipment to insure that the number of units shipped is... repacking. 801.150 Section 801.150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  13. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  14. Nitrogen effects on mobility and plant uptake of heavy metals in sewage sludge applied to soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, P.M.; Mortvedt, J.J.

    1976-01-01

    Cation movement in soil under leaching conditions has been associated with N fertilization. Therefore, this study was conducted to determine whether the mobility of some heavy metals applied in the inorganic form or in sewage sludge is enhanced in the presence of various sources of N. Columns of heavy metal-amended soil in plastic well casings were cropped with tall fescue (Festuca arundinacea Schreb.) and leached three times with deionized H/sub 2/O. Heavy metal concentrations above check values were not detected in leachates from any column. Mobility of the heavy metals from the inorganic sources was slightly greater than that from the sewage sludge. Nitrogen fertilization did not affect the downward movement of Zn, Cd, Cr, Pb, or Ni in soil but enhanced uptake of these metals by fescue because of increased growth. These results suggest that heavy metal contamination of ground water is not likely in heavy textured soils when sewage sludge applications are accompanied by N fertilization, at least for short periods of time. 11 references, 1 figure, 4 tables.

  15. Soft soil strengthening by stone columns: case of the embankment under the bridge “Moulay Youssef” (Rabat/Salé

    Directory of Open Access Journals (Sweden)

    Nehab Noura

    2014-04-01

    Full Text Available The soil is generally a heterogeneous material presenting very variable characteristics. In a general way, the main problems related to soils are: low bearing capacity, deformations under static or dynamic loads, large displacements and large settlements of soft soil where the soil moves according to a fixed ground water table. The development of soil mechanics and geotechnical engineering has led to the amelioration of a wide range of soil improvement techniques. These techniques consist in modifying the characteristics of the ground by physical action or by incorporating columnar inclusions made of highly compacted gravel or granular material into the original soil. Stone column is one of the soft ground improvement methods, applicable to a wide range of soil strata and an economical method of support in compressible and cohesive soils. However, there are many difficulties in quantitative analysis of soil column interaction due to the fact that bearing capacity and consolidation behavior of stone column-mat foundation system is affected by various parameters. In the present study, mechanism and various parameters of stone column behavior are investigated by loading tests. Also, tests results are compared to the finite element numerical modeling “Plaxis 2D” (case study: the embankment under the bridge “Moulay Youssef, Rabat/Salé”.

  16. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  17. Transporte do paclobutrazol em colunas de solos Paclobutrazol transport in soil columns

    Directory of Open Access Journals (Sweden)

    Mônica Lúcia Milfont

    2008-10-01

    reproductive capacity of the plant. This growth regulator remains active in the soil for several years being detrimental to subsequent tillage and contamination of groundwater through leaching. The objective of this work was to study the mechanisms involved in the transport and sorption of PBZ in an Ultisol and a Vertisol, both of the São Francisco Valley, Brazil. Column breakthrough experiments were performed with a water tracer (Bromide and with PBZ at 0.4 e 1.6 cm³.min-1 in the two soils. Hydrodispersive parameters of both soils were obtained by fitting the tracer breakthrough curves (BTC with the convection-dispersion (CDE model, whereas the parameters of PBZ reactive transport were obtained with the CDE-2 sorption sites model, through the CXTFIT code. PBZ presents a lower retardation factor in the Vertisol than in the Ultisol. The water flow was found to strongly affect PBZ mass balance, mainly because of sorption/desorption hysteresis, suggesting partial irreversible sorption of the chemical. The two sites model fitted well the tracer and PBZ breakthrough curves. The results showed that PBZ transport is strongly influenced by its interactions with the soil matrix through rate-limited sorption. The determined transport parameters indicate that PBZ applied to the two tropical soils cultivated with Mango presents an important leaching potential and contamination risk of the groundwater of the São Francisco Valley.

  18. ACCUMULATION OF POLY-B-HYDROXYBUTYRATE IN A METHANE- ENRICHED, HALOGENATED, HYDROCARBON-DEGRADING SOIL COLUMN: IMPLICATIONS FOR MICROBIAL COMMUNITY STRUCTURE AND NUTRITIONAL STATUS

    Science.gov (United States)

    The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be sign...

  19. Water and dissolved carbon transport in an eroding soil landscape using column experiments

    DEFF Research Database (Denmark)

    Rieckh, Helene; Gerke, Horst; Glæsner, Nadia

    2014-01-01

    In the hummocky ground moraine soil landscape, a spatial continuum of more or less eroded soils developed from till under intensive agricultural cultivation. Water flow and solute transport are affected by the variable soil structural and pedological developments, which are posing a challenge...... for flux estimation. The objective of this study was to investigate transport of water, dissolved organic (DOC), and particulate carbon (PC) through soil profiles of an eroded Haplic Luvisol and a heavily eroded Haplic Regosol. We studied 5 soil horizons in three replicates each: Ap (0-20 cm) and E (20...... boundary. Breakthrough curves for a pre-applied tracer (Br-) on the soil surface and a tracer applied with irrigation water (3H2O) were modeled analytically using CXTFIT. The heterogeneity of the Luvisol horizons was generally higher than that of the Regosol horizons, which relates to the higher...

  20. Measuring and modeling three-dimensional water uptake of a growing faba bean (Vicia faba) within a soil column

    Science.gov (United States)

    Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry

    2014-05-01

    A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of

  1. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha -1 and followed with four irrigation events: 3.5-h period at 10 mm h -1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO 3 -N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO 3 -N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly

  2. Quantifying 12/13CH4 migration and fate following sub-surface release to an agricultural soil

    International Nuclear Information System (INIS)

    Shaw, G.; Atkinson, B.; Meredith, W.; Snape, C.; Steven, M.; Hoch, A.; Lever, D.

    2014-01-01

    Following gas generation in a Geological Disposal Facility (GDF), 14 C-containing gases could migrate through the geosphere, eventually diffusing into soils at the Earth's surface. This paper reports summary results from laboratory and field experiments to obtain information on the probable rates of a) diffusive transport and b) oxidation of 12/13 CH 4 (as a surrogate for 14 CH 4) in a typical agricultural soil in the UK. Rates of CH 4 oxidation were generally low in the field and undisturbed soil columns, though a re-packed column of homogenised topsoil oxidised ambient atmospheric CH 4 20× faster than an undisturbed soil column. In contrast to low observed rates of CH 4 oxidation, the effective diffusion of CH 4 through the soil was rapid. Isotopically labelled CH 4 injected at a depth of 45 cm in the field diffused to the surface and exited the soil over a time period ranging from 8 to 24 h. The rate of CH 4 diffusion through the soil was increased by the presence of ryegrass roots which increased soil porosity and decreased water content. δ 13 C values for laboratory column soils after labelled CH 4 injection experiments showed no sign of residual 13 C, despite the extremely high δ 13 C values of the injected 12/13 CH 4 . If laboratory observations are confirmed by measurements in field samples it can be concluded that the majority of 14 CH 4 from a GDF which enters a soil with low methanotrophic activity will be lost to the free atmosphere after diffusing rapidly through the soil column

  3. Transport of sewage molecular markers through saturated soil column and effect of easily biodegradable primary substrate on their removal.

    Science.gov (United States)

    Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong

    2015-11-01

    Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microbial community changes at a terrestrial volcanic CO2 vent induced by soil acidification and anaerobic microhabitats within the soil column.

    Science.gov (United States)

    Frerichs, Janin; Oppermann, Birte I; Gwosdz, Simone; Möller, Ingo; Herrmann, Martina; Krüger, Martin

    2013-04-01

    CO2 capture and storage (CCS) in deep geological formations is one option currently evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible CO2 leakage from a storage site into surface environments has to be evaluated. During such a hypothetical leakage event, the CO2 migrates upwards along fractures entering surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a natural analogue site at the Laacher See was chosen for an ecosystem study on the effects of high CO2 concentrations on soil chemistry and microbiology. The microbial activities revealed differences in their spatial distribution and temporal variability for CO2 -rich and reference soils. Furthermore, the abundance of several functional and group-specific gene markers revealed further differences, for example, a decrease in Geobacteraceae and an increase in sulphate-reducing prokaryotes in the vent centre. Molecular-biological fingerprinting of the microbial communities with DGGE indicated a shift in the environmental conditions within the Laacher See soil column leading to anaerobic and potentially acidic microenvironments. Furthermore, the distribution and phylogenetic affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidizing Archaea and the biomarker analysis revealed a predominance of Thaumarchaeota as possible indicator organisms for elevated CO2 concentrations in soils. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  6. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales; Transfert de solutes reactifs dans la zone non-saturee des sols a differentes echelles d'observation

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G

    2006-10-15

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10{sup -4} mol.L{sup -1}, cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10{sup -6} mol.L{sup -1}, cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements

  7. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales; Transfert de solutes reactifs dans la zone non-saturee des sols a differentes echelles d'observation

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G

    2006-10-15

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10{sup -4} mol.L{sup -1}, cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10{sup -6} mol.L{sup -1}, cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements

  8. Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments.

    Science.gov (United States)

    Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian

    2016-03-01

    The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.

  9. Flow of microemulsion through soil columns contaminated with asphaltic residue; Fluxo de microemulsoes atraves do solo contaminado com residuos asfalticos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia C.K.; Oliveira, Jose F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Oliveira, Roberto C.G.; Gonzalez, Gazpar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    Nowadays, soil contamination with nonaqueous phase liquids (NAPLs) such as petroleum hydrocarbons is a major environmental problem. Significant efforts have been devoted to the development of processes to remediate sites contaminated with NAPLs. Unfortunately, most of the developed processes proved to be inefficient to remove the organic heavy fraction present in the NAPLs. Nevertheless, in our preliminary bench scale tests it was observed that, due to their high solubilization capacity and stability, microemulsions are able to remove organic heavy fractions like asphaltenes and resins, typically present in crude oils. The present work was dimensioned to evaluate, under up-flow condition, the performance of different microemulsions specially designed to remove asphaltenes fractions from soils using a column test set-up. The contaminant residual concentration was quantified by UV spectroscopy and the microemulsion efficiency determined using mass balance. The results showed that the microemulsions tested have a high capacity for removing asphaltenes fractions from contaminated soils. It was also observed that the predominant removal mechanism, solubilization or mobilization, depends essentially on the microemulsion's chemical formulation. Finally it was verified that microemulsion's formulations based on natural solvents compounds are also efficient for removing asphaltic residues. (author)

  10. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils.

    Science.gov (United States)

    Hogendoom, E A; Huls, R; Dijkman, E; Hoogerbrugge, R

    2001-12-14

    A screening method has been developed for the determination of acidic pesticides in various types of soils. Methodology is based on the use of microwave assisted solvent extraction (MASE) for fast and efficient extraction of the analytes from the soils and coupled-column reversed-phase liquid chromatography (LC-LC) with UV detection at 228 nm for the instrumental analysis of uncleaned extracts. Four types of soils, including sand, clay and peat, with a range in organic matter content of 0.3-13% and ten acidic pesticides of different chemical families (bentazone, bromoxynil, metsulfuron-methyl, 2,4-D, MCPA, MCPP, 2,4-DP, 2,4,5-T, 2,4-DB and MCPB) were selected as matrices and analytes, respectively. The method developed included the selection of suitable MASE and LC-LC conditions. The latter consisted of the selection of a 5-microm GFF-II internal surface reversed-phase (ISRP, Pinkerton) analytical column (50 x 4.6 mm, I.D.) as the first column in the RAM-C18 configuration in combination with an optimised linear gradient elution including on-line cleanup of sample extracts and reconditioning of the columns. The method was validated with the analysis of freshly spiked samples and samples with aged residues (120 days). The four types of soils were spiked with the ten acidic pesticides at levels between 20 and 200 microg/kg. Weighted regression of the recovery data showed for most analyte-matrix combinations, including freshly spiked samples and aged residues, that the method provides overall recoveries between 60 and 90% with relative standard deviations of the intra-laboratory reproducibility's between 5 and 25%; LODs were obtained between 5 and 50 microg/kg. Evaluation of the data set with principal component analysis revealed that the parameters (i) increase of organic matter content of the soil samples and (ii) aged residues negatively effect the recovery of the analytes.

  11. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    Science.gov (United States)

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  12. Modeling Stone Columns.

    Science.gov (United States)

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  13. Dissipation and leaching of 14C-monocrotophos in soil columns

    International Nuclear Information System (INIS)

    Vig, K.; Singh, D.K.; Agarwal, H.C.

    2001-01-01

    Dissipation and leaching of 14 C-monocrotophos was studied in the field. Two sets of PVC cylinders were used - one set received only 14 C monocrotophos and the other received 14 C-monocrotophos along with dimethoate, deltamethrin, endosulfan, cypermethrin and 1.06 mg unlabelled monocrotophos. Both setups showed a similar pattern of dissipation with a half-life of 277.2 days. Leaching of monocrotophos was observed into the 30cm soil layer. (author)

  14. Geophysical surveys combined with laboratory soil column experiments to identify and explore risk areas for soil and water pollution in feedlots

    Science.gov (United States)

    Espejo-Pérez, Antonio Jesus; Sainato, Claudia Mabel; Jairo Márquez-Molina, John; Giráldez, Juan Vicente; Vanderlinden, Karl

    2014-05-01

    Changes of land use without a correct planning may produce its deterioration with their social, economical and environmental irreversible consequences over short to medium time range. In Argentina, the expansion of soybean fields induced a reduction of the area of pastures dedicated to stockbreeding. As cattle activity is being progressively concentrated on small pens, at feedlots farms, problems of soil and water pollution, mainly by nitrate, have been detected. The characterization of the spatial and temporal variability of soil water content is very important because the mostly advective transport of solutes. To avoid intensive soil samplings, very expensive, one has to recur to geophysical exploration methods. The objective of this work was to identify risk areas within a feedlot of the NW zone of Buenos Aires Province, in Argentina through geophysical methods. The surveys were carried out with an electromagnetic induction profiler EMI-400 (GSSI) and a Time domain Reflectometry (TDR) survey of depth 0-0.10 m with soil sampling and measurement of moisture content with gravimetric method (0-1.0 m). Several trenches were dug inside the pens and also at a test site, where texture, apparent density, saturated hydraulic conductivity (Ks), electrical conductivity of the saturation paste extract and organic matter content (OM) were measured. The water retention curves for these soils were also determined. At one of the pens undisturbed soil columns were extracted at 3 locations. Laboratory analysis for 0-1.0 m indicated that soil texture was classified as sandy loam, average organic matter content (OM) was greater than 2.3% with low values of apparent density in the first 10 cm. The range of spatial dependence of data suggested that the number of soil samples could be reduced. Soil apparent electrical conductivity (ECa) and soil moisture were well correlated and indicated a clear spatial pattern in the corrals. TDR performance was acceptable to identify the spatial

  15. Measuring and modeling of a three-dimensional tracer transport in a planted soil column

    Science.gov (United States)

    Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.

    2013-12-01

    Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for

  16. Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis.

    Science.gov (United States)

    Berger, Torsten W; Muras, Alexander

    Release of stored sulfur may delay the recovery of soil pH from Acid Rain. It is hypothesized that analyzing the micro-spatial heterogeneity of soil columns downhill of a beech stem enables predictions of soil recovery as a function of historic acid loads and time. We demonstrated in a very simplified approach, how these two different factors may be untangled from each other using synthetic data. Thereafter, we evaluated the stated hypothesis based upon chemical soil data with increasing distance from the stem of beech trees. It is predicted that the top soil will recover from acid deposition, as already recorded in the infiltration zone of stemflow near the base of the stem. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed.

  17. Dissolution of hardened wood ash in forest soils. Studies in a column experiment

    International Nuclear Information System (INIS)

    Eriksson, Jan

    1996-01-01

    Dissolution of hardened and crushed ashes was studied in a column experiment during leaching with artificial rain water corresponding to 5 year-precipitations. The ashes studied were a CFB ash from Perstorp and a bottom ash from Ljungby that were added in amounts corresponding to 4 tonnes per hectare. Assuming that the studied ashes are representative and that the results can be transferred to field conditions, the most important conclusions that can be drawn are summarized in the following way: Hardened and crushed ashes are broken down relatively slowly, which particularly applies to the coarse fraction. The fine fraction of the Perstorp ashes has a good liming effect at the same time as the risk for large pH-increases appears to be small. As regards the macro-nutrients Ca and K (not the Ljungby ashes), the amounts released are probably sufficient from a forest vitalization viewpoint. As regards Mg and P, this is less certain. The heavy metals appear to be released relatively slowly and most of them are bound in non-exchangeable form in the mor layer. The exception is Cd that tends to be absorbed in the mor layer to a minor extent but which, on the other hand, is not released from the ashes in any greater amounts. The greatest risk for increased concentrations of soluble heavy metals appears to be the mobilization of part of the mor layer's reserve as a result of the salt effect of the ashes. However, this is a temporary effect. 17 refs, 18 figs, 6 tabs Figs and tabs with text in English

  18. Influence of packaging on the quality of cold-stored grapes packed into boxes for later repacking

    Science.gov (United States)

    A two-year study was conducted to examine various commercial practices associated with the cold storage of table grapes that are to be later re-packed for final shipment to provide information on the impact on fruit quality. Variables examined included the use of box types with vent areas ranging f...

  19. Aerobic biotransformation of N-nitrosodimethylamine and N-nitrodimethylamine in methane and benzene amended soil columns

    Science.gov (United States)

    Weidhaas, Jennifer; Dupont, R. Ryan

    2013-07-01

    Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23 μg (mg cells)- 1) and methane (0.14 and 8.4 μg (mg cells)- 1) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1 × 10- 2 ± 1.7 × 10- 3 d- 1 and 6.5 × 10- 1 ± 7.1 × 10- 1 d- 1 for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).

  20. Repacking of Cobalt 60 spent sources in the central interim storage

    International Nuclear Information System (INIS)

    Zeleznik, N.

    2003-01-01

    After the transfer of the responsibility for the management of the Central interim storage for waste from small producers, located at the reactor centre in Brinje near Ljubljana, Slovenia, the national Agency for radwaste management (ARAO) started with most urgent activities to improve the utilization of the storage facility. One of the main tasks has also been the rearrangement of the already stored radioactive waste in order to reduce volume of the waste and to collect same radioisotopes in the containers. The latest campaign, performed in 2002/2003, was repacking of all Co-60 spent sealed sources in the storage facility and also at the producer's premises which were after conditioning put into two drums with concrete matrix and stored back to the Central interim storage. The preparation works together with the implementation are described in the paper. (author)

  1. Exposure to chrysotile asbestos associated with unpacking and repacking boxes of automobile brake pads and shoes.

    Science.gov (United States)

    Madl, A K; Scott, L L; Murbach, D M; Fehling, K A; Finley, B L; Paustenbach, D J

    2008-08-01

    Industrial hygiene surveys and epidemiologic studies of auto mechanics have shown that these workers are not at an increased risk of asbestos-related disease; however, concerns continue to be raised regarding asbestos exposure from asbestos-containing brakes. Handling new asbestos-containing brake components has recently been suggested as a potential source of asbestos exposure. A simulation study involving the unpacking and repacking of 105 boxes of brakes (for vehicles ca. 1946-80), including 62 boxes of brake pads and 43 boxes of brake shoes, was conducted to examine how this activity might contribute to both short-term and 8-h time-weighted average exposures to asbestos. Breathing zone samples on the lapel of a volunteer worker (n = 80) and area samples at bystander (e.g., 1.5 m from worker) (n = 56), remote area (n = 26) and ambient (n = 10) locations collected during the unpacking and repacking of boxes of asbestos-containing brakes were analyzed by phase contrast microscopy and transmission electron microscopy. Exposure to airborne asbestos was characterized for a variety of parameters including the number of boxes handled, brake type (i.e. pads versus shoes) and the distance from the activity (i.e. worker, bystander and remote area). This study also evaluated the fiber size and morphology distribution according to the International Organization for Standardization analytical method for asbestos. It was observed that (i) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (ii) handling boxes of brake pads resulted in higher worker asbestos exposures compared to handling boxes of brake shoes, (iii) cleanup and clothes-handling tasks produced less airborne asbestos than handling boxes of brakes and (iv) fiber size and morphology analysis showed that while the majority of fibers were free (e.g. not associated with a cluster or matrix), 20 microm length) considered to pose the greatest risk of asbestos-related disease. It

  2. Combined Study of Titanium Dioxide Nanoparticle Transport and Toxicity on Microbial Nitrifying Communities under Single and Repeated Exposures in Soil Columns.

    Science.gov (United States)

    Simonin, Marie; Martins, Jean M F; Uzu, Gaëlle; Vince, Erwann; Richaume, Agnès

    2016-10-04

    Soils are exposed to nanoparticles (NPs) as a result of their increasing use in many commercial products. Adverse effects of NPs on soil microorganisms have been reported in several ecotoxicological studies using microcosms. Although repeated exposures are more likely to occur in soils, most of these previous studies were performed as a single exposure to NPs. Contrary to single contamination, the study of multiple NP contaminations in soils requires the use of specialized setups. Using a soil column experiment, we compared the influence of single and repeated exposures (one, two, or three exposures that resulted in the same final concentration applied) on the transport of titanium dioxide (TiO 2 ) NPs through soil and the effect of these different exposure scenarios on the abundance and activity of soil nitrifying microbial communities after a 2 month incubation. The transport of TiO 2 NPs was very limited under both single and repeated exposures and was highest for the lowest concentration injected during the first application. Significant decreases in nitrification activity and ammonia-oxidizing archaea and bacteria populations were observed only for the repeated exposure scenario (three TiO 2 NP contaminations). These results suggest that, under repeated exposures, the transport of TiO 2 NPs to deep soil layers and groundwater is limited and that a chronic contamination is more harmful for the soil microbiological functioning than a single exposure.

  3. Leaching of radiostrontium in undisturbed columns of calcareous alluvial soil as affected by level of activity applied and rate of high calcium water of Tigris river

    International Nuclear Information System (INIS)

    Fahad, A.A.; Razaq, I.B.; Ali, A.W.

    1986-01-01

    Leaching of 85 Sr in calcareous alluvial medium textured soil was undertaken for 126 days. Radiostrontium in three levels of 4.62(L1), 9.25(L2), and 18.50(L3) MBq column -1 was applied to undisturbed soil columns, 110cm long and 12cm inner diameter. Irrigation water of Tigris river was used as a leaching solution supplied automatically in 1.4, 2.0, and 3.0cm day -1 by rain simulator systems. Gamma radiation along the soil columns was scanned periodically during the course of leaching. Leaching of Sr from the surface layer was in two stages. The first stage covered the first 22 days and the second included the following 104 days. Strontium retained (y) as a function of time (x) fitted reasonably well (r>0.96) to the equations y=a+mlnx and lny=a+mx for the first and the second stage, respectively. Tigris river irrigation water was found as effective as the dilute Ca solution (proposed by some investigators) in displacing Sr. The leaching with 3.0cm day -1 for 126 days resulted in 23, 23, and 21 per cent of total Sr remaining in the upper 5 cm of soil columns under L1, L2 and L3, respectively. However, the area under the distribution curves followed the ratio 1.0:2.4:3.7 under L1, L2, and L3, respectively. The pattern of Sr distribution in calcareous alluvial soil depended not only on the rate and amount of water application but also on the level of Sr applied. Although the soil columns were leached with 378 cm of water for 126 days, the Sr front did not pass the 30 cm depth. This finding indicates the high retention of this soil for Sr and the potential hazard of radiostrontium arising from its existence in the layer of maximum root density. (author). 18 refs., 2 figures, 2 tables

  4. Effects of the silica nanoparticles (NPSiO2 on the stabilization and transport of hazardous nanoparticle suspensions into landfill soil columns

    Directory of Open Access Journals (Sweden)

    Elizabeth Mendes de Oliveira

    Full Text Available Abstract This study evaluates the stability and transport behaviors of hazardous nanoparticles into soil landfills using experimental procedures to simulate the effects of natural silica nanoparticle suspensions during their percolation into the soil layers of municipal waste landfills. For this, we prepared stabilized suspensions of nanoparticle oxides containing silicon (NPSiO2, titanium (NPTiO2, copper (NPCuO and zinc (NPZnO, which are recognized as hazardous to the environment, and we conducted leaching experiments within the soil column by simulating landfills layers and simulating the capture and attenuation of nanomaterials into municipal waste landfills. The results demonstrated that the presence of NPSiO2 in suspensions increases the stable concentrations of copper, zinc and titanium oxides and strongly decreases soil layer effectiveness. In contrast, NPZnO improves effectiveness due to its ability to promote agglomeration and setting conditions, allowing further complexation.

  5. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    Science.gov (United States)

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  6. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    Science.gov (United States)

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of natural attenuation, bioventing, bioaugmentation and bioaugmentation-bioventing techniques, for the biodegradation of diesel in a sandy soil, through column experiments

    International Nuclear Information System (INIS)

    Muskus Morales, Angelica Maria; Santoyo Munoz, Claudia; Plata Quintero, Luijesmarth Silvia

    2013-01-01

    The present study was developed within an inter-institutional agreement between the Universidad Pontificia Bolivariana, UPB-BBGA and the Colombian Petroleum Institute-ICP, in order to provide a solution to an environmental problem that occurs in areas where hydrocarbons are handled and where sandy soils have been found to be contaminated with diesel fuel with concentrations up to 6% at a maximum depth of 80 cm. For this study, the soil samples were artificially contaminated with diesel fuel in order to evaluate Natural Attenuation, Bioventing, Bioaugmentation and Bioaugmentation-Bioventing soil remediation techniques through the use of column experiments. The design parameters, column dimensions, inflow, diesel concentration, dissolved oxygen, bacterial growth, and monitoring was defined. Bioaugmentation was performed inoculating a bacterial consortium produced by the ICP. The experimental setup was assembled in triplicate and was monitored through a period of four months. The experimental results showed that Bioventing technique was the most effective, reaching up to 97% diesel removal from the contaminated soil; with the Bioaugmentation - Bioventing, diesel fuel removal percentage was 75%, and the Natural Attenuation and Bioaugmentation techniques resulted in diesel fuel removal percentages not greater than 48%. This study showed that the microbial consortium evaluated and provided by the Colombian Petroleum Institute proved to be not efficient for potentializing bioremediation processes of sandy soils contaminated with diesel fuel.

  8. Simultaneous determination of iodide and iodate in soil solution samples by HPLC with electrochemical detection and post-column reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, Aomori 039-3212 (Japan); Tsukada, Hirofumi [Department of Radioecology, Institute for Environmental Sciences, Aomori 039-3212 (Japan); Institute of Environmental Radioactivity, Fukushima University, Fukushima 960-1196 (Japan)

    2014-07-01

    Iodine-129 (half-life 1.6 x 10{sup 7} y) discharged into the atmosphere from nuclear facilities (e.g., a nuclear fuel reprocessing plant) is partly deposited on land and introduced into soil. Stable iodine ({sup 127}I) can be used as a natural analogue to predict the long-term behavior of {sup 129}I in the terrestrial environment. Iodine in soil mainly exists as I{sup -}, IO{sub 3}{sup -}, and organic iodine. Because the mobilities of these species in soil are quite different, iodine speciation in soil solution is a key for predicting the behavior of iodine in soil. We developed a new speciation method suitable for routine analysis of many soil solution samples, and successfully applied the method to real samples. The method involves determining the concentration of total iodine and then separately measuring the I{sup -} and IO{sub 3}{sup -} concentrations with an HPLC system. The HPLC system (Nano-space SI-2; Shiseido, Tokyo, Japan) consisted of a UV/Vis spectrometer and an electrochemical (amperometric) detector (50 mV Ag/AgCl). Two reverse-phase columns (2.0 x 50 mm Capcel Pak DD C8 and 2.0 x 250 mm Capcel Pak MGII C18; Shiseido) were serially connected, and a switching valve was set between them. I{sup -} and IO{sub 3}{sup -} in the sample solution were separated from each other in the DD C8 column. IO{sub 3}{sup -} eluted first from the column, while I{sup -} was retained. After IO{sub 3}{sup -} was further separated from other halogen acids with the C18 column, IO{sub 3}{sup -} was reacted with KBr and o-dianisidine in a thermos-reactor (90 deg. C), and absorption at 450 nm was measured with the UV/Vis spectrometer. The concentration of I{sup -} eluted from the first column was determined with the electrochemical detector. To determine the concentration of total iodine in the sample solution, organic iodine was decomposed by UV irradiation (UV digester 705; Metrohm AG, Herisau, Switzerland) for 30 min at 20 deg. C. The iodine in the solution was reduced to I

  9. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  10. The leaching of trifloxysulfuron-sodium and pyrithiobac-sodium in soil columns as a function of soil liming - doi: 10.4025/actasciagron.v35i2.16349

    Directory of Open Access Journals (Sweden)

    Naiara Guerra

    2012-12-01

    Full Text Available Scarce research has been published concerning the effect of soil pH on the leaching potential of herbicides in tropical soils. Thus, we designed this study to evaluate the influence of soil liming on the leaching of trifloxysulfuron-sodium and pyrithiobac-sodium after simulated rainfall depths in soil columns. In the study, two trials were conducted simultaneously; the first experiment evaluated trifloxysulfuron-sodium (7.5 g ha-1, while the second experiment evaluated pyrithiobac-sodium (70 g ha-1. Both experiments were conducted in a randomized block design with a 2 x 4 x 5 factorial scheme and four replications. The design’s factors corresponded to 2 soil liming conditions (with or without liming, 4 simulated rainfall depths (0, 15, 30, and 45 mm and 5 depths in the soil column (0-5, 5-10, 10-15, 15-20, and 20-25 cm. The trials were repeated, and only the source for the soil neutralization was changed, i.e., dolomitic limestone in Experiment 1 and calcium oxide in Experiment 2. Compared to trifloxysulfuron-sodium, the herbicide pyrithiobac-sodium indicated a greater potential for leaching. With more acidic soils, the leaching potential in limed soils was greater for both herbicides. Only the liming that used calcium oxide provided a significant leaching of trifloxysulfuron-sodium for depths greater than 20 cm. Simulated rainfall ≥ 15 mm provided leaching of pyrithiobac-sodium to a depth of 25 cm at near-neutral soil pH values.

  11. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling

    International Nuclear Information System (INIS)

    Cheyns, K.; Mertens, J.; Diels, J.; Smolders, E.; Springael, D.

    2010-01-01

    Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation. - Population dynamics of pesticide degrading population should be taken into account when predictions of pesticide fate are made to avoid underestimation of pesticide break-through towards groundwater.

  12. Immobilization of Cd, Zn, and Pb from Soil Treated by Limestone with Variation of pH Using a Column Test

    Directory of Open Access Journals (Sweden)

    Sung-Wook Yun

    2015-01-01

    Full Text Available Decades of mining in South Korea have resulted in the contamination of large amounts of soil by metals. The most feasible approach to site restoration requires the use of a stabilization agent to reduce metal mobility. This study examined the leaching characteristics of limestone used as a stabilization agent when subjected to solutions of differing pH. In a laboratory-scale column test, solutions with pH values of 3.5, 4.6, and 5.6, representing acidic to nonacidic rainfall, were applied to soil mixed with limestone. Test results indicate that metal components can be released with the addition of acidic solutions, even if the soil is highly alkaline. Cd and Zn, in particular, exhibited abrupt or continuous leaching when exposed to acid solutions, indicating the potential for contamination of water systems as metal-laden soils are exposed to the slightly acidic rainfall typical of South Korea. Treatment using stabilization agents such as limestone may reduce leaching of metals from the contaminated soil. Stabilizing metal-contaminated farmland is an economical and feasible way to reduce pollutants around abandoned metal mines.

  13. MODEL TESTS AND 3D ELASTIC FINITE ELEMENT ANALYSIS FOR STEEL PIPE PILES WITH WINGS IN STALLED IN SOIL CEMENT COLUMN

    Science.gov (United States)

    Tamai, Toshiyuki; Teramoto, Shuntarou; Kimura, Makoto

    Steel pipe piles with wings installed in soil cement column is a composite foundation of pile consisting of soil improvement with cement and steel pipe with wings. This type of pile shows higher vertical bearing capacity when compared to steel pipe piles that are installed without soil cement. It is thought the wings contribute to higher bearing capacity of this type of piles. The wings are also thought to play the role of structural unification of pile foundations and load transfer. In this study, model test and 3D elastic finite element analysis was carried out in order to elucidate the effect of wings on the structural unification of pile foundation and the load transfer mechanism. Firstly, the model test was carried out in order to grasp the influence of pile with and without wings, the shape of wings of the pile and the unconfined compression strength of the soil cement on the structural unification of the pile foundation. The numerical analysis of the model test was then carried out on the intermediate part of the pile foundation with wings and mathematical model developed. Finally load tran sfer mechanism was checked for the entire length of the pile through this mathematical model and the load sharing ratio of the wings and stress distribution occurring in the soil cement clarified. In addition, the effect of the wing interval on the structural unification of the pile foundation and load transfer was also checked and clarified.

  14. Impact of sludge stabilization processes and sludge origin (urban or hospital) on the mobility of pharmaceutical compounds following sludge landspreading in laboratory soil-column experiments.

    Science.gov (United States)

    Lachassagne, Delphine; Soubrand, Marilyne; Casellas, Magali; Gonzalez-Ospina, Adriana; Dagot, Christophe

    2015-11-01

    This study aimed to determine the effect of sludge stabilization treatments (liming and anaerobic digestion) on the mobility of different pharmaceutical compounds in soil amended by landspreading of treated sludge from different sources (urban and hospital). The sorption and desorption potential of the following pharmaceutical compounds: carbamazepine (CBZ), ciprofloxacin (CIP), sulfamethoxazole (SMX), salicylic acid (SAL), ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), ketoprofen (KTP), econazole (ECZ), atenolol (ATN), and their solid-liquid distribution during sludge treatment (from thickening to stabilization) were investigated in the course of batch testing. The different sludge samples were then landspread at laboratory scale and leached with an artificial rain simulating 1 year of precipitation adapted to the surface area of the soil column used. The quality of the resulting leachate was investigated. Results showed that ibuprofen had the highest desorption potential for limed and digested urban and hospital sludge. Ibuprofen, salicylic acid, diclofenac, and paracetamol were the only compounds found in amended soil leachates. Moreover, the leaching potential of these compounds and therefore the risk of groundwater contamination depend mainly on the origin of the sludge because ibuprofen and diclofenac were present in the leachates of soils amended with urban sludge, whereas paracetamol and salicylic acid were found only in the leachates of soils amended with hospital sludge. Although carbamazepine, ciprofloxacin, sulfamethoxazole, ketoprofen, econazole, and atenolol were detected in some sludge, they were not present in any leachate. This reflects either an accumulation and/or (bio)degradation of these compounds (CBZ, CIP, SMX, KTP, ECZ, and ATN ), thus resulting in very low mobility in soil. Ecotoxicological risk assessment, evaluated by calculating the risk quotients for each studied pharmaceutical compound, revealed no high risk due to the

  15. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    Science.gov (United States)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  16. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  17. Mobility of coated and uncoated TiO2 nanomaterials in soil columns--Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials.

    Science.gov (United States)

    Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J

    2015-07-01

    Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Removal and co-transport of Zn, As(V), and Cd during leachate seepage through downgradient mine soils: A batch sorption and column study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juhee [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Nam, Seung Mo [Korea Testing and Research Institute, Gyeonggi-do (Korea, Republic of); Hyun, Seunghun, E-mail: soilhyun@korea.ac.kr [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of)

    2016-05-01

    The removal of Zn, As(V), and Cd during the leachate seepage process was measured in single, binary, and ternary solute systems by batch sorption and 1-D column flow experiments, followed by a sequential extraction procedure (SEP). In single-solute systems, sorption (K{sub d}{sup ⁎}) occurred in the order of As(V) > Zn ≫ Cd, and this sequence did not change in the presence of other solutes. In multi-solute systems, the sorption of Zn (~ 20%) and Cd (~ 27%) was enhanced by As(V), while Zn and Cd suppressed the sorption of each other. In all cases, As(V) sorption was not affected by the cations, indicating that As(V) is prioritized by sorption sites to a much greater degree than Zn and Cd. Element retention by column soils was strongly correlated (r{sup 2} = 0.77) with K{sub d}{sup ⁎}. Across column segments, mass retention was in the order of inlet (36–54%) > middle (26–35%) > outlet (20–31%), except for Cd in the Zn–Cd binary system. The result of SEP revealed that most of the retained Cd (98–99%) and Zn (56–71%) was in the labile fraction (e.g., the sum of F1 and F2) while only 9–12% of As(V) was labile and most (> 55%) was specifically adsorbed to Fe/Al oxides. Plots of the labile fraction (f{sub labile}) and the fast sorption fraction (f{sub fast}) suggested that the kinetics of specific As(V) sorption occur rapidly (f{sub fast} > f{sub labile}), whereas labile Zn and Cd sorption occurs slowly (f{sub labile} > f{sub fast}), indicating the occurrence of kinetically limited labile sorption sites, probably due to Zn–Cd competition. In conclusion, the element leaching potential of mine leachate can be greatly attenuated during downgradient soil seepage. However, when assessing the soil attenuation process, the impact of sorption competitors and the lability of adsorbed elements should first be considered. - Highlights: • During soil seepage, element leaching potential is reduced as As(V) > Zn > Cd. • Element removal during leachate seepage

  19. Isothermal and non-isothermal infiltration and deuterium transport: a case study in a soil column from a headwater catchment

    Czech Academy of Sciences Publication Activity Database

    Sobotková, M.; Sněhota, M.; Budínová, E.; Tesař, Miroslav

    2017-01-01

    Roč. 65, č. 3 (2017), s. 234-243 ISSN 0042-790X Grant - others:GA ČR(CZ) GA14-03691S Institutional support: RVO:67985874 Keywords : isothermal infiltration * non-isothermal infiltration * column leaching * breakthrough curve * deuterium * viscosity * capillary trapping * entrapped air * permeability Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.654, year: 2016

  20. A study of airborne chrysotile concentrations associated with handling, unpacking, and repacking boxes of automobile clutch discs.

    Science.gov (United States)

    Jiang, George C T; Madl, Amy K; Ingmundson, Kelsey J; Murbach, Dana M; Fehling, Kurt A; Paustenbach, Dennis J; Finley, Brent L

    2008-06-01

    Although automotive friction products (brakes and manual clutches) historically contained chrysotile asbestos, industrial hygiene surveys and epidemiologic studies of auto mechanics have consistently shown that these workers are not at an increased risk of developing asbestos-related diseases. Airborne asbestos levels during brake repair and brake parts handling have been well-characterized, but the potential exposure to airborne asbestos fibers during the handling of clutch parts has not been examined. In this study, breathing zone samples on the lapel of a volunteer worker (n=100) and area samples at bystander (n=50), remote area (n=25), and ambient (n=9) locations collected during the stacking, unpacking, and repacking of boxes of asbestos-containing clutches, and the subsequent cleanup and clothes handling, were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). In addition, fiber morphology and size distribution was evaluated using X-ray diffraction, polarized light microscopy, and ISO analytical methods. It was observed that the (1) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (2) repetitive stacking of unopened boxes of clutches resulted in higher asbestos concentrations than unpacking and repacking the boxes of clutches, (3) cleanup and clothes handling tasks yielded very low asbestos concentrations. Fiber size and morphology analyses showed that amphibole fibers were not detected in the clutches and that the vast majority (>95%) of the airborne chrysotile fibers were less than 20 microm in length. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, it was found that 30-min average airborne chrysotile concentrations (PCM adjusted) were 0.026+/-0.004 f/cc or 0.100+/-0.017 f/cc for a worker unpacking and repacking 1 or 2 boxes of clutches, respectively. The 30-min PCM adjusted average airborne asbestos

  1. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment.

    Science.gov (United States)

    Healy, M G; Burke, P; Rodgers, M

    2010-10-01

    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  2. Simultaneous high-performance liquid chromatographic determination of nitrate, nitrite, and organic pesticides in soil solution using a multidimensional column with ultraviolet detection

    International Nuclear Information System (INIS)

    Nkedi-Kizza, P.; Owusu-Yaw, J.

    1992-01-01

    In many fertilizer trials, the amount of nitrate-nitrogen in soil solution must be quantified frequently because nitrate is easily leached. Because pesticides are generally applied to cropland with fertilizers, quantitative information is needed on the concentration of these chemicals still available in the soil. Information on nitrite, nitrate and pesticide concentrations in food, water and environmental samples is essential because of their toxicity and potential for groundwater and surface water contamination. Most of the methods currently used for nitrate determination also account for nitrite, because nitrite and some organics act as interferences. Some of the existing analytical methods require sample reduction or derivatization, complex solvent mixtures or large sample volumes which make analysis times long. A High-Performance Liquid Chromatography (HPLC) method has been developed for the simultaneous determination of nitrate, nitrite and organic pesticides in soil solution samples and extracts using a multidimensional separator column with ultraviolet detection at 220 nm. The method is rapid and requires small sample volumes (20 μL). It is a sensitive method which is suitable for routine analyses of up to 100 samples per day. A comparison of this method with standard ion chromatography with conductivity detection showed very good agreement between the two methods for the analysis of NO3- and NO2-

  3. Persistence and Leaching Potential of Microorganisms and Mineral N in Animal Manure Applied to Intact Soil Columns

    DEFF Research Database (Denmark)

    Mostofa Amin, M. G.; Forslund, Anita; Bui, Thanh Xuan

    2013-01-01

    Pathogens may reach agricultural soils through application of animal manure and thereby pose a risk of contaminating crops as well as surface and groundwater. Treatment and handling of manure for improved nutrient and odor management may also influence the amount and fate of manure-borne pathogens......PCR) to assess the proportions of culturable and nonculturable (viable and nonviable) cells. Solid-liquid separation of slurry increased the redistribution in soil of contaminants in the liquid fraction compared to raw slurry, and the percent recovery of E. coli and Enterococcus species was higher for the liquid...

  4. CONSTRUCTION OF A NEW HIGHWAY EMBANKMENT ON THE SOFT CLAY SOIL TREATMENT BY STONE COLUMNS IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    QASIM A. ALJANABI

    2013-08-01

    Full Text Available To continue of the second phase of the East Coast Expressway between Kuantan and Kula Terengganu in Malaysia system innovative solution are required. In this new phase there are embankment region has been subjected to extensive soft clay soil. These comprise typically of clayey silts of very high water content and undrained shear strengths in the range of 8 to 11 kPa to depths of up to 8m. To support an embankment height of up to 12 m, were filled and thereafter Vibro Replacement treatment was carried out to treat the very soft soil. Extensive instrumentation using rod settlement gauges, inclinometers and piezometers were installed to monitor the performance of the Vibro Replacement treatment. This paper reports on aspects of design, installation and the measured results from the instrumentation scheme.

  5. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  6. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  7. Comparison study for the CCME reference method for determination of PHC in soil by using internal and external standard methods and by using silica gel column cleanup and in-situ silica gel cleanup methods

    International Nuclear Information System (INIS)

    Wang, Z.; Fingas, M.; Sigouin, L.; Yang, C.; Hollebone, B.

    2003-01-01

    The assessment, cleanup, and remediation of hydrocarbon contaminated sites is covered in the Reference Method for Canada-Wide Standard for Petroleum Hydrocarbons-Tier 1 Method. It replaces several analytical methods used in the past by some laboratories and jurisdictions in Canada. The authors conducted two comparative evaluations to validate the Tier 1 Analytical Method. The first compared the Internal and External Standard Methods, and the second compared the Silica Gel Column Cleanup Method with the In-situ Silica Gel Cleanup Method. The Canadian Council of Ministers of the Environment (CCME) Tier 1 Method recommends and requires the External Standard Method to determine petroleum hydrocarbons (PHC) in soil samples. The Internal Method is widely used to quantify various organic and inorganic pollutants in environmental samples. The Tier 1 Method offers two options for the same extract cleanup. They are: Option A - In-situ Silica Gel Cleanup, and Option B - Silica Gel Column Cleanup. Linearity, precision, and PHC quantification results were the parameters considered for diesel and motor oil solutions, for diesel spiked soil samples, and for motor oil spiked soil samples. It was concluded that both the External and Internal Standard Methods for gas chromatograph (GC) determination of PHC in soil possess their own advantages. The PHC results obtained using the In-Situ Silica Gel Cleanup Method were lower than those obtained with the Silica Gel Column Cleanup Methods. The more efficient and effective sample cleanup method proved to be the Silica Gel Column Method. 13 refs., 7 tabs., 7 figs

  8. Dissipation of coumaphos acaricide in model cattle dipping vats and soil columns under sub-tropical climate of Delhi

    International Nuclear Information System (INIS)

    Jindal, T.; Singh, D.K.; Agarwal, H.C.

    1997-01-01

    The stability of coumaphos was studied in model dipping vats under field conditions using 14 C-labelled and unlabelled coumaphos, with or without additives. Four vats were used each containing 50 litre of water treated with 3.7 MBq 14 C and 10 g (AI) unlabelled coumaphos in 25 mL acetone. Vat 1 was control. Vat 2 and 3 were maintained at pH 5 by addition of superphosphate initially and at regular intervals as required. Vat 3 and 4 were treated with bacteriostat copper sulphate at 0.01 g per litre. The pH of vat 1 and 4 gradually increased with time from initial value of 7 to 8.47 and 7.57 respectively. In vat 1 and 4 the concentration of coumaphos declined from about initial concentration of 200 μg/mL to about 9 μg/mL in 255 days after initial treatment, whereas the persistence of coumaphos was more in vats 2 and 3. The stability of coumaphos in model vats increased significantly by maintaining a pH of 5 by addition of superphosphate. The pesticide residues consisted of 80 % or more of unchanged coumaphos. In addition potasan, chlorferon and 4 - methylumbelliferone were detected in small proportions. In another experiment the effect of pH was studied. Coumaphos was most stable at pH 5 as also observed in model vats under field conditions. Coumaphos did not leach below 10 cm in all the four cases. Dissipation, degradation and bound residue formation was more in case of alkali treated coumaphos than normal coumaphos. Aged residues of vat 3 were reasonably stable as copper sulphate inhibited the degradation of coumaphos in soil by microorganisms. Coumaphos along with the the above three metabolises were detected in the extractable insecticide residues from the soil, though the proportion of metabolises was much more than found in model vats. Again treatment of coumaphos with alkali further increased its metabolism and the soil bound residues were double as compared to untreated coumaphos

  9. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  10. Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

    2006-01-01

    A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance

  11. Leaching of hexazinone and mixture hexazinone + diuron in columns of soils with distinct textures. = Lixiviação do hexazinone e da mistura hexazinone + diuron em colunas de solos com texturas distintas.

    Directory of Open Access Journals (Sweden)

    Kassio Ferreira Mendes

    2013-08-01

    Full Text Available Objective to evaluate the leaching of the hexazinone and admixed with diuron, in soil of contrasting textures, in soil columns under different rainfall. The following soils were used: Red Latosol - LV, of clay texture and Quartzarenic Neosol - NQ, sandy texture. The experimental units were constituted by PVC columns filled with soil, at rates of hexazinone (LV - 375 g ha -1 and NQ - 225 g ha -1 and hexazinone + diuron (LV - 396 + 1,404 g ha -1 and NQ - 264 + 936 g ha-1 . The factorial 6 x 6 in randomized block design, with three replications was adopted. Factor A evaluated the precipitation of 0, 20, 40, 60, 80, and 100 mm; factor B analyzed the depths (0-5, 5-10, 10-15, 15-20, 20-25 and 25-30 cm column. Posteriorly the rain simulation the columns were longitudinally opened and along these were sown Cucumis sativus. Independent of soil texture, the hexazinoneand mixture hexazinone + diuron did not exceed 10-15 cm layer of soil, the layer of 0 mm. The hexazinone and diuron + hexazinone mixture showed phytotoxicity of species bioindicator in the layer of 20-25 cm in LV, and reaching up to 25-30 cm in NQ, the greatest layer simulated. It was concluded that there was no difference in leaching potential of hexazinone when mixture with diuron in soils with distinct textures, however the clay textural composition, organic matter content of soil and rainfall influenced the leaching. = Objetivou-se avaliar a lixiviação do hexazinone isoladamente e da mistura com o diuron, em solos de texturas contrastantes, em colunas de solos sob diferentes precipitações. Utilizou-se um Latossolo Vermelho – LV, de textura argilosa e um Neossolo Quartzarênico – NQ, de textura arenosa. As unidades experimentais foram constituídas por colunas de PVC preenchidas com solos, nas doses de hexazinone (LV - 375 g ha -1 e NQ - 225 g ha -1 e hexazinone + diuron (LV - 396 + 1.404 g ha -1 e NQ - 264 + 936 g ha -1 . Adotou-se o esquema fatorial 6 x 6 no delineamento em

  12. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  13. Interpretation of the lime column penetration test

    International Nuclear Information System (INIS)

    Liyanapathirana, D S; Kelly, R B

    2010-01-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  14. ( Anogeissus leiocarpus ) timber columns

    African Journals Online (AJOL)

    A procedure for designing axially loaded Ayin (Anogeissus leiocarpus) wood column or strut has been investigated. Instead of the usual categorization of columns into short, intermediate and slender according to the value of slenderness ratio, a continuous column formula representing the three categories was derived.

  15. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  16. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    Science.gov (United States)

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Modelo para simulação da dinâmica de nitrato em colunas verticais de solo não saturado A simulation model of nitrate displacement in vertical columns in a non-saturated soil

    Directory of Open Access Journals (Sweden)

    Jarbas H. de Miranda

    2002-01-01

    Full Text Available A agricultura intensiva está sempre em busca de incrementos de produtividade mas, em contrapartida, pouca atenção é dedicada a possíveis impactos ambientais. Portanto, o entendimento sobre processos de transporte de solutos no solo auxilia na redução da sua lixiviação para as camadas subsuperficiais. Neste sentido, objetivou-se, com o presente trabalho, desenvolver e avaliar um modelo computacional aplicado para simulação da dinâmica de solutos no solo por meio de soluções numéricas de equações diferenciais que descrevam esse transporte. Pelos resultados obtidos, o modelo apresentou bom ajuste das concentrações de nitrato e dos perfis de umidade, simulados com relação aos medidos em condições de laboratório em coluna vertical de solo não saturado.Intensive agriculture always aims at increased productivity, with limited or no attention dedicated to possible impacts on the environment. Therefore, the understanding of processes of solute transport in the soil contributes to reduction of leaching to the deep layers. In this connection, the present study had the objective of developing and evaluating a computational model for solute displacement simulation in the soil based on numerical solutions of differential equations describing this displacement. From the results obtained, the model presented a good agreement of nitrate concentrations as well as soil moisture profile when compared with the results obtained on a vertical column of non-saturated soil under laboratory conditions.

  18. Efeito da adição de diferentes fontes de cálcio no movimento de cátions em colunas de solo Effect of several calcium sources on cation leaching using soil columns

    Directory of Open Access Journals (Sweden)

    I.C. de Maria

    1993-05-01

    Full Text Available No estudo realizado em colunas de solo montadas em laboratório, procurou-se avaliar o movimento do cálcio, e de outros cátions, após aplicação de calcário agrícola, gesso, calcário calcinado e uma mistura de calcário agrícola e gesso, comparados com um tratamento testemunha, em dois latossolos vermelho escuros de texturas diferentes: média e argilosa. Utilizaram-se colunas de PVC, com 5cm de diâmetro e 45cm de altura, e aplicaram-se em cada coluna 1,8 litros de água, parcelados em quatro vezes. Determinaram-se os cátions trocáveis presentes na água percolada e, no final do experimento, em cinco profundidades de cada solo. Os resultados mostraram que nos tratamentos gesso e calcário mais gesso as quantidades de Ca2+, Mg2+, K+ e Al3+ na solução percolada foram maiores, enquanto que os tratamentos calcário agrícola e calcário calcinado não promoveram perdas significativas de cátions. As maiores perdas ocorreram na primeira percolação no solo de textura média e na segunda no solo de textura argilosa. O gesso não modificou o pH dos solos, mas reduziu teores de bases no solo argiloso, enquanto que os calcários corrigiram o solo apenas próximo à camada de incorporação.Soil columns under controlled conditions were used to determine the movement of calcium and other cations after the application of lime, calcium oxide, gypsum and a mixture of Ume and gypsum, compared with a control treatment. Two Oxisols with different textures were used: clayey and silty. Rigid polyvinyl chloride (PVC columns (length, 45cm; diam, 5cm were used, applying 1.8 1 of water to each divided into four applications. Exchangeable cations were determined in the drainage water in 4 periods and in 5 dephts of the soil columns at the end of the experiment. The results showed that losses of Ca2+, Mg2+, K+ and A1(3+, were higher in the treatments with gypsum and lime plus gypsum. Amendments h'ke lime and calcium oxide did not promote significant losses

  19. The analysis of semi-volatile and non-volatile petroleum hydrocarbons in a soil/sediment matrix by capillary column gas chromatography/flame ionization detection (GC/FID)

    International Nuclear Information System (INIS)

    George, J.E. III; Thoma, J.J.; Hastings, M.

    1990-01-01

    A comprehensive analysis for semi-volatile and non-volatile fractions of petroleum hydrocarbons can be achieved by a solvent extraction/concentration techniques that will effectively extract these high molecular weight fractions from a soil matrix. The prepared extract is then injected directly into a gas chromatograph equipped with a capillary column and flame ionization detector. This technique applies to the following types of commercially available petroleum hydrocarbons: Diesel Nos. 2,4,5, and 6, fuel oils and several grades of lubrication oil. The identification of a particular petroleum hydrocarbon is determined visually by comparison of the samples with known hydrocarbon standards. Accurate quantitation of the chromatograms is possible by using peak area summation and the presence of an internal standard. The practical quantitation limit for the method is 10 mg/Kg for most fuel types. This paper presents a method for determining the concentration of these fuel types in soil. Data will be presented only on 10W40 lubrication oil in terms of method validation, calibration, percent recovery, and method detection limits. A discussion of the quatitation techniques used will also be included

  20. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    Science.gov (United States)

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  1. Dissolution of hardened wood ash in forest soils. Studies in a column experiment; Haerdade vedaskors upploesning i skogsjord. En studie i kolonnfoersoek. Ramprogram Askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    1997-12-31

    Dissolution of hardened and crushed ashes was studied in a column experiment during leaching with artificial rain water corresponding to 5 year-precipitations. The ashes studied were a CFB ash from Perstorp and a bottom ash from Ljungby that were added in amounts corresponding to 4 tonnes per hectare. Assuming that the studied ashes are representative and that the results can be transferred to field conditions, the most important conclusions that can be drawn are summarized in the following way: Hardened and crushed ashes are broken down relatively slowly, which particularly applies to the coarse fraction. The fine fraction of the Perstorp ashes has a good liming effect at the same time as the risk for large pH-increases appears to be small. As regards the macro-nutrients Ca and K (not the Ljungby ashes), the amounts released are probably sufficient from a forest vitalization viewpoint. As regards Mg and P, this is less certain. The heavy metals appear to be released relatively slowly and most of them are bound in non-exchangeable form in the mor layer. The exception is Cd that tends to be absorbed in the mor layer to a minor extent but which, on the other hand, is not released from the ashes in any greater amounts. The greatest risk for increased concentrations of soluble heavy metals appears to be the mobilization of part of the mor layer`s reserve as a result of the salt effect of the ashes. However, this is a temporary effect. 17 refs, 18 figs, 6 tabs Figs and tabs with text in English

  2. Dissolution of hardened wood ash in forest soils. Studies in a column experiment; Haerdade vedaskors upploesning i skogsjord. En studie i kolonnfoersoek. Ramprogram Askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Jan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    1996-12-31

    Dissolution of hardened and crushed ashes was studied in a column experiment during leaching with artificial rain water corresponding to 5 year-precipitations. The ashes studied were a CFB ash from Perstorp and a bottom ash from Ljungby that were added in amounts corresponding to 4 tonnes per hectare. Assuming that the studied ashes are representative and that the results can be transferred to field conditions, the most important conclusions that can be drawn are summarized in the following way: Hardened and crushed ashes are broken down relatively slowly, which particularly applies to the coarse fraction. The fine fraction of the Perstorp ashes has a good liming effect at the same time as the risk for large pH-increases appears to be small. As regards the macro-nutrients Ca and K (not the Ljungby ashes), the amounts released are probably sufficient from a forest vitalization viewpoint. As regards Mg and P, this is less certain. The heavy metals appear to be released relatively slowly and most of them are bound in non-exchangeable form in the mor layer. The exception is Cd that tends to be absorbed in the mor layer to a minor extent but which, on the other hand, is not released from the ashes in any greater amounts. The greatest risk for increased concentrations of soluble heavy metals appears to be the mobilization of part of the mor layer`s reserve as a result of the salt effect of the ashes. However, this is a temporary effect. 17 refs, 18 figs, 6 tabs Figs and tabs with text in English

  3. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  4. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  5. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  6. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  7. Circular Raft Footings Strengthened by Stone Columns under Static Loads

    OpenAIRE

    R. Ziaie Moayed; B. Mohammadi-Haji

    2016-01-01

    Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of ...

  8. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  9. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    Science.gov (United States)

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  10. Simulação do deslocamento de potássio em colunas verticais de solo não-saturado Potassium displacement simulation in vertical columns of unsaturated soil

    Directory of Open Access Journals (Sweden)

    Jarbas H. Miranda

    2005-12-01

    Full Text Available O estudo do transporte de água e potássio em solo não-saturado é importante, tanto do ponto de vista do ambiente quanto do econômico. Assim sendo, o uso da modelagem computacional é importante, pois permite de maneira precisa e rápida o monitoramento do deslocamento de solutos, importante na prevenção de impactos ao ambiente. No presente trabalho, teve-se o objetivo de avaliar a simulação do deslocamento do íon potássio em colunas de solo não-saturado, utilizando o modelo MIDI, bem como apresentar a determinação dos parâmetros de transporte do íon potássio em um Latossolo Vermelho-Amarelo, fase arenosa. Concluiu-se que o modelo foi capaz de simular de maneira satisfatória o perfil de umidade e o deslocamento do íon potássio.Water and solute transport studies in unsaturated soil are important for both economical and environmental points of view and, in this sense, it should be emphasized the increase of agricultural use of urban and industrial residues, to the water resources and fertilizers saving. Thus, the computational modeling use is important, because it allows the monitoring of solute displacement, necessary to the environmental impacts prevention in a precise and fast way. The main objective of the present work is to simulate the displacement of potassium ion in unsaturated soil columns, using the MIDI model, as well as to present transport parameters determination of the potassium ion in a Red Yellowish Latossol, sandy phase. The obtained results allowed concluding that the model was capable to adequately simulate the potassium ion displacement.

  11. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  12. Nuclear reactor control column

    International Nuclear Information System (INIS)

    Bachovchin, D.M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor

  13. Sustainable materials used as stone column filler: A short review

    Science.gov (United States)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    Stone columns (also known as granular piles) are one of the methods for soft soil stabilization and typically used to increase bearing capacity and stability of slope.; Apart from decreasing the compressibility of loose and fine graded soils, it also accelerates the consolidation effect by improving the drainage path for pore water pressure dissipation and reduces the liquefaction potential of soils during earthquake event. Stone columns are probably the most “natural” ground treatment method or foundation system in existence to date. The benefit of stone columns is owing to the partial replacement of compressible soil by more competent materials such as stone aggregate, sand and other granular materials. These substitutes also act as reinforcement material, hence increasing overall strength and stiffness of the soft soil. Nowadays, a number of research has been conducted on the behaviour and performance of stone columns with various materials utilized as column filler replacing the normal aggregate. This paper will review extensively on previously conducted research on some of the materials used as stone column backfill materials, its suitability and the effectiveness as a substitute for regular aggregates in soft soil improvement works.

  14. Improvements in solvent extraction columns

    International Nuclear Information System (INIS)

    Aughwane, K.R.

    1987-01-01

    Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)

  15. Deslocamento miscível de nitrato e fosfato proveniente de água residuária da suinocultura em colunas de solo Miscible displacement of nitrate and phosphate from swine wastewater in soil columns

    Directory of Open Access Journals (Sweden)

    Marcelo H. Anami

    2008-02-01

    Full Text Available A fertirrigação com águas residuárias da suinocultura vem sendo muito difundida no País, principalmente na região sul do Brasil, entretanto, o alto potencial poluidor dos dejetos pode tornar-se uma ameaça de contaminação de solos e águas superficiais e subterrâneas se utilizados em quantidades excessivas. Neste trabalho o objetivo principal foi avaliar o processo de lixiviação de íons nitrato e fosfato em colunas de solo, obtendo-se os coeficientes de dispersão hidrodinâmico e o fator de retardamento para a determinação do potencial de contaminação dos lençóis de água subterrâneos. Verificou-se, ainda, o efeito da aplicação de águas residuárias da suinocultura tratada com reatores anaeróbios sobre as propriedades físico-químicas do solo, cujos resultados indicaram que o potencial de contaminação dos lençóis de água subterrâneos pelo íon nitrato é elevado, ao contrário do que ocorre com o íon fosfato, que apresentou baixo potencial de contaminação em função da sua alta reatividade.Fertigation with wastewater from swine is very much used, mainly in the southern region of Brazil. However, the high polluting potential of these wastewaters represents a threat of soil contamination of surface and underground waters if used in excessive amounts. The objective of this work was to evaluate the leaching process of nitrate and phosphate ions in soil columns, getting the hydrodynamic dispersion coefficient and factor of retardation and potential of contamination of underground water. The effect of wastewater application on physical and chemical properties of the soil was verified. The results showed that the potential for contamination of underground water by nitrate ions is high, in contrast to what occurs with phosphate ions that presented low potential of contamination due to their high reactivity.

  16. Buckling of liquid columns

    NARCIS (Netherlands)

    Habibi, M.; Rahmani, Y.; Bonn, D.; Ribe, N.M.

    2010-01-01

    Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and

  17. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  18. Potencial de lixiviação de herbicidas utilizados na cultura do algodão em colunas de solo Leaching potential of herbicides used in cotton crop under soil column conditions

    Directory of Open Access Journals (Sweden)

    M.H Inoue

    2010-12-01

    potential of four herbicides commonly used in preemergence cotton weed control, in samples of two soils from Campo Novo do Parecis-MT (RQ-sandy texture and Tangará da Serra-MT (LV-clay texture. Thus, a bioassay technique in soil columns was adopted, in which water depths of 0, 20, 40, 60, 80 and 100 mm were simulated after application of alachlor (RQ 2.40; LV 3.36 kg ha-1, oxyfluorfen (RQ 0.48; LV 0.72 kg ha-1, prometryne (RQ 0.75; LV 1.50 kg ha-1 and S-metolachlor (RQ 1.20; LV 1.44 kg ha-1. For soil samples with sandy texture (RQ, water depths of 80 and 100 mm led to leaching down to layers of 10-15 cm for alachlor and 15-20 cm for S-metolachlor.Regardless of the irrigation depth applied in the RQ samples, oxyfluorfen did not exceed the depth of 5-10 cm and prometryne could be detected at the depth of 10-15 cm only at water depth of 100 mm. In columns filled with clay soil (LV, oxyfluorfen did not move beneath the surface layer, even under the highest water depths and prometryne reached the depth of 5-10 cm under 80 and 100 mm. The herbicides alachlor and S-metolachlor reached 10-15 cm depth under water depths of 80 and 100 mm in the LV. A more intense downward movement of the herbicide molecules was found in sandy soil samples (RQ than in clay texture soil samples (LV.

  19. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  20. Effect of soil moisture and treatment volume on bentazone mobility in soil

    OpenAIRE

    Guimont, Sophie; Perrin-Ganier, Corinne; Real, Benoit; Schiavon, Michel

    2005-01-01

    Soil moisture affects the leaching behaviour of pesticides by inducing their physical entrapment in the soil structure. Columns containing soil aggregates were dampened to specific initial moisture levels. Bentazon was dripped onto surface aggregates in different volumes. The columns were then percolated after an equilibration period. Soil water from the columns was divided arbitrarily among mobile and immobile regions in order to describe the herbicide redistribution processes in the soil. W...

  1. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  2. Slender CRC Columns

    DEFF Research Database (Denmark)

    Aarup, Bendt; Jensen, Lars Rom; Ellegaard, Peter

    2005-01-01

    CRC is a high-performance steel fibre reinforced concrete with a typical compressive strength of 150 MPa. Design methods for a number of structural elements have been developed since CRC was invented in 1986, but the current project set out to further investigate the range of columns for which...

  3. Practical column design guide

    CERN Document Server

    Nitsche, M

    2017-01-01

    This book highlights the aspects that need to be considered when designing distillation columns in practice. It discusses the influencing parameters as well as the equations governing them, and presents several numerical examples. The book is intended both for experienced designers and for those who are new to the subject.

  4. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    Full Text Available Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in soil, but our understanding and knowledge is still poor of the site factors and soil properties that promote it. To investigate these relationships, we assembled a database from the peer-reviewed literature containing information on 733 breakthrough curve experiments under steady-state flow conditions. Most of the collected experiments (585 of the 733 datasets had been conducted on undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass beads were also included. In addition to the apparent dispersivity, we focused our attention on three indicators of preferential solute transport: namely the 5%-arrival time, the holdback factor, and the ratio of piston-flow and average transport velocities. Our results suggest that, in contrast to the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not related to preferential macropore transport but rather to the exclusion or retardation of the applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer, our results also illustrate that this relationship is refined if the normalized 5%-tracer arrival time is also taken into account. In particular, we found that the degree of preferential solute transport increases with apparent dispersivity and decreases with travel distance. A similar but weaker relationship was observed between apparent dispersivity, 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport increases with lateral observation scale. However, we also found that the travel distance and the lateral observation scale in the investigated dataset are correlated, which makes it difficult to distinguish their influence on these transport characteristics. We also found that the strength of preferential transport

  5. Nine Words - Nine Columns

    DEFF Research Database (Denmark)

    Trempe Jr., Robert B.; Buthke, Jan

    2016-01-01

    This book records the efforts of a one-week joint workshop between Master students from Studio 2B of Arkitektskolen Aarhus and Master students from the Harbin Institute of Technology in Harbin, China. The workshop employed nine action words to instigate team-based investigation into the effects o...... as formwork for the shaping of wood veneer. The resulting columns ‘wear’ every aspect of this design pipeline process and display the power of process towards an architectural resolution....

  6. Poda de raízes e adubação para crescimento do cafeeiro cultivado em colunas de solo Root pruning and fertilization for growth of coffee plants cultivated in soil columns

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Alvarez V.

    2006-02-01

    das plantas de café, mostrando que as adubações de plantio baseadas nos níveis de fertilidade foram suficientes no nível baixo, equilibradas no nível médio e insuficientes no nível alto.The effects of soil fertility levels, root pruning and localized fertilization on root and shoot growth in 'Catuaí' coffee plants were studied in a greenhouse experiment. Sub-superficial (30-70 cm samples of a Red-Yellow Latosol (Oxisol were packed in PVC columns consisting of three 15 cm high rings of 20 cm diameter. Four treatments with three fertility levels [low (FB, medium (FM and high (FA, and medium without root pruning with only two rings (FM2] were installed before planting by adding three levels of liming and three doses of poultry manure. The P and K doses at planting were applied in inverse amounts of the soil fertility levels. After eight months of cultivation, the lowest ring was removed, and roots were pruned. This ring was replaced by another one filled with soil with four fertilization rates [low (AB, medium (AM, medium plus poultry manure (AM2 and high (AA], representing localized fertilization. After 17 months of cultivation the shoot and root system were evaluated. Plant height and number of branches decreased with the level of soil fertility, due to the lower P and K doses applied along the increasing fertility level. The same trend was observed for shoot dry matter production, but root system growth was not affected. Growth and dry matter production of shoots and roots was not affected by root pruning, except when poultry manure was applied in localized fertilization at medium fertility level, at which a negative effect was observed. The localized fertilization had no affect on shoot and root growth in the FB pots, but caused positive and quadratic effects in the FM pots and a linear increase in the growth of 'Catuaí' coffee plants for the FA treatment. The results showed that planting fertilization as a function of the fertility level was sufficient for

  7. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    Full Text Available Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated. Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004. The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height. Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1 and pore velocity (pressure head of 2 and 10 cm on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column

  8. NMFS Water Column Sonar Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water column sonar data are an important component of fishery independent surveys, habitat studies and other research. NMFS water column sonar data are archived here.

  9. Elevator frames two columns

    OpenAIRE

    Marín Jiménez, Juan Francisco

    2015-01-01

    This project aims to solve the problem of vertical transport of charges raised by a company with the standard UNE 58-132-91/6. The purpose of this project is the industrial design of a system of load handling by a bi-columned lifting device, tractioned by flat belts and steel cables from a transport level to a different level in order to connect two different assembly lines situated at different heights. The goal of this project is lifting a 780 Kg load at a 2.400 mm height....

  10. Column: Every Last Byte

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-06-01

    Full Text Available Inheritance powder is the name that was given to poisons, especially arsenic, that were commonly used in the 17th and early 18th centuries to hasten the death of the elderly. For most of the 17th century, arsenic was deadly but undetectable, making it nearly impossible to prove that someone had been poisoned. The first arsenic test produced a gas—hardly something that a scientist could show to a judge. Faced with a growing epidemic of poisonings, doctors and chemists spent decades searching for something better.(see PDF for full column

  11. Annular pulse column development studies

    International Nuclear Information System (INIS)

    Benedict, G.E.

    1980-01-01

    The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other

  12. Deslocamento miscível de cátions básicos provenientes da água residuária de mandioca em colunas de solo Miscible displacement of basic cations from cassava processing wastewater in soil columns

    Directory of Open Access Journals (Sweden)

    Ralini F. de Melo

    2006-06-01

    Full Text Available Objetivou-se, com este estudo, determinar os fatores de retardamento e os coeficientes de dispersão-difusão dos íons potássio, sódio, cálcio e magnésio, presentes na água residuária de fecularias ou manipueira, e simular as concentrações residentes em colunas de solos de 160 cm, pelo período de 5 h. Os ensaios foram realizados em laboratório utilizando-se colunas de percolação preenchidas com amostras de Neossolo Quartzarênico órtico espódico (RQo, Latossolo Amarelo distrófico típico (LAd e Latossolo Vermelho Amarelo distrófico típico (LVAd. A concentração dos íons no efluente foram analisados empregando-se a metodologia de deslocamento de fluidos miscíveis. Os valores mais elevados dos fatores de retardamento ocorreram no LVAd, indicando maior retenção dos íons potássio, sódio, cálcio e magnésio nesse solo. Os valores dos coeficientes dispersivos-difusivos decresceram no sentido do RQo para o LVAd, sendo que o maior valor ocorreu no RQo para o íon potássio, e o menor no LVAd, para o íon cálcio. A simulação para um período de aplicação da manipueira de 5 h, mostrou pequeno avanço dos íons na coluna do LVAd, em comparação com RQo e LAd alertando, assim, para os perigos de contaminação de águas subterrâneas ao se aplicar a manipueira nesses solos.This study aimed to determine the retardation factors and the diffusion-dispersion coefficients of the potassium, sodium, calcium and magnesium ions found in the cassava wastewater, as well as to simulate the resident concentrations in soil columns with 160 cm over a five-hours period. The trials were accomplished under laboratory conditions, by using percolation columns fulfilled with materials from the spodic ortic Quartzarenic Neosol (RQo, typical distrophic Yellow Latosol (LAd and typical distrophic Yellow Red Latosol (LVAd. The data of the ion concentrations in effluent were analyzed, by using the miscible fluid displacement methodology. The highest

  13. Prediction of axial limit capacity of stone columns using dimensional analysis

    Science.gov (United States)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  14. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2015-01-01

    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice....... In this study, a fly ash sample from an operating Danish power plant based on wood biomass was collected, chemically characterized and investigated for its leaching release of nutrients and heavy metals. A column leaching test was employed. The strongly alkaline pH of all the collected eluates suggested...

  15. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Column: File Cabinet Forensics

    Directory of Open Access Journals (Sweden)

    Simson Garfinkel

    2011-12-01

    Full Text Available Researchers can spend their time reverse engineering, performing reverse analysis, or making substantive contributions to digital forensics science. Although work in all of these areas is important, it is the scientific breakthroughs that are the most critical for addressing the challenges that we face.Reverse Engineering is the traditional bread-and-butter of digital forensics research. Companies like Microsoft and Apple deliver computational artifacts (operating systems, applications and phones to the commercial market. These artifacts are bought and used by billions. Some have evil intent, and (if society is lucky, the computers end up in the hands of law enforcement. Unfortunately the original vendors rarely provide digital forensics tools that make their systems amenable to analysis by law enforcement. Hence the need for reverse engineering.(see PDF for full column

  17. Ground improvement using soil–cement columns: Experimental investigation

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk

    2013-12-01

    Full Text Available The construction of heavy structures on soils of low relative density is a challenging task. The inclusion of soil–cement columns produced by the deep mixing method is one of the soil stabilizing techniques that could be applied successfully to overcome this challenge. Nevertheless, this technique did not receive a considerable attention in Egypt yet. In the first part of this study, two different natural silty sand soils extracted from the Delta of the River Nile were mixed with cement to prepare samples of different cement doses and different water cement ratios. After curing, the hardened samples were tested and their unconfined compressive strength was investigated. The second part of this study investigates the interaction between a strip footing model and Nile deltaic soil improved by a group of soil–cement columns. Results of the first part of this study showed that the compressive strength of the investigated Nile delta soils could be increased even at lower values of cement doses. Results extracted from the second part of this study showed that a considerable settlement reduction up to 80% could be achieved depending on both the number and the length of the soil–cement columns that is used to improve the soil.

  18. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  19. Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis

    Science.gov (United States)

    Madun, A.; Meghzili, S. A.; Tajudin, SAA; Yusof, M. F.; Zainalabidin, M. H.; Al-Gheethi, A. A.; Dan, M. F. Md; Ismail, M. A. M.

    2018-04-01

    The most important application of various geotechnical construction techniques is for ground improvement. Many soil improvement project had been developed due to the ongoing increase in urban and industrial growth and the need for greater access to lands. Stone columns are one of the best effective and feasible techniques for soft clay soil improvement. Stone columns increase the bearing capacity and reduce the settlement of soil. Finite element analyses were performed using the program PLAXIS 2D. An elastic-perfectly plastic constitutive relation, based on the Mohr–Coulomb criterion, governs the soft clay and stone column behaviour. This paper presents on how the response surface methodology (RSM) software is used to optimize the effect of the diameters and lengths of column on the load bearing capacity and settlement of soft clay. Load tests through the numerical modelling using Plaxis 2D were carried out on the loading plate at 66 mm. Stone column load bearing capacity increases with the increasing diameter of the column and settlement decreases with the increasing length of the column. Results revealed that the bigger column diameter, the higher load bearing capacity of soil while the longer column length, the lower settlement of soil. However, the optimum design of stone column was varied with each factor (diameter and length) separately for improvement.

  20. Safety barriers and lighting columns.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1972-01-01

    Problems arising from the sitting of lighting columns on the central reserve are reviewed, and remedial measures such as break-away lighting supports and installation of safety fences on the central reserve on both sides of the lighting columns are examined.

  1. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  2. Column-Oriented Database Systems (Tutorial)

    NARCIS (Netherlands)

    D. Abadi; P.A. Boncz (Peter); S. Harizopoulos

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as

  3. Application of column tests and electrical resistivity methods for leachate transport monitoring

    Directory of Open Access Journals (Sweden)

    Wychowaniak Dorota

    2015-09-01

    Full Text Available Development of the human civilization leads to the pollution of environment. One of the contamination which are a real threat to soil and groundwater are leachates from landfills. In this paper the solute transport through soil was considered. For this purpose, the laboratory column tests of chlorides tracer and leachates transport on two soil samples have been carried out. Furthermore, the electrical resistivity method was applied as auxiliary tool to follow the movements of solute through the soil column what allowed to compare between the results obtained with column test method and electrical resistivity measurements. Breakthrough curves obtained by conductivity and resistivity methods represents similar trends which leads to the conclusion about the suitability of electrical resistivity methods for contamination transport monitoring in soil-water systems.

  4. Water Column Sonar Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection and analysis of water column sonar data is a relatively new avenue of research into the marine environment. Primary uses include assessing biological...

  5. LIQUID-LIQUID EXTRACTION COLUMNS

    Science.gov (United States)

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  6. Discussion on the Influence of Various Technological Parameters on Jet Grouting Columns Geometry

    Directory of Open Access Journals (Sweden)

    Bzówka Joanna

    2015-06-01

    Full Text Available One of the most popular elements created by using jet grouting technology are columns. During designing such columns, it is a problem of estimating their shape and dimensions. The main factors that influence on columns geometry are soil characteristic and technological parameters. At the frame of Authors scientific research, following technological factors were taken into account: system of jet grouting, injection pressure, dimension of nozzles and rotation speed during injection. In the paper some results of the field tests of jet grouting columns are presented

  7. Column-Oriented Database Systems (Tutorial)

    OpenAIRE

    Abadi, D.; Boncz, Peter; Harizopoulos, S.

    2009-01-01

    textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records (rows) one after the other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive disk-head s...

  8. Radiotracer Imaging of Sediment Columns

    Science.gov (United States)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (Image of Tc-99m distribution in a column containing Rifle sediment at four times.

  9. Performance evaluation of a rectifier column using gamma column scanning

    Directory of Open Access Journals (Sweden)

    Aquino Denis D.

    2017-12-01

    Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.

  10. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    Science.gov (United States)

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.

  11. Radionuclide migration test using undisturbed aerated soil

    International Nuclear Information System (INIS)

    Yamamoto, Tadatoshi; Ohtsuka, Yoshiro; Ogawa, Hiromichi; Wadachi, Yoshiki

    1988-01-01

    As one of the most important part of safety assessment on the shallow land disposal of lowlevel radioactive waste, the radionuclide migration was studied using undisturbed soil samples, in order to evaluate an exact radionuclide migration in an aerated soil layer. Soil samples used in the migration test were coastal sand and loamy soil which form typical surface soil layers in Japan. The aqueous solution containing 60 CoCl 2 , 85 SrCl 2 and 137 CsCl was fed into the soil column and concentration of each radionuclide both in effluent and in soil was measured. Large amount of radionuclides was adsorbed on the surface of soil column and small amount of radionuclides moved deep into the soil column. Difference in the radionuclide profile was observed in the low concentration portion particularly. It is that some fractions of 60 Co and 137 Cs are stable in non-ionic form and move downward through the soil column together with water. The radionuclide distribution in the surface of soil column can be fairly predicted with a conventional migration equation for ionic radionuclides. As a result of radionuclide adsorption, both aerated soil layers of coastal sand and loamy soil have large barrier ability on the radionuclide migration through the ground. (author)

  12. NOx retention in scrubbing column

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.E.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F.

    1988-07-01

    During the UO 2 dissolution in nitric acid, some different species of NO x are released. The off gas can either be refluxed to the dissolver or be released and retained on special columns. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scubber columns containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evalution before and after scrubbing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum adsorption in the scrubber columns. (author) [pt

  13. Contribution of soil fauna to soil functioning in degraded environments: a multidisciplinary approach

    Science.gov (United States)

    Gargiulo, Laura; Mele, Giacomo; Moradi, Jabbar; Kukla, Jaroslav; Jandová, Kateřina; Frouz, Jan

    2016-04-01

    The restoration of the soil functions is essential for the recovery of highly degraded sites and, consequently, the study of the soil fauna role in the soil development in such environments has great potential from a practical point of view. The soils of the post-mining sites represent unique models for the study of the natural ecological succession because mining creates similar environments characterized by the same substrate, but by different ages according to the year of closure of mines. The aim of this work was to assess the contribution of different species of macrofauna on the evolution of soil structure and on the composition and activity of the microbial community in soil samples subjected to ecological restoration or characterized by spontaneous ecological succession. For this purpose, an experimental test was carried out in two sites characterized by different post-mining conditions: 1) natural succession, 2) reclamation with planting trees. These sites are located in the post-mining area of Sokolov (Czech Republic). For the experimental test repacked soil cores were prepared in laboratory with sieved soil sampled from the two sites. The soil cores were prepared maintaining the sequence of soil horizons present in the field. These samples were inoculated separately with two genera of earthworms (Lumbricus and Aporrectodea) and two of centipedes (Julida and Polydesmus). In particular, based on their body size, were inoculated for each cylinder 2 individuals of millipedes, 1 individual of Lumbricus and 4 individuals of Aporrectodea. For each treatment and for control samples 5 replicates were prepared and all samples were incubated in field for 1 month in the two original sampling sites. After the incubation the samples were removed from the field and transported in laboratory in order to perform the analysis of microbial respiration, of PLFA (phospholipid-derived fatty acids) and ergosterol contents and finally for the characterization of soil structure

  14. Chromatographic properties PLOT multicapillary columns.

    Science.gov (United States)

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simulação do transporte e da sorção de imazaquin em colunas de solo Simulation of imazaquin transport and sorption in soil columns

    Directory of Open Access Journals (Sweden)

    Robson Rolland Monticelli Barizon

    2006-08-01

    da curva, e apresentaram bom ajuste ao modelo bicontínuo, evidenciando que ocorreu não-equilíbrio no processo de sorção. A comparação dos dois métodos empregados mostrou que o coeficiente de sorção determinado no método "batch" foi maior. Tal resultado evidencia que a sorção, durante o processo de lixiviação, pode ser superestimada por métodos que consideram a sorção sob condições de equilíbrio químico.This experiment aimed at the evaluation of imazaquin sorption and transport in soils with different chemical, physical and mineralogical characteristics using batch and miscible-displacement techniques. The experiment was carried out with Neossolo Quartzarênico (RQ, Latossolo Vermelho-Amarelo (LVA and Latossolo Vermelho distroférrico (LVdf soils which were air-dried, passed through a 2 mm sieve and followed by chemical, physical and mineralogical characterization. A CaCl2 solution was applied in the miscible displacement experiment for the establishment of a Cl- elution curve that was used as tracer. The curves were adjusted to a model based on the convection-dispersion equation for ideal transport. Then a 14C-imazaquin solution was applied and the elution curves for this molecule obtained. The curve was adjusted to a bicontinuum model that considers non-equilibrium during the transport. In order to obtain the isotherms adjusted by Freundlich equation in the sorption experiment through the batch method, a radiolabel imazaquin solution was used with concentrations varying from 0.67 to 10.72 mmol L-1. The leaching was high for all soils and highest for the RQ soil. The Cl- elution curves were symmetric for all soils and adjusted well to the model that considers the ideal transport, showing that there was non-equilibrium related to the transport. The imazaquin elution curves were asymmetric with extension of the posterior part of the curve and well adjusted to the bicontinuum model, evidencing the occurrence of non-equilibrium in the sorption

  16. Hydrological controls on heterotrophic soil respiration across an agricultural landscape

    Science.gov (United States)

    Water availability is an important determinant of variation in soil respiration, but a consistent relationship between soil water and the relative flux rate of carbon dioxide across different soil types remains elusive. Using large undisturbed soil columns (N = 12), we evaluated soil water controls...

  17. Fate of 17β-estradiol and 17α-ethinylestradiol in batch and column studies simulating managed aquifer recharge

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Lee, Jaewoo; Amy, Gary L.

    2013-01-01

    Laboratory-scale batch and soil columns experiments were conducted to investigate the attenuation of estrogens (17β-estradiol and 17α-ethinylestradiol) during managed aquifer recharge. The role of microbial activity in the removal of selected

  18. Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor.

    Science.gov (United States)

    Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars

    2013-03-01

    Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.

  19. Stiff Columns as Liquefaction Mitigation Measure for Retrofit of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-10-01

    Full Text Available In this paper, ground reinforcement with jet grouted columns under shallow foundations of existing buildings was analysed using numerical modelling. This study is related with ground reinforcement by installing stiff jet grouted columns around the shallow foundations of existing building when the foundation soil is liquefied during an earthquake. The isolated shallow square footing pad supporting a typical simple frame structure was constructed on the reinforced ground with stiff jet grouted column rows at the shallow depth from the ground surface. This soil-structure system was modelled and analyzed as plane-strain using the FLAC (Fast Lagrangian Analysis of Continua 2D dynamic modelling and analysis software. The results showed that liquefaction-induced large settlement of shallow foundation of existing building can be reduced to tolerable limits by applying ground reinforcement with continuous rows vertical jet grouted columns adjacent to footing pad.

  20. Laboratory study on leachability of five herbicides in South Australian soils.

    Science.gov (United States)

    Ying, G G; Williams, B

    2000-03-01

    Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.

  1. Numerical Evaluation on the Different Shapes of Gravelly Sand Columns to Increase the Loading Capacity of Soft Clay

    Directory of Open Access Journals (Sweden)

    Meghzili Sif Allah

    2017-01-01

    Full Text Available Improvement on soft clay by the installation of stone column is one of the most popular methods followed worldwide. Different analytical and numerical solutions have already been developed for understanding the load transfer mechanism of soft soil reinforced with stone column. This study investigated a bearing capacity of the gravelly sand column, installed in soft clay bed at 15kpa of undrained shear strength. The column variable of length and diameter ratio at 7, 8 and 9 were evaluated. On top of that, the combination of two diameters in single column was tested and the uniform diameter was used as a control. In the numerical analysis, Mohrcoulomb model was adopted in the idealization of the behaviour of the gravelly sand column and soft clay materials. The results revealed that the optimum design that gave the highest loading capacity of the combination 11=12 of column diameter was the length and diameter ratio of 8.

  2. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  3. Studies of column supported towers

    International Nuclear Information System (INIS)

    Chauvel, D.; Costaz, J.-L.

    1991-01-01

    As a result of a research and development programme into the civil engineering of cooling towers launched in 1978 by Electricite de France, very high cooling towers were built at Golfech and Chooz, in France, using column supports. This paper discusses the evolution of this new type of support from classical diagonal supports, presents some of the results of design calculations and survey measurements taken during construction of the shell and analyses the behaviour of the structure. (author)

  4. Microbial Life in a Winogradsky Column: From Lab Course to Diverse Research Experience ?

    OpenAIRE

    Parks, Samantha T.

    2015-01-01

    Many traditional lab courses include both standard and inquiry-based experiments, yet lack cooperative and authentic lab experiences.  Such experiences are important for microbiology students and burgeoning researchers.  In a novel lab environment, students constructed Winogradsky columns using common soil and water sources.  During initial column incubation, students learned methods for identification of microbial isolates including staining, microscopy, biochemistry and 16S-rRNA sequencing....

  5. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  6. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  7. Two generalizations of column-convex polygons

    International Nuclear Information System (INIS)

    Feretic, Svjetlan; Guttmann, Anthony J

    2009-01-01

    Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.

  8. Influence of granular material characteristics in the behaviour of “Bouregreg Valley” soft ground improved with stone columns

    Directory of Open Access Journals (Sweden)

    Nehab Noura

    2018-01-01

    Full Text Available The use of finite element analysis has become widespread in geotechnical practice as means of optimizing engineering tasks; it can be easily applied to the treated areas by stone columns, which are a method of improving the soil having low geotechnical properties and likely to deform significantly under load action, by incorporating granular material (commonly called ballast compacted by remounting passes, so they act mainly as inclusions with a higher stiffness, shear strength than the natural soil. Moreover the stone columns are highly permeable and act as vertical drains facilitating consolidation of the soft soil improving the performance of the foundation. However the characteristics of this granular material influence the behavior of soft soils treated by the stone columns technique, especially: the friction angle, the cohesion, the modular ratio and the constitutive model. The choice of the constitutive model depends on many factors but, in general, it is related to the type of analysis that we intend to perform. Numerical modeling must consider the diversity of the materials nature, the complex geometry of structures-land and the behavior of materials generally nonlinear (permanent deformation. It is a simple and effective alternative to approach the real behavior of soils reinforced by stone columns and the influence of materials characteristics, it allows settlement analysis, lateral deformation, vertical and horizontal stresses in order to understand the behavior of columns and soil. It also has the advantage of integrating the settlements of the underlying layers. This paper aims to study the mechanisms of functioning and interactions of stone columns with the surrounding ground, and vis-à-vis the various parameters characterizing the granular material "ballast" and the surrounding soil, which influence the behavior of the improved soil, The paper presents, in the first part, soil conditions and the parameters associated with

  9. Enhanced phytoremediation in the vadose zone: Modeling and column studies

    Science.gov (United States)

    Sung, K.; Chang, Y.; Corapcioglu, M.; Cho, C.

    2002-05-01

    Phytoremediation is a plant-based technique with potential for enhancing the remediation of vadoese zone soils contaminated by pollutants. The use of deep-rooted plants is an alternative to conventional methodologies. However, when the phytoremediation is applied to the vadose zone, it might have some restrictions since it uses solely naturally driven energy and mechanisms in addition to the complesxity of the vadose zone. As a more innovative technique than conventional phytoremediation methods, air injected phytoremediation technique is introduced to enhance the remediation efficiency or to apply at the former soil vapor extraction or bio venting sites. Effects of air injection, vegetation treatment, and air injection with vegetation treatments on the removal of hydrocarbon were investigated by column studies to simulate the field situation. Both the removal efficiency and the microbial activity were highest in air-injected and vegetated column soils. It was suggested that increased microorganisms activity stimulated by plant root exudates enhanced biodegradation of hydrocarbon compounds. Air injection provided sufficient opportunity for promoting the microbial activity at depths where the conditions are anaerobic. Air injection can enhance the physicochemical properties of the medium and contaminant and increase the bioavailability i.e., the plant and microbial accessibility to the contaminant. A mathematical model that can be applied to phytoremediation, especially to air injected phytoremediation, for simulating the fate and the transport of a diesel contaminant in the vadose zone is developed. The approach includes a two-phase model of water flow in vegetated and unplanted vadose zone soil. A time-specific root distribution model and a microbial growth model in the rhizosphere of vegetated soil were combined with an unsaturated soil water flow equation as well as with a contaminant transport equation. The proposed model showed a satisfactory representation of

  10. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  11. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend

  12. 29 CFR 1926.755 - Column anchorage.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4 anchor...

  13. Adsorption columns for use in radioimmunoassays

    International Nuclear Information System (INIS)

    1976-01-01

    Adsorption columns are provided which can be utilized in radioimmunoassay systems such as those involving the separation of antibody-antigen complexes from free antigens. The preparation of the columns includes the treatment of retaining substrate material to render it hydrophilic, preparation and degassing of the separation material and loading the column

  14. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  15. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  16. Anaerobic N mineralization in paddy soils in relation to inundation management, physicochemical soil fractions, mineralogy and soil properties

    Science.gov (United States)

    Sleutel, Steven; Kader, Mohammed Abdul; Ara Begum, Shamim; De Neve, Stefaan

    2013-04-01

    Anaerobic N mineralization measured from (saturated) repacked soil cores from 25 paddy fields in Bangladesh and was previously found to negatively related to soil N content on a relative basis. This suggests that other factors like soil organic matter (SOM) quality or abiotic factors instead control the anaerobic N mineralization process. We therefore assessed different physical and chemical fractions of SOM, management factors and various soil properties as predictors for the net anaerobic N mineralization. 1° First, we assessed routinely analyzed soil parameters (soil N and soil organic carbon, texture, pH, oxalate- and pyrophosphate-extractable Fe, Al, and Mn, fixed-NH4 content). We found no significant influences of neither soil mineralogy nor the annual length of inundation on soil N mineralization. The anaerobic N mineralization correlated positively with Na-pyrophosphate-extractable Fe and negatively with pH (both at Presistant OM fraction, followed by extraction of mineral bound OM with 10%HF thereby isolating the HF-resistant OM. None of the physicochemical SOM fractions were found useful predictors anaerobic N mineralization. The linkage between these chemical soil N fractions and N supplying processes actually occurring in the soil thus appears to be weak. Regardless, we hypothesize that variation in strength of N-mineral and N-OM linkages is likely to explain variation in bio-availability of organic N and proneness to mineralization. Yet, in order to separate kinetically different soil N fractions we then postulated that an alternative approach would be required, which instead isolates soil N fractions on the basis of bonding strength. In this respect bonding strength should be seen as opposite of proneness to dissolution of released N into water, the habitat of soil microorganisms mediating soil N mineralization. We hypothesize that soil N extracted by water at increasing temperatures would reflect such N fractions with increasing bonding strength, in

  17. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  18. Sulfamethazine transport in agroforestry and cropland soils

    Science.gov (United States)

    Knowledge of veterinary antibiotic transport and persistence is critical to understanding environmental risks associated with these potential contaminants. To understand mobility of sulfamethazine (SMZ) and sorption processes involved during SMZ transport in soil, column leaching experiments were p...

  19. Movement of 14 C-trifluralin labelled herbicide premerlin 600 CE in several soils

    International Nuclear Information System (INIS)

    Storino, Moises.

    1993-12-01

    The mobility behavior of the herbicide premerlin 600 CE (trifluralin was studied by using two different methodologies, i.e., soil thin layer chromatography and soil leaching columns. In the study soil thin layer chromatography were used six different Brazilian oxysols, being two sandy soils and four clayer soils. In the soil leaching columns study were used one sandy and one clayey soil. The distribution of 14 C-premerlin in the different granulometric soil fractions was determined after carried out columns experiments. Under all conditions imposed by these experiment, the herbicide 14 C-premerlin shown to be immobile being located on the surface of the soils columns. No effects of pH, concentration, metabolites or soil type were observed. (author). 46 refs., 25 figs., 3 tabs

  20. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  1. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils

    NARCIS (Netherlands)

    Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Zee, van der S.E.A.T.M.

    2008-01-01

    Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released

  2. Benzene degradation coupled with chlorate reduction in soil column study

    NARCIS (Netherlands)

    Tan, N.C.G.; Doesburg, van W.C.J.; Langenhoff, A.A.M.; Stams, A.J.M.

    2006-01-01

    Perchlorate and chlorate are electron acceptors that during reduction result in the formation of molecular oxygen. The produced oxygen can be used for activation of anaerobic persistent pollutants, like benzene. In this study chlorate was tested as potential electron acceptor to stimulate benzene

  3. Adsorption behavior of endosulfan on alluvial soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Sherazi, S.T.H.; Nizamani, S.M.; Bhanger, M.I.

    2012-01-01

    The present study was carried out to assess the behavior of endosulfan pesticide in alluvial soil under laboratory conditions. Sandy loam soil was studied to evaluate the fate of applied endosulfan with respect to soil properties. Known amount of endosulfan was added on alluvial soil in PVC column and eluted with 1000 ml of water. Eluents were collected in 10 parts, each of 100 ml. The soil in the column was divided in to three equal parts, each of 10 cm. Each part of the soil and eluents were analyzed for the determination of Endosulfan level using GC- mu ECD and GC-MS techniques. The kinetic and equilibrium adsorption characteristics of endosulfan on sandy loam soil was also studied and found that it follows Ho's pseudo second order and Freundlich isotherm. The present study revealed that a-and beta-Endosulfan was determined efficiently with their degraded products in alluvial soil under laboratory conditions with above mentioned instruments. (author)

  4. Radionuclide diffusion in soils. III

    International Nuclear Information System (INIS)

    Cipakova, A.; Szabova, T.

    1988-01-01

    Samples were taken of five soil types for determining diffusion coefficients, namely chernozem, illimerized brown soil, degraded chernozem, gleizated brown soil and heavy loamy brown soil. 5 layers of soil having a thickness of 1 cm each were placed in diffusion columns. 20 ml of water with 0.45 MBq 85 Sr of distilled water was poured over the columns. 10 ml of distilled water was poured over the columns every 5 days for monitoring the effect of the amount of precipitation and its distribution - a similarity with rainfall in the driest month, 41 ml of distilled water was then poured over the column every 5 days or 82 ml of distilled water every 10 days - imitating the month with the highest rainfall level. The effect of salts and various concentrations of salt mixtures on the value of the diffusion coefficient were monitored in solutions of NaNO 3 , KNO 3 and Ca(NO 3 ) 2 with added activity 0.45 MGq of 85 SrCl 2 . Diffusion was monitored for 101 days. All measured values are tabulated. The smallest diffusion coefficient was found in chernozem in the presence of H 2 O and the highest value was found in illimerized brown soil in the presence of 0.15 M of KNO 3 . (E.S.). 2 tabs., 10 refs

  5. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  6. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  7. Laser surface wakefield in a plasma column

    International Nuclear Information System (INIS)

    Gorbunov, L.M.; Mora, P.; Ramazashvili, R.R.

    2003-01-01

    The structure of the wakefield in a plasma column, produced by a short intense laser pulse, propagating through a gas affected by tunneling ionization is investigated. It is shown that besides the usual plasma waves in the bulk part of the plasma column [see Andreev et al., Phys. Plasmas 9, 3999 (2002)], the laser pulse also generates electromagnetic surface waves propagating along the column boundary. The length of the surface wake wave substantially exceeds the length of the plasma wake wave and its electromagnetic field extends far outside the plasma column

  8. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  9. Diffusive transport of radon in a homogeneous column of dry sand

    NARCIS (Netherlands)

    van der Spoel, W.H.; van der Graaf, E.R.; de Meijer, R.J.

    To validate a model for radon transport in soil, measurements of diffusive radon transport under well-defined and controlled conditions have been made in a homogeneous column of dry sand with an air-filled volume on top. This volume simulates a crawl space. The measurements concern time-dependent

  10. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  11. Use of radioactive sodium-22 to study the processes of soil salinization and desalinization

    International Nuclear Information System (INIS)

    Alzubaidi, A.H.

    1979-01-01

    This study deals with the salinization of four undisturbed soil columns of silt loam soil, collected with special plexiglass columns. The salinization was effected by adding a certain volume of salt solution consisting of a mixture of NaCl, CaCl 2 and MgCl 2 and containing 0.5 mCi of sodium-22. The salt solution was added to the surface of the first two columns and then the soil columns were leached with distilled water, while for the other two columns, the salt solution was added from the bottom of the columns using a syphon technique. The first two columns represent a model for the desalinization process of saline soils, while the latter two columns represent a model for the salinization process under the effect of high groundwater table. The downward and upward movements of sodium through the soil columns were recorded by measuring sodium radioactivity periodically, using a special scanner which continuously and automatically detected the radioactivity of sodium with the help of a gamma spectrometer. The final distribution curves for sodium movement throughout these soil columns versus time were obtained by computer. The data obtained indicate that radioactive sodium can be used with success to study the movement of salts in soil. The results also bring a new and better understanding of the nature of the salt movement during the processes of salinization and desalinization, the most important soil processes in the arid and semi-arid regions. (author)

  12. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  13. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  14. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique...

  15. The general packed column : an analytical solution

    NARCIS (Netherlands)

    Gielen, J.L.W.

    2000-01-01

    The transient behaviour of a packed column is considered. The column, uniformly packed on a macroscopic scale, is multi-structured on the microscopic level: the solid phase consists of particles, which may differ in incidence, shape or size, and other relevant physical properties. Transport in the

  16. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  17. Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study

    KAUST Repository

    Maeng, Sungkyu; Sharma, Saroj K.; Abel, Chol D T; Magic-Knezev, Aleksandra; Song, Kyungguen; Amy, Gary L.

    2012-01-01

    Soil column experiments were conducted to investigate the effects of effluent organic matter (EfOM) characteristics on the removal of bulk organic matter (OM) and pharmaceutically active compounds (PhACs) during managed aquifer recharge (MAR

  18. Center column design of the PLT

    International Nuclear Information System (INIS)

    Citrolo, J.; Frankenberg, J.

    1975-01-01

    The center column of the PLT machine is a secondary support member for the toroidal field coils. Its purpose is to decrease the bending moment at the nose of the coils. The center column design was to have been a stainless steel casting with the toroidal field coils grouped around the casting at installation, trapping it in place. However, the castings developed cracks during fabrication and were unsuitable for use. Installation of the coils proceeded without the center column. It then became necessary to redesign a center column which would be capable of installation with the toroidal field coils in place. The final design consists of three A-286 forgings. This paper discusses the final center column design and the influence that new knowledge, obtained during the power tests, had on the new design

  19. Admittance Scanning for Whole Column Detection.

    Science.gov (United States)

    Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi

    2017-07-05

    Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.

  20. Field Applications of Gamma Column Scanning Technology

    International Nuclear Information System (INIS)

    Aquino, Denis D.; Mallilin, Janice P.; Nuñez, Ivy Angelica A.; Bulos, Adelina DM.

    2015-01-01

    The Isotope Techniques Section (ITS) under the Nuclear Service Division (NSD) of the Philippine Nuclear Research Institute (PNRI) conducts services, research and development on radioisotope and sealed source application in the industry. This aims to benefit the manufacturing industries such as petroleum, petrochemical, chemical, energy, waste, column treatment plant, etc. through on line inspection and troubleshooting of a process vessel, column or pipe that could optimize the process operation and increase production efficiency. One of the most common sealed source techniques for industrial applications is the gamma column scanning technology. Gamma column scanning technology is an established technique for inspection, analysis and diagnosis of industrial columns for process optimization, solving operational malfunctions and management of resources. It is a convenient non-intrusive, cost effective and cost-efficient technique to examine inner details of an industrial process vessel such as a distillation column while it is in operation. The Philippine Nuclear Research Institute (PNRI) recognize the importance and benefits of this technology and has implemented activities to make gamma column scanning locally available to benefit the Philippine industries. Continuous effort for capacity building is being pursued thru the implementation of in-house and on-the-job training abroad and upgrading of equipment. (author)

  1. Dynamic effects of diabatization in distillation columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    The dynamic effects of diabatization in distillation columns are investigated in simulation emphasizing the heat-integrated distillation column (HIDiC). A generic, dynamic, first-principle model has been formulated, which is flexible enough to describe various diabatic distillation configurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found and control...

  2. Dynamic Effects of Diabatization in Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2012-01-01

    The dynamic eects of diabatization in distillation columns are investigated in simulation with primary focus on the heat-integrated distillation column (HIDiC). A generic, dynamic, rst-principle model has been formulated, which is exible to describe various diabatic distillation congurations....... Dynamic Relative Gain Array and Singular Value Analysis have been applied in a comparative study of a conventional distillation column and a HIDiC. The study showed increased input-output coupling due to diabatization. Feasible SISO control structures for the HIDiC were also found. Control...

  3. Column-oriented database management systems

    OpenAIRE

    Možina, David

    2013-01-01

    In the following thesis I will present column-oriented database. Among other things, I will answer on a question why there is a need for a column-oriented database. In recent years there have been a lot of attention regarding a column-oriented database, even if the existence of a columnar database management systems dates back in the early seventies of the last century. I will compare both systems for a database management – a colum-oriented database system and a row-oriented database system ...

  4. Digging up the Dirt on Soil Safety

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Should middle school science teachers be concerned about students bringing in unknown sources of soil to work on in class as the activity suggests? The science is well intended, but is it safe? What are some possible safety issues that might be of concern in dealing with soil samples? This month's column provides several examples of unsuspecting…

  5. Effect of Soil Passage and Ozonation on Dissolved Organic Carbon and Microbial Quantification in Wastewater

    KAUST Repository

    Ahmed, Elaf A.

    2013-01-01

    Water quality data are presented from a laboratory bench scale soil columns study, to simulate an aquifer recharge system injected with MBR wastewater effluent. This study investigates the effect of soil filtration and ozonation on the dissolved

  6. Simultaneous determination of palladium, platinum and rhodium by on-line column enrichment and HPLC with 2,4-dihydroxybenzylidenethiorhodanine as pre-column derivatization reagent

    Directory of Open Access Journals (Sweden)

    Dong Xuechang

    2006-01-01

    Full Text Available A new method for the simultaneous determination of palladium, platinum and rhodium ions as metal-DHBTR chelates was developed. The palladium, platinum and rhodium ions were pre-column derivatized with 2,4-dihydroxybenzylidenethiorhodanine (DHBTR to form colored chelates. The Pd-DHBTR, Pt-DHBTR and Rh-DHBTR chelates can be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column with a 0.05 mol L-1 sodium acetate-acetic acid buffer solution (pH 3.5 as mobile phase. After the enrichment had finished, by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and traveling towards the analytical column. These chelates separation on the analytical column was satisfactory with 62% (v/v acetonitrile (containing 0.05 mol L-1 of pH 3.5 sodium acetate-acetic acid buffer salt and 0.1% (m/v of tritonX-100 as mobile phase. The Limits of detection of palladium, platinum and rhodium are 3.6 ng L-1, 3.2 ng L-1 and 4.5 ng L-1, respectively. This method was applied to the determination of palladium, platinum and rhodium in water, urine and soil samples with good results.

  7. Influence of moisture content on radon diffusion in soil

    International Nuclear Information System (INIS)

    Singh, M.; Ramola, R.C.; Singh, S.; Virk, H.S.

    1990-01-01

    Radon diffusion from soil has been studied as a function of the moisture content of the soil. A few simple experiments showed that up to a certain moisture content the radon diffusion increased with increasing moisture. A sharp rise in radon concentration occurred as the moisture was increased from the completely dry state to 13% water by weight. The radon flux was measured for columns of dry, moist and water saturated soil. The highest flux came from the column filled with moist soil. Water saturated soil gave the lowest flux because of the much lower diffusion coefficient of radon through water. (author)

  8. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    Science.gov (United States)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  9. Unbonded Prestressed Columns for Earthquake Resistance

    Science.gov (United States)

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  10. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  11. Capacity of columns with splice imperfections

    International Nuclear Information System (INIS)

    Popov, E.P.; Stephen, R.M.

    1977-01-01

    To study the behavior of spliced columns subjected to tensile forces simulating situations which may develop in an earthquake, all of the spliced specimens were tested to failure in tension after first having been subjected to large compressive loads. The results of these tests indicate that the lack of perfect contact at compression splices of columns may not be important, provided that the gaps are shimmed and welding is used to maintain the sections in alignment

  12. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    Science.gov (United States)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  13. The handedness of historiated spiral columns.

    Science.gov (United States)

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  14. Performance of Elaeis Guineensis Leaves Compost in Filter Media for Stormwater Treament Through Column Study

    Science.gov (United States)

    Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.

    2016-07-01

    Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.

  15. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    Energy Technology Data Exchange (ETDEWEB)

    Busigin, A. [NITEK USA Inc., Ocala, FL (United States)

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  16. Development of spent salt treatment technology by zeolite column system. Performance evaluation of zeolite column

    International Nuclear Information System (INIS)

    Miura, Hidenori; Uozumi, Koichi

    2009-01-01

    At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)

  17. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  18. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Science.gov (United States)

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  19. Mobility and Distribution of 14C-Endosulfan in Soils

    International Nuclear Information System (INIS)

    Anurakponsatorn, P.; Pakkong, P.; Parkpian, P.

    1998-01-01

    Chromatographic packed-soil Column was used to study the relative mobility and distribution of endosulfan in soil. With water saturated flow and gravity, Phrabat soil (PakChong Series) showed much more relative mobility and distribution than Rangsit soil (Rangsit Series). This was agreed with soil permeability of the two soils with were 0.34 and 9.16 mm/hr for Rangsit soil and Phrabat soil, respectively. This result was in agreeable with the adsorption coefficient (k d ) of the two soils which was higher in Rangsit soil compared to Phrabat soil. The distribution of endosulfan was found mostly in the top 10 cm of soil. As expected distribution to deeper extend was observed in Phrabat soil

  20. Bulk density and aggregate stability assays in percolation columns

    Directory of Open Access Journals (Sweden)

    М. М. Хордан

    2016-12-01

    Full Text Available The restoration technologies in areas degraded by extractive activities require the use of their own mine spoils. Reducing deficiencies in physical properties, organic matter, and nutrients with a contribution of treated sewage sludge is proposed. This experiment was based on a controlled study using columns. The work was done with two mine spoils, both very rich in calcium carbonate. Two sewage sludge doses were undertaken (30,000 and 90,000 kg/ha of sewage sludge in addition to a different mine spoils used as restoration substrates. The water contribution was provided by a device that simulated short duration rain. The leached water was collected 24 hours after the last application. The experiment saw the bulk density decrease and the aggregate stability increase, thereby improving the structure. The improved soil structure decreases its vulnerability to degradation processes such as erosion and compaction.

  1. pH dependence and unsuitability of fluorescein dye as a tracer for pesticide mobility studies in acid soil

    Science.gov (United States)

    Chris Peterson

    2009-01-01

    The mobility of fluorescein and bromide used as tracers in packed soil columns was investigated.Five different soils were used in two application methods: soil surface application and soil incorporation, both of which simulate accepted methods of soil application of termiticides to prevent structural infestation. The...

  2. Numerical analysis of stone columns in mitigating liquefaction effects in embankment fills

    Energy Technology Data Exchange (ETDEWEB)

    Borghei, Z.; Soroush, A. [Amirkabir University of Technology, Tehran, (Iran, Islamic Republic of); Noorzad, A. [Power and Water University of Technology, Tehran, (Iran, Islamic Republic of)

    2010-07-01

    The traditional approach to liquefaction in embankment fills is to use in-situ densification. The use of stone columns offers the possibility of preventing liquefaction and associated settlements while reducing the cost and time required for treatment. This paper investigated the behaviour of stone columns using a numerical method. The study focused on a case study, a sand layer beneath two wall tanks, butane and propane NGL, located on Siri Island, Persian Gulf, Iran. Numerical analyses were carried out to evaluate the rate of excess pore pressure build-up in the improved ground. The numerical model results were compared to the simulation results from a centrifuge test for a uniform 19m-thick liquefiable sand layer. The numerical methodology was verified. The results showed that the stone columns can significantly increase the rate of pore pressure dissipation and reduce the settlement. It was found that the installation process densifies the surrounding soil, decreasing the liquefaction potential.

  3. Recent advances in column switching sample preparation in bioanalysis.

    Science.gov (United States)

    Kataoka, Hiroyuki; Saito, Keita

    2012-04-01

    Column switching techniques, using two or more stationary phase columns, are useful for trace enrichment and online automated sample preparation. Target fractions from the first column are transferred online to a second column with different properties for further separation. Column switching techniques can be used to determine the analytes in a complex matrix by direct sample injection or by simple sample treatment. Online column switching sample preparation is usually performed in combination with HPLC or capillary electrophoresis. SPE or turbulent flow chromatography using a cartridge column and in-tube solid-phase microextraction using a capillary column have been developed for convenient column switching sample preparation. Furthermore, various micro-/nano-sample preparation devices using new polymer-coating materials have been developed to improve extraction efficiency. This review describes current developments and future trends in novel column switching sample preparation in bioanalysis, focusing on innovative column switching techniques using new extraction devices and materials.

  4. Predictive geochemical modeling of uranium and other contaminants in laboratory columns in relatively oxidizing, carbonate-rich solutions

    International Nuclear Information System (INIS)

    Longmire, P.; Turney, W.R.; Mason, C.F.V.

    1994-01-01

    Carbonate heap leaching of uranium-contaminated soils and sediments represents a viable, cost-effective remediation technology. Column experiments have been conducted using 0.1, 0.25, and 0.5 M Na 2 CO 3 /NaHCO 3 solutions for leaching uranium from soils located adjacent to an incinerator at the Fernald Environmental Management Project (FEMP) site. Results from column experiments and geochemical modeling are used to quantitatively evaluate the effectiveness of heap leaching. Leach efficiencies of up to 72 wt.% of total uranium in CaO-agglomerated soil result from dissolution of uranium (U(VI)-dominated) minerals, formation of the soluble complex UO 2 (CO 3 ) 3 4- , and uranium desorption from clay minerals, ferric hydroxides, and humic acids. Parameters that control the extent of uranium extraction include pH, Eh, temperature, carbonate concentration, lixiviant-flow rate, pore-solution chemistry, solid phases, and soil texture

  5. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    Science.gov (United States)

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  7. A stochastic view on column efficiency.

    Science.gov (United States)

    Gritti, Fabrice

    2018-03-09

    A stochastic model of transcolumn eddy dispersion along packed beds was derived. It was based on the calculation of the mean travel time of a single analyte molecule from one radial position to another. The exchange mechanism between two radial positions was governed by the transverse dispersion of the analyte across the column. The radial velocity distribution was obtained by flow simulations in a focused-ion-beam scanning electron microscopy (FIB-SEM) based 3D reconstruction from a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 particles. Accordingly, the packed bed was divided into three coaxial and uniform zones: (1) a 1.4 particle diameter wide, ordered, and loose packing at the column wall (velocity u w ), (2) an intermediate 130 μm wide, random, and dense packing (velocity u i ), and (3) the bulk packing in the center of the column (velocity u c ). First, the validity of this proposed stochastic model was tested by adjusting the predicted to the observed reduced van Deemter plots of a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 fully porous particles (FPPs). An excellent agreement was found for u i  = 0.93u c , a result fully consistent with the FIB-SEM observation (u i  = 0.95u c ). Next, the model was used to measure u i  = 0.94u c for 2.1 mm × 100 mm column packed with 1.6 μm Cortecs-C 18 superficially porous particles (SPPs). The relative velocity bias across columns packed with SPPs is then barely smaller than that observed in columns packed with FPPs (+6% versus + 7%). u w =1.8u i is measured for a 75 μm × 1 m capillary column packed with 2 μm BEH-C 18 particles. Despite this large wall-to-center velocity bias (+80%), the presence of the thin and ordered wall packing layer has no negative impact on the kinetic performance of capillary columns. Finally, the stochastic model of long-range eddy dispersion explains why analytical (2.1-4.6 mm i.d.) and capillary (columns can all be

  8. Vertebral Column Resection for Rigid Spinal Deformity.

    Science.gov (United States)

    Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G

    2017-05-01

    Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.

  9. Effect of backmixing on pulse column performance

    International Nuclear Information System (INIS)

    Miao, Y.W.

    1979-05-01

    A critical survey of the published literature concerning dispersed phase holdup and longitudinal mixing in pulsed sieve-plate extraction columns has been made to assess the present state-of-the-art in predicting these two parameters, both of which are of critical importance in the development of an accurate mathematical model of the pulse column. Although there are many conflicting correlations of these variables as a function of column geometry, operating conditions, and physical properties of the liquid systems involved it has been possible to develop new correlations which appear to be useful and which are consistent with much of the available data over the limited range of variables most likely to be encountered in plant sized equipment. The correlations developed were used in a stagewise model of the pulse column to predict product concentrations, solute inventory, and concentration profiles in a column for which limited experimental data were available. Reasonable agreement was obtained between the mathematical model and the experimental data. Complete agreement, however, can only be obtained after a correlation for the extraction efficiency has been developed. The correlation of extraction efficiency was beyond the scope of this work

  10. Linking soil O2, CO2, and CH4 concentrations in a wetland soil

    DEFF Research Database (Denmark)

    Elberling, Bo; Jensen, Louise Askær; Jørgensen, Christian Juncher

    2011-01-01

    and CH4 were measured in the laboratory during flooding of soil columns using a combination of planar O2 optodes and membrane inlet mass spectrometry. Microsensors were used to assess apparent diffusivity under both field and laboratory conditions. Gas concentration profiles were analyzed...... plants tissue on soil gas dynamics and greenhouse gas emissions following marked changes in water level....

  11. Consolidation Theory for a Stone Column Composite Foundation under Multistage Loading

    Directory of Open Access Journals (Sweden)

    Shenggen Huang

    2016-01-01

    Full Text Available The consolidation theories considering instant load cannot fully reveal the consolidation mechanism of a stone column composite foundation used in the expressway embankments due to the time effect of loading; that is, the expressway embankments are often constructed in several stages for a long time. Meanwhile, owing to the special property that the pile-soil stress ratio is larger than 1, the consolidation theory for sand drain well foundation cannot be used directly in the consolidation analysis of stone column composite foundation. Based on the principle that the vertical load applied on the composite foundation is shared by the stone column and the surrounding soil, the governing solutions for the stone column composite foundation under a multistage load are established. By virtue of the separation of variables, the corresponding solutions of degree of consolidation for loading stage and maintaining load stage are derived separately. According to the Carrillo theorem, the solution for the average total degree of consolidation of entire composite foundation is also obtained. Finally, the reasonableness of the present solution has been verified by comparing the consolidation curve calculated by the present solution with that measured by site test.

  12. Mathematical modeling of alcohol distillation columns

    Directory of Open Access Journals (Sweden)

    Ones Osney Pérez

    2011-04-01

    Full Text Available New evaluation modules are proposed to extend the scope of a modular simulator oriented to the sugar cane industry, called STA 4.0, in a way that it can be used to carry out x calculation and analysis in ethanol distilleries. Calculation modules were developed for the simulation of the columns that are combined in the distillation area. Mathematical models were supported on materials and energy balances, equilibrium relations and thermodynamic properties of the ethanol-water system. Ponchon-Savarit method was used for the evaluation of the theoretical stages in the columns. A comparison between the results using Ponchon- Savarit method and those obtained applying McCabe-Thiele method was done for a distillation column. These calculation modules for ethanol distilleries were applied to a real case for validation.

  13. Inert carriers for column extraction chromatography

    International Nuclear Information System (INIS)

    Katykhin, G.S.

    1978-01-01

    Inert carriers used in column extraction chromatography are reviewed. Such carriers are devided into two large groups: hydrophilic carriers which possess high surface energy and are well wetted only with strongly polar liquids (kieselguhrs, silica gels, glasses, cellulose, Al 2 O 3 ) and water-repellent carriers which possess low surface energy and are well wetted with various organic solvents (polyethylene, polytetrafluorethylene polytrifluorochlorethylene). Properties of various carriers are presented: structure, chemical and radiation stability, adsorption properties, extracting agent capacity. The effect of structure and sizes of particles on the efficiency of chromatography columns is considered. Ways of immovable phase deposition on the carrier and the latter's regeneration. Peculiarities of column packing for preparative and continuous chromatography are discussed

  14. Computational analysis of ozonation in bubble columns

    International Nuclear Information System (INIS)

    Quinones-Bolanos, E.; Zhou, H.; Otten, L.

    2002-01-01

    This paper presents a new computational ozonation model based on the principle of computational fluid dynamics along with the kinetics of ozone decay and microbial inactivation to predict the performance of ozone disinfection in fine bubble columns. The model can be represented using a mixture two-phase flow model to simulate the hydrodynamics of the water flow and using two transport equations to track the concentration profiles of ozone and microorganisms along the height of the column, respectively. The applicability of this model was then demonstrated by comparing the simulated ozone concentrations with experimental measurements obtained from a pilot scale fine bubble column. One distinct advantage of this approach is that it does not require the prerequisite assumptions such as plug flow condition, perfect mixing, tanks-in-series, uniform radial or longitudinal dispersion in predicting the performance of disinfection contactors without carrying out expensive and tedious tracer studies. (author)

  15. Bioretention column study of bacteria community response to salt-enriched artificial stormwater.

    Science.gov (United States)

    Endreny, Theodore; Burke, David J; Burchhardt, Kathleen M; Fabian, Mark W; Kretzer, Annette M

    2012-01-01

    Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Consolidation Theory for a Stone Column Composite Foundation under Multistage Loading

    OpenAIRE

    Huang, Shenggen; Feng, Yingtao; Liu, Hao; Wu, Wenbing; Mei, Guoxiong

    2016-01-01

    The consolidation theories considering instant load cannot fully reveal the consolidation mechanism of a stone column composite foundation used in the expressway embankments due to the time effect of loading; that is, the expressway embankments are often constructed in several stages for a long time. Meanwhile, owing to the special property that the pile-soil stress ratio is larger than 1, the consolidation theory for sand drain well foundation cannot be used directly in the consolidation ana...

  17. CUB DI (Deionization) column control system

    International Nuclear Information System (INIS)

    Seino, K.C.

    1999-01-01

    For the old MR (Main Ring), deionization was done with two columns in CUB, using an ion exchange process. Typically 65 GPM of LCW flew through a column, and the resistivity was raised from 3 Mohm-cm to over 12 Mohm-cm. After a few weeks, columns lost their effectiveness and had to be regenerated in a process involving backwashing and adding hydrochloric acid and sodium hydroxide. For normal MR operations, LCW returned from the ring and passed through the two columns in parallel for deionization, although the system could have been operated satisfactorily with only one in use. A 3000 gallon reservoir (the Spheres) provided a reserve of LCW for allowing water leaks and expansions in the MR. During the MI (Main Injector) construction period, the third DI column was added to satisfy requirements for the MI. When the third column was added, the old regeneration controller was replaced with a new controller based on an Allen-Bradley PLC (i.e., SLC-5/04). The PLC is widely used and well documented, and therefore it may allow us to modify the regeneration programs in the future. In addition to the above regeneration controller, the old control panels (which were used to manipulate pumps and valves to supply LCW in Normal mode and to do Int. Recir. (Internal Recirculation) and Makeup) were replaced with a new control system based on Sixtrak Gateway and I/O modules. For simplicity, the new regeneration controller is called as the US Filter system, and the new control system is called as the Fermilab system in this writing

  18. Operation of the annular pulsed column, (2)

    International Nuclear Information System (INIS)

    Takahashi, Keiki; Tsukada, Takeshi

    1988-01-01

    The heat of reaction generated form the uranium extraction is considered to from the temperature profile inside the pulsed column. A simulation code was developed to estimate the temperature profile, considering heat generation and counter-current heat transfer. The temperature profiles calculated using this code was found to depend on both the position of the extraction zone and the operating condition. The reported experimental result was fairly represented by this simulation code. We consider that this presented simulation code is capable of providing with the temperature profile in the pulsed column and useful for the monitoring of the uranium extraction zone. (author)

  19. Distillation columns inspection through gamma scanning

    International Nuclear Information System (INIS)

    Garcia, Marco

    1999-09-01

    The application of nuclear energy is very wide and it allows the saving of economic resources since the investigation of a certain process is carried out without stop the plant. The gamma scanning of oil c racking c olumns are practical examples, they allow to determine the hydraulic operation of the inspected columns. A source of Co-60 22mCi and a detector with a crystal of INa(TI) are used. This paper shows the results got from a profile carried out in a column distillation

  20. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  1. Soil Overconsolidation Changes Caused by Dynamic Replacement

    Science.gov (United States)

    Piotr, Kanty; Sławomir, Kwiecień; Jerzy, Sękowski

    2017-10-01

    In the dynamic replacement method (DR) the soil is improved by initially dropping a large weight (typically 8-20 t) pounder from a significant height up to 25 m. The created crater is filled with a stronger material (gravel, rubble, stone aggregate, debris), and the pounder is dropped once or multiple times again. The construction of dynamic replacement pillars influences the parameters of the adjacent soil. It results from the energy generated by dropping a pounder into the soil. In the current practice, these changes are not taken into the account during the design. This paper focuses on the changes of overconsolidation ratio (OCR) and in situ coefficient of lateral earth pressure (K) values estimated base on cone penetration test (CPTU) and Dilatometric test (DMT) performed at a test site. A single column was constructed and the ground around the column was examined using CPTU and DMT, performed at different distances from the column centre (2, 3, 4 and 6 m) and at different time intervals (during construction and 1, 8, 30 days later). The column was constructed in so-called transition soils (between cohesive and non-cohesive). While interpreting the results of the research, the authors addressed the matter of choosing the procedure of OCR and K indication for transition soils (in this case described as silts and/or sandy silts). Overconsolidation changes may differ depending on the chosen analysis procedure (for cohesive or non-cohesive soils). On the basis of the analysis presented in the paper and the observation of soil (acknowledged as cohesive according to macroscopic observations) during column excavation, it was decided that for more detailed analyses methods dedicated to cohesive soils should be applied. Generally, it can be stated that although the changes were complex, DR pillar formation process resulted in the increase of these parameters. The average increases of OCR and K values were 25% and 10% respectively. The post installation values are not

  2. Performance of RC columns with partial length corrosion

    International Nuclear Information System (INIS)

    Wang Xiaohui; Liang Fayun

    2008-01-01

    Experimental and analytical studies on the load capacity of reinforced concrete (RC) columns with partial length corrosion are presented, where only a fraction of the column length was corroded. Twelve simply supported columns were eccentrically loaded. The primary variables were partial length corrosion in tensile or compressive zone and the corrosion level within this length. The failure of the corroded column occurs in the partial length, mainly developed from or located nearby or merged with the longitudinal corrosion cracks. For RC column with large eccentricity, load capacity of the column is mainly influenced by the partial length corrosion in tensile zone; while for RC column with small eccentricity, load capacity of the column greatly decreases due to the partial length corrosion in compressive zone. The destruction of the longitudinally mechanical integrality of the column in the partial length leads to this great reduction of the load capacity of the RC column

  3. Stone column settlement performance in structured anisotropic clays: the influence of creep

    Directory of Open Access Journals (Sweden)

    Brian G. Sexton

    2016-10-01

    Full Text Available The recently developed elasto-viscoplastic Creep-SCLAY1S model has been used in conjunction with PLAXIS 2D to investigate the effectiveness of vibro-replacement in a creep-prone clay. The Creep-SCLAY1S model accounts for anisotropy, bonding, and destructuration, and uses the concept of a constant rate of viscoplastic multiplier to calculate creep strain rate. A comparison of settlement improvement factors with and without creep indicates that ‘total’ settlement improvement factors (primary plus creep are lower than their ‘primary’ counterparts (primary settlement only. The lowest settlement improvement factors arise for analyses incorporating the effect of bonding and destructuration. Examination of the variations of vertical stress with time and depth has indicated that vertical stress is transferred from the soil to the column as the soil creeps. This results in additional column yielding. In addition, the radial and hoop stresses in the soil are lower for the ‘creep’ case. The reduced radial stresses lead to additional column bulging and hence more settlement, whereas the hoop stress reductions appear to be a secondary effect, caused by additional plastic deformation for the ‘creep’ case.

  4. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    Science.gov (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  5. Behaviour of Soil Subjected to Dynamic Loads

    DEFF Research Database (Denmark)

    Bødker, L.

    1998-01-01

    foundations, and hence it is necessary to know the deformation properties for the soil at very low strain level. The main topic of the project is to increase the knowledge of the behaviour of Danish soils at small strain levels and to extend the laboratory facilities to deal with testing at small strains....... The soil behaviour at very small strain levels is non-linear, and the most common testing technique for this situation is the resonant column technique. One of the aims of this project is to install, check, get familiar with and perform tests on different kinds of Danish soils in a new Drnevich...... Longitudinal-Torsional Resonant Column apparatus placed at the Soil Mechanics Laboratory at Aalborg University. Another, but quite new technique for small strain testing to determine the maximum shear modulus, Gmax, is the bender element technique, and as part of the project this technique has also been...

  6. Scalability of pre-packed preparative chromatography columns with different diameters and lengths taking into account extra column effects.

    Science.gov (United States)

    Schweiger, Susanne; Jungbauer, Alois

    2018-02-16

    Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Convolutional Codes with Maximum Column Sum Rank for Network Streaming

    OpenAIRE

    Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish

    2015-01-01

    The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...

  8. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    Science.gov (United States)

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  9. Influence of pressure on the properties of chromatographic columns. II. The column hold-up volume.

    Science.gov (United States)

    Gritti, Fabrice; Martin, Michel; Guiochon, Georges

    2005-04-08

    The effect of the local pressure and of the average column pressure on the hold-up column volume was investigated between 1 and 400 bar, from a theoretical and an experimental point of view. Calculations based upon the elasticity of the solids involved (column wall and packing material) and the compressibility of the liquid phase show that the increase of the column hold-up volume with increasing pressure that is observed is correlated with (in order of decreasing importance): (1) the compressibility of the mobile phase (+1 to 5%); (2) in RPLC, the compressibility of the C18-bonded layer on the surface of the silica (+0.5 to 1%); and (3) the expansion of the column tube (columns packed with the pure Resolve silica (0% carbon), the derivatized Resolve-C18 (10% carbon) and the Symmetry-C18 (20% carbon) adsorbents, using water, methanol, or n-pentane as the mobile phase. These solvents have different compressibilities. However, 1% of the relative increase of the column hold-up volume that was observed when the pressure was raised is not accounted for by the compressibilities of either the solvent or the C18-bonded phase. It is due to the influence of the pressure on the retention behavior of thiourea, the compound used as tracer to measure the hold-up volume.

  10. Effect of Soil Passage and Ozonation on Dissolved Organic Carbon and Microbial Quantification in Wastewater

    KAUST Repository

    Ahmed, Elaf A.

    2013-05-01

    Water quality data are presented from a laboratory bench scale soil columns study, to simulate an aquifer recharge system injected with MBR wastewater effluent. This study investigates the effect of soil filtration and ozonation on the dissolved organic carbon and bacterial count in the wastewater. Flow Cytometry was used to quantify microorganisms in water samples. Other analytical tests were conducted as well, such as seven anions, fluorescence spectroscopy (FEEM), ultraviolet absorption (UV 254 nm) and dissolved organic carbon measurement (DOC). Influent in this study was injected into two identical soil columns. One of the columns was injected with treated wastewater combined with ozonation called SC1, The second column was injected with treated wastewater only and called SC2. Passing the wastewater through a deeper depth in the soil column showed a reduction in the DOC concentration. Removal of DOC was 53.7 % in SC1 and 53.8 % in SC2. UV 254 nm results demonstrated that the majority of the UV absorbing compounds were removed after the first 30 cm in the soil columns. FEEM results revealed that soil column treatment only doesn\\'t remove humic-like and fulvic-like substances. However, combining soil column treatment with ozonation was capable of removing humic-like, fulvic-like and protein-like substances from the wastewater. Flow Cytometry results showed a bacteria removal of 52.5 %-89.5 % in SC1 which was higher than SC2 removal of 29.1 %-56.5 %.

  11. Enhancing Bioremediation of Oil-contaminated Soils by Controlling Nutrient Transport using Dual Characteristics of Soil Pore Structure

    Science.gov (United States)

    Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.

    2012-12-01

    Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.

  12. Pulsing flow in trickle bed columns

    NARCIS (Netherlands)

    Blok, Jan Rudolf

    1981-01-01

    In the operation of a packed column with cocurrent downflow of gas and liquid (trickle bed) several flowpatterns can be observed depending on the degree of interaction between gas and liquid. At low liquid and gas flow rates - low interaction - gascontinuous flow occurs. In this flowregime, the

  13. Revive your columns with cyclic distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Bîldea, Costin Sorin

    2015-01-01

    The process intensification (PI) technique involves changing a tower?s internals and operating mode and the separate movement of the liquid and vapor phases. This can significantly increase column throughput and reduce energy requirements, while improving separation performance. PI is a set of

  14. Robust Geometric Control of a Distillation Column

    DEFF Research Database (Denmark)

    Kymmel, Mogens; Andersen, Henrik Weisberg

    1987-01-01

    A frequency domain method, which makes it possible to adjust multivariable controllers with respect to both nominal performance and robustness, is presented. The basic idea in the approach is that the designer assigns objectives such as steady-state tracking, maximum resonance peaks, bandwidth, m...... is used to examine and improve geometric control of a binary distillation column....

  15. On Row Rank Equal Column Rank

    Science.gov (United States)

    Khalili, Parviz

    2009-01-01

    We will prove a well-known theorem in Linear Algebra, that is, for any "m x n" matrix the dimension of row space and column space are the same. The proof is based on the subject of "elementary matrices" and "reduced row-echelon" form of a matrix.

  16. On Stability of a Bubble Column

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2013-01-01

    Roč. 91, č. 2 (2013), s. 191-203 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110 Institutional support: RVO:67985858 Keywords : bubble column * flow regimes * steady solution Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.281, year: 2013

  17. Thermal Analysis of LANL Ion Exchange Column

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1999-01-01

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades

  18. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  19. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  20. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  1. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  2. Single column and two-column H-D-T distillation experiments at TSTA

    International Nuclear Information System (INIS)

    Yamanishi, T.; Yoshida, H.; Hirata, S.; Naito, T.; Naruse, Y.; Sherman, R.H.; Bartlit, J.R.; Anderson, J.L.

    1988-01-01

    Cryogenic distillation experiments were peformed at TSTA with H-D-T system by using a single column and a two-column cascade. In the single column experiment, fundamental engineering data such as the liquid holdup and the HETP were measured under a variety of operational condtions. The liquid holdup in the packed section was about 10 /approximately/ 15% of its superficial volume. The HETP values were from 4 to 6 cm, and increased slightly with the vapor velocity. The reflux ratio had no effect on the HETP. For the wo-colunn experiemnt, dynamic behavior of the cascade was observed. 8 refs., 7 figs., 2 tabs

  3. Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.

    Science.gov (United States)

    Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H

    2011-01-01

    Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.

  4. The central column structure in SPHEX

    International Nuclear Information System (INIS)

    Duck, R.C.; French, P.A.; Browning, P.K.; Cunningham, G.; Gee, S.J.; al-Karkhy, A.; Martin, R.; Rusbridge, M.G.

    1994-01-01

    SPHEX is a gun injected spheromak in which a magnetised Marshall gun generates and maintains an approximately axisymmetric toroidal plasma within a topologically spherical flux conserving vessel. The central column has been defined as a region of high mean floating potential, f > up to ∼ 150 V, aligned with the geometric axis of the device. It has been suggested that this region corresponds to the open magnetic flux which is connected directly to the central electrode of the gun and links the toroidal annulus (in which f > ∼ 0 V). Poynting vector measurements have shown that the power required to drive toroidal current in the annulus is transmitted out of the column by the coherent 20 kHz mode which pervades the plasma. Measurements of the MHD dynamo in the column indicate an 'antidynamo' electric field due to correlated fluctuations in v and B at the 20 kHz mode frequency which is consistent with the time-averaged Ohm's Law. On shorting the gun electrodes, the density in the column region decays rapidly leaving a 'hole' of radius R c ∼ 7 cm. This agrees with the estimated dimension of the open flux from mean internal B measurements and axisymmetric force-free equilibrium modelling, but is considerably smaller than the radius of ∼ 13 cm inferred from the time-averaged potential. In standard operating conditions the gun delivers a current of I G ∼ 60 kA at V G ∼ 500 V for ∼ 1 ms, driving a toroidal current of I t ∼ 60 kA. Ultimately we wish to understand the mechanism which drives toroidal current in the annulus; the central column is of interest because of the crucial role it plays in this process. (author) 8 refs., 6 figs

  5. Diuron mobility through vineyard soils contaminated with copper

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Astrid R. [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France) and Department of Crop and Soil Sciences, Cornell University, 1002 Bradfield Hall, Ithaca, NY 14853 (United States)]. E-mail: arj5@cornell.edu; Dousset, Sylvie [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France); Guichard, Nathalie [UMR CNRS 5561 Biogeosciences, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France); Baveye, Philippe [Department of Crop and Soil Sciences, Cornell University, 1002 Bradfield Hall, Ithaca, NY 14853 (United States); Andreux, Francis [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France)

    2005-11-15

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17-509 mg kg{sup -1} total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1-0.45%) than from the bare-soil columns (0.02-0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98-1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8-1042 {mu}g) than in the calcareous soils (9.5-63.4 {mu}g). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. - Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils.

  6. Diuron mobility through vineyard soils contaminated with copper

    International Nuclear Information System (INIS)

    Jacobson, Astrid R.; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-01-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17-509 mg kg -1 total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1-0.45%) than from the bare-soil columns (0.02-0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98-1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8-1042 μg) than in the calcareous soils (9.5-63.4 μg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. - Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils

  7. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  8. Column, particularly extraction column, for fission and/or breeder materials

    International Nuclear Information System (INIS)

    Vietzke, H.; Pirk, H.

    1980-01-01

    An absorber rod with a B 4 C insert is situated in the long extraction column for a uranyl nitrate solution or a plutonium nitrate solution. The geometrical dimensions are designed for a high throughput with little corrosion. (DG) [de

  9. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  10. HETP evaluation of structured packing distillation column

    Directory of Open Access Journals (Sweden)

    A. E. Orlando Jr.

    2009-09-01

    Full Text Available Several tests with a hydrocarbon mixture of known composition (C8-C14, obtained from DETEN Chemistry S.A., have been performed in a laboratory distillation column, having 40mm of nominal diameter and 2.2m high, with internals of Sulzer DX gauze stainless steel structured packing. The main purpose of this work was to evaluate HETP of a structured packing laboratory scale distillation column, operating continuously. Six HETP correlations available in the literature were compared in order to find out which is the most appropriate for structured packing columns working with medium distillates. Prior to the experimental tests, simulation studies using commercial software PRO/II® were performed in order to establish the optimum operational conditions for the distillation, especially concerning operating pressure, top and bottom temperatures, feed location and reflux ratio. The results of PRO/II® were very similar to the analysis of the products obtained during continuous operation, therefore permitting the use of the properties calculated by that software on the theoretical models investigated. The theoretical models chosen for HETP evaluation were: Bravo, Rocha and Fair (1985; Rocha, Bravo and Fair (1993, 1996; Brunazzi and Pagliant (1997; Carlo, Olujić and Pagliant (2006; Olujić et al., (2004. Modifications concerning calculation of specific areas were performed on the correlations in order to fit them for gauze packing HETP evaluation. As the laboratory distillation column was operated continuously, different HETP values were found by the models investigated for each section of the column. The low liquid flow rates in the top section of the column are a source of error for HETP evaluation by the models; therefore, more reliable HETP values were found in the bottom section, in which liquid flow rates were much greater. Among the theoretical models, Olujić et al. (2004 has shown good results relative to the experimental tests. In addition, the

  11. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  12. Mitigating oil spills in the water column

    International Nuclear Information System (INIS)

    Barry, Edward; Libera, Joseph A.; Mane, Anil University; Avila, Jason R.; DeVitis, David

    2017-01-01

    The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. We find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.

  13. Assembly procedure for column cutting platform

    International Nuclear Information System (INIS)

    Routh, R.D.

    1995-01-01

    This supporting document describes the assembly procedure for the Column Cutting Platform and Elevation Support. The Column Cutting Platform is a component of the 241-SY-101 Equipment Removal System. It is set up on the deck of the Strongback Trailer to provide work access to cut off the upper portion of the Mitigation Pump Assembly (MPA). The Elevation Support provides support for the front of the Storage Container with the Strongback at an inclined position. The upper portion of the MPA must be cut off to install the Containment Caps on the Storage Container. The storage Container must be maintained in an inclined position until the Containment Caps are installed to prevent any residual liquids from migrating forward in the Storage Container

  14. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  15. Optimization of the isotope separation in columns

    International Nuclear Information System (INIS)

    Kaminskij, V.A.; Vetsko, V.M.; Tevzadze, G.A.; Devdariani, O.A.; Sulaberidze, G.A.

    1982-01-01

    The general method for the multi-parameter optimization of cascade plants of packed columns is proposed. As an optimization effectiveness function a netcost of the isotopic product is selected. The net cost is comprehensively characterizing the sum total of capital costs for manufacturing the products as well as determining the choice of the most effective directions for capital investments and rational limits of improvement of the products quality. The method is based on main representations of the cascade theory, such as the ideal flow profile and form efficiency as well as mathematical model of the packed column specifying the bonds between its geometric and operating parameters. As a result, the isotopic products cost function could be bound with such parameters as the equilibrium stage height, ultimate packing capacity, its element dimensions, column diameter. It is concluded that the suggested approach to the optimization of isotope separation processes is rather a general one. It permits to solve a number of special problems, such as estimation of advisability of using heat-pump circuits and determining the rational automation level. Besides, by means of the method suggested one can optimize the process conditions with regard to temperature and pressure

  16. Employing anatomical knowledge in vertebral column labeling

    Science.gov (United States)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  17. Local buckling of composite channel columns

    Science.gov (United States)

    Szymczak, Czesław; Kujawa, Marcin

    2018-05-01

    The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.

  18. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    Science.gov (United States)

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia).

    Science.gov (United States)

    Jacotot, Adrien; Marchand, Cyril; Allenbach, Michel

    2018-08-01

    We performed a preliminary study to quantify CO 2 and CH 4 emissions from the water column within a Rhizophora spp. mangrove forest. Mean CO 2 and CH 4 emissions during the studied period were 3.35±3.62mmolCm -2 h -1 and 18.30±27.72μmolCm -2 h -1 , respectively. CO 2 and CH 4 emissions were highly variable and mainly driven by tides (flow/ebb, water column thickness, neap/spring). Indeed, an inverse relationship between the magnitude of the emissions and the thickness of the water column above the mangrove soil was observed. δ 13 CO 2 values ranged from -26.88‰ to -8.6‰, suggesting a mixing between CO 2 -enriched pore waters and lagoon incoming waters. In addition, CO 2 and CH 4 emissions were significantly higher during ebb tides, mainly due to the progressive enrichment of the water column by diffusive fluxes as its residence time over the forest floor increased. Eventually, we observed higher CO 2 and CH 4 emissions during spring tides than during neap tides, combined to depleted δ 13 CO 2 values, suggesting a higher contribution of soil-produced gases to the emissions. These higher emissions may result from higher renewable of the electron acceptor and enhanced exchange surface between the soil and the water column. This study shows that CO 2 and CH 4 emissions from the water column were not negligible and must be considered in future carbon budgets in mangroves. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Adiabatic packed column supercritical fluid chromatography using a dual-zone still-air column heater.

    Science.gov (United States)

    Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof

    2018-02-02

    An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Ductility of reinforced concrete columns confined with stapled strips

    International Nuclear Information System (INIS)

    Tahir, M.F.; Khan, Q.U.Z.; Shabbir, F.; Sharif, M.B.; Ijaz, N.

    2015-01-01

    Response of three 150x150x450mm short reinforced concrete (RC) columns confined with different types of confining steel was investigated. Standard stirrups, strips and stapled strips, each having same cross-sectional area, were employed as confining steel around four comer column bars. Experimental work was aimed at probing into the affect of stapled strip confinement on post elastic behavior and ductility level under cyclic axial load. Ductility ratios, strength enhancement factor and core concrete strengths were compared to study the affect of confinement. Results indicate that strength enhancement in RC columns due to strip and stapled strip confinement was not remarkable as compared to stirrup confined column. It was found that as compared to stirrup confined column, stapled strip confinement enhanced the ductility of RC column by 183% and observed axial capacity of stapled strip confined columns was 41 % higher than the strip confined columns. (author)

  2. EX0904 Water Column Summary Report and Profile Data Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A complete set of water column profile data and CTD Summary Report (if generated) generated by the Okeanos Explorer during EX0904: Water Column Exploration Field...

  3. Cross flow cyclonic flotation column for coal and minerals beneficiation

    Science.gov (United States)

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  4. Behaviour of FRP confined concrete in square columns

    OpenAIRE

    Diego Villalón, Ana de; Arteaga Iriarte, Ángel; Fernandez Gomez, Jaime Antonio; Perera Velamazán, Ricardo; Cisneros, Daniel

    2015-01-01

    A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and duc...

  5. Modalization in the Political Column of Tempo Magazine

    OpenAIRE

    Rahmah, Maria Betti Sinaga and

    2017-01-01

    The study focuses on analyzing the use of modalization in the Political Column of Tempo Magazine. The objectives were to find out the type of modalization and to describe the use of modalization in the Political Column of Tempo magazine. The data were taken from Political Column of Tempo magazine published in June and July 2017. The source of data was Political Column in Tempo magazine. The data analysis applied descriptive qualitative research. There were 135 clauses which contained Modaliza...

  6. Numerical Simulations of Settlement of Jet Grouting Columns

    Directory of Open Access Journals (Sweden)

    Juzwa Anna

    2016-03-01

    Full Text Available The paper presents the comparison of results of numerical analyses of interaction between group of jet grouting columns and subsoil. The analyses were conducted for single column and groups of three, seven and nine columns. The simulations are based on experimental research in real scale which were carried out by authors. The final goal for the research is an estimation of an influence of interaction between columns working in a group.

  7. Residual diesel measurement in sand columns after surfactant/alcohol washing

    International Nuclear Information System (INIS)

    Martel, R.; Gelinas, P.J.

    1996-01-01

    A new simple gravimetric technique has been designed to determine residual oil saturation of complex hydrocarbon mixtures (e.g., diesel) in sand column experiments because reliable methods are lacking. The He/N 2 technique is based on drying of sand columns by circulating helium gas to drag oil droplets in a cold trap (liquid nitrogen). With this technique, residual diesel measurement can be performed easily immediately after alcohol/surfactant washing and in the same lab. For high residual diesel content in Ottawa sand (25 to 30 g/kg), the technique is much more accurate (± 2% or 600 mg/kg) than the standard analytical methods for the determination of mineral oil and grease. The average relative error on partial diesel dissolution in sand column estimated after alcohol/surfactant flooding (residual saturation of 10 to 15 g/kg) is as low as 5%. The precision of the He/N 2 technique is adequate to compare relative efficiency of washing solutions when partial extraction of residual oil in Ottawa sand columns is performed. However, this technique is not adapted for determination of traces of oil in sediment or for environmental control of contaminated soils. Each diesel determination by the He/N 2 technique costs less than $8 in chemical products (helium and liquid nitrogen). A simple laboratory drying setup can be built for less than $400 which makes this technique valuable for diesel analyses when a large number of tests are required

  8. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  9. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  10. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  11. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  12. 46 CFR 174.085 - Flooding on column stabilized units.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is subdivided...

  13. Water hammer with column separation : a historical review

    NARCIS (Netherlands)

    Bergant, A.; Simpson, A.R.; Tijsseling, A.S.

    2006-01-01

    Column separation refers to the breaking of liquid columns in fully filled pipelines. This may occur in a water-hammer event when the pressure in a pipeline drops to the vapor pressure at specific locations such as closed ends, high points or knees (changes in pipe slope). The liquid columns are

  14. Diuron mobility through vineyard soils contaminated with copper.

    Science.gov (United States)

    Jacobson, Astrid R; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-11-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.

  15. Basic Aspects of Deep Soil Mixing Technology Control

    Science.gov (United States)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  16. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  17. Hydrodynamic Study Of Column Bioleaching Processes

    Directory of Open Access Journals (Sweden)

    Sadowski Zygmunt

    2015-06-01

    Full Text Available The modelling of flow leaching solution through the porous media has been considered. The heap bioleaching process can be tested using the column experimental equipment. This equipment was employed to the hydrodynamic studies of copper ore bioleaching. The copper ore (black shale ore with the support, inertial materials (glass small balls and polyethylene beads was used to the bioleaching tests. The packed beds were various composition, the ore/support ratio was changed. The correlation between the bed porosity and bioleaching kinetics, and copper recovery was investigated.

  18. Design of Steel Beam-Column Connections

    Directory of Open Access Journals (Sweden)

    Bogatinoski Z.

    2014-05-01

    Full Text Available In this paper a theoretical and experimental research of the steel beam-column connections is presented. Eight types of specimens were being researched, composed of rigid and semi-rigid connections from which 4 connections are with IPE - profile and 4 connections with tube's section for the beam. From the numerical analysis of the researched models, and especially from the experimental research at the Laboratory for Structures in the Faculty of Mechanical Engineering - Skopje, specific conclusions were received that ought to have theoretical and practical usage for researchers in this area of interest.

  19. Buckling driven debonding in sandwich columns

    DEFF Research Database (Denmark)

    Østergaard, Rasmus Christian

    2008-01-01

    results from two mechanisms: (a) interaction of local debond buckling and global buckling and (b) the development of a damaged zone at the debond crack tip. Based on the pronounced imperfection sensitivity, the author predicts that an experimental measurement of the strength of sandwich structures may......A compression loaded sandwich column that contains a debond is analyzed using a geometrically non-linear finite element model. The model includes a cohesive zone along one face sheet/core interface whereby the debond can extend by interface crack growth. Two geometrical imperfections are introduced...

  20. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  1. A review of oscillating water columns.

    Science.gov (United States)

    Heath, T V

    2012-01-28

    This paper considers the history of oscillating water column (OWC) systems from whistling buoys to grid-connected power generation systems. The power conversion from the wave resource through to electricity via pneumatic and shaft power is discussed in general terms and with specific reference to Voith Hydro Wavegen's land installed marine energy transformer (LIMPET) plant on the Scottish island of Islay and OWC breakwater systems. A report on the progress of other OWC systems and power take-off units under commercial development is given, and the particular challenges faced by OWC developers reviewed.

  2. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  3. "Hot spots" of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil.

    Science.gov (United States)

    Loick, Nadine; Dixon, Elizabeth; Abalos, Diego; Vallejo, Antonio; Matthews, Peter; McGeough, Karen; Watson, Catherine; Baggs, Elizabeth M; Cardenas, Laura M

    2017-11-01

    Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N 2 O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N 2 O are microbial nitrification and denitrification, and emissions of NO and N 2 O generally increase after fertiliser application. The present study investigated the impact of N-source distribution on emissions of NO and N 2 O from soil and the significance of denitrification, rather than nitrification, as a source of NO emissions. To eliminate spatial variability and changing environmental factors which impact processes and results, the experiment was conducted under highly controlled conditions. A laboratory incubation system (DENIS) was used, allowing simultaneous measurement of three N-gases (NO, N 2 O, N 2 ) emitted from a repacked soil core, which was combined with 15 N-enrichment isotopic techniques to determine the source of N emissions. It was found that the areal distribution of N and C significantly affected the quantity and timing of gaseous emissions and 15 N-analysis showed that N 2 O emissions resulted almost exclusively from the added amendments. Localised higher concentrations, so-called hot spots, resulted in a delay in N 2 O and N 2 emissions causing a longer residence time of the applied N-source in the soil, therefore minimising NO emissions while at the same time being potentially advantageous for plant-uptake of nutrients. If such effects are also observed for a wider range of soils and conditions, then this will have major implications for fertiliser application protocols to minimise gaseous N emissions while maintaining fertilisation efficiency.

  4. Temporal and Spatial Distribution of the Microbial Community of Winogradsky Columns.

    Directory of Open Access Journals (Sweden)

    David J Esteban

    Full Text Available Winogradsky columns are model microbial ecosystems prepared by adding pond sediment to a clear cylinder with additional supplements and incubated with light. Environmental gradients develop within the column creating diverse niches that allow enrichment of specific bacteria. The enrichment culture can be used to study soil and sediment microbial community structure and function. In this study we used a 16S rRNA gene survey to characterize the microbial community dynamics during Winogradsky column development to determine the rate and extent of change from the source sediment community. Over a period of 60 days, the microbial community changed from the founding pond sediment population: Cyanobacteria, Chloroflexi, Nitrospirae, and Planctomycetes increased in relative abundance over time, while most Proteobacteria decreased in relative abundance. A unique, light-dependent surface biofilm community formed by 60 days that was less diverse and dominated by a few highly abundant bacteria. 67-72% of the surface community was comprised of highly enriched taxa that were rare in the source pond sediment, including the Cyanobacteria Anabaena, a member of the Gemmatimonadetes phylum, and a member of the Chloroflexi class Anaerolinea. This indicates that rare taxa can become abundant under appropriate environmental conditions and supports the hypothesis that rare taxa serve as a microbial seed bank. We also present preliminary findings that suggest that bacteriophages may be active in the Winogradsky community. The dynamics of certain taxa, most notably the Cyanobacteria, showed a bloom-and-decline pattern, consistent with bacteriophage predation as predicted in the kill-the-winner hypothesis. Time-lapse photography also supported the possibility of bacteriophage activity, revealing a pattern of colony clearance similar to formation of viral plaques. The Winogradsky column, a technique developed early in the history of microbial ecology to enrich soil

  5. Column study for the evaluation of the transport properties of polyphenol-coated nanoiron.

    Science.gov (United States)

    Mystrioti, C; Papassiopi, N; Xenidis, A; Dermatas, D; Chrysochoou, M

    2015-01-08

    Injection of a nano zero valent iron (nZVI) suspension in the subsurface is a remedial option for obtaining the in situ reduction and immobilization of hexavalent chromium in contaminated aquifers. Prerequisite for the successful implementation of this technology is that the nanoparticles form a stable colloidal suspension with good transport properties when delivered in the subsurface. In this study we produced stable suspensions of polyphenol-coated nZVI (GT-nZVI) and we evaluated their transport behavior through representative porous media. Two types of porous materials were tested: (a) silica sand as a typical inert medium and (b) a mixture of calcareous soil and sand. The transport of GT-nZVI through the sand column was effectively described using a classic 1-D convection-dispersion flow equation (CDE) in combination with the colloid filtration theory (CFT). The calculations indicate that nZVI travel distance will be limited in the range 2.5-25cm for low Darcy velocities (0.1-1m/d) and in the order of 2.5m at higher velocities (10m/d). The mobility of GT-nZVI suspension in the soil-sand column is lower and is directly related to the progress of the neutralization reactions between the acidic GT-nZVI suspension and soil calcite. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.; Moolenaar, S.W.; Rhodes, D.E.

    1992-01-01

    Two column tests were conducted using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEX) in the field study, and to determine whether BTEX removal can be enhanced by supplying a limited amount of oxygen as a supplemental electron acceptor. Columns were operated using limited oxygen, limited oxygen plus nitrate, and nitrate alone. In the first column study, benzene was generally recalcitrant compared to the alkylbenzenes (TEX), although some removal did occur. In the second column study, nitrate was deleted from the feed to the column originally receiving nitrate alone and added to the feed of the column originally receiving limited oxygen alone. Although the requirement for nitrate for optimum TEX removal was clearly demonstrated in these columns, there were significant contributions by biotic and abiotic processes other than denitrification which could not be quantified

  7. Spinal column damage from water ski jumping

    International Nuclear Information System (INIS)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  8. Spinal column damage from water ski jumping.

    Science.gov (United States)

    Horne, J; Cockshott, W P; Shannon, H S

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children.

  9. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  10. Spinal column damage from water ski jumping

    Energy Technology Data Exchange (ETDEWEB)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-11-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  11. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  12. Improved focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Mui, P.H.; Szilagyi, M.

    1995-01-01

    Our earlier design procedures for constructing quadrupole columns are further expanded to include octupole corrector units and ''octupole'' deflectors with no third-order harmonics. The additional complications are finer partitioning of the plates and increased number of voltage controllers. Two sample designs, one having only the additional octupole deflectors and one having both the deflectors and the correctors, are presented and compared to our previous quadrupole system. The additional octupole components are shown to be capable of increasing the current density from 30% to more than 300% for a four-plate system, designed to focus and scan the electron beam over a circular area of 0.25 mm radius. The electron beam is assumed to have an initial divergence of ±2.3 mrad, an initial energy of 6 kV, a total energy spread of 1 eV, and a final acceleration of 30 keV. These systems are then slightly reoptimized for a superficial comparison with the commercially available column by Micrion Corporation. The numerical results indicate a potential for substantial improvements, demonstrating the power of this design procedure. Finally, a discussion is presented on how the individual components can interact with each other to reduce the various aberrations. copyright 1995 American Vacuum Society

  13. Synthesis of focusing-and-deflection columns

    International Nuclear Information System (INIS)

    Szilagyi, M.; Mui, P.H.

    1995-01-01

    Szilagyi and Szep have demonstrated that focusing lenses of high performances can be constructed from a column of circular plate electrodes. Later, Szilagyi modified that system to include dipole, quadrupole, and octupole components by partitioning each plate into eight equal sectors. It has already been shown that the additional quadrupole components can indeed bring about substantial improvements in the focusing of charged particle beams. In this article, that design procedure is expanded to construct columns capable of both focusing and deflecting particle beams by just introducing additional dipole components. In this new design, the geometry of the system remains unchanged. The only extra complication is the demand for more individual controls of the sector voltages. Two sample designs, one for negative ions and one for electrons, are presented showing that in both cases a ±2.3 mrad diverging beam can be focused down to a spot of less than 50 nm in radius over a scanning circular area of radius 0.25 mm. The details of the two systems are given in Sec. IV along with the source conditions. The performance of the negative ion system is found to be comparable to the published data. For the relativistic electron system, the interaction of individual components to reduce various aberrations is investigated. copyright 1995 American Vacuum Society

  14. Predicting saturated hydraulic conductivity using soil morphological properties

    Directory of Open Access Journals (Sweden)

    Gülay Karahan

    2016-01-01

    Full Text Available Many studies have been conducted to predict soil saturated hydraulic conductivity (Ks by parametric soil properties such as bulk density and particle-size distribution. Although soil morphological properties have a strong effect on Ks, studies predicting Ks by soil morphological properties such as type, size, and strength of soil structure; type, orientation and quantity of soil pores and roots and consistency are rare. This study aimed at evaluating soil morphological properties to predict Ks. Undisturbed soil samples (15 cm length and 8.0 cm id. were collected from topsoil (0-15 cm and subsoil (15-30 cm (120 samples with a tractor operated soil sampler at sixty randomly selected sampling sites on a paddy field and an adjecent grassland in Central Anatolia (Cankırı, Turkey. Synchronized disturbed soil samples were taken from the same sampling sites and sampling depths for basic soil analyses. Saturated hydraulic conductivity was measured on the soil columns using a constant-head permeameter. Following the Ks measurements, the upper part of soil columns were covered to prevent evaporation and colums were left to drain in the laboratory. When the water flow through the column was stopped, a subsample were taken for bulk density and then soil columns were disturbed for describing the soil morphological properties. In addition, soil texture, bulk density, pH, field capacity, wilting point, cation exchange capacity, specific surface area, aggregate stability, organic matter, and calcium carbonate were measured on the synchronized disturbed soil samples. The data were divided into training (80 data values and validation (40 data values sets. Measured values of Ks ranged from 0.0036 to 2.14 cmh-1 with a mean of 0.86 cmh-1. The Ks was predicted from the soil morphological and parametric properties by stepwise multiple linear regression analysis. Soil structure class, stickiness, pore-size, root-size, and pore-quantity contributed to the Ks prediction

  15. Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives

    International Nuclear Information System (INIS)

    Zupanc, Vesna; Kastelec, Damijana; Lestan, Domen; Grcman, Helena

    2014-01-01

    Soil washing has been established as suitable remediation technology, with most research focused on metal removing efficiency and toxic effect on plants, less on the influence on soil physical characteristics, which was the focus of this study. In soil column experiment highly contaminated soil and soil washed with EDTA, mixed with additives (gypsum, hydrogel, manure, peat) were tested. White clover was used as a soil cover. Yield, metal concentration in soil and plant, aggregate fractionation and stability, saturated hydraulic conductivity and soil water retention of the soil were measured. Soil washing decreased metal concentration in soil and plants, but yield of white clover on remediated soil was significantly lower compared to the original soil. Significant differences in water retention characteristics, aggregate fractionation and stability between original and remediated soil have been determined. Gypsum, hydrogel and peat increased plant available water, manure and peat increased yield on remediated soil. -- Highlights: • Clover yield on washed soil was significantly lower than on original soil. • Organic additives increased yield on remediated soils. • Soil washing changed soil water retention and soil structure. • Hydrogen, gypsum and peat increased plant available water of remediated soil. -- The study critically examines yield, plant metal uptake and possible changes in soil physical characteristics as a consequence of soil washing procedure for metal pollution remediation

  16. Isotopic fractionation of soil water during evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1974-07-01

    The study of the variation of D/H relation in soil water during evaporation is studied. The isotopic fractionation of soil water has been observed in two soils of light and heavy texture. Soil columns were utilized. Soil water was extracted in a system operated under low pressure and the gaseous hydrogen was obtained by decomposition of the water and was analyzed in a GD-150 mass spectrometer for deuterium content. The variation of the delta sub(eta) /sup 0///sub 00/ value during evaporation showed that for water held at potentials below 15 atm, the deuterium content of soil water stays practically constant. For water held at potentials higher than 15 atm, corresponding to the third stage of evaporation, there is a strong tendency of a constant increase of delta sub(eta) /sup 0///sub 00/ of the remaining water.

  17. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  18. Impact of pre-treatment technologies on soil aquifer treatment

    Directory of Open Access Journals (Sweden)

    A. Besançon

    2017-03-01

    Full Text Available This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT. For this purpose a conventional activated sludge (CAS process, a membrane bioreactor (MBR and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months.

  19. Heat Transfer Analysis for a Fixed CST Column

    International Nuclear Information System (INIS)

    Lee, S.Y.

    2004-01-01

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant

  20. Investigating the Effect of Column Geometry on Separation Efficiency using 3D Printed Liquid Chromatographic Columns Containing Polymer Monolithic Phases.

    Science.gov (United States)

    Gupta, Vipul; Beirne, Stephen; Nesterenko, Pavel N; Paull, Brett

    2018-01-16

    Effect of column geometry on the liquid chromatographic separations using 3D printed liquid chromatographic columns with in-column polymerized monoliths has been studied. Three different liquid chromatographic columns were designed and 3D printed in titanium as 2D serpentine, 3D spiral, and 3D serpentine columns, of equal length and i.d. Successful in-column thermal polymerization of mechanically stable poly(BuMA-co-EDMA) monoliths was achieved within each design without any significant structural differences between phases. Van Deemter plots indicated higher efficiencies for the 3D serpentine chromatographic columns with higher aspect ratio turns at higher linear velocities and smaller analysis times as compared to their counterpart columns with lower aspect ratio turns. Computational fluid dynamic simulations of a basic monolithic structure indicated 44%, 90%, 100%, and 118% higher flow through narrow channels in the curved monolithic configuration as compared to the straight monolithic configuration at linear velocities of 1, 2.5, 5, and 10 mm s -1 , respectively. Isocratic RPLC separations with the 3D serpentine column resulted in an average 23% and 245% (8 solutes) increase in the number of theoretical plates as compared to the 3D spiral and 2D serpentine columns, respectively. Gradient RPLC separations with the 3D serpentine column resulted in an average 15% and 82% (8 solutes) increase in the peak capacity as compared to the 3D spiral and 2D serpentine columns, respectively. Use of the 3D serpentine column at a higher flow rate, as compared to the 3D spiral column, provided a 58% reduction in the analysis time and 74% increase in the peak capacity for the isocratic separations of the small molecules and the gradient separations of proteins, respectively.

  1. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography.

    Science.gov (United States)

    Mriziq, Khaled S; Guiochon, Georges

    2008-04-11

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC(x), taking place along one side of the bed and the second separation would be a time-based separation, LC(t), as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC(x) x LC(t) instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  2. Simple, specific analysis of organophosphorus and carbamate pesticides in sediments using column extraction and gas chromatography

    Science.gov (United States)

    Belisle, A.A.; Swineford, D.M.

    1988-01-01

    A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.

  3. Strengthening of Steel Columns under Load: Torsional-Flexural Buckling

    Directory of Open Access Journals (Sweden)

    Martin Vild

    2016-01-01

    Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.

  4. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    International Nuclear Information System (INIS)

    Clark, E.A.

    1992-01-01

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns

  5. Refreshment topics II: Design of distillation columns

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir

    2006-01-01

    Full Text Available For distillation column design it is necessary to define all the variable parameters such as component concentrations in different streams temperatures, pressures, mass and energy flow, which are used to represent the separation process of some specific system. They are related to each other according to specific laws, and if the number of such parameters exceeds the number of their relationships, in order to solve a problem some of them must be specified in advance or some constraints assumed for the mass balance, the balance of energy, phase equilibria or chemical equilibria. Knowledge of specific elements which are the constituents of a distillation unit must be known to define the number of design parameters as well as some additional apparati also necessary to realize the distilation. Each separate apparatus might be designed and constructed only if all the necessary and variable parameters for such a unit are defined. This is the right route to solve a distilation unit in many different cases. The construction of some distillation unit requires very good knowledge of mass, heat and momentum transfer phenomena. Moreover, the designer needs to know which kind of apparatus will be used in the distillation unit to realize a specific production process. The most complicated apparatus in a rectification unit is the distillation column. Depending on the complexity of the separation process one, two or more columns are often used. Additional equipment are heat exchangers (reboilers, condensers, cooling systems, heaters, separators, tanks for reflux distribution, tanks and pumps for feed transportation, etc. Such equipment is connected by pipes and valves, and for the normal operation of a distillation unit other instruments for measuring the flow rate, temperature and pressure are also required. Problems which might arise during the determination and selection of such apparati and their number requires knowledge of the specific systems which must

  6. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  7. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  8. Soil salinity study in Northern Great Plains sodium affected soil

    Science.gov (United States)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  9. Retention of nitrous gases in scrubber columns

    International Nuclear Information System (INIS)

    Nakazone, A.K.; Costa, R.C.; Lobao, A.S.T.; Matsuda, H.T.; Araujo, B.F. de

    1988-01-01

    During the UO 2 dissolution in nitric acid, some different species of NO (sub)x are released. The off gas can either be refluxed to the dissolver or be released and retained on special colums. The final composition of the solution is the main parameter to take in account. A process for nitrous gases retention using scrubber colums containing H 2 O or diluted HNO 3 is presented. Chemiluminescence measurement was employed to NO x evaluation before and after scrubing. Gas flow, temperature, residence time are the main parameters considered in this paper. For the dissolution of 100g UO 2 in 8M nitric acid, a 6NL/h O 2 flow was the best condition for the NO/NO 2 oxidation with maximum absorption in the scrubber columns. (author) [pt

  10. Education and training column: the learning collaborative.

    Science.gov (United States)

    MacDonald-Wilson, Kim L; Nemec, Patricia B

    2015-03-01

    This column describes the key components of a learning collaborative, with examples from the experience of 1 organization. A learning collaborative is a method for management, learning, and improvement of products or processes, and is a useful approach to implementation of a new service design or approach. This description draws from published material on learning collaboratives and the authors' experiences. The learning collaborative approach offers an effective method to improve service provider skills, provide support, and structure environments to result in lasting change for people using behavioral health services. This approach is consistent with psychiatric rehabilitation principles and practices, and serves to increase the overall capacity of the mental health system by structuring a process for discovering and sharing knowledge and expertise across provider agencies. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  11. [Lateral column lengthening osteotomy of calcaneus].

    Science.gov (United States)

    Hintermann, B

    2015-08-01

    Lengthening of the lateral column for adduction of forefoot and restoration of the medial arch. Stabilization of the ankle joint complex. Supple flatfoot deformity (posterior tibial tendon dysfunction stage II). Instability of the medial ankle joint complex (superficial deltoid and spring ligament). Posttraumatic valgus and pronation deformity of the foot. Rigid flatfoot deformity (posterior tibial tendon dysfunction stage III and IV). Talocalcaneal and naviculocalcaneal coalition. Osteoarthritis of calcaneocuboid joint. Exposition of calcaneus at sinus tarsi. Osteotomy through sinus tarsi and widening until desired correction of the foot is achieved. Insertion of bone graft. Screw fixation. Immobilization in a cast for 6 weeks. Weight-bearing as tolerated from the beginning. In the majority of cases, part of hindfoot reconstruction. Reliable and stable correction. Safe procedure with few complications.

  12. Yield stress independent column buckling curves

    DEFF Research Database (Denmark)

    Stan, Tudor‐Cristian; Jönsson, Jeppe

    2017-01-01

    of the yield stress is to some inadequate degree taken into account in the Eurocode by specifying that steel grades of S460 and higher all belong to a common set of “raised” buckling curves. This is not satisfying as it can be shown theoretically that the current Eurocode formulation misses an epsilon factor......Using GMNIA and shell finite element modelling of steel columns it is ascertained that the buckling curves for given imperfections and residual stresses are not only dependent on the relative slenderness ratio and the cross section shape but also on the magnitude of the yield stress. The influence...... in the definition of the normalised imperfection magnitudes. By introducing this factor it seems that the GMNIA analysis and knowledge of the independency of residual stress levels on the yield stress can be brought together and give results showing consistency between numerical modelling and a simple modified...

  13. Calculation of a TBP extraction column

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1973-01-01

    Problems involving the number of stages in an extraction column and the equipment needed in most aqueous methods of reprocessing of nuclear fuels were studied. A solution for the separation of uranium from fission products in a feed solution that contains these components plus nitric acid, thorium and protactinium is obtained. The program has peculiarities such as treatment of tracer components; acceptance of decontamination and recuperation factors better than the set values for the solution; occurrence of niaxima concentrations; change of key component; criterion for ending of section; corrections for interaction; input data not including concentration estimates of the raffinate and organic extract; set of limitations for the concentrations based on input data to help convergence

  14. Experimental validation of pulsed column inventory estimators

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Weh, R.; Eiben, K.; Dander, T.; Hakkila, E.A.

    1991-01-01

    Near-real-time accounting (NRTA) for reprocessing plants relies on the timely measurement of all transfers through the process area and all inventory in the process. It is difficult to measure the inventory of the solvent contractors; therefore, estimation techniques are considered. We have used experimental data obtained at the TEKO facility in Karlsruhe and have applied computer codes developed at Clemson University to analyze this data. For uranium extraction, the computer predictions agree to within 15% of the measured inventories. We believe this study is significant in demonstrating that using theoretical models with a minimum amount of process data may be an acceptable approach to column inventory estimation for NRTA. 15 refs., 7 figs

  15. Stability analysis of roadway embankments supported by stone columns with the presence of water table under short-term and long-term conditions

    Directory of Open Access Journals (Sweden)

    Kadhim Shaymaa Tareq

    2018-01-01

    Full Text Available Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.

  16. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  17. Aluminum-based water treatment residual use in a constructed wetland for capturing urban runoff phosphorus: Column study

    Science.gov (United States)

    Aluminum-based water treatment residuals (Al-WTR) have a strong affinity to sorb phosphorus. In a proof-of-concept greenhouse column study, Al-WTR was surface-applied at 0, 62, 124, and 248 Mg/ha to 15 cm of soil on top of 46 cm of sand; Al-WTR rates were estimated to capture 0, 10, 20, and 40 year...

  18. Novel field emission SEM column with beam deceleration technology

    Energy Technology Data Exchange (ETDEWEB)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-15

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications.

  19. Novel field emission SEM column with beam deceleration technology

    International Nuclear Information System (INIS)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-01-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications

  20. Estimation of bearing capacity of floating group of stone columns

    OpenAIRE

    Fattah, Mohammed Y.; Al-Neami, Mohammed A.; Shamel Al-Suhaily, Ahmed

    2017-01-01

    Stone column is one of the ground improvement techniques. This technique has a proven performance, short time schedule, durability, constructability and low costs. The stone column technique has been used as a method of reinforcement of soft ground over the past 30 years. The bearing capacity of the stone column still has high level of uncertainties because the existing formulas for the estimation of the bearing capacity are general and do not take into consideration the type of the stone col...

  1. Uncertain Buckling Load and Reliability of Columns with Uncertain Properties

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Continuous and finite element methods are utilized to determine the buckling load of columns with material and geometrical uncertainties considering deterministic, stochastic and interval models for the bending rigidity of columns. When the bending rigidity field is assumed to be deterministic, t....... for structural design, the lower bound is of crucial interest. The buckling load of fixed-free, simple-supported, pinned-fixed, fixed-fixed columns and a sample frame are calculated....

  2. Evaluation of Soil Media for Stormwater Infiltration Best Management Practices (BMPs)

    Science.gov (United States)

    This project will improve the performance of structural management practices, and provide guidance that will allow designers to balance infiltration rates with sorption capacity. This project will also perform a standard column test procedure for evaluating candidate soil media.

  3. Development and Application of Immunoaffinity Chromatography for Coplanar PCBs in Soil and Sediment

    Science.gov (United States)

    An immunoaffinity chromatography (IAC) column was developed as a simple cleanup procedure for preparing environmental samples for analysis of polychlorinated biphenyls (PCBs). Soil and sediment samples were prepared using pressurized liquid extraction (PLE), followed by the IAC c...

  4. Levels and distribution of pesticide residues in soil and sediments in ...

    African Journals Online (AJOL)

    The concentrations of. DDT residues were greater in soil samples than in sediments. ... biodegradable and less persistent in the environment .... column containing a 0.45 µm filter into a vial ..... in the air around the Taihu Lake, China. Environ.

  5. Effects of Salt Accumulation in Soil by Evaporation on Unsaturated Soil Hydraulic Properties

    Science.gov (United States)

    Liu, Y.; Liu, Q.

    2017-12-01

    Soil salinization is one type of soil degradation caused by saline groundwater evaporation. Salt accumulation in the soil will change the pore structure of soil, which should change the unsaturated soil hydraulic properties including the soil water characteristic curve (SWCC). To investigate the effect of salt accumulation on the SWCC and find the best suitable SWCC model to characterize the relationship of soil moisture and soil matrix potential, we have conducted laboratory SWCC experiments with the soil columns saturated by NaCl solution with different concentration (deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L). As the concentration of initial solution increases, the matrix potential corresponding to the same moisture increases. As the water was evaporated, the salt would precipitate in soil continuously, which would decrease the porosity of soils and increase the negative pressure of soils. With higher initial concentration, the more salt accumulation caused the more residual water content in the soils. For van Genuchten-Mualem model, the residual water contents θr were 0.0159, 0.0181, 0.0182, 0.0328, 0.0312, 0.0723, 0.0864 in the columns initially saturated by deionized water, 3 g/L, 15 g/L, 50 g/L, 100 g/L and 200 g/L, respectively. The van Genuchten-Mualem model, Fredlund-Xing model, Gardern model, Mckee-Bumb model and Brooks-Corey model were fitted by MATLAB with the experiments data, and the fitted coefficients were compared. The Fredlund-Xing model has the best fitting coefficients and the calculated value was consistent with the observed data.

  6. The design of a new concept chromatography column.

    Science.gov (United States)

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  7. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  8. Response of steel box columns in fire conditions

    Directory of Open Access Journals (Sweden)

    Mahmood Yahyai

    2017-05-01

    Full Text Available Effect of elevated temperatures on the mechanical properties of steel, brings the importance of investigating the effect of fire on the steel structures anxiously. Columns, as the main load-carrying part of a structure, can be highly vulnerable to the fire. In this study, the behavior of steel gravity columns with box cross section exposed to fire has been investigated. These kinds of columns are widely used in common steel structures design in Iran. In current study, the behavior of such columns in fire conditions is investigated through the finite element method. To perform this, the finite element model of a steel column which has been previously tested under fire condition, was prepared. Experimental loading and boundary conditions were considered in the model and was analyzed. Results were validated by experimental data and various specimens of gravity box columns were designed according to the Iran’s steel buildings code, and modeled and analyzed using Abaqus software. The effect of width to thickness ratio of column plates, the load ratio and slenderness on the ultimate strength of the column was investigated, and the endurance time was estimated under ISO 834 standard fire curve. The results revealed that an increase in width to thickness ratio and load ratio leads to reduction of endurance time and the effect of width to thickness ratio on the ultimate strength of the column decreases with temperature increase.

  9. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    International Nuclear Information System (INIS)

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft 2 of column cross section were tested and found acceptable

  10. Evaluation of Controller Tuning Methods Applied to Distillation Column Control

    DEFF Research Database (Denmark)

    Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens

    A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex......A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...

  11. Performance of zeolite scavenge column in Xe monitoring system

    International Nuclear Information System (INIS)

    Wang Qian; Wang Hongxia; Li Wei; Bian Zhishang

    2010-01-01

    In order to improve the performance of zeolite scavenge column, its ability of removal of humidity and carbon dioxide was studied by both static and dynamic approaches. The experimental results show that various factors, including the column length and diameter, the mass of zeolite, the content of water in air, the temperature rise during adsorption, and the activation effectiveness all effect the performance of zeolite column in scavenging humanity and carbon dioxide. Based on these results and previous experience, an optimized design of the zeolite column is made for use in xenon monitoring system. (authors)

  12. Partial strengthening of R.C square columns using CFRP

    Directory of Open Access Journals (Sweden)

    Ahmed Shaban Abdel-Hay

    2014-12-01

    An experimental program was undertaken testing ten square columns 200 × 200 × 2000 mm. One of them was a control specimen and the other nine specimens were strengthened with CFRP. The main parameters studied in this research were the compressive strength of the upper part, the height of the upper poor concrete part, and the height of CFRP wrapped part of column. The experimental results including mode of failure, ultimate load, concrete strain, and fiber strains were analyzed. The main conclusion of this research was, partial strengthening of square column using CFRP can be permitted and gives good results of the column carrying capacity.

  13. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  14. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  15. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  16. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    International Nuclear Information System (INIS)

    Deb, Kousik; Dhar, Anirban; Purohit, Sandip

    2016-01-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration

  17. Influence of foundation settlements in load redistribution on columns in a monitoring construction - Case Study

    Directory of Open Access Journals (Sweden)

    G. Savaris

    Full Text Available The objective of this article is to present the results obtained in a study on the interaction between the behavior of the structure and the foundation settlements and verify the influence of normal load distribution on the columns. In this mechanism, known as structure soil interaction (SSI, as the building is constructed, a transfer of loads occurs from the columns which tend to settle more to those that tend to settle less. The study was conducted in a building which had its settlements monitored from the beginning of construction. For this purpose, a linear tridimensional numerical model was constructed and numerical analysis was performed, using the finite elements method. In these analyses, numerical models corre- sponding to the execution of each floor were used, considering the settlements measured in each stage of the construction. The results of analy- ses showed that the effect of SSI are significant for calculating the normal efforts on the columns, particularly on those located in the first floors.

  18. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in [Associate Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in [Assistant Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Purohit, Sandip, E-mail: sandip.purohit91@gmail.com [Former B.Tech Student, Department of Civil Engineering, NIT Rourkela, Rourkela (India)

    2016-02-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.

  19. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    Science.gov (United States)

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  20. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    Science.gov (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  1. Quantifying vertical stress transmission and compaction-induced soil structure using sensor mat and X-ray computed tomography

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    2016-01-01

    tillage. In this study, partially confined uniaxial compression tests were carried out on intact topsoil columns placed on subsoil columns. Two methods were employed for estimation of stress transmission in soil: (i) soil deformation patterns were quantified using X-ray CT and converted to stress......Accurate estimation of stress transmission in soil and quantification of compaction-induced soil pore structure is important for efficient soil use and management. Continuum mechanics have so far mostly been applied for agricultural soils, even if topsoil structure is aggregated due to regular...... distributions, and (ii) a tactile sensor mat was employed for measuring stresses at the interface of the topsoil and subsoil columns. The resulting soil pore structure under applied stresses was quantified using X-ray CT and by air-permeability measurements. In topsoil discrete stress transmission patterns were...

  2. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  3. Electrokinetic remediation of a copper contaminated soil - experiments and 1-D model

    Energy Technology Data Exchange (ETDEWEB)

    Vereda Alonso, C.; Hansen, H.K. [Inst. for Geologi and Geoteknik, Danmarks Tekniske Univ., Lyngby (Denmark); Gomez Lahoz, C.; Rodriguez Maroto, J.M. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain)

    2001-07-01

    In this work, a set of electrokinetic soil remediation experiments has been performed in a column containing a commercial standard kaolin that was previously contaminated with copper. The profile evolution of copper concentration and pH along the soil column was obtained from these experiments. A one-dimensional numerical model has been developed to simulate the experimental results obtained from these experiments. (orig.)

  4. Measurement of the vertical infiltration parameters and water redistribution in LRd and LEa soils by gamma-ray transmission technique

    International Nuclear Information System (INIS)

    Souza, A.D.B. de; Saito, H.; Appoloni, C.R.; Coimbra, M.M.; Parreira, P.S.

    1991-01-01

    The properties of soil water diffusivity and soil hydraulic conductivity of two horizons (0-20 cm and 20-40 cm) from Latossolo Roxo distrofico (LRd) and Latossolo Vermelho escuro (LEa) soil samples, have been measured in laboratory through the vertical infiltration and redistribution of water in soil columns. The moisture profile as a function of time for each position in the soil column were obtained with the gamma-ray transmission technique, using a sup(241)Am gamma-ray source, a Na (I) T1 scintillation detector and gamma spectrometry standard electronic. (author)

  5. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  6. HTO deposition by vapor exchange between atmosphere and soil

    International Nuclear Information System (INIS)

    Bunnenberg, C.

    1989-01-01

    HTO deposition to soils occurs by vapor exchange between atmosphere and soil-air, when the concentration gradient is directed downwards, and it is principally independent from simultaneous transport of H 2 O. In relatively dry top soil, which is frequently the case, as it tries to attain equilibrium with the air humidity, HTO diffuses into deeper soil driven by the same mechanisms that caused the deposition process. The resulting HTO profile is depending on the atmospheric supply and the soil physical conditions, and it is the source for further tritium pathways, namely root uptake by plants and reemission from soil back into the ground-level air. Simulation experiments with soil columns exposed to HTO labeled atmospheres have proved the theoretical expectation that under certain boundary conditions the HTO profile can be described by an error function. The key parameter is the effective diffusion coefficient, which in turn is a function of the sorption characteristics of the particular soil. (orig.) [de

  7. Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu

    2012-06-01

    Managed aquifer recharge is a robust barrier in the multi-barrier approach to supply safe drinking water. The removal performance of gesomin and 2-methylisoborneol through managed aquifer recharge was investigated using batch and column experiments. Batch experiments were carried out to investigate the removal of geosmin and 2-methylisoborneol (MIB) in the presence of different types of biodegradable organic matter using different types of water. Five different types of water spiked with 70-293 ng/L of geosmin and MIB were used in batch reactors, and complete removal of geosmin and MIB (down to the detection limit) was achieved in all cases. Soil column studies showed that biodegradation contributed to the removal of geosmin and MIB by 23 and 31%, respectively (empty bed contact time: 17 hours). The removal of geosmin and MIB appeared to be influenced more by microbial activity than the initial concentrations of geosmin and MIB. Adsorption was found to be the dominant mechanism (major role) followed by biodegradation (minor role) for geosmin and MIB removals during soil passage. Managed aquifer charge can therefore be used as a robust barrier to remove taste and odor (T&O) causing compounds.© IWA Publishing 2012.

  8. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  9. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  10. Temperature of Steel Columns under Natural Fire

    Directory of Open Access Journals (Sweden)

    F. Wald

    2004-01-01

    Full Text Available Current fire design models for time-temperature development within structural elements as well as for structural behaviour are based on isolated member tests subjected to standard fire regimes, which serve as a reference heating, but do not model natural fire. Only tests on a real structure under a natural fire can evaluate future models of the temperature developments in a fire compartment, of the transfer of heat into the structure and of the overall structural behaviour under fire.To study overall structural behaviour, a research project was conducted on an eight storey steel frame building at the  Cardington Building Research Establishment laboratory on January 16, 2003. A fire compartment 11×7 m was prepared on the fourth floor. A fire load of 40 kg/m2 was applied with 100 % permanent mechanical load and 65 % of imposed load. The paper summarises the experimental programme and shows the temperature development of the gas in the fire compartment and of the fire protected columns bearing the unprotected floors.

  11. Selective detachment process in column flotation froth

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Ozsever, A.V.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-05-15

    The selectivity in flotation columns involving the separation of particles of varying degrees of floatability is based on differential flotation rates in the collection zone, reflux action between the froth and collection zones, and differential detachment rates in the froth zone. Using well-known theoretical models describing the separation process and experimental data, froth zone and overall flotation recovery values were quantified for particles in an anthracite coal that have a wide range of floatability potential. For highly floatable particles, froth recovery had a very minimal impact on overall recovery while the recovery of weakly floatable material was decreased substantially by reductions in froth recovery values. In addition, under carrying-capacity limiting conditions, selectivity was enhanced by the preferential detachment of the weakly floatable material. Based on this concept, highly floatable material was added directly into the froth zone when treating the anthracite coal. The enriched froth phase reduced the product ash content of the anthracite product by five absolute percentage points while maintaining a constant recovery value.

  12. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  13. GPR Diagnostics of columns in archaeological contexts

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola; Persico, Raffaele; Catapano, Ilaria

    2017-04-01

    In the last decade the use of Ground Penetrating radar (GPR) applied to cultural heritage has been strongly increasing thanks to both technological development of sensors and softwares for data processing and cultural reasons such as the increasing awareness of conservators and archaeologist of the benefits of this method in terms of reduction of costs and time and risk associated with restoration works. This made GPR a mature technique for investigating different types of works of art and building elements of historical interest, including masonry structures, frescoes, mosaics [1-3], in the context of scientific projects, decision support activities aimed at the diagnosis of decay pathologies, and educational activities. One of the most complex building elements to be investigated by GPR are the columns both for the geometry of the object and for the several expected features to be detected including fractures, dishomogeneities and metallic connection elements. The work deals with the Ground Penetrating Radar diagnostic surveys at the prestigious archaeological site of Pompei. In particular, GPR surveys were carried out in two different areas, Palestra Grande and Tempio di Giove. The first campaign was carried out also as educational activity of the "International School "GEOPHYSICS AND REMOTE SENSING FOR ARCHAEOLOGY". The School aimed at giving the opportunity to scholars, PhD students, researchers and specialists in Geophysics, Remote Sensing and Archaeology to deepen their knowledge and expertise with geophysical and remote sensing techniques for archaeology and cultural heritage documentation and management. This survey was carried on two kinds of columns, with circular and rectangular section in order to detect possible hidden defects affecting their integrity. The second survey was carried out at Tempio di Giove, on request of the Soprintendenza Pompei, in order to gain information about the presence of reinforcement structures, which may be put inside the

  14. Preliminary assessment of laboratory techniques for measurement of volatiles through soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Case, J.T.

    1985-01-01

    This study was conducted to determine if an inexpensive laboratory screening technique could be developed to detect the presence of hazardous volatile compounds without disturbing the soil over buried waste. A laboratory investigation was designed to evaluate the movement of two volatile organics through packed soil columns. Six soil columns were filled with three different soils. Two volatile organics, trichloroethylene (TCE) and dichloroethylene (1, 2 DCE), were placed at the base of the columns as a saturated water solution. Column headspace analysis was performed by purging the top of the columns with nitrogen gas and bubbling this gas through a pentane trap. Samples in the air space were also collected using 25 and 100 microliter gas tight syringes. All samples were analyzed using Electron Capture Detector (ECD) by gas chromatography. Results indicate that the volatile organic compounds can be detected through a five foot column of soil in concentrations down to parts-per-billion (ppb) for both TCE and DCE. Distribution coefficients (Kd) experiments were also conducted to assess breakthrough time and related concentration with soil type

  15. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  16. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  17. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  18. Water column methanotrophy controlled by a rapid oceanographic switch

    NARCIS (Netherlands)

    Steinle, L.; Graves, C.A.; Treude, T.; Ferré, B.; Biastoch, A.; Bussmann, I.; Berndt, C.; Krastel, S.; James, R.H.; Behrens, E.; Böning, C.W.; Greinert, J.; Sapart, C.-J.; Scheinert, M.; Sommer, S.; Lehmann, M.F.; Niemann, H.

    2015-01-01

    From the seabed to the water column, where it may be consumed by aerobic methanotrophic bacteria. The size and activity of methanotrophic communities, which determine the amount of methane consumed in the water column,are thought to be mainly controlled by nutrient and redoxdynamics3–7. Here, we

  19. Comparison of monolithic silica and polymethacrylate capillary columns for LC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2004-01-01

    Roč. 27, 10-11 (2004), s. 789-800 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/02/0023 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.927, year: 2004

  20. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  1. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns

    NARCIS (Netherlands)

    Op de Beeck, Jeff; de Malsche, Wim; Vangelooven, Joris; Gardeniers, Johannes G.E.; Desmet, Gert

    2010-01-01

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 μm and an interpillar distance of 2.5 μm has been characterized using both a low MW tracer (FITC) and

  2. Simulators of tray distillation columns as tools for interpreting ...

    African Journals Online (AJOL)

    ... at 0.05 m intervals were determined from top to the bottom of simulators of tray distillation columns exposed to 20 mCi of 137 Cs. Signals generated from the simulators were identical with the experimental signals obtained from the Stabilizer Column of the crude oil distillation unit at the Tema Oil Refinery Ghana Limited.

  3. Ultrasonic testing device having an adjustable water column

    Science.gov (United States)

    Roach, Dennis P.; Neidigk, Stephen O.; Rackow, Kirk A.; Duvall, Randy L.

    2015-09-01

    An ultrasonic testing device having a variable fluid column height is disclosed. An operator is able to adjust the fluid column height in real time during an inspection to to produce optimum ultrasonic focus and separate extraneous, unwanted UT signals from those stemming from the area of interest.

  4. Dynamic stability of a lightly damped column trapped by a ...

    African Journals Online (AJOL)

    In this paper we initiate an analytical approach for determining the dynamic buckling load of a finite viscously damped column acted upon by a harmonically slowly varying explicitly time dependent load. The viscous damping is considered light and the column rests on an elastic foundation that produces a nonlinear ...

  5. Localized giant cell tumors in the spinal column radiologic presentation

    International Nuclear Information System (INIS)

    Fernandez Echeverria, M.A.; Parra Blanco, J.A.; Pagola Serrano, M.A.; Mellado Santos, J.M.; Bueno Lopez, J.; Gonzalez Tutor, A.

    1994-01-01

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  6. Monitoring aged reversed-phase high performance liquid chromatography columns

    NARCIS (Netherlands)

    Bolck, A; Smilde, AK; Bruins, CHP

    1999-01-01

    In this paper, a new approach for the quality assessment of routinely used reversed-phase high performance liquid chromatography columns is presented. A used column is not directly considered deteriorated when changes in retention occur. If attention is paid to the type and magnitude of the changes,

  7. Retrofit of distillation columns in biodiesel production plants

    International Nuclear Information System (INIS)

    Nguyen, Nghi; Demirel, Yasar

    2010-01-01

    Column grand composite curves and the exergy loss profiles produced by the Column-Targeting Tool of the Aspen Plus simulator are used to assess the performance of the existing distillation columns, and reduce the costs of operation by appropriate retrofits in a biodiesel production plant. Effectiveness of the retrofits is assessed by means of thermodynamics and economic improvements. We have considered a biodiesel plant utilizing three distillation columns to purify biodiesel (fatty acid methyl ester) and byproduct glycerol as well as reduce the waste. The assessments of the base case simulation have indicated the need for modifications for the distillation columns. For column T202, the retrofits consisting of a feed preheating and reflux ratio modification have reduced the total exergy loss by 47%, while T301 and T302 columns exergy losses decreased by 61% and 52%, respectively. After the retrofits, the overall exergy loss for the three columns has decreased from 7491.86 kW to 3627.97 kW. The retrofits required a fixed capital cost of approximately $239,900 and saved approximately $1,900,000/year worth of electricity. The retrofits have reduced the consumption of energy considerably, and leaded to a more environmentally friendly operation for the biodiesel plant considered.

  8. Dynamics and Control of Distillation Columns - A Critical Survey

    Directory of Open Access Journals (Sweden)

    Sigurd Skogestad

    1997-07-01

    Full Text Available Distillation column dynamics and control have been viewed by many as a very mature or even dead field. However, as is discussed in this paper significant new results have appeared over the last 5-10 years. These results include multiple steady states and instability in simple columns with ideal thermodynamics (which was believed to be impossible, the understanding of the difference between various control configurations and the systematic transformation between these, the feasibility of using the distillate-bottom structure, for control (which was believed to be impossible, the importance of flow dynamics for control studies, the fundamental problems in identifying models from open-loops responses, the use of simple regression estimators to estimate composition from temperatures, and an improved general understanding of the dynamic behavior of distillation columns which includes a better understanding of the fundamental difference between internal and external flow, simple formulas for estimating the dominant time constant, and a derivation of the linearizing effect of logarithmic transformations. These issues apply to all columns, even for ideal mixtures and simple columns with only two products. In addition, there have been significant advances for cases with complex thermodynamics and complex column configurations. These include the behavior and control of azeotropic distillation columns, and the possible complex dynamics of nonideal mixtures and of interlinked columns. However, both for the simple and more complex cases there are still a number of areas where further research is needed.

  9. Gas chromatographic column for the Viking 1975 molecular analysis experiment

    Science.gov (United States)

    Novotny, M.; Hayes, J. M.; Bruner, F.; Simmonds, P. G.

    1975-01-01

    A gas chromatographic column has been developed for use in the remote analysis of the Martian surface. The column, which utilizes a liquid-modified organic adsorbent (Tenax) as the stationary phase, provides efficient transmission and resolution of nanogram quantities of organic materials in the presence of millionfold excesses of water and carbon dioxide.

  10. Cow-in-a-Column – A Synthetic Food Replicator

    Data.gov (United States)

    National Aeronautics and Space Administration — The project tested the concept for combining waste degradation and food production in a single reactor or column, i.e., a "Cow-in-a-Column".  The inputs could...

  11. A Modeling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    In this paper, a generic, modular model framework for describing fluid separation by distillation is presented. At present, the framework is able to describe a conventional distillation column and a heat-integrated distillation column, but due to a modular structure the database can be further...

  12. Graph Modelling Approach: Application to a Distillation Column

    DEFF Research Database (Denmark)

    Hovelaque, V.; Commault, C.; Bahar, Mehrdad

    1997-01-01

    Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks.......Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks....

  13. The effect of irrigated rice cropping on the alkalinity of two alkaline rice soils in the Sahel

    NARCIS (Netherlands)

    Asten, van P.J.A.; Zelfde, van 't J.A.; Zee, van der S.E.A.T.M.; Hammecker, C.

    2004-01-01

    Irrigated rice cropping is practiced to reclaim alkaline-sodic soils in many parts of the world. This practice is in apparent contrast with earlier studies in the Sahel, which suggests that irrigated rice cropping may lead to the formation of alkaline-sodic soils. Soil column experiments were done

  14. HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS

    International Nuclear Information System (INIS)

    Lee, S

    2007-01-01

    In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of ∼130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum

  15. Characterization of retentivity of reversed phase liquid chromatography columns.

    Science.gov (United States)

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  16. A Modelling Framework for Conventional and Heat Integrated Distillation Columns

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2013-01-01

    of hydrocarbons such as separations of equimolar mixtures of benzene/toluene or propane/propene described by simple models, a generic, modular, model framework is presented in this work. At present, the framework is able to describe a conventional distillation column, a mechanical vapor recompression column......Diabatic operation of distillation columns can lead to signicant reductions in energy utilization and operation cost compared to conventional (adiabatic) distillation columns, at an expense of an increased complexity of design and operation. The earliest diabatic distillation conguration dates back...... to the late 70s, and various dierent congurations have appeared since. However, at present, no full-scale diabatic distillation columns are currently operating in the industry. Current studies related to alternative distillation congurations report very dierent gures for potential energy savings which...

  17. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  18. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.; Hussen, Mustefa; Amy, Gary L.

    2011-01-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  19. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  20. Cesium ion exchange using actual waste: Column size considerations

    International Nuclear Information System (INIS)

    Brooks, K.P.

    1996-04-01

    It is presently planned to remove cesium from Hanford tank waste supernates and sludge wash solutions using ion exchange. To support the development of a cesium ion exchange process, laboratory experiments produced column breakthrough curves using wastes simulants in 200 mL columns. To verify the validity of the simulant tests, column runs with actual supernatants are being planned. The purpose of these actual waste tests is two-fold. First, the tests will verify that use of the simulant accurately reflects the equilibrium and rate behavior of the resin compared to actual wastes. Batch tests and column tests will be used to compare equilibrium behaviors and rate behaviors, respectively. Second, the tests will assist in clarifying the negative interactions between the actual waste and the ion exchange resin, which cannot be effectively tested with simulant. Such interactions include organic fouling of the resin and salt precipitation in the column. These effects may affect the shape of the column breakthrough curve. The reduction in column size also may change the shape of the curve, making the individual effects even more difficult to sort out. To simplify the evaluation, the changes due to column size must be either understood or eliminated. This report describes the determination of the column size for actual waste testing that best minimizes the effect of scale-down. This evaluation will provide a theoretical basis for the dimensions of the column. Experimental testing is still required before the final decision can be made. This evaluation will be confined to the study of CS-100 and R-F resins with NCAW simulant and to a limited extent DSSF waste simulant. Only the cesium loading phase has been considered

  1. Leaching of 14 C-endosulfan insecticide in soils from Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Tornisielo, V.L.; Costa, M.A.; Furlan, G.R.; Pinho, R.S.

    1995-01-01

    Leaching of 14 C-endosulfan insecticide was studied in soil columns for three soils of Sao Paulo State with different physical-chemical properties. A water flux of 0.41 ml/min., was established, simulating a pluviometric precipitation of 200 mm in 48 h. For all soils, an average of 78% of the total applied was retained in the first centimeters of the soil profile. As expected, the soil with the lowest soil organic matter and clay contents (sandy soil), was the soil with the largest amount of the insecticide leached. The higher the organic matter and the organic matter content of a soil, the higher its sorption and consequently there is less available in soil solution to be leached. In all soils, however, the amount of endosulfan found in the leachate was low, being 0.17% the maximum radioactivity measured. (author). 5 refs, 3 tabs

  2. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    Science.gov (United States)

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Column Grid Array Rework for High Reliability

    Science.gov (United States)

    Mehta, Atul C.; Bodie, Charles C.

    2008-01-01

    Due to requirements for reduced size and weight, use of grid array packages in space applications has become common place. To meet the requirement of high reliability and high number of I/Os, ceramic column grid array packages (CCGA) were selected for major electronic components used in next MARS Rover mission (specifically high density Field Programmable Gate Arrays). ABSTRACT The probability of removal and replacement of these devices on the actual flight printed wiring board assemblies is deemed to be very high because of last minute discoveries in final test which will dictate changes in the firmware. The questions and challenges presented to the manufacturing organizations engaged in the production of high reliability electronic assemblies are, Is the reliability of the PWBA adversely affected by rework (removal and replacement) of the CGA package? and How many times can we rework the same board without destroying a pad or degrading the lifetime of the assembly? To answer these questions, the most complex printed wiring board assembly used by the project was chosen to be used as the test vehicle, the PWB was modified to provide a daisy chain pattern, and a number of bare PWB s were acquired to this modified design. Non-functional 624 pin CGA packages with internal daisy chained matching the pattern on the PWB were procured. The combination of the modified PWB and the daisy chained packages enables continuity measurements of every soldered contact during subsequent testing and thermal cycling. Several test vehicles boards were assembled, reworked and then thermal cycled to assess the reliability of the solder joints and board material including pads and traces near the CGA. The details of rework process and results of thermal cycling are presented in this paper.

  4. Decontamination of soils by irrigation with solutions containing complexing agents

    International Nuclear Information System (INIS)

    Pimpl, M.; Schuettelkopf, H.

    1982-01-01

    Experiments in laboratory scale were performed to increase the mobility of Pu, Am, and Cm in soil. Soil columns of 30 cm in diameter and 40 cm of length were contaminated on the surface with 5 μCi of Pu, Am, and Cm, applied as nitrates. By irrigation with 0.1 M DTPA-solution the actinides were mobilized and migrated with the irrigation solution through the columns. The migration velocity was measured and compared to the calculated one. Conclusions for the application of this procedure in field experiments are drawn. (author)

  5. Column-by-column compositional mapping by Z-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)], E-mail: sergio.molina@uca.es; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Fuster, D.; Gonzalez, Y.; Alen, B.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M.; Pennycook, S.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2009-01-15

    A phenomenological method is developed to determine the composition of materials, with atomic column resolution, by analysis of integrated intensities of aberration-corrected Z-contrast scanning transmission electron microscopy images. The method is exemplified for InAs{sub x}P{sub 1-x} alloys using epitaxial thin films with calibrated compositions as standards. Using this approach we have determined the composition of the two-dimensional wetting layer formed between self-assembled InAs quantum wires on InP(0 0 1) substrates.

  6. Migration of particulates in permeable rock columns

    International Nuclear Information System (INIS)

    Cropper, R.L.

    1982-01-01

    The migration of radioactive material through soil and permeable rock formations have become a major topic of concern due to the interest in the licensing of new radioactive waste disposal sites. Previously, research has been conducted in relation to deep repositories; however, similar situations arise in the vadose zone, where there is a higher probability of naturally-occurring particulates of organic nature and for the incursion of water. Test data has provided information which suggests that particulates will travel through porous media subject to various delay mechnisms and must be included in any consideration of waste migration. Data concerning particulate migration must and should be considered in the future when radioactive waste disposal sites are licensed

  7. Study on two phase flow characteristics in annular pulsed extraction column with different ratio of annular width to column diameter

    International Nuclear Information System (INIS)

    Qin Wei; Dai Youyuan; Wang Jiading

    1994-01-01

    Annular pulsed extraction column can successfully provide large throughput and can be made critically safe for fuel reprocessing. This investigation is to study the two phase flow characteristics in annular pulsed extraction column with four different annular width. 30% TBP (in kerosene)-water is used (water as continuous phase). Results show that modified Pratt correlation is valid under the experimental operation conditions for the annular pulsed extraction column. The characteristic velocity U K decreased with the increase of energy input and increased with the increase of the ratio of annular width to column diameter. Flooding velocity correlation is suggested. The deviation of the calculated values from the experimental data is within +20% for four annular width in a pulsed extraction column

  8. Dynamics of deposited fly-ash and fine grained magnetite in sandy material of different porosity (column experiments)

    Science.gov (United States)

    Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana

    2010-05-01

    Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10μm) and fine grained Fe3O4 (grain size < 20 μm). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand

  9. Movement of radionuclides through unsaturated soils

    International Nuclear Information System (INIS)

    de Sousa, F.N.C.

    1985-01-01

    The advantages of the disposal of low-level radioactive wastes in the unsaturated zone above the fluctuations of the water table have been recognized for some time. However, most the numerical models used to simulate the environmental impact of a shallow land burial site assume that the soils surrounding the waste forms are saturated; this assumption may lead, in many cases, to unrealistic large leach and water flow rates. The main purpose of this study was the development of a procedure which could give a reliable prediction on the movement of radionuclides from shallow land burial sites located in the unsaturated zone. In order to accomplish this objective three different soils having different sand, silt, and clay fractions were selected and characterized. These soils were then used to fill a number of flow columns that were used in tests designed to provide input data for the flow and transport models. A one-dimensional finite element model was developed in order to simulate the water flow and radionuclide transport through unsaturated soils. The results obtained showed that the model accurately described the transport of radionuclides through saturated-unsaturated soils. Simulations were done, for all three soils, involving different degrees of soil saturation, and the results showed that assuming the soils are always saturated may lead to nuclide transport times which are orders of magnitude larger than the real ones, depending on the clay percentage present in the soil

  10. Leaching of oxadyxil and tebuconazole in Colombian soil.

    Science.gov (United States)

    Aldana, M; De Prado, R; Martínez, M J

    2011-01-01

    Lake Tota (Boyaca, Colombia) supplies water for human consumption, agriculture and industry for more than 500.000 people. Oxadixyl and Tebuconazole are fungicides used in onion crops in the lake catchment area. The mobility of pesticides in soil, bioavailability and transfer to other environmental compartments depend on sorption and desorption kinetics and mechanisms. An understanding of these processes is essential for transport modeling and the rational design of corrective measures against pollution. A displacement study was performed on a hand packed soil column in laboratory conditions. A pulse of 0,01 M CaCl2 solution, containing a tracer (Bromide) and the fungicides Oxadixyl y Tebuconazole, was injected. Column experiment was performed at 0.078 cmh(-1) flow rate under unsaturated conditions. Eluates were collected in flasks at constant intervals and the volumes of eluate were recorded. After rainfall simulation, the soil from the column was sliced into six successive sections (5 cm). Methanol extraction was used to determine the fungicide in each soil section. Samples were measured by HPLC. Only Oxadixyl was recovered in leachates. Unlike bromide breakthrough curve, Oxadixyl was asymmetrical, with early breakthrough and increased tailing. The percentage eluted was 96.7% after ten pore volumes. Tebuconazole showed the highest retention in the first five cm of soil layer. The results suggest that oxadyxil presents highs risk to leachate through the soil profile and that Tebuconazole is strongly absorbed in Colombian soil.

  11. Preliminary study of the migration of technetium in soil under hydrous conditions

    International Nuclear Information System (INIS)

    Sisson, D.H.; MacLean, S.C.; Schulz, R.K.; Borg, R.J.

    1979-01-01

    The sorption of technetium compared to sodium, cesium, and strontium by a common agricultural soil was measured using a column method. As expected, no sorption of Tc occurred under conditions that substantially removed Na + , Cs + , and Sr ++ . High radioactivity levels were used to establish absorption profiles over six orders of magnitude of tracer concentration. Behavior of initially dry columns was compared with that of initially water-saturated columns; the results were not quantitatively different although there was a qualitative difference in the appearance of the profiles. Technetium tracked the moisture content of the column and hence migrated at the veloccity of the aqueous medium

  12. Cervical column morphology and craniofacial profiles in monozygotic twins.

    Science.gov (United States)

    Sonnesen, Liselotte; Pallisgaard, Carsten; Kjaer, Inger

    2008-02-01

    Previous studies have described the relationships between cervical column morphology and craniofacial morphology. The aims of the present study were to describe cervical column morphology in 38 pairs of adult monozygotic (MZ) twins, and compare craniofacial morphology in twins with fusions with craniofacial morphology in twins without fusion. Visual assessment of cervical column morphology and cephalometric measurements of craniofacial morphology were performed on profile radiographs. In the cervical column, fusion between corpora of the second and third vertebrae was registered as fusion. In the twin group, 8 twin pairs had fusion of the cervical column in both individuals within the pair (sub-group A), 25 pairs had no fusions (subgroup B), and in 5 pairs, cervical column morphology was different within the pair (subgroup C), as one twin had fusion and the other did not. Comparison of craniofacial profiles showed a tendency to increased jaw retrognathia, larger cranial base angle, and larger mandibular inclination in subgroup A than in subgroup B. The same tendency was observed within subgroup C between the individual twins with fusion compared with those without fusion. These results confirm that cervical fusions and craniofacial morphology may be interrelated in twins when analysed on profile radiographs. The study also documents that differences in cervical column morphology can occur in individuals within a pair of MZ twins. It illustrates that differences in craniofacial morphology between individuals within a pair of MZ twins can be associated with cervical fusion.

  13. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  14. Reliability assessment of slender concrete columns at the stability failure

    Science.gov (United States)

    Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin

    2018-01-01

    The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.

  15. Internet delivered question and answer column for patients with schizophrenia.

    Science.gov (United States)

    Maijala, Riikka; Anttila, Minna; Koivunen, Marita; Pitkänen, Anneli; Kuosmanen, Lauri; Välimäki, Maritta

    2015-01-01

    The purpose of this study was to describe the use of an Internet delivered question and answer column among patients with schizophrenia. The column was developed for research purposes. The study sample consisted of patients (N = 100) admitted to acute inpatient psychiatric care in two hospital districts. Descriptive data were collected from the column to which a nurse replied within 3 days and analysed using qualitative content analysis. The column had four to five questions weekly. The most common age of users was 18-24 years, and the gender distribution was almost equal. Column use was heaviest among students (44%) and least among unemployed people (19%). Out of 85 questions or comments sent to the column, 25 (29%) were related to program training and the remaining 60 (71%) were related to medication (31%), illness and tests (25%), other questions or comments (9%), daily life and coping with it (4%), and places to receive treatment (2%). An Internet delivered question and answer column can be included in the care of patients with schizophrenia. However, it requires a new type of basic and additional education in the field of mental health care in order for nurses to be able to provide nursing via the Internet forum.

  16. Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity

    Science.gov (United States)

    Thomas, Abey E.

    2018-05-01

    Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.

  17. Experimental and theoretical investigation of column - flat slab joint ductility

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Shah, A.

    2009-01-01

    Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.

  18. Investigation of Gas Holdup in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  19. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  20. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...