WorldWideScience

Sample records for repackaging plant accident

  1. 7 CFR 58.151 - Packaging and repackaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging and repackaging. 58.151 Section 58.151... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Packaging and General Identification § 58.151 Packaging and repackaging. (a) Packaging dairy products or cutting and repackaging all...

  2. Description of Survey Data Regarding the Chemical Repackaging Plant Accident West Helena, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, J.H.; Vogt, B.M.

    1999-03-01

    Shortly after 1:00 p.m. on Thursday, May 8, 1997, clouds of foul-smelling smoke began pouring from an herbicide and pesticide packaging plant in West Helena, Arkansas. An alert was sounded, employees evacuated, and the West Helena fire department was called. As three firefighters prepared to enter the plant, the chemical compounds exploded, collapsing a solid concrete block wall, and killing all three firefighters. As the odorous smoky cloud drifted away from the plant, authorities ordered residents in a 2-mile area downwind of the plant to evacuate and those in the 2- to 3-mile zone to shelter in place. This study examines and compares the responses to a mail survey of those ordered to evacuate and those told to shelter in place. Among the variables examined are compliance with official orders and perceived warnings, threat perception, time and source of first warning, response times, and behavior characteristics for both populations. The findings indicate that 90% of those that were told to evacuate did so but only 27% of those told to shelter-in-place did so, with 68% opting to evacuate instead. The implications of these findings for emergency managers is that people will likely choose to evacuate when both warnings to evacuate and warnings to shelter are issued to residents in close proximity to each other. The findings on warning times closely resemble other findings from evacuations when chemical accidents occur and route notification is used for warning residents.

  3. 7 CFR 58.444 - Packaging and repackaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging and repackaging. 58.444 Section 58.444... Procedures § 58.444 Packaging and repackaging. (a) Packaging rindless cheese or cutting and repackaging all styles of bulk cheese shall be conducted under rigid sanitary conditions. The atmosphere of the packaging...

  4. A59 waste repackaging database (AWARD)

    International Nuclear Information System (INIS)

    Keel, A.

    1993-06-01

    This document describes the data structures to be implemented to provide the A59 Waste Repackaging Database (AWARD); a Computer System for the in-cave Bertha waste sorting and LLW repackaging operations in A59. (Author)

  5. A59 waste repackaging database (AWARD)

    International Nuclear Information System (INIS)

    Keel, A.

    1993-06-01

    This paper sets out the requirements for AWARD (the A59 Waste Repackaging Database); a computer-based system to record LLW sorting and repacking information from the North Cave Line in A59. A solution will be developed on the basis of this document. AWARD will record and store details entered from waste sorting and LLW repackaging operations. This document will be used as the basis of the development of the host computer system. (Author)

  6. [A fine line between legal and illegal oral drug repackaging].

    Science.gov (United States)

    Casanova, Heberto Arboleya; Sánchez, Héctor Marino Zavala; Fernández, Angélica María Hernández; Herrera, Dulce Janeth González

    2016-06-01

    In 2009, with the implementation of the National Hospital Pharmacy Model, Mexico began regulating single-dose drugs. The repackaging of oral drugs is fundamental and critical and should be standardized by Mexican health legislation to enable quality drugs to be dispensed. Data is required on stability, compatibility, drug interactions, containers, and repackaging methods, in order to establish a new expiration date. The literature on health regulations applicable to repackaging was analyzed, revealing major conceptual imprecisions since there is no legislation in Mexico that regulates repackaging; rather, everything is carried out according to pharmacists' recommendations and criteria. The conclusion is that the regulations need to be rewritten to establish minimum single-dose oral drug criteria for dispensing hospitals-regulations that cover infrastructure, equipment, and professionals complying with good practices in oral drug repackaging. A proposal is offered to implement an official Mexican standard that regulates single-dose repackaging and unifies concepts, criteria, and means of verification, while the pharmaceutical industry would be responsible for the technology and resources for single-dose drug packaging designed for the health sector.

  7. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  8. The Affordances Of Repackaged Popular Music From The Past

    NARCIS (Netherlands)

    S.M.R. Driessen (Simone)

    2017-01-01

    markdownabstractThis thesis explores the affordances of repackaged popular music from the past. Particularly, how they feature in audiences’ reflections on different stages and transitions in their life course. Three case studies highlight different modes of repackaging and illustrate how

  9. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated

  10. Stability of erythropoietin repackaging in polypropylene syringes for clinical use

    Directory of Open Access Journals (Sweden)

    Angela Marsili

    2017-02-01

    Full Text Available Introduction: Epoetin alfa (Eprex® is a subcutaneous, injectable formulation of short half-life recombinant human erythropoietin (rHuEPO. To current knowledge there are no published studies regarding the stability of rHuEPO once repackaging occurs (r-EPO for clinical trial purposes. Materials and methods: We assessed EPO concentration in Eprex® and r-EPO syringes at 0, 60, 90, and 120 days after repackaging in polypropylene syringes. R-EPO was administered to 56 patients taking part in a clinical trial in Friedreich Ataxia. Serum EPO levels were measured at baseline and 48 h after r-EPO administration. Results: No differences were found between r-EPO and Eprex® syringes, but both globally decreased in total EPO content during storage at 4 °C. Patients receiving r-EPO had similar levels in EPO content as expected from previous trials in Friedreich Ataxia and from pharmacokinetics studies in healthy volunteers. Discussion: We demonstrate that repackaging of EPO does not alter its concentration if compared to the original product (Eprex®. This is true both for repackaging procedures and for the stability in polypropylene tubes. The expiration date of r-EPO can be extended from 1 to 4 months after repackaging, in accordance with pharmacopeia rules.

  11. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    International Nuclear Information System (INIS)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities

  12. A59 waste repackaging database (AWARD)

    International Nuclear Information System (INIS)

    Keel, A.

    1993-06-01

    This document describes the software modules to be implemented to provide the user interface for the A59 Waste Repackaging Database (AWARD). The modules will consist of a front end menu with options giving access to the various screen forms and printed reports. (Author)

  13. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  14. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  15. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  16. Severe accident management at South Africa's Koeberg plant

    International Nuclear Information System (INIS)

    Prior, R.P.; Wolvaardt, F.P.; Holderbaum, D.F.; Lutz, R.J.; Taylor, J.J.; Hodgson, C.D.

    1997-01-01

    Between the middle of 1993 and the end of 1995, Westinghouse and Eskom implemented plant specific Severe Accident Management Guidelines (SAMGs) at the Koeberg Nuclear Power Plant in South Africa. Prior to this project, Koeberg, like many plants, had emergency operating procedures which contain guidance for plant personnel to perform preventive accident management measures in event of an accident. There was, however, no structured guidance on recovery from an event which progresses past core damage -mitigative accident management. The SAMGs meet this need. In this paper, the Westinghouse approach to severe accident management is outlined, and the Koeberg implementation project described. A few key issues which arose during implementation are discussed, including plant instrumentation, flooding of the reactor pit, organisation and training of the Technical Support Centre staff, and impact of SAMG on risk. The means by which both generic and plant-specific SAMG have been validated is also summarised. In the next few years, many LWR owners will be implementing SAMG. In the U.S. all plants are in the process of developing SAMG. The Koeberg project is believed to be the first plant specific implementation of the WOG SAMG worldwide, and this paper has hopefully provided insights into some of the implementation issues for those about to undertake similar projects. (author)

  17. Repackaging SRS Black Box TRU Waste

    International Nuclear Information System (INIS)

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-01

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project

  18. Hazards to nuclear plants from surface traffic accidents

    International Nuclear Information System (INIS)

    Hornyik, K.

    1975-01-01

    Analytic models have been developed for evaluating hazards to nuclear plants from hazardous-materials accidents in the vicinity of the plant. In particular, these models permit the evaluation of hazards from such accidents occurring on surface traffic routes near the plant. The analysis uses statistical information on accident rates, traffic frequency, and cargo-size distribution along with parameters describing properties of the hazardous cargo, plant design, and atmospheric conditions, to arrive at a conservative estimate of the annual probability of a catastrophic event. Two of the major effects associated with hazardous-materials accidents, explosion and release of toxic vapors, are treated by a common formalism which can be readily applied to any given case by means of a graphic procedure. As an example, for a typical case it is found that railroad shipments of chlorine in 55-ton tank cars constitute a greater hazard to a nearby nuclear plant than equally frequent rail shipments of explosives in amounts of 10 tons. 11 references. (U.S.)

  19. Plant specific severe accident management - the implementation phase

    International Nuclear Information System (INIS)

    Prior, R.

    1999-01-01

    Many plants are in the process of developing on-site guidance for technical staff to respond to a severe accident situation severe accident management guidance (SAMG). Once the guidance is developed, the SAMG must be implemented at the plant site, and this involves addressing a number of additional aspects. In this paper, approaches to this implementation phase are reviewed, including review and verification of plant specific SAMG, organizational aspects and integration with the emergency plan, training of SAMG users, validation and self-assessment and SAMG maintenance. Examples draw on experience from assisting numerous plants to implement symptom based severe accident management guidelines based on the Westinghouse Owners Group approach, in Westinghouse, non-Westinghouse and VVER plant types. It is hoped that it will be of use to those plant operators about to perform these activities.(author)

  20. Consequence of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    1998-01-01

    Heavy water plants realize the primary isotopic concentrations of water using H 2 O-H 2 S chemical exchange and they are chemical plants. As these plants are handling and spreading large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive as) maintained in the process at relative high temperatures and pressures, it is required an assessing of risks associated with the potential accidents. The H 2 S released in atmosphere as a result of an accident will have negative consequences to property, population and environment. This paper presents a model of consequences quantitative assessment and its outcome for the most dangerous accident in heavy water plants. Several states of the art risk based methods were modified and linked together to form a proper model for this analyse. Five basic steps to identify the risks involved in operating the plants are followed: hazard identification, accident sequence development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information of analysis results are provided. The accident proportions, the atmospheric conditions and the population density in the respective area were accounted for consequences calculus. The specific results of the consequences analysis allow to develop the plant's operating safety requirements so that the risk remain at an acceptable level. (authors)

  1. Consequences of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    2002-01-01

    Heavy water plants achieve the primary isotopic concentration by H 2 O-H 2 S chemical exchange. In these plants are stored large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive) maintained in process at relative high temperatures and pressures. It is required an assessment of risks associated with the potential accidents. The paper presents adopted model for quantitative consequences assessment in heavy water plants. Following five basic steps are used to identify the risks involved in plants operation: hazard identification, accident sequences development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information from risk assessment for our heavy water pilot plant are provided. Accident magnitude, atmospheric conditions and population density in studied area were accounted for consequences calculus. (author)

  2. Accident at the Three Mile Island Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bajusz, J.; Vamos, G.

    1979-01-01

    A short description of the TMI power plant is given. The course of events leading to the reactor accident and that of the first two weeks is described. The effect on the environment is estimated. The reasons and consequences of the accident are analysed. The probability of such an accident at the Paks Nuclear Power Plant is estimated. (R.J.)

  3. In-plant considerations for optimal offsite response to reactor accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Heising, C.D.; Aldrich, D.C.

    1982-11-01

    Offsite response decision-making methods based on in-plant conditions are developed for use during severe reactor-accident situations. Dose projections are used to eliminate all LWR plant systems except the reactor core and the spent-fuel storage pool from consideration for immediate offsite emergency response during accident situations. A simple plant information-management scheme is developed for use in offsite response decision-making. Detailed consequence calculations performed with the CRAC2 model are used to determine the appropriate timing of offsite-response implementation for a range of PWR accidents involving the reactor core. In-plant decision criteria for offsite-response implementation are defined. The definition of decision criteria is based on consideration of core-accident physical processes, in-plant accident monitoring information, and results of consequence calculations performed to determine the effectiveness of various public-protective measures. The benefits and negative aspects of the proposed response-implementation criteria are detailed

  4. The need to study of bounding accident in reprocessing plant

    International Nuclear Information System (INIS)

    Segawa, Satoshi; Fujita, Kunio

    2013-01-01

    There is a clear consensus that the severe accident corresponds to the core damage accident for power reactors. On the other hand, for FCFs, there is no clear consensus on what is the accident to assess the safety in the region of beyond design basis, or what is the accident which has very low probability but large consequence. The need to examine a bounding consequence of each type of accident is explained to advance the rationality of safety management and regulation and, as a result, to reinforce the safety of a reprocessing plant. The likelihood of occurrence of an accident causing a bounding consequence should correspond to that of a severe accident at a nuclear power plant. The bounding consequence will be derived using the deterministic method and sound engineering judgment supplemented by the probabilistic method. Once an agreement on such a concept is reached among regulators, operators and related experts it will help to provide a solid basis to ensure the safety of a reprocessing plant independent of that of a nuclear power plant. In this paper, we show a preliminary risk profile of RRP calculated by QSA (Quantitative Safety Assessment) which JNFL developed. The profile shows that bounding consequences of various accidents in a range of occurrence frequency corresponding to a severe accident at a nuclear power plant. And we find that the bounding consequence of high-level liquid waste boiling is the largest among all in this range. Therefore, the risk of this event is shown in this paper as an example. To build a common consensus about bounding accidents among concerned parties will encourage regulatory body to introduce such an idea for more effective regulation with scientific rationality. Additionally the study of bounding accidents can contribute to substantial development for accident management strategy as reprocessing operators. (authors)

  5. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Pyles, G.; Ciucci, J.; Arnold, P.

    2009-01-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site's (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M and O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  6. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  7. Severe accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Valle Cepero, R.; Castillo Alvarez, J.; Ramon Fuente, J.

    1996-01-01

    For the assessment of the safety of nuclear power plants it is of great importance the analyses of severe accidents since they allow to estimate the possible failure models of the containment, and also permit knowing the magnitude and composition of the radioactive material that would be released to the environment in case of an accident upon population and the environment. This paper presents in general terms the basic principles for conducting the analysis of severe accidents, the fundamental sources in the generation of radionuclides and aerosols, the transportation and deposition processes, and also makes reference to de main codes used in the modulation of severe accidents. The final part of the paper contents information on how severe accidents are dialed with the regulatory point view in different countries

  8. Severe accident management: radiation dose control, Fukushima Daiichi and TMI-2 nuclear plant accidents

    International Nuclear Information System (INIS)

    Shaw, Roger

    2014-01-01

    This presentation presents valuable dose information related to the Fukushima Daiichi and Three Mile Island Unit 2 (TMI-2) Nuclear Plant accidents. Dose information is provided for what is well known for TMI-2, and what is available for Fukushima Daiichi. Particular emphasis is placed on the difference between the type of reactors involved, overarching plant damage issues, and radiation worker dose outcomes. For TMI-2, more in depth dose data is available for the accident and the subsequent recovery efforts. The comparisons demonstrate the need to understand the wide variation in potential dose management measures and outcomes for severe reactor accidents. (author)

  9. Incorporation of severe accidents in the licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz

    2011-01-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  10. Incorporation of severe accidents in the licensing of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz, E-mail: bayout@cnen.gov.b, E-mail: sidney@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  11. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  12. Contribution to evaluating nuclear power plant accidents

    International Nuclear Information System (INIS)

    Razga, J.; Horacek, P.

    1990-01-01

    Large-scale accidents pose the highest risk in the use of nuclear power. They are the major factor that has to be taken into account when assessing the effect of nuclear power plants on human health and on the environment. In Czechoslovak conditions, the effectiveness of provisions made to reduce the hazard of large-scale nuclear power plant accidents must be considered from the following aspects: effect on human health, consequences of long-term disabling of the infrastructure, potential of human and material reserves in coping with the accident, consequences of power failure for the electricity system, effect on agricultural production and catering, risk of ground and surface water contamination in the Labe or Danube river basin, and international political aspects. (Z.M.). 3 tabs., 18 refs

  13. The prediction of the LWR plant accident based on the measured plant data

    International Nuclear Information System (INIS)

    Miettinen, J.; Schmuck, P.

    2005-01-01

    In case of accident affecting a nuclear reactor, it is essential to anticipate the possible development of the situation to efficiently succeed in emergency response actions, i.e. firstly to be early warned, to get sufficient information on the plant: and as far as possible. The ASTRID (Assessment of Source Term for Emergency Response based on Installation Data) project consists in developing a methodology: of expertise to; structure the work of technical teams and to facilitate cross competence communications among EP players and a qualified computer tool that could be commonly used by the European countries to reliably predict source term in case of an accident in a light water reactor, using the information available on the plant. In many accident conditions the team of analysts may be located far away from the plant experiencing the accident and their decision making is based on the on-line plant data transmitted into the crisis centre in an interval of 30 - 600 seconds. The plant condition has to be diagnosed based on this information, In the ASTRID project the plant status diagnostics has been studied for the European reactor types including BWR, PWR and VVER plants. The directly measured plant data may be used for estimations of the break size from the primary system and its locations. The break size prediction may be based on the pressurizer level, reactor vessel level, primary pressure and steam generator level in the case of the steam generator tube rupture. In the ASTRID project the break predictions concept was developed and its validity for different plant types and is presented in the paper, when the plant data has been created with the plant specific thermohydraulic simulation model. The tracking simulator attempts to follow the plant behavior on-line based on the measured plant data for the main process parameters and most important boundary conditions. When the plant state tracking fails, the plant may be experiencing an accident, and the tracking

  14. Mobile inspection and repackaging unit

    International Nuclear Information System (INIS)

    Whitney, G.A.; Roberts, R.J.

    1992-12-01

    Storage of large volumes of radioactive mixed waste (RMW) and transuranic waste generated over the past 20 years at the Hanford Site has resulted in various waste management challenges. Presently disposal capacity for this waste type does not exist. The waste wail be stored until processing facilities can be completed to provide treatment and final disposed. Because of the complexity of these wastes, special projects have been initiated to properly manage them. This paper addresses one such project. The goal of this project is to develop a mobile solid waste inspection and repackaging facility for solid RMW and transuranic waste

  15. Stability of medicines after repackaging into multicompartment compliance aids: eight criteria for detection of visual alteration.

    Science.gov (United States)

    Albert, Valerie; Lanz, Michael; Imanidis, Georgios; Hersberger, Kurt E; Arnet, Isabelle

    2017-01-01

    Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1-2 weeks, although little and controversial information exists on the stability of repackaged medicines. We aimed to validate the usefulness of a simple screening method capable of detecting visual stability problems with repackaged medicines. We selected eight criteria for solid formulations from The International Pharmacopoeia : (1) rough surface, (2) chipping, (3) cracking, (4) capping, (5) mottling, (6) discoloration, (7) swelling, and (8) crushing. A selection of 24 critical medicines was repackaged in three different MCA (Pharmis ® , SureMed™, and self-produced blister) and stored at room temperature for 4 weeks. Pharmis ® was additionally stored at accelerated conditions. Appearance was scored weekly. Six alterations (rough surface, cracking, mottling, discoloration, swelling, and crushing) were observed at accelerated conditions. No alteration was observed at room temperature, except for the chipping of tablets that had been stuck to cold seal glue. The eight criteria can detect alterations of the appearance of oral solid medicines repackaged in MCA. In the absence of specific guidelines, they can serve as a simple screening method in community pharmacies for identifying medicines unsuitable for repackaging.

  16. Effects of the Chernobyl accident on public perceptions of nuclear plant accident risks

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1990-01-01

    Assessments of public perceptions of the characteristics of a nuclear power plant accident and affective responses to its likelihood were conducted 5 months before and 1 month after the Chernobyl accident. Analyses of data from 69 residents of southwestern Washington showed significant test-retest correlations for only 10 of 18 variables--accident likelihood, three measures of impact characteristics, three measures of affective reactions, and hazard knowledge by governmental sources. Of these variables, only two had significant changes in mean ratings; frequency of thought and frequency of discussion about a nearby nuclear power plant both increased. While there were significant changes only for two personal consequences (expectations of cancer and genetic effects), both of these decreased. The results of this study indicate that more attention should be given to assessing the stability of risk perceptions over time. Moreover, the data demonstrate that experience with a major accident can actually decrease rather than increase perceptions of threat

  17. Severe accident considerations for modern KWU-PWR plants

    International Nuclear Information System (INIS)

    Eyink, J.

    1987-01-01

    In assumption of severe accident on modern KWU-PWR plants the author discusses on the: selection of core meltdown sequences, course of the accident, containment behaviour and source terms for fission products release to the environment

  18. Repackaged sodium valproate tablets--Meeting quality and adherence to ensure seizure control.

    Science.gov (United States)

    Redmayne, Nichola; Robertson, Sherryl; Kockler, Jutta; Llewelyn, Victoria; Haywood, Alison; Glass, Beverley

    2015-09-01

    Sodium valproate, which is commonly repacked to assist with adherence to ensure seizure control, is hygroscopic and therefore sensitive to moisture. The aim of this study was thus to determine the stability implications of removing the enteric coated tablets from their original packaging and repackaging into a Dose Administration Aid (DAA) with storage under various environmental conditions. Physicochemical stability of enteric coated sodium valproate tablets repackaged into a DAA and stored at controlled room temperature, accelerated and refrigerated conditions was evaluated for 28 days. A validated high performance liquid chromatography method was used for the quantitation of the drug content. Although the chemical stability (sodium valproate between 95 and 105% of labelled content) was maintained for 28 days for all storage conditions, for those tablets stored under accelerated conditions the integrity of the enteric coat was compromised after only 8 days. Repackaging of enteric coated sodium valproate should be undertaken with caution and be informed by storage climate. This is particularly relevant for those patients living in hot, humid environments where they should be advised to store their DAA in a refrigerator. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. Validation of severe accident management guidance for the wolsong plants

    International Nuclear Information System (INIS)

    Park, S. Y.; Jin, Y. H.; Kim, S. D.; Song, Y. M.

    2006-01-01

    Full text: Full text: The severe accident management(SAM) guidance has been developed for the Wolsong nuclear power plants in Korea. The Wolsong plants are 700MWe CANDU-type reactors with heavy water as the primary coolant, natural uranium-fueled pressurized, horizontal tubes, surrounded by heavy water moderator inside a horizontal calandria vessel. The guidance includes six individual accident management strategies: (1) injection into primary heat transport system (2) injection into calandria vessel (3) injection into calandria vault (4) reduction of fission product release (5) control of reactor building condition (6) reduction of reactor building hydrogen. The paper provides the approaches to validate the SAM guidance. The validation includes the evaluation of:(l) effectiveness of accident management strategies, (2) performance of mitigation systems or components, (3) calculation aids, (4) strategy control diagram, and (5) interface with emergency operation procedure and with radiation emergency plan. Several severe accident sequences with high probability is selected from the plant specific level 2 probabilistic safety analysis results for the validation of SAM guidance. Afterward, thermal hydraulic and severe accident phenomenological analyses is performed using ISAAC(Integrated Severe Accident Analysis Code for CANDU Plant) computer program. Furthermore, the experiences obtained from a table-top-drill is also discussed

  20. Accidents with nuclear power plants, ch. 11

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A recalculation of the consequences of nuclear power plant accidents is presented taking into account different parameters or different quantities than those usually accepted. A case study of a nuclear power plant planned for the Eems-river estuary in the Netherlands is presented

  1. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  2. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  3. Nuclear power plant safety - the risk of accidents

    International Nuclear Information System (INIS)

    Higson, D.; Crancher, D.W.

    1975-08-01

    Although it is physically impossible for any nuclear plant to explode like an atom bomb, an accidental release of radioactive material into the environment is conceivable. Three factors reduce the probability of such releases, in dangerous quantities, to an extremely low level. Firstly, there are many safety features built into the plant including a leaktight containment building to prevent the escape of such material. Secondly, the quality of engineering and standards used are far more demanding than in conventional power engineering. Thirdly, strict government licensing and regulatory control is enforced at all phases from design through construction to operation. No member of the general public is known to have been injured or died as a result of any accident to a commercial nuclear power plant. Ten workers have died as a result of over-exposure to radiation from experimental reactors and laboratory work connected with the development of nuclear plant since 1945. Because of this excellent safety record the risk of serious accidents can only be estimated. On the basis of such estimates, the chance of an accident in a nuclear power reactor which could cause a detectable increase in the incidence of radiation-induced illnesses would be less than one chance in a million per year. In a typical highly industrialised society, such as the USA, the estimated risk of an individual being killed by such accidents, from one hundred operating reactors, is no greater than one chance in sixteen million per year. There are undoubtedly risks from reactor accidents but estimates of these risks show that they are considerably less than from other activities which are accepted by society. (author)

  4. Implementation of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2004-01-01

    According to the generally established defence in depth concept in nuclear safety, consideration in plant operation is also given to highly improbable severe plant conditions that were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is achieved primarily by means of four successive barriers which prevent the release of radioactive material (fuel matrix, cladding, primary coolant boundary and containment), and these barriers are primarily protected by three levels of design measures: prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). If these first three levels fail to ensure the structural integrity of the core, e.g. due to beyond the design basis multiple failures, or due to extremely unlikely initiating events, additional efforts are made at level 4 to further reduce the risks. The objective at the fourth level is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. Finally, level 5 includes off-site emergency response measures, with the objective of mitigating the radiological consequences of significant releases of radioactive material. The implementation of the emergency response is usually dependent upon the type and magnitude of the accident. Good co-ordination between the operator and the responding organizations is needed to ensure the appropriate response. Accident management is one of the key components of effective defence in depth. In accordance with defence in depth, each design level should be protected individually, independently of other levels. This report focuses on the fourth level of defence in depth, including the transitions from the third level and into the fifth level. It describes

  5. Containment pressure monitoring method after severe accident in nuclear power plant

    International Nuclear Information System (INIS)

    Luo Chuanjie; Zhang Shishui

    2011-01-01

    The containment atmosphere monitoring system in nuclear power plant was designed on the basis of design accident. But containment pressure will increase greatly in a severe accident, and pressure instrument in the containment can't satisfy the monitoring requirement. A new method to monitor the pressure change in the containment after a severe accident was considered, through which accident soften methods can be adopted. Under present technical condition, adding a pressure monitoring channel out of containment for post-severe accident is a considerable method. Daya Bay Nuclear Power Plant implemented this modification, by which the containment release time can be delayed during severe accident, and nuclear safety can be increased. After analysis, this method is safe and feasible. (authors)

  6. Hazard Identification, Risk Assessment and Risk Control (HIRARC Accidents at Power Plant

    Directory of Open Access Journals (Sweden)

    Ahmad Asmalia Che

    2016-01-01

    Full Text Available Power plant had a reputation of being one of the most hazardous workplace environments. Workers in the power plant face many safety risks due to the nature of the job. Although power plants are safer nowadays since the industry has urged the employer to improve their employees’ safety, the employees still stumble upon many hazards thus accidents at workplace. The aim of the present study is to investigate work related accidents at power plants based on HIRARC (Hazard Identification, Risk Assessment and Risk Control process. The data were collected at two coal-fired power plant located in Malaysia. The finding of the study identified hazards and assess risk relate to accidents occurred at the power plants. The finding of the study suggested the possible control measures and corrective actions to reduce or eliminate the risk that can be used by power plant in preventing accidents from occurred

  7. Accident sequences simulated at the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1998-01-01

    Different hypothetical accident sequences have been simulated at Unit 1 of the Juragua nuclear power plant in Cuba, a plant with two VVER-440 V213 units under construction. The computer code MELCOR was employed for these simulations. The sequences simulated are: (1) a design-basis accident (DBA) large loss of coolant accident (LOCA) with the emergency core coolant system (ECCS) on, (2) a station blackout (SBO), (3) a small LOCA (SLOCA) concurrent with SBO, (4) a large LOCA (LLOCA) concurrent with SBO, and (5) a LLOCA concurrent with SBO and with the containment breached at time zero. Timings of important events and source term releases have been calculated for the different sequences analyzed. Under certain weather conditions, the fission products released from the severe accident sequences may travel to southern Florida

  8. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-07-01

    Consideration of severe accidents in nuclear power plants is an essential component of the defence in depth approach in nuclear safety. Severe accidents have very low probabilities of occurring, but may have significant consequences resulting from the degradation of nuclear fuel. The generation of hydrogen and the risk of hydrogen combustion, as well as other phenomena leading to overpressurization of the reactor containment in case of severe accidents, represent complex safety issues in relation to accident management. The combustion of hydrogen, produced primarily as a result of heated zirconium metal reacting with steam, can create short term overpressure or detonation forces that may exceed the strength of the containment structure. An understanding of these phenomena is crucial for planning and implementing effective accident management measures. Analysis of all the issues relating to hydrogen risk is an important step for any measure that is aimed at the prevention or mitigation of hydrogen combustion in reactor containments. The main objective of this publication is to contribute to the implementation of IAEA Safety Standards, in particular, two IAEA Safety Requirements: Safety of Nuclear Power Plants: Design and Safety of Nuclear Power Plants: Operation. These Requirements publications discuss computational analysis of severe accidents and accident management programmes in nuclear power plants. Specifically with regard to the risk posed by hydrogen in nuclear power reactors, computational analysis of severe accidents considers hydrogen sources, hydrogen distribution, hydrogen combustion and control and mitigation measures for hydrogen, while accident management programmes are aimed at mitigating hydrogen hazards in reactor containments.

  9. Severe accident management program at Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Borondo, L.; Serrano, C.; Fiol, M.J.; Sanchez, A.

    2000-01-01

    Cofrentes Nuclear Power Plant (GE BWR/6) has implemented its specific Severe Accident Management Program within this year 2000. New organization and guides have been developed to successfully undertake the management of a severe accident. In particular, the Technical Support Center will count on a new ''Severe Accident Management Team'' (SAMT) which will be in charge of the Severe Accident Guides (SAG) when Control Room Crew reaches the Emergency Operation Procedures (EOP) step that requires containment flooding. Specific tools and training have also been developed to help the SAMT to mitigate the accident. (author)

  10. Accident at Three Mile Island nuclear power plant and lessons learned

    International Nuclear Information System (INIS)

    Ashrafi, A.; Farnoudi, F.; Tochai, M.T.M.; Mirhabibi, N.

    1986-01-01

    On March 28, 1979, the TMI, unit 2 nuclear power plant experienced a loss of coolant accident (LOCA) which has had a major impact among the others, upon the safety of nuclear power plants. Although a small part of the reactor core melted in this accident, but due to well performance of the vital safety equipment, there was no serious radioactivity release to the environment, and the accident has had no impact on the basic safety goals. A brief scenario of the accident, its consequences and the lessons learned are discussed

  11. Case examples of chemical plant accidents. What we learn from them?

    International Nuclear Information System (INIS)

    Nakamura, Masayoshi

    2009-01-01

    Lessons learned from the JCO Nuclear Criticality Accident of 30 September 1999 in a uranium conversion test plant in Tokai-mura, Japan, are reviewed by referring some pertinent matters from the official report of this accident to remind of the universal characteristics among possible accidents of chemical plants. The paper discusses the responsibility of the establishment or institution to the demand alternation or request change from the client, how to respond to the proposal arising from the factory floor, and the safety control system of every-day maintenance of the factory which are important to prevent accidents in chemical plants. After explaining a background leading to the JCO accident, the author summarizes the lessons as follows: (1) changeable control system, (2) perfect provision of the manual considering the actual condition, and (3) clarification of the roles each played by the managers and the workers are most necessary and important. (S. Ohno)

  12. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-15

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident.

  13. The Chernobyl accident and the Spanish nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    1986-11-01

    On the morning of April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant (Ukraine, USSR) suffered an accident of the greatest magnitude among those which have taken place in nuclear energy installations employed for peaceful uses. The accident reached a degree of severity unknown up to now in nuclear energy generating plants, both with respect to the loss of human lives and the effects caused to the neighboring population (as well as to other nations within a wide radius of radioactivity dispersal), and also with respect to the damage caused in the nuclear plant itself. In the light of the anxiety created internationally, the USSR State Committee for the Utilization of Atomic Energy prepared a report (1), based on the conclusions of the Governmental Commission entrusted to study the causes of the accident, which was presented at the international meeting of experts held at the International Atomic Energy Agency (IAEA) headquarters in Vienna from August 25 to 29, 1986. The present technical report has been prepared by the Spanish nuclear power plants within the framework of UNIDAD ELECTRICA, S.A. (UNESA) - the Association of Spanish electric utilities - in collaboration with EMPRESARIOS AGRUPADOS, S.A. The report reflects the utilities' analyses of the causes and consequences of the accident and, based on similarities and differences with Spanish plants under construction and in operation, intends to: a. Evaluate the possibility of an accident with similar consequences occurring in a Spanish plant b. Identify possible design and operation modifications indicated by the lessons learned from this accident

  14. Nuclear power plant Severe Accident Research Plan

    International Nuclear Information System (INIS)

    Larkins, J.T.; Cunningham, M.A.

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986

  15. Discussion on several issues of the accidents management of nuclear power plants in operation

    International Nuclear Information System (INIS)

    Cao Xuewu; Wang Zhe; Zhang Yingzhen

    2009-01-01

    This article discusses several issues of the accident management of nuclear power plants in operation, for example: the necessity, implementation principle of accident management and accident management program etc. For conducting accident management for beyond design basis accidents, this article thinks that the accident management program should be developed and implemented to ensure that the plant and its personnel with responsibilities for accident management are adequately prepared to take effective on-site actions to prevent or mitigate the consequences of severe accident. (authors)

  16. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  17. Integrated color face graphs for plant accident display

    International Nuclear Information System (INIS)

    Hara, Fumio

    1987-01-01

    This paper presents an integrated man-machine interface that uses cartoon-like colored graphs in the form of faces, that, through different facial expressions, display a plant condition. This is done by drawing the face on a CRT by nonlinearly transforming 31 variables and coloring the face. This integrated color graphics technique is applied to display the progess of events in the Three Mile Island nuclear power plant accident. Human visual perceptive characteristics are investigated in relation to the perception of the plant accident process, the naturality in face color change, and the consistency between facial expressions and colors. This paper concludes that colors used in an integrated color face graphs must be completely consistent with emotional feelings perceived from the colors. (author)

  18. Severe accident risks: An assessment for five US nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes an assessment of the risks from severe accidents in five commercial nuclear power plants in the United State. These risks are measured in a number of ways, including: the estimated frequencies of core damage accidents from internally initiated accidents and externally initiated accidents for two of the plants; the performance of containment structures under severe accident loadings; the potential magnitude of radionuclide releases and offsite consequences of such accidents; and the overall risk (the product of accident frequencies and consequences). Supporting this summary report are a large number of reports written under contract to NRC that provide the detailed discussion of the methods used and results obtained in these risk studies. This report, Volume 3, contains two appendices. Appendix D summarizes comments received, and staff responses, on the first (February 1987) draft of NUREG-1150. Appendix E provides a similar summary of comments and responses, but for the second (June 1989) version of the report

  19. Plant safety review from mass criticality accident

    International Nuclear Information System (INIS)

    Susanto, B.G.

    2000-01-01

    The review has been done to understand the resent status of the plant in facing postulated mass criticality accident. From the design concept of the plant all the components in the system including functional groups have been designed based on favorable mass/geometry safety principle. The criticality safety for each component is guaranteed because all the dimensions relevant to criticality of the components are smaller than dimensions of 'favorable mass/geometry'. The procedures covering all aspects affecting quality including the safety related are developed and adhered to at all times. Staff are indoctrinated periodically in short training session to warn the important of the safety in process of production. The plant is fully equipped with 6 (six) criticality detectors in strategic places to alert employees whenever the postulated mass criticality accident occur. In the event of Nuclear Emergency Preparedness, PT BATAN TEKNOLOGI has also proposed the organization structure how promptly to report the crisis to Nuclear Energy Control Board (BAPETEN) Indonesia. (author)

  20. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  1. Conditioning of Radioactive Wastes Prior to disposal; Segregation and Repackaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, Ki Hong; Hong, Dae Seok; Lee, Bum Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We stored several types of radioactive wastes at interim storage facility of KAERI ; the combustible wastes (cloths, decontamination paper and vinyls) from Hanaro multipurpose research reactor, nuclear fuel cycle facility, RI production facility and laboratories, and the non-combustible wastes (metals and glass) dismantled and discarded from the apparatus of laboratories which deteriorated, and also the miscellaneous wastes (spent air-filters). After a segregation of these wastes as the same type, they were treated by using a proper method in order to meet both the national regulation and the waste acceptance criteria of Kyung-ju disposal site. For a safe disposal of waste drums, the waste characterization system including a scaling factor which is hard to measure special radionuclides is established completely. All data of those repackaged drums were input into an ANSIM system so that we could manage them clearly and effectively such like an easy transparent traceability. Through a decontamination of empty drums generated in a repackaging process of the stored drums, these drums can be reused or compressed to reduce their volume reduction for disposal. As a result, the space to store radioactive waste drums are secured more than before, and also the interim storage facility are maintained in a good state. The combustible wastes, which stored at the interim storage facility of KAERI, are managed safely in compliance with the specifications of the national regulations and disposal site. Through the classification and repackage of them, the storage space of drums at RWTF was secured more than before, and the storage facility was kept in a good state, and also the disposal cost of all stored waste drums of KAERI will be reduced due to the reduction of waste volume. Base on the experiences, the non-combustible wastes will be treated soon.

  2. A structured approach to individual plant evaluation and accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.

    1991-01-01

    The current requirements for the performance of individual plant evaluations (IPE's) include the derivation of accident management insights as and if they occur in the course of finalizing an IPE. The development of formal, structured accident management programs is, however, explicitly excluded from current IPE requirements. The Nuclear Regulatory Commission is following the Nuclear Management and Resources Council (NUMARC) efforts to establish the framework(s) for accident management program development and plants to issue requirements on such development at a later date. The Commonwealth Edison program consists of comprehensive level 2 PRA's which address the requirements for IPE's and which go beyond those requirements. From the start of the IPE efforts, it was firmly held, within Edison, that the best way to fully and economically extract a viable accident management program from an IPE was to integrate the two efforts from the start and include the accident management program development as a required IPE product

  3. A defense in depth approach for nuclear power plant accident management

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yao Hsieh; Hwai-Pwu Chou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, TW (China)

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identify what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident

  4. The estimation economic impacts from severe accidents of a nuclear power plant

    International Nuclear Information System (INIS)

    Jeong, J. T.; Jeong, W. D.

    2001-01-01

    The severe accidents of a nuclear power plant may cause health effects in the exposed population and societal economic impacts or costs. Techniques to assess the consequences of an accident in terms of cost may be applied in studies on the design of plant safety features and in examining countermeasure options as part of emergency planning or in decision making after an accident. In this study, the costs resulting from the severe accidents of a nuclear power plant were estimated for the different combinations of source term release parameters and meteorological data. Also, the costs were estimated for the different scenarios considering seasonal characteristics of Korea. The results can be used as essential inputs in costs/benefit analysis and in developing optimum risk reduction strategies

  5. Consideration of severe accident issues for the General Electric BWR standard plant: Chapter 10

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982, the U.S. Nuclear Regulatory Commission (NRC) proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. GE provided appendices to the licensing documentation of its standard plant design, GESSAR II, which address severe accidents for the GE BWR/6 Mark III 238 nuclear island design. The GE submittals discuss the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at Three Mile Island (TMI), is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  6. 21 CFR 111.420 - What requirements apply to repackaging and relabeling?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply to repackaging and relabeling? 111.420 Section 111.420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN...

  7. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  8. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  9. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  10. Hypothetical accidents of light-water moderated nuclear power plants in the framework of emergency planning

    International Nuclear Information System (INIS)

    1979-07-01

    Hypothetical accidents in nuclear power plants are events which by definition can have a devastating impact on the surroundings of the plant. Apart from an adequate plant design, the protection of the population in case of an accident is covered by the emergency planning. Of major importance are the measures for the short-term emergency protection. The decision on whether these measures are applied has to be based on appropriate measurements within the plant. The aim and achieved result of this investigation is to specify accident types. They serve as operational decision making criteria to determine the necessary measurements for analysing the accident in the accident situation, and to provide indications for choosing the suitable strategy for the protection measures. (orig.) [de

  11. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  12. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    Science.gov (United States)

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Source term estimation during incident response to severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    McKenna, T.J.; Glitter, J.G.

    1988-10-01

    This document presents a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. 39 refs., 48 figs., 19 tabs

  14. Quantification of severe accident source terms of a Westinghouse 3-loop plant

    International Nuclear Information System (INIS)

    Lee Min; Ko, Y.-C.

    2008-01-01

    Integrated severe accident analysis codes are used to quantify the source terms of the representative sequences identified in PSA study. The characteristics of these source terms depend on the detail design of the plant and the accident scenario. A historical perspective of radioactive source term is provided. The grouping of radionuclides in different source terms or source term quantification tools based on TID-14844, NUREG-1465, and WASH-1400 is compared. The radionuclides release phenomena and models adopted in the integrated severe accident analysis codes of STCP and MAAP4 are described. In the present study, the severe accident source terms for risk quantification of Maanshan Nuclear Power Plant of Taiwan Power Company are quantified using MAAP 4.0.4 code. A methodology is developed to quantify the source terms of each source term category (STC) identified in the Level II PSA analysis of the plant. The characteristics of source terms obtained are compared with other source terms. The plant analyzed employs a Westinghouse designed 3-loop pressurized water reactor (PWR) with large dry containment

  15. Assessment of PASS Effectiveness under Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Yu Jung; Lee, Sung Bok; Kim, Hyeong Taek; Lee, Jin Yong

    2008-01-01

    Following the accident at Three Mile Island Unit 2 (TMI-2) on March 28, 1979, the USNRC formed a lessons-learned Task Force to identify and evaluate safety concerns originating with the TMI-2 accident. NUREG-0578 documented the results of the task force effort. One of the recommendations of the task force was for licensees to upgrade the capability to obtain samples from the reactor coolant system and containment atmosphere under high radioactivity conditions and to provide the capability for chemical and spectral analyses of high-level samples on site. NUREG-0737 contained the details of the TMI recommendations that were to be implemented by the licensees. Additional criteria for post accident sampling system(PASS) were issued by Regulatory Guide 1.97. As the results, PASS has been installed on nuclear power plants(NPPs) in Korea as well as United States. However, significant improvements have been achieved since the TMI-2 accident in the areas of understanding risks associated with nuclear plant operations and developing better strategies for managing the response to potential severe accidents at NPPs. Thus, the requirements for PASS have been re-evaluated in some reports. According to the reports, the samples and measurements from PASS do not contribute significantly to emergency management response to severe accidents due to the long analyzing time, 3 hours. Hence, this paper focused on the development of the quantitative analysis methodology to analyze the sequence of the severe accident in Yonggwang nuclear power plants (YGN) and presented the results of the analysis according to the developed methodology

  16. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - HANDSS-55 TRANSURANIC WASTE REPACKAGING MODULE

    International Nuclear Information System (INIS)

    2001-01-01

    The Transuranic waste generated at the Savannah River Site from nuclear weapons research, development, and production is currently estimated to be over 10,000 cubic meters. Over half of this amount is stored in 55-gallon drums. The waste in drums is primarily job control waste and equipment generated as the result of routine maintenance performed on the plutonium processing operations. Over the years that the drums have been accumulating, the regulatory definitions of materials approved for disposal have changed. Consequently, many of the drums now contain items that are not approved for disposal at DOE Waste Isolation Pilot Plant (WIPP). The HANDSS-55 technology is being developed to allow remote sorting of the items in these drums and then repackaging of the compliant items for disposal at WIPP

  17. Risk ranking of LANL nuclear material storage containers for repackaging prioritization.

    Science.gov (United States)

    Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon

    2007-05-01

    Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.

  18. Millstone Unit 1 plant vulnerabilities during postulated severe nuclear accidents

    International Nuclear Information System (INIS)

    Khalil, Y.F.

    1993-01-01

    Generic Letter 88-20, Supplement No. 1 (Ref. 1), issued by the Nuclear Regulatory Commission (NRC) requested all licensees holding operating licenses and construction permits for nuclear power reactor facilities to perform Individual Plant Examinations (IPE) of their plant(s) for severe accident vulnerabilities and to submit the results to the Commission. This paper summarizes the major Front-End (Level-1 PRA) and Back-End (Level-2 PRA) insights gained from the Millstone Unit 1 (MP-1) IPE study. No major plant vulnerabilities have been identified from a Front-End perspective. The Back-End analysis, however, has identified two potential containment vulnerabilities during postulated events that progress beyond the Design Basis Accidents (DBAs), namely, (1) MP-1 is dominated by early source term releases that would occur within a six-hour time frame from time of accident initiation, or reactor trip, and (2) MP-1 containment is somewhat vulnerable to leak-type failure through the drywell head. As a result of the second finding, a recommendation currently under evaluation, has been made to increase the drywell head bolt's preload from 54 Kips to resist the containment design pressure value (62 psig)

  19. Lessons of the accident at Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1983-01-01

    Measures taken in the USA for improving safety of NPPs after the accident at ''Three Mile Island'' nuclear power plant are considered. Activities, related to elimination of accident consequences are analyzed. Perspectives of resuming the NPP operation are discussed

  20. Developing and assessing accident management plans for nuclear power plants

    International Nuclear Information System (INIS)

    Hanson, D.J.; Johnson, S.P.; Blackman, H.S.; Stewart, M.A.

    1992-07-01

    This document is the second of a two-volume NUREG/CR that discusses development of accident management plans for nuclear power plants. The first volume (a) describes a four-phase approach for developing criteria that could be used for assessing the adequacy of accident management plans, (b) identifies the general attributes of accident management plans (Phase 1), (c) presents a prototype process for developing and implementing severe accident management plans (Phase 2), and (d) presents criteria that can be used to assess the adequacy of accident management plans. This volume (a) describes results from an evaluation of the capabilities of the prototype process to produce an accident management plan (Phase 3) and (b), based on these results and preliminary criteria included in NUREG/CR-5543, presents modifications to the criteria where appropriate

  1. The link between off-site-emergency planning and plant-internal accident management

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.

    1995-02-01

    A variety of accident management measures has been developed and implemented in the German nuclear power plants. They constitute a fourth level of safety in the defence-in-depth concept. The containment venting system is an important example. A functioning link with well defined lines of communication between plant-internal accident management and off-site disaster emergency planning has been established.

  2. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  3. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, T J; Giitter, J

    1987-07-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  4. Source term estimation during incident response to severe nuclear power plant accidents. Draft

    International Nuclear Information System (INIS)

    McKenna, T.J.; Giitter, J.

    1987-01-01

    The various methods of estimating radionuclide release to the environment (source terms) as a result of an accident at a nuclear power reactor are discussed. The major factors affecting potential radionuclide releases off site (source terms) as a result of nuclear power plant accidents are described. The quantification of these factors based on plant instrumentation also is discussed. A range of accident conditions from those within the design basis to the most severe accidents possible are included in the text. A method of gross estimation of accident source terms and their consequences off site is presented. The goal is to present a method of source term estimation that reflects the current understanding of source term behavior and that can be used during an event. (author)

  5. Consideration of severe accident issues for the general electric BWR standard plant a status report

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982 the U.S. NRC proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. This paper, GE's submission, discusses the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at TMI, is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  6. Studies of potential severe accidents in Finnish nuclear power plants. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Aro, Ilari.

    1989-07-01

    This thesis is based on six publications dealing with severe accident studies in Finnish nuclear power plants. Main emphasis has been put on general technical bases and methodologies applied in severe accident evaluation in Finland. As an example of the use of the analysis and evaluation methods, the analysis of one representative accident sequence, t otal loss of AC power , has been presented for both Finnish power plant types. This accident sequence is required to be analyzed in the Finnish safety guide YVL 2.2 which deals with transient and accident analyses as a basis of technical solutions at nuclear powr plants. Two different analysis methods, MAAP 3.0 and MARCH 3/STCP have been used for receiving as complete a picture as possible of the flow of events and for verifying the models to some extent. Besides the use of the two different models, the method of sensitivity analysis has been used for evaluating the effects of some important technical parameters on the accident flow. Finally, conclusions of the applicability of the two methods for analyzing severe accident sequences in Finnish plants have been discussed

  7. Human factors review for nuclear power plant severe accident sequence analysis

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The paper discusses work conducted to: (1) support the severe accident sequence analysis of a nuclear power plant transient based on an assessment of operator actions, and (2) develop a descriptive model of operator severe accident management. Operator actions during the transient are assessed using qualitative and quantitative methods. A function-oriented accident management model provides a structure for developing technical operator guidance on mitigating core damage preventing radiological release

  8. Concerning the structure of occupational accidents involving construction workers in the erection of nuclear power plants

    International Nuclear Information System (INIS)

    Nowak, B.; Roebenack, K.D.

    1991-01-01

    An investigation of 561 occupational accidents involving construction workers which took place during the construction of nuclear power plants failed to show any significant deviation in comparison with general construction as regards process classification, classification of accidents according to occupation and situation, and accidents severity. Occupational accidents which are typial for nuclear power plant construction are a rare exception. (orig.) [de

  9. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    International Nuclear Information System (INIS)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant's operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ''onsite'' response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world's collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously

  10. Study on actions for social acceptance of a nuclear power plant incident/accident

    International Nuclear Information System (INIS)

    Kotani, Fumio; Tsukada, Tetsuya; Hiramoto, Mitsuru; Nishimura, Naoyuki

    1998-01-01

    When an incident/accident has occurred, dealing technically with it in an appropriate way is essential for social acceptance. One of the most important actions that are expected from the plant representative is to provide, without delay, each of the concerned authorities and organizations with full information concerning the incident/accident, while necessary technical measures are being implemented. While the importance of socially dealing with the incident/accident is widely recognized, up to now there have been no attempts to study previous incidents/accidents cases from the social sciences viewpoint. Therefore, in the present study is a case study of the incident/accident that occurred in 1991 at the No.2 Unit of the Mihama Nuclear Plant of Kansai Power Co., Ltd.. The data used in the present study is based on intensive interview of the staff involved in this incident/accident. The purpose of the study was to shed light on the conditions necessary for maintaining and improving the skill of the plant representative when dealing with social response in case of an incident/accident. The results of the present study has led to a fuller recognition of the importance of the following factors: On the personal level: 1) recognition of personal accountability, 2) complete disclosure of information concerning the incident/accident. On the organizational level: 1) acceptance of different approaches and viewpoints, 2) promoting risk-taking behavior, 3) top management's vision and commitment to providing a social response. (author)

  11. Accident information needs

    International Nuclear Information System (INIS)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information

  12. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-12-31

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  13. Accident information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Arcieri, W.C.; Ward, L.W.

    1992-01-01

    A Five-step methodology has been developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and the severe accident conditions to evaluate the availability of the instrumentation to supply needed plant information.

  14. Recent Perspective on the Severe Accident Management Programme for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Manwoong; Lee, Sukho; Lee, Jungjae; Chung, Kuyoung

    2017-01-01

    Severe Accident Management Guidelines (SAMGs), has been developed to help operators to prevent or mitigate the impacts of accidents at nuclear power plants. Severe accident management was first introduced in the 1990s with the creation of SAMGs following recognition that post-Three Mile Island Emergency Operating Procedures (EOPs) did not adequately address severe core damage conditions. Establishing and maintaining multiple layers of defence against any internal/external hazards is an important measure to reduce radiological risks to the public and environment. This study is intended to suggest future regulatory perspectives to strengthen the prevention and mitigation strategies for severe accidents by review of the current status of revision of IAEA Safety Standard on Severe Accident Management Programmes for Nuclear Power Plants and the combined PWR SAMG. This new IAEA Safety Guide will address guidelines for preparation, development, implementation and review of severe accident management programs during all operating conditions for both reactor and spent fuel pool. This Guide is used by operating organizations of nuclear power plants and their support organizations. It may also be used by national regulatory bodies and technical support organizations as a reference for developing their relevant safety requirements and for conducting reviews and safety assessments for SAMP including SAMG. The Pressurized Water Reactor Owner’s Group (PWROG) is upgrading the original generic Severe Accident Management Guidelines (SAMGs) into single Severe Accident Guidelines (SAGs) for the PWR SAMG aims to consolidate the advantages of each of the separate vendor severe accident (SA) mitigation methods. This new PWROG SAGs changes the SAMG process to be made that can improve SA response. Changes have been made that guidance is available for control room operators when the TSC is not activated thus allowing for timely accident response. Other changes were made to the guidance

  15. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  16. Thirtieth anniversary of reactor accident in A-1 Nuclear Power Plant Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Kuruc, J.; Matel, L.

    2007-01-01

    The facts about reactor accidents in A-1 Nuclear Power Plant Jaslovske Bohunice, Slovakia are presented. There was the reactor KS150 (HWGCR) cooled with carbon dioxide and moderated with heavy water. A-1 NPP was commissioned on December 25, 1972. The first reactor accident happened on January 5, 1976 during fuel loading. This accident has not been evaluated according to the INES scale up to the present time. The second serious accident in A-1 NPP occurred on February 22, 1977 also during fuel loading. This INES level 4 of reactor accident resulted in damaged fuel integrity with extensive corrosion damage of fuel cladding and release of radioactivity into the plant area. The A-1 NPP was consecutively shut down and is being decommissioned in the present time. Both reactor accidents are described briefly. Some radioecological and radiobiological consequences of accidents and contamination of area of A-1 NPP as well as of Manivier Canal and Dudvah River as result of flooding during the decommissioning are presented (authors)

  17. The accident at the Chernobyl' nuclear power plant and its consequences

    International Nuclear Information System (INIS)

    1986-08-01

    The material is taken from the conclusions of the Government Commission on the causes of the accident at the fourth unit of the Chernobyl' nuclear power plant and was prepared by a team of experts appointed by the USSR State Committee on the Utilization of Atomic Energy. It contains general material describing the accident, its causes, the action taken to contain the accident and to alleviate its consequences, the radioactive contamination and health of the population and some recommendations for improving nuclear power safety. 7 annexes are devoted to the following topics: water-graphite channel reactors and operating experience with RBMK reactors, design of the reactor plant, elimination of the consequences of the accident and decontamination, estimate of the amount, composition and dynamics of the discharge of radioactive substances from the damaged reactor, atmospheric transport and radioactive contamination of the atmosphere and of the ground, expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station, medical-biological problems. A separate abstract was prepared for each of these annexes. The slides presented at the post-accident review meeting are grouped in two separate volumes

  18. PCTRAN-3: The third generation of personal computer-based plant analyzer for severe accident management

    International Nuclear Information System (INIS)

    Li-Chi Cliff Po; Link, John M.

    2004-01-01

    PCTRAN is a plant analyzer that uses a personal computer to simulate plant response. The plant model is recently expanded to accommodate beyond design-basis severe accidents. In the event of multiple failures of the plant safety systems, the core may experience heatup and extensive failure. Using a high-powered personal computer (PC), PCTRAN-3 is designed to operate at a speed significantly faster than real-time. A convenient, interactive and user-friendly graphics interface allows full control by the operator. The plant analyzer is intended for use in severe accident management. In this paper the code's component models and sample runs ranging from normal operational transients to severe accidents are reviewed. (author)

  19. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 2. Accident scenario based on thermodynamic model

    International Nuclear Information System (INIS)

    Maruyama, Shigenao

    2012-01-01

    An accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 2 is analyzed from the data open to the public. Phase equilibrium process model was introduced that the vapor and water are at saturation point in the vessels. Proposed accident scenario agrees very well with the data of the plant parameters obtained just after the accident. The estimation describes that the rupture time of the reactor pressure vessel (RPV) was at 22:50 14/3/2011. The estimation shows that the rupture time of the pressure containment vessel (RCP) was at 7:40 15/3/2011. These estimations are different from the ones by TEPCO, however; many measured evidences show good accordance with the present scenario. (author)

  20. Problems of probabilistic safety assessment after Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Sugiyama, Naoki

    2011-01-01

    Probabilistic safety assessment (PSA) methodology to assure nuclear safety is had great expectations of lessons learned from Fukushima Daiichi nuclear power plant (NPP) accident and on the other hand this accident made actualized technical problems of PSA. Effectiveness of current PSA methodology for risk assessment was confirmed by comparing the accident development with accident scenario of PSA and equipment failure rate. From a viewpoint of nuclear safety objective and defense in depth approach of IAEA, technical problems of PSA were (1) extension of PSA for spent fuel pool and waste disposal system as well as level 3PSA for broader environmental contamination and (2) overlapping of accident scenario of plural unit site, balance of high quality plant management and preceding negation, treatment of uncertainty of external events, severe accident measure and human reliability analysis and reflection of disaster prevention capability to level 3PSA. In order to upgrade PSA technology, six proposals were described for nuclear safety and defense in depth, comprehensive evaluation scope and catch-up of latest technology, necessity of strategic preparation of PSA standard, human resources fostering and risk communication. (T. Tanaka)

  1. Measurement of the Portsmouth Gaseous Diffusion Plant criticality accident alarm

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; D'Aquila, D.M.; McGinnis, R.B.

    1991-01-01

    The nuclear criticality accident radiation alarm system installed at the Portsmouth Gaseous Diffusion Plant was tested extensively at critical facilities located at the Los Alamos National Laboratory. The ability of the neutron scintillator radiation detection units to respond to a minimum accident of concern as defined in Standard ANSI/ANS-83.-1986 was demonstrated. Detector placement and the established trip point are based on shielding calculations performed by the Oak Ridge National Laboratory and criticality specialists at the Portsmouth plant. Based on these experiments and calculations, a detector trip point of 5 mrad/h in air is used. Any credible criticality accident is expected to produce neutron radiation fields >5 mrad/h in air at one or more radiation alarm locations. Each radiation alarm location has a cluster of three detectors that employs a two-out-of-three alarm logic. Earlier work focused on testing the alarm logic latching circuitry. This work was directed toward measurements involving the actual audible alarm signal delivered

  2. Proposed chemical plant initiated accident scenarios in a sulphur-iodine cycle plant coupled to a pebble bed modular reactor

    International Nuclear Information System (INIS)

    Brown, N.R.; Revankar, S.T.; Seker, V.; Downar, Th.J.

    2010-01-01

    In the sulphur-iodine (S-I) cycle nuclear hydrogen generation scheme the chemical plant acts as the heat sink for the very high temperature nuclear reactor (VHTR). Thus, any accident which occurs in the chemical plant must feedback to the nuclear reactor. There are many different types of accidents which can occur in a chemical plant. These accidents include intra-reactor piping failure, inter-reactor piping failure, reaction chamber failure and heat exchanger failure. Since the chemical plant acts as the heat sink for the nuclear reactor, any of these accidents induce a loss-of-heat-sink accident in the nuclear reactor. In this paper, several chemical plant initiated accident scenarios are presented. The following accident scenarios are proposed: i) failure of the Bunsen chemical reactor; ii) product flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iii) reactant flow failure from either the H 2 SO 4 decomposition section or HI decomposition section; iv) rupture of a reaction chamber. Qualitative analysis of these accident scenarios indicates that each result in either partial or total loss of heat sink accidents for the nuclear reactor. These scenarios are reduced to two types: i) discharge rate limited accidents; ii) discontinuous reaction chamber accidents. A discharge rate limited rupture of the SO 3 decomposition section of the SI cycle is proposed and modelled. Since SO 3 decomposition occurs in the gaseous phase, critical flow out of the rupture is calculated assuming ideal gas behaviour. The accident scenario is modelled using a fully transient control volume model of the S-I cycle coupled to a THERMIX model of a 268 MW pebble bed modular reactor (PBMR-268) and a point kinetics model. The Bird, Stewart and Lightfoot source model for choked gas flows from a pressurised chamber was utilised as a discharge rate model. A discharge coefficient of 0.62 was assumed. Feedback due to the rupture is observed in the nuclear

  3. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  4. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    Ogino, Masao; Kawabe, Ryuhei; Nagasaka, Hideo; Sumida, Susumu; Fukasawa, Masanori; Muta, Hitoshi

    2011-01-01

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2010 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  5. Mitigation of severe accidents in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Soederman, E.

    1987-01-01

    Sweden is the first country to build filtered venting systems, the first one became operable at Barsebaeck nuclear power plant in 1985. In new concepts, now being installed in Sweden, an enhanced containment spray system is the basic element and the filtered venting is only the secondary mitigating system. The filter is a new design, a submerged multi venturi scrubber. The Swedish strategy has been built on three basics: improved knowledge through research; containment integrity through mitigating systems; and accident management to prevent severe accidents. 2 figs

  6. Main lessons based on the Chernobyl nuclear power plant accident liquidation experience

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Nosovskij, A.V.

    2006-01-01

    The authors review the main lessons of the Chernobyl nuclear power plant accident and the liquidation of its consequences in the area of the nuclear reactors safety operation, any major accident management, liquidation accident consequences criteria, emergency procedures, preventative measures and treatment irradiated victims, the monitoring methods etc. The special emphasis is put on the questions of the emergency response and the antiaccidental measures planning in frame of international cooperation program

  7. Overview of training methodology for accident management at nuclear power plants

    International Nuclear Information System (INIS)

    2005-04-01

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality and facilitate the implementation of AMPs at the plants. The main objective of this publication is to describe available material and technical support tools that can be used to support training of the personnel involved in the accident management (AM), and to highlight the current status of their application. The focus is on those operator aids that can help the plant personnel to take correct actions during an emergency to prevent and mitigate consequences of a severe accident. The second objective is to describe the available material for the training courses of those people who are responsible of the AMP development and implementation of an individual plant. The third objective is to collect a compact set of information on various aspects of AM training into a single publication. In this context, the AM personnel includes both the plant staff responsible for taking the decision and actions concerning preventive and mitigative AM and the persons involved in the management of off-site releases. Thus, the scope of this publication is on the training of personnel directly involved in the decisions and execution of the SAM actions during progression of an accident. The integration of training into the AMP development and implementation is summarized. The technical AM support tools and material are defined as operator aids involving severe accident guidelines, various computational aids and computerized tools. The operator aids make also an essential part of the training tools. The simulators to be applied for the AM training have been developed or are under development by various organizations in order to support the training on

  8. Development of an accident diagnosis system using a dynamic neural network for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances

  9. Accident management

    International Nuclear Information System (INIS)

    Lutz, R.J.; Monty, B.S.; Liparulo, N.J.; Desaedeleer, G.

    1989-01-01

    The foundation of the framework for a Severe Accident Management Program is the contained in the Probabilistic Safety Study (PSS) or the Individual Plant Evaluations (IPE) for a specific plant. The development of a Severe Accident Management Program at a plant is based on the use of the information, in conjunction with other applicable information. A Severe Accident Management Program must address both accident prevention and accident mitigation. The overall Severe Accident Management framework must address these two facets, as a living program in terms of gathering the evaluating information, the readiness to respond to an event. Significant international experience in the development of severe accident management programs exist which should provide some direction for the development of Severe Accident Management in the U.S. This paper reports that the two most important elements of a Severe Accident Management Program are the Emergency Consultation process and the standards for measuring the effectiveness of individual Severe Accident Management Programs at utilities

  10. Application of simulation techniques for accident management training in nuclear power plants

    International Nuclear Information System (INIS)

    2003-05-01

    Many IAEA Member States operating nuclear power plants (NPPs) are at present developing accident management programmes (AMPs) for the prevention and mitigation of severe accidents. However, the level of implementation varies significantly between NPPs. The exchange of experience and best practices can considerably contribute to the quality, and facilitate the implementation of AMPs at the plants. Various IAEA activities assist countries in the area of accident management. Several publications have been developed which provide guidance and support in establishing accident management at NPPs. The defence in depth concept in nuclear safety requires that, although highly unlikely, beyond design basis and severe accident conditions should also be considered, in spite of the fact that they were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is physically achieved by means of four successive barriers (fuel matrix, cladding, primary coolant boundary, and containment) that prevent the release of radioactive material. These barriers are protected by a set of design measures at three levels, including prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). Should these first three levels fail to ensure the structural integrity of the core, additional efforts are made at the fourth level of defence in depth in order to further reduce the risks. The objective at level 4 is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. The term 'accident management' refers to the overall range of capabilities of a NPP and its personnel to both prevent and mitigate accident situations that could lead to severe fuel damage in the reactor

  11. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Fritsching, G.; Wolf, G. [Internationale Atomreaktorbau G.m.b.H. (INTERATOM), Bergisch Gladbach (Germany, F.R.)

    1981-01-15

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen.

  12. Model experiments on depressurisation accidents in nuclear process heat plants (HTGR)

    International Nuclear Information System (INIS)

    Fritsching, G.; Wolf, G.

    1981-01-01

    The analysis of depressurisation accidents requires the use of digital computer programs to find out the dynamic loads acting on the plant structures. Because of the importance of such accidents in safety and licensing procedures of nuclear process heat plants, it is necessary to compare these computer results with suitable experiments to show the accuracy and the limits of the programs in question. For this purpose a series of depressurisation experiments has been started at INTERATOM on a small scale model of a primary loop of a nuclear process heat plant. Using the results of these experiments three different computer programs were tested with good success. The development of the experimental program and the estimation of the results was carried out in co-operation with KFA-Juelich and the Technische Hochschule Aachen

  13. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was

  14. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hae Kyun; Kim, Sang Nyung

    2013-01-01

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was conservatively calculated

  15. Characterisation, repackaging and incineration of NaK and Na used for heat transfer experiences on LMFBR at the JRC-Ispra site

    Energy Technology Data Exchange (ETDEWEB)

    Mazzuccato, M.; D' Alberti, F.; D' Amati, F. [European Commission, Joint Research Centre, Nuclear Decommissioning Unit, Via Fermi 210207 Ispra VA (Italy)

    2010-07-01

    The Joint Research Centre (JRC) is a service of the European Commission and its mission is to provide scientific and technical support to the EU policies. At the Italian JRC Ispra site is currently ongoing a nuclear decommissioning program aimed at dismantling and disposing facilities and materials no longer used for nuclear research purposes, e.g. alkali metals, whose radioactive content has to be checked prior the disposal as radioactive or conventional waste. This paper describes the project phases consisting in characterising, repackaging and disposing of {approx}607 kg of alkali metals, composed by {approx}397 kg of NaK liquid alloy and {approx}210 kg of Na metal. The material was used in the past for scientific experiences on heat transfer for liquid metal fast breeder reactors. The alkali metals are very reactive in presence of water leading to the formation of hydrogen; moreover the NaK had been stored for several years in a bunker inside drums unable to guarantee the needed confinement, with the consequent formation of oxygenated compounds in the outer layer of the alloy crust, as Na{sub 2}O{sub 2}, NaO{sub 2}, K{sub 2}O{sub 2} and KO{sub 2}, unstable if moved in presence of the liquid substrate. To perform the characterization and repackaging operations in a safe manner, avoiding any possible reaction between the liquid alloy and the solid surface of oxides, the alloy has been solidified reducing bunker temperature down to the alloy melting point (-15 deg. C). The sampling has been carried out by means of glove bag sealed on the top of each drum and filled in with inert gas to reduce the presence of humidity. Having characterization campaign proved that the alkali metals could not be classified as radioactive material, the NaK and Na containers were shipped to UK in a refrigerated truck. In order to allow a safe thermal destruction in a conventional incineration plant, additional repackaging has been performed in a UK plant to reduce the amount of alkali

  16. Plant accident dynamics of high-temperature reactors with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Waloch, M.L.

    1977-01-01

    In the paper submitted, a one-dimensional accident simulation model for high-temperature reactors with direct-cycle gas turbine (single-cycle facilities) is described. The paper assesses the sudden failure of a gas duct caused by the double-ended break of one out of several parallel pipes before and behind the reactor for a non-integrated plant, leading to major loads in the reactor region, as well as the complete loss of vanes of the compressor for an integrated plant. The results of the calculations show especially high loads for the break of a hot-gas pipe immediately behind the flow restrictors of the reactor outlet, because of prolonged effects of pressure gradients in the reactor region and the maximum core differential pressure. A plant accident dynamics calculation therefore allows to find a compromise between the requirements of stable compressor operation, on the one hand, and small loads in the reactor in the course of an accident, on the other, by establishing in a co-ordinated manner the narrowing ratio of the flow restrictors. (GL) [de

  17. Fukushima nuclear power plant accident was preventable

    Science.gov (United States)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  18. Prevention of criticality accidents in a fuel cycle plant

    International Nuclear Information System (INIS)

    Gatti, A.M.; Canavese, S.I.; Capadona, N.M.

    1990-01-01

    This work reports the basic considerations on criticality accidents applied to an uranium dioxide fuel cycle production plant. The different fabrication stages are briefly described, with the identification of the neutronically isolated areas. Once the areas have been defined, an evaluation is made, setting up the control parameters to be used in each of them and their variation ranges; normal operation limitations based on experimental data or validating calculations, applied specifically to 5% enriched uranium, are established. Afterwards, defined parameters deviations are analyzed due to incidental conditions in order to prevent criticality accidents under normal conditions and maintenance operations. (Author) [es

  19. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor

    2013-01-01

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  20. Economic consequences of major accidents in the industrial plants: The case of a nuclear power plant

    International Nuclear Information System (INIS)

    Fraix, J.

    1989-09-01

    These last years, newspapers head-lines have reported various accidents (Mexico City, Bhopal, Chernobyl, ...) which have drawn attention to the fact that the major technological risk is now a reality and that, undoubtedly, industrial decision-makers ought to integrate it into their preoccupations. In addition to the sometimes considerable human problems such accidents engender, their economic consequences may be such that they become significant on a national or even international scale. The aim of the present paper is to analyse these economic effects by using the particular context of a nuclear power plant. The author has deliberately limited his subject to the consequences of a major accident, that is to say a sudden event, theoretically unforeseen and beyond man's control. The qualification major means an accident of which the consequences extend far beyond the industrial plant itself. The direct and indirect economic consequences are analysed from the responsibility point of view as well as from the national and international community's point of view. A paragraph explains how the coverage of the costs can rely on the cooperation of a number of parties: responsible company, state, insurers, customers, etc. The study is broadly based on the experience resulting from the two major accidents which happened in the nuclear industry these last years (Three Mile Island in 1979 and Chernobyl in 1986) and makes use of more theoretical considerations, for example in the field of the economic evaluation of human life. (author). 58 refs, 2 figs, 12 tabs

  1. CE/Bechtel design containment response to severe accident phenomenology: A comparison among several combustion engineering plants

    International Nuclear Information System (INIS)

    Khalil, Y.F.; Schneider, R.E.

    1995-01-01

    The objectives of this paper are to: (1) discuss the types of severe accident phenomena that drive containment failure modes in CE plants and (2) contribute to the current state of knowledge of CE/Bechtel-design containment response to severe accident phenomenology. The second objective is addressed by providing a comparative study of containment response to severe accidents among several CE plants including Millstone Unit 2 (MP2), Palisades (Consumers Power), Calvert Cliffs (Baltimore Gas and Electric Company), Palo Verde (Arizona Public Service), and SONGS Units 2 and 3 (Southern California Edison). The motivation for addressing the second objective is based on the current lack of comprehensive literature on CE/Bechtel design containment failure modes and mechanisms for accidents that progress beyond the design basis limits. The first part of this paper addresses severe accident phenomena-related failure mechanisms in CE/Bechtel-designed containments. The second part of this work provides a comparative study of containment response among several CE plants

  2. Severe accident risks: An assessment for five US nuclear power plants: Appendices A, B, and C

    International Nuclear Information System (INIS)

    1990-12-01

    This report summarizes an assessment of the risks from severe accidents in five commercial nuclear power plants in the United States. These risks are measured in a number of ways, including: the estimated frequencies of core damage accidents from internally initiated accidents and externally initiated accidents for two or the plants; the performance of containment structures under severe accident loadings; the potential magnitude of radionuclide release and offsite consequences of such accidents; and the overall risk (the product of accident frequencies and consequences). Supporting this summary report are a large number of reports written under contract to NRC that provide the detailed discussion of the methods used and results obtained in these risk studies. Volume 2 of this report contains three appendices, providing greater detail on the methods used, an example risk calculation, and more detailed discussion of particular technical issues found important in the risk studies

  3. Severe accident management guidance for third Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Su Changsong

    2010-01-01

    The paper describes the background, document structure and the summaries of Severe Accident Management Guidance (SAMG) for Third Qinshan Nuclear Power Plant (TQNPP), and also introduces briefly some design features and their impacts on SAMG. (authors)

  4. Measures for preventing and mitigating severe accidents of nuclear power plants

    International Nuclear Information System (INIS)

    Lin Chengge

    1993-01-01

    Safety goals, integrity of the containment, accident management, functions of existing equipment and measures and emergency preparedness are discussed as technical basis for implementing the new safety code on the nuclear power plant safety design (HAF-0200(91)). The main quantitative safety goals are presented as core melt frequency -5 /ry for new plants and -4 /ry for existing or constructed plants, and 0.1% I, Cs release frequency -6 /ry. To keep the integrity of the containment, main efforts should be placed on the prevention of early failure of the containment and by pass or isolation failures. Should a late failure of the containment occur at a high probability, measures such as filtering vent should be considered. The leak rate of the containment could be higher than the previous 0.1-0.5 wt%/day, depending on the source term and dose results. But, a limiting leak rate of 1 wt%/day is defined. Accident management involves emergency operating procedures, training and retraining for the AM and adding some supporting equipment and display and diagnostic system for the AM. Those requirements are described. Emergency preparedness and measures can reduced the risk significantly. In the most case of accidents, sheltering is preferred as an effective protective actions

  5. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel

  6. Application of the accident management information needs methodology to a severe accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R. (Idaho National Engineering Laboratory, Idaho Falls (USA)); Solberg, D.E. (Nuclear Regulatory Commission, Washington, DC (USA))

    1989-11-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel.

  7. Research on the management of the wastes from plant accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The accident in Fukushima Daiichi Nuclear Power Plant released large amount of radio-nuclides and contaminated wide areas within and out of the site. The decontamination, storage, treatment and disposal of generated wastes are now under planning. Though the regulations for radioactive wastes discharged from normal operation and decommissioning of nuclear facilities have been prepared, it is necessary to make amendments of those regulations to deal with wastes from the severe accidents which may have much different features on nuclides contents, or possibility to accompany hazardous chemical materials. Characteristics, treatment and disposal of wastes from accidents were surveyed by literature and the radionuclide migration from the assumed temporally storage yards of the disaster debris was analyzed for consideration of future regulation. (author)

  8. Response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nei, Hisanori

    2012-01-01

    This article was reading from the author's plenary lecture at the thermal and nuclear power generation convention 2011, which was summary of the author edited report of Japanese government to IAEA ministerial conference on nuclear safety. The article consisted of (1) outlines of occurrence and development of the accident at TEPCO's Fukushima Daiichi Nuclear Power Plants (NPPs), (2) comparison of Fukushima Daiichi NPPs with other NPPs (Fukushima Daini, Onagawa and Tokai Daini NPPs), (3) major countermeasures to settle the situation regarding the accident, (4) comprehensive safety evaluation of other NPPs as response to the accident and (5) lessons learned from the accident so far. It was highly important to ensure power supplies and robust cooling functions of reactors, pressure containment vessels and spent fuel pools. 28 lessons were categorized into five groups such as (1) strengthen preventive measures against a severe accident, (2) enhancement of response measures against severe accidents, (3) enhancement of nuclear emergency responses, (4) reinforcement of safety infrastructure and (5) thoroughness of safety culture. (T. Tanaka)

  9. Behaviour of a pressurized-water reactor nuclear power plant during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Carl, H.; Kubis, K.

    1979-01-01

    Starting from the foundation of the design basis accident in a PWR-type nuclear power plant - Loss of Coolant Accident -the actual status of the processes to be expected in the reactor are described. Operating behaviour of the heat removal system and efficiency of the safety systems are evaluated. Final considerations are concerned with the overall behaviour of the plant under such conditions. Probable failures, shut down times and possibilities of repair are estimated. (author)

  10. Flood control construction of Shidao Bay nuclear power plant and safety analysis for hypothetical accident of HTR-PM

    International Nuclear Information System (INIS)

    Chen Yongrong; Zhang Keke; Zhu Li

    2014-01-01

    A series of events triggered by tsunami eventually led to the Fukushima nuclear accident. For drawing lessons from the nuclear accident and applying to Shidao Bay nuclear power plant flood control construction, we compare with the state laws and regulations, and prove the design of Shidao Bay nuclear power plant flood construction. Through introducing the history of domestic tsunamis and the national researches before and after the Fukushima nuclear accident, we expound the tsunami hazards of Shidao Bay nuclear power plant. In addition, in order to verify the safety of HTR-PM, we anticipate the contingent accidents after ''superposition event of earthquake and extreme flood'', and analyse the abilities and measures of HTR-PM to deal with these beyond design basis accidents (BDBA). (author)

  11. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  12. Investigation of the management of the wastes from plant accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The accident in Fukushima Daiichi Nuclear Power Plant discharged large amount of radio-nuclides and contaminated wide areas in and out of the site. The decontamination, storage, treatment and disposal of generated wastes are now under planning. Though regulations for the radioactive wastes arisen from normal operation and decommissioning of nuclear facilities have been prepared, it is necessary to make amendment of those regulations to deal with wastes from the severe accident which may have much different features on nuclides contents, or possible accompanying hazardous chemical materials. Characteristics of wastes from accidents in foreign nuclear installations, and the treatment and the disposal of those wastes were surveyed by literature and radionuclide migration from the assumed temporally storage yards of the disaster debris was analyzed for consideration of future regulation. (author)

  13. Enhancing AP1000 reactor accident management capabilities for long term accidents

    International Nuclear Information System (INIS)

    Jiang Pingting; Liu Mengying; Duan Chengjie; Liao Yehong

    2015-01-01

    Passive safety actions are considered as main measures under severe accident in AP1000 power plant. However, risk is still existed. According to PSA, several probable scenarios for AP1000 nuclear power plant are analyzed in this paper with MAAP the severe accident analysis code. According to the analysis results, several deficiencies of AP1000 severe accident management are found. The long term cooling and containment depressurization capability for AP1000 power plant appear to be most important factors under such accidents. Then, several temporary strategies for AP1000 power plant are suggested, including PCCWST temporary water supply strategy after 72h, temporary injection strategy for IRWST, hydrogen relief action in fuel building, which would improve the safety of AP1000 power plant. At last, assessments of effectiveness for these strategies are performed, and the results are compared with analysis without these strategies. The comparisons showed that correct actions of these strategies would effectively prevent the accident process of AP1000 power plant. (author)

  14. Method for improving accident sequence recognition in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Heising, C.D.; Dinsmore, S.C.

    1983-01-01

    This work adapts fault trees from plant-specific probabilistic risk analyses (PRAs) to construct and quantitatively evaluate an alarm analysis system for the engineered safety features (ESFs). The purpose is to help improve reactor operator recognition and identification of potential accident sequences. The PRA system fault trees provide system failure mode information which can be used to construct alarm trees. These alarm trees provide a framework for assessing the plant indicators so that the plant conditions are made more readily apparent to plant personnel. In the alarm tree, possible states of each instrumented alarem are identified as true or false. In addition, a warning status is defined and integrated into an alarm analysis routine. The impact of this additional status conditioned on the Boolean laws used to evaluate the alarm trees is examined. An application is described for BWR high pressure coolant injection system (HPCI) that would be utilized during many severe reactor accidents

  15. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  16. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  17. Children's reactions to the threat of nuclear plant accidents

    International Nuclear Information System (INIS)

    Schwebel, M.; Schwebel, B.

    1981-01-01

    In the wake of Three Mile Island nuclear plant accident, questionnaire and interview responses of children in elementary and secondary schools revealed their perceptions of the dangers entailed in the continued use of nuclear reactors. Results are compared with a parallel study conducted close to 20 years ago, and implications for mental health are examined

  18. Procedural and submittal guidance for the individual plant examination of external events (IPEEE) for severe accident vulnerabilities

    International Nuclear Information System (INIS)

    Chen, J.T.; Chokshi, N.C.; Kenneally, R.M.; Kelly, G.B.; Beckner, W.D.; McCracken, C.; Murphy, A.J.; Reiter, L.; Jeng, D.

    1991-06-01

    Based on a Policy statement on Severe Accidents, the licensee of each nuclear power plant is requested to perform an individual plant examination. The plant examination systematically looks for vulnerabilities to severe accidents and cost-effective safety improvements that reduce or eliminate the important vulnerabilities. This document presents guidance for performing and reporting the results of the individual plant examination of external events (IPEEE). The guidance for reporting the results of the individual plant examination of internal events (IPE) is presented in NUREG-1335. 53 refs., 1 figs., 2 tabs

  19. Grundremmingen nuclear power plant: The accident that came from the cold

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The accident of January 13, 1977, is shortly described. The power plant was cut off from the network by an extreme temperature drop and high humidity, which caused a break in a number of porcelain insulators of two HV lines. The response of the turbine speed control was delayed, and there was a sudden pressure drop in the primary steam line. Weakly radioactive steam and water were released into the containment without polluting the environment, since all safety systems responded to the accident. (HP) [de

  20. Root causes and impacts of severe accidents at large nuclear power plants.

    Science.gov (United States)

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  1. Root Causes and Impacts of Severe Accidents at Large Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hoegberg, Lars

    2013-01-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities

  2. Root Causes and Impacts of Severe Accidents at Large Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Lars

    2013-04-15

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  3. Analysis of accidents and troubles of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kobayashi, Kunio

    1980-01-01

    In Japan, electric power companies are obliged to report the accidents and troubles occurred in nuclear power stations to the MITI according to the relevant laws, and 166 cases in total have been reported as of the end of March, 1980. These accidents and troubles are all trivial, and do not cause problems from the viewpoint of the safety nuclear power stations. Regarding respective accidents and troubles, the causes have been sought thoroughly, and the sufficient countermeasures have been taken on all occasions. But in order to improve the reliability of nuclear power stations further, it is important to treat the accidents and troubles occurred so far statistically and grasp the general trend. Thereupon, 152 accidents and troubles occurred till September, 1979, were analyzed quantitatively, and the results are reported in this paper. From the results, the prospect hereafter is discussed. The number of the reported cases of accidents and troubles in each nuclear power plant in operation every year is tabulated. The accidents and troubles were relatively frequent in the initial two or three years of operation of respective new reactor types, but decreased thereafter. The systems to which troubled equipments belong and the troubled equipments are shown. Most troubles have occurred in reactor cooling systems and valves. The situations and causes of troubles, the operational conditions at the time of the accidents and troubles and the effects and others are reported. (Kako, I.)

  4. Consequences of the nuclear power plant accident at Chernobyl

    International Nuclear Information System (INIS)

    Ginzburg, H.M.; Reis, E.

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion

  5. Analysis of the accident at Fukushima Daiichi nuclear power plant in an A BWR reactor

    International Nuclear Information System (INIS)

    Escorcia O, D.; Salazar S, E.

    2016-09-01

    The present work aims to recreate the accident occurred at the Fukushima Daiichi nuclear power plant in Japan on March 11, 2011, making use of an academic simulator of forced circulation of the A BWR reactor provided by the IAEA to know the scope of this simulator. The simulator was developed and distributed by the IAEA for academic purposes and contains the characteristics and general elements of this reactor to be able to simulate transients and failures of different types, allowing also to observe the general behavior of the reactor, as well as several phenomena and present systems in the same. Is an educational tool of great value, but it does not have a scope that allows the training of plant operators. To recreate the conditions of the Fukushima accident in the simulator, we first have to know what events led to this accident, as well as the actions taken by operators and managers to reduce the consequences of this accident; and the sequence of events that occurred during the course of the accident. Differences in the nuclear power plant behavior are observed and interpreted throughout the simulation, since the Fukushima plant technology and the simulator technology are not the same, although they have several elements in common. The Fukushima plant had an event that by far exceeded the design basis, which triggered in an accident that occurred in the first place by a total loss of power supply, followed by the loss of cooling systems, causing a level too high in temperature, melting the core and damaging the containment accordingly, allowing the escape of hydrogen and radioactive material. As a result of the simulation, was determined that the scope of the IAEA academic simulator reaches the entrance of the emergency equipment, so is able to simulate almost all the events occurred at the time of the earthquake and the arrival of the tsunami in the nuclear power plant of Fukushima Daiichi. However, due to its characteristics, is not able to simulate later

  6. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da

    2004-03-01

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  7. What kind of accidents can happen in a nuclear power plant

    International Nuclear Information System (INIS)

    Debes, M.

    1995-01-01

    The lessons drawn from real reactor accidents are of great value. The safety approach in France relies on defence in depth and takes into account accidents in the plant design, completed by a probabilistic approach and experience feedback. Ultimate procedure are implemented on the basis of severe accidents studies which include core melting or partial containment defect, in order to mitigate their consequences even if they are improbable, and to enable a proper implementation of emergency planning countermeasures. The accident hypothesis and consequences are considered to draw the emergency planning procedures. Off site countermeasures, such as in house-confinement, limited evacuation or iodine distribution, are efficient in limiting the consequences for the public. Experience feedback, in association with a proactive vigilance and prevention policy, is developed in order to detect and correct in a proactive way the root causes of any deviation, even minor, so as to avoid multiple failures and ensure safety. (author). 4 refs., 2 figs., 1 tab

  8. Japanese authorities inform IAEA about accident at nuclear plant

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: The IAEA today received information from Japanese nuclear regulatory authorities about an accident in the steam generator turbine circuit of the Mihama Nuclear Power Plant (unit 3). According to the Japanese nuclear authorities this is a non-radioactive part of the plant. The regulatory body has reported that four contract employees died and 7 were injured, and stated that there was no release of radioactivity. The IAEA continues to be in contact with Japanese authorities and expects to receive updates on a continuous basis. No request for IAEA assistance has been received at this time. (IAEA)

  9. Report of a Special Committee on the Review of U.S. Nuclear Power Plant Accident, second report

    International Nuclear Information System (INIS)

    1979-01-01

    Following on the issuance of the first report, for the accident in Three Mile Island Nuclear Power Plant in the United States there has appeared detailed information of such as reactor operation and radiation control. This has enabled technical evaluation of those items involved in nuclear power safety. The review results up to the beginning of September 1979 are presented, to meet popular desires to know the accident situation and to reflect the results in the nation's nuclear power generation. Contents are features and background of the TMI Nuclear Power Plant accident consequences, safety measures to be taken in Japan, and (in the appendix) the data on the TMI accident, countermeasures taken in Japan, etc. (Mori, K.)

  10. The accident at the Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Butragueno, J.L.

    1980-01-01

    The sequence of events in the Three Mile Island, Unit 2, accident on the March 28, 1979 is analyzed. In this plant a loss of feed-water transient became a small LOCA that caused a serious core damage. A general emergency situation was declared after uncontrolled radioactive releases were detectec. (author)

  11. Study on public awareness of utilizing nuclear power in China. Changes in public awareness after the accident of Fukushima Daiichi Nuclear Power Plants

    International Nuclear Information System (INIS)

    Xu, Ting; Wakabayashi, Toshio

    2012-01-01

    The purpose of this study is to clarify public awareness of utilizing nuclear power in China and to determine the effects of the accident of Fukushima Daiichi nuclear power plants. Web online surveys were carried out before and after the accident of Fukushima Daiichi nuclear power plants. The online survey before the accident of Fukushima Daiichi nuclear power plants had 4,255 adult respondents consisting of 1,851 males and 2,404 females. The online survey after the accident had 721 respondents consisting of 406 males and 315 females. The two online surveys about the attitude toward nuclear power plants consisted of 37 items, such as the necessity of nuclear power plants, the reliability of safety, and government confidence. As a result, respondents of the online surveys in China consider that nuclear energy is more important than the anxiety of accident. On the other hand, women have sensation of fear for the accident of Fukushima Daiichi nuclear power plants and radiation. (author)

  12. The technical requirements concerning severe accident management in nuclear power plants

    International Nuclear Information System (INIS)

    Okamoto, Koji; Sugiyama, Tomoyuki; Kamata, Shinya

    2014-01-01

    The Great East Japan Earthquake with a magnitude of 9.0 (The 2011 off the Pacific coast of Tohoku Earthquake) occurred on March 11, 2011, and the beyond design-basis tsunami descended on the Fukushima Daiichi Nuclear Power Plant by the earthquake. Eventually, the core cooling systems of the units 1, 2 and 3 could not operate stably, they all suffered severe accident, and hydrogen explosions were triggered in the reactor buildings of units 1, 3 and 4. In the light of these circumstances, Atomic Energy Society of Japan (AESJ) decided to establish a standard that consolidates the concept of maintaining and improving severe accident management. In the SAM standard, the combination of hardware and software measures based on the risk assessment enables a scientific and rational approach to apply to scenarios of various severe accidents including low-frequency, high-impact events, and assures safety with functionality and flexibility. The SAM standard is already established in March, 2014. After publication of the SAM standard, with regard to effectiveness assessment for accident management and treatment of the uncertainty of severe accident analysis code, for example, the detailed guideline will be prepared as appendices of the standard. (author)

  13. Assessment of accident risks from german nuclear plants

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1979-01-01

    The German risk study are presented. The main objectives can be summed up as follows: (a) An assessment of the societal risk due to accidents in nuclear power plants with reference to German conditions; (b) To get experience in the field of risk analysis and to provide a basis for estimation of uncertainties; (c) To provide guidance for future activities in the German Reactor Safety Research Program. Finally several conclusions reached by this study are discussed. (author)

  14. Securing the Safety of Nuclear Power Plants against Oil Spill Accidents at Sea

    International Nuclear Information System (INIS)

    Hyun, Seung Gyu; Choi, Ho Seon; Kim, Sang Yun

    2008-01-01

    As of 2008, 20 nuclear power plants are under operation and six plants are under construction in Korea. NPPs account for approximately 38% of Korea's electric power production; however, it is expected that the share of power produced by NPPs will be further increased to reduce the level of CO 2 emissions, taking into account the concern over global warming. All of NPPs in Korea are located on the coast to facilitate the supply of cooling water sources. Thus, tar and other floating matters from vessels following oil spill accidents at sea may affect intake systems, and consequently interrupt the supply of cooling water. This study will review cases of response measures taken by NPPs against large-scale crude oil spill accidents that had occurred off the coast of Korea, including such accidents as the Sea Prince (July 23, 1995) and the Hebei Sprit(December 7, 2007), and relevant regulatory requirements at home and abroad

  15. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe accident research results to enhance the capability of plant operating personnel to effectively manage severe accidents. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed as part of the research program designed to resolve this issue. The methodology identifies the information needs of the plant personnel during a wide range of accident conditions, the existing plant measurements capable of supplying these information needs and what, if any minor additions to instrument and display systems would enhance the capability to manage accidents, known limitations on the capability of these measurements to function properly under the conditions that will be present during a wide range of severe accidents, and areas in which the information systems could mislead plant personnel. This paper presents an application of this methodology to a severe accident sequence to demonstrate its use in identifying the information which is available for management of the event. The methodology has been applied to a severe accident sequence in a Pressurized Water Reactor with a large dry containment. An examination of the capability of the existing measurements was then performed to determine whether the information needs can be supplied

  16. NIRS report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    2001-01-01

    This report is a detailed account of the roles that National Institute of Radiological Sciences (NIRS) played at the criticality accident in the title, which occurred at around 10:35, on Sep. 30, 1999 and resulted in death of two workers after all, and is published to discharge NIRS responsibilities in regards to the accident. The accident caused many residents concern on their health and rumors had both social and economic consequences. The report involves chapters of detailed outline of the accident; demand for acceptance of the victims and communications until the identification of the criticality'' accident; the acceptance and initial treatment; the exposure dose estimation (based on acute symptoms, on physics, on chromosomal analyses and on neutron-activated dental metals, and detailed analyses for dose distribution); decision made for therapeutic strategies; cooperation with the Network Council for Radiation Emergency and with other medical facilities; the urgent import of medicine; treatment and processes (patients, nursing system and radiation injuries); radiation protection in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hopefully useful in preventing the occurrence of future accidents. (N.I.)

  17. SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

    OpenAIRE

    SONG, JIN HO; KIM, TAE WOON

    2014-01-01

    This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accide...

  18. Severe accidents at nuclear power plants. Their risk assessment and accident management

    International Nuclear Information System (INIS)

    Abe, Kiyoharu.

    1995-05-01

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  19. Examination of some assumed severe reactor accidents at the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Pekkarinen, E.; Rossi, J.

    1989-02-01

    Knowledge and analysis methods of severe accidents at nuclear power plants and of subsequent response of primary system and containment have been developed in last few years to the extent that realistic source tems of the specified accident sequences can be calculated for the Finnish nuclear power plants. The objective of this investigation was to calculate the source terms of off-site consequences brought about by some selected severe accident sequences initiated by the total loss of on-site and off-site AC power at the Olkiluoto nuclear power plant. The results describing the estimated off-site health risks are expressed as conditional assuming that the accident has taken place, because the probabilities of the occurence of the accident sequences considered have not been analysed in this study. The range and probabilities of occurence of health detriments are considered by calculating consequences in different weeather conditions and taking into account the annual frequency of each weather condition and statistical population distribution. The calculational results indicate that the reactor building provides and additional holdup and deposition of radioactive substance (except coble gases) released from the containment. Furthermore, the release fractions of the core inventory to the environment of volatile fission products such as iodine, cesium and tellurium remain under 0.03. No early health effects are predicted for the surrounding population in case the assumed short-tem countermeasures are performed effectively. Acute health effects are extremely improbable even without any active countermeasure. By reducing the long-term exposure from contaminated agricultural products, the collective dose from natural long-term background radiation, for instance in the sector of 30 degrees towards the southern Finland up to the distance of 300 kilometers, would be expected to increase with 2-20 percent depending on the release considered

  20. Postulated accidents

    International Nuclear Information System (INIS)

    Ullrich, W.

    1980-01-01

    This lecture on 'Postulated Accidents' is the first of a series of lectures on the dynamic and transient behaviour of nuclear power plants, especially pressurized water reactors. The main points covered will be: Reactivity Accidents, Transients (Intact Loop) and Loss of Cooland Accidents (LOCA) including small leak. This lecture will discuss the accident analysis in general, the definition of the various operational phases, the accident classification, and, as an example, an accident sequence analysis on the basis of 'Postulated Accidents'. (orig./RW)

  1. Guidelines for the review of accident management programmes in nuclear power plants. Reference document for the IAEA safety service missions on review of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    Similarly as for other IAEA safety services, the objectives of accident management safety service are to assist the Member States in ensuring and enhancing the safety of NPPs. In particular, the objective is to assist at the utility and NPP (i.e. licensee) level in effective plant specific AMP preparation, development and implementation. However, assistance can also be provided to the regulatory body in its reviewing of AMPs. Objectives of the safety service can be summarized as follows: To explain to licensee personnel principles and possible approaches in effective implementation of AMP based on experience world-wide; To give opportunities to experts from the host plant to broaden their experience and knowledge in the field; To perform an objective assessment of the status in various phases of AMP implementation, compared with international experience and practices; To provide the licensee with suggestions and assistance for improvements in various stages of AMP implementation. The objective of the IAEA safety services is to offer two options to respond to individual requirements. These options include missions to review accident analysis needed for accident management and missions to review the whole AMP. Review of accident analysis for accident management (RAAAM): this review is intended to check completeness and quality of accident analysis covering BDBA and severe accidents. The review should be typically performed prior to use of accident analysis for development of AMP. It is considered that 2 experts and 1 IAEA team leader in one-week mission can perform the review. Detailed guidelines for review of analysis are provided in Section 2. Reference is also made to another IAEA Safety Report (Safety Standards Series No. NS-R-1) which is devoted to guidance for accident analysis of nuclear power plants (NPPs). Review of AMP (RAMP): this review of AMP, which is in particular appropriate prior to its implementation, is intended to check its quality, consistency

  2. Phenomenological uncertainty analysis of early containment failure at severe accident of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Won

    2011-02-15

    The severe accident has inherently significant uncertainty due to wide range of conditions and performing experiments, validation and practical application are extremely difficult because of its high temperature and pressure. Although internal and external researches were put into practice, the reference used in Korean nuclear plants were foreign data of 1980s and safety analysis as the probabilistic safety assessment has not applied the newest methodology. Also, it is applied to containment pressure formed into point value as results of thermal hydraulic analysis to identify the probability of containment failure in level 2 PSA. In this paper, the uncertainty analysis methods for phenomena of severe accident influencing early containment failure were developed, the uncertainty analysis that apply Korean nuclear plants using the MELCOR code was performed and it is a point of view to present the distribution of containment pressure as a result of uncertainty analysis. Because early containment failure is important factor of Large Early Release Frequency(LERF) that is used as representative criteria of decision-making in nuclear power plants, it was selected in this paper among various modes of containment failure. Important phenomena of early containment failure at severe accident based on previous researches were comprehended and methodology of 7th steps to evaluate uncertainty was developed. The MELCOR input for analysis of the severe accident reflected natural circulation flow was developed and the accident scenario for station black out that was representative initial event of early containment failure was determined. By reviewing the internal model and correlation for MELCOR model relevant important phenomena of early containment failure, the uncertainty factors which could affect on the uncertainty were founded and the major factors were finally identified through the sensitivity analysis. In order to determine total number of MELCOR calculations which can

  3. Rules of thumb from plant data to estimate the public consequences of a nuclear power plant accident

    International Nuclear Information System (INIS)

    Baggenstos, M.; Uboldi, P.; Schulz, R.

    2001-01-01

    In an accident situation with core degradation there is typically a pre-phase in which the radioactivity is inside the primary system and the containment before a release to the environment. The assessment of the possible risk to the public in this situation must be based on the situation inside the plant (violation of safety parameters) and a forecast of the containment behaviour to be expected. To obtain a first quick estimate of the source term and, therefore, the off-site dose rules of thumb were established which should fulfil the following purposes: assessment of the danger, estimated from plant data, estimation of the dose at the critical point outside based on the dose rate inside the containment. The rules of thumb which were introduced in Switzerland, are explained. The assessment is based on roughly 30 plant parameters which are transmitted in case of an accident in real-time. The rules were designed in such a way that they rely on simply determined parameters such core exit temperature or dose rate in the containment. (orig.) [de

  4. An analysis on human factor issues in criticality accident at a uranium processing plant. Investigation on human behavior contributing to the criticality accident. Interim report

    International Nuclear Information System (INIS)

    Sasou, Kuonihide; Goda, Hideki; Hirotsu, Yuko

    1999-01-01

    At 10:30 am, September 30th, 1999, a criticality accident occurred in a conversion building of a uranium processing plant in Tokai, Ibaraki prefecture. 69 people including 3 workers who then worked at the building, 3 fire fighters who dispatched to rescue them were exposed to the radiation. People with a 350 m-radius of the site were recommended to evacuate themselves from the region to a temporarily prepared evacuation center. And about one hundred thousand people within a 10 km-radius were also advised to stay inside of their home. Nuclear Safety Commission's Accident Investigation Committee is investigating causes of this accident and have been revealing that deviation from government-authorized processing method and negligence of its illegal procedure had contributed to the accident. The influence of this accident is expanding not only to the plant operating company, local people but also to Japanese nuclear power policy, the whole nuclear industry in Japan. Especially pervasion of 'Safety Culture' is strongly being required. This report analyses latent factors of some human behavior directly contributing to the criticality accident. It also mentions that 4 critical points on the poor climate for safety in the work place, the inadequate safety management, the unsuitable equipment and the production-biased company's policy are the latent factors of this accident. It also finds that the poor climate and the production-biased policy are the most important factors. It can be said that some people directly or indirectly having caused the accident are the victims of them. (author)

  5. Cancer rates after the Three Mile Island nuclear accident and proximity of residence to the plant.

    Science.gov (United States)

    Hatch, M C; Wallenstein, S; Beyea, J; Nieves, J W; Susser, M

    1991-06-01

    In the light of a possible link between stress and cancer promotion or progression, and of previously reported distress in residents near the Three Mile Island (TMI) nuclear power plant, we attempted to evaluate the impact of the March 1979 accident on community cancer rates. Proximity of residence to the plant, which related to distress in previous studies, was taken as a possible indicator of accident stress; the postaccident pattern in cancer rates was examined in 69 "study tracts" within a 10-mile radius of TMI, in relation to residential proximity. A modest association was found between postaccident cancer rates and proximity (OR = 1.4; 95% CI = 1.3, 1.6). After adjusting for a gradient in cancer risk prior to the accident, the odds ratio contrasting those closest to the plant with those living farther out was 1.2 (95% CI = 1.0, 1.4). A postaccident increase in cancer rates near the Three Mile Island plant was notable in 1982, persisted for another year, and then declined. Radiation emissions, as modeled mathematically, did not account for the observed increase. Interpretation in terms of accident stress is limited by the lack of an individual measure of stress and by uncertainty about whether stress has a biological effect on cancer in humans. An alternative mechanism for the cancer increase near the plant is through changes in care-seeking and diagnostic practice arising from postaccident concern.

  6. Domino effect in chemical accidents: main features and accident sequences.

    Science.gov (United States)

    Darbra, R M; Palacios, Adriana; Casal, Joaquim

    2010-11-15

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Safety regulations regarding to accident monitoring and accident sampling at Russian NPPs with VVER type reactors

    International Nuclear Information System (INIS)

    Sharafutdinov, Rachet; Lankin, Michail; Kharitonova, Nataliya

    2014-01-01

    The paper describes a tendency by development of regulatory document requirements related to accident monitoring and accident sampling at Russia's NPPs. Lessons learned from the Fukushima Daiichi accident pointed at the importance and necessary to carry out an additional safety check at Russia's nuclear power plants in the preparedness for management of severe accidents at NPPs. Planned measures for improvement of severe accidents management include development and implementation of the accident instrumentation systems, providing, monitoring, management and storage of information in a severe accident conditions. The draft of Safety Guidelines <accident monitoring system of nuclear power plants with VVER reactors' prepared by Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) established the main criteria for accident monitoring instrumentation that can monitor relevant plant parameters in the reactor and inside containment during and after a severe accident in nuclear power plants. Development of these safety guidelines is in line with the recommendations of IAEA Action Plan on Nuclear Safety in response to the Fukushima Daiichi event and recommendations of the IAEA Nuclear Energy series Report <<Accident Monitoring Systems for Nuclear Power Plants' (Draft V 2.7). The paper presents the principles, which are used as the basis for selection of plant parameters for accident monitoring and for establishing of accident monitoring instrumentation. The recommendations to the accident sampling system capable to obtain the representative reactor coolant and containment air and fluid samples that support accurate analytical results for the parameters of interest are considered. The radiological and chemistry parameters to be monitored for primary coolant and sump and for containment air are specified. (author)

  8. In-Plant Fission Product Behavior in SGTR Accident with Long-Term SBO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Han, Seok Jung; Ahn, Kwang Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The off-site AC power was recovered in 9 days after the accident in the NPS. Therefore safety injection by fire pump truck with fresh water or seawater is only available in the Fukushima accident. However, safety injection by fire pump truck is not always effective due to the high pressure of RPV inside or leakages of alternative water injection flow paths. In the SBO situations in pressurized water reactor plant (PWR), turbine driven auxiliary feedwater (TD-AFW) pump can inject water to the secondary side of steam generator. However, turbine inlet steam flow control valve cannot work properly when loss of vital DC power occurs. Vital DC power is designed to be maintained during 4 or 8 hours in the SBO conditions. In this paper motor-driven and turbine driven AFW pumps are all assumed to be not working at time 0 sec as a worst case assumption. Iodine pool-scrubbing can occur in the secondary side of the faulted steam generator. However, iodine pool-scrubbing in the secondary side of the faulted steam generator is assumed not to be working, due to the assumption of the loss of DC battery for turbine inlet flow control valve. Iodine pool-scrubbing is one of the long-term research issues in safety assessment of nuclear power plant severe accident. PHEBUS FPT series and THAI experiment projects are typical projects on the resolving source term issues in severe accident of nuclear power plants. However, iodine retention by pool scrubbing is still a debating issue. In such containment bypass sequences, fission products can be released out to environment directly from RCS without retention or deposition in containment structures. SGTR is one of the hazardous accident scenarios in the typical PSA, because SGTR induces a large release amount of source term to environment directly. A key operation strategy was the isolation of the broken reactor coolant system loop from the intact loop. Typical core degradation in SGTR scenarios occurs with multiple failures of the isolation

  9. Results of stress tests of European nuclear power plants after the Fukushima-Daiichi accident

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Novakova, Helena

    2012-01-01

    In response to the Fukushima-Daiichi accident, the European Council laid down the requirement that a transparent and comprehensive risk assessment exercise ('stress tests') be carried out at each European nuclear power plant. The stress tests concentrated on the nuclear power plants' safety margins in the light of the lessons learned from the accident. The reviews focused on natural external events including earthquake, tsunami and extreme weather, loss of safety functions, and severe accident management. The stress test procedure comprised 3 steps: (i) The nuclear facility operators performed the stress tests and prepared proposals for safety improvements. (ii) The national regulators performed independent reviews of the stress tests and prepared national reports. (iii) The reports submitted by the national regulators were subjected to review at a European level. The article describes the scope of the stress tests and their results, verified at the European level. (orig.)

  10. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    International Nuclear Information System (INIS)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee

    2016-01-01

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment

  11. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  12. Time series changes in radiocaesium distribution in tea plants (Camellia sinensis (L.)) after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Hirono, Yuhei; Nonaka, Kunihiko

    2016-02-01

    Radiocaesium ((134)Cs and (137)Cs) release following the accident at the Fukushima Dai-ichi Nuclear Power Plant, belonging to the Tokyo Electric Power Company caused severe contamination of new tea plant (Camellia sinensis (L.)) shoots by radiocaesium in many prefectures in eastern Japan. Because tea plants are perennial crops, there is the fear that the contamination might last for a long time. The objectives of this study were to reveal time series changes in the distribution of radiocaesium in tea plants after radioactive fallout and to evaluate the effect of pruning on reduction of radiocaesium concentrations in new shoots growing next year. The experimental tea field was located in Shizuoka, Japan, approximately 400 km away from the Fukushima Dai-ichi Nuclear Power Plant in a southwest direction. Time series changes in radiocaesium concentrations in unrefined tea, a tea product primarily produced for making Japanese green tea, from May 2011 to June 2013 and distribution of radiocaesium in tea plants from May 2011 to May 2012 were monitored. The radiocaesium concentrations in unrefined tea exponentially decreased; the effective half-lives for (134)Cs and (137)Cs were 0.30 and 0.36 y during the first 2 y after the accident, respectively. With time, the highest concentrations of (137)Cs moved from the upper to the lower parts of plants. Medium pruning 2-3 months after the accident reduced the concentration of (137)Cs in new shoots harvested in the first crop season of the following year by 56% compared with unpruned tea plants; thus, pruning is an effective measure for reducing radiocaesium concentration in tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Changing information needs of social impact of nuclear power plant siting. Through a comparison before and after the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Kashiwa, Takako; Kawamoto, Yoshimi

    2013-01-01

    In the light of the Fukushima Daiichi nuclear power plant accident, we need to consider a symbiosis method based on the diminution of the nuclear power industry. To find a region that does not excessively depend on the nuclear power industry, it is necessary to examine and discuss the social impact of nuclear-related industries. In this study, we compared people's changing information needs of social impact before and after the Fukushima Daiichi nuclear power plant accident. It was found that the need for information increased after the accident. In particular, there were three research areas where the need for information increased: the consideration of building nuclear power plants, the influence of harmful rumors on the region, and influence on the nuclear power industry. Next, attempts were made to understand whether there is a difference between information needs of social impact by attributes, such as age, sex and knowledge of nuclear power. The information needs of the following categories of people increased after the accident: people aged between 10 and 50 years, women, people who do not have a clear opinion about the use of a nuclear power plant, and people who do not have any knowledge of nuclear power. (author)

  14. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident.

    Science.gov (United States)

    Matsumoto, Takuya; Maruoka, Teruyuki; Shimoda, Gen; Obata, Hajime; Kagi, Hiroyuki; Suzuki, Katsuhiko; Yamamoto, Koshi; Mitsuguchi, Takehiro; Hagino, Kyoko; Tomioka, Naotaka; Sambandam, Chinmaya; Brummer, Daniela; Klaus, Philipp Martin; Aggarwal, Pradeep

    2013-02-15

    Tritium concentrations in Japanese precipitation samples collected after the March 2011 accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) were measured. Values exceeding the pre-accident background were detected at three out of seven localities (Tsukuba, Kashiwa and Hongo) southwest of the FNPP1 at distances varying between 170 and 220 km from the source. The highest tritium content was found in the first rainfall in Tsukuba after the accident; however concentrations were 500 times less than the regulatory limit for tritium in drinking water. Tritium concentrations decreased steadily and rapidly with time, becoming indistinguishable from the pre-accident values within five weeks. The atmospheric tritium activities in the vicinity of the FNPP1 during the earliest stage of the accident was estimated to be 1.5×10(3) Bq/m(3), which is potentially capable of producing rainwater exceeding the regulatory limit, but only in the immediate vicinity of the source. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. NPP Krsko Severe Accident Management Guidelines Implementation

    International Nuclear Information System (INIS)

    Basic, I.; Krajnc, B.; Bilic-Zabric, T.; Spiler, J.

    2002-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. The USA NRC has indicated that the development of a licensee plant specific accident management program will be required in order to close out the severe accident regulatory issue (Ref. SECY-88-147). Generic Letter 88-20 ties the Accident management Program to IPE for each plant. The SECY-89-012 defines those actions taken during the course of an accident by the plant operating and technical staff to: 1) prevent core damage, 2) terminate the progress of core damage if it begins and retain the core within the reactor vessel, 3) maintain containment integrity as long as possible, and 4) minimize offsite releases. The subject of this paper is to document the severe accident management activities, which resulted in a plant specific Severe Accident Management Guidelines implementation. They have been developed based on the Krsko IPE (Individual Plant Examination) insights, Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidances) and plant specific documents developed within this effort. Among the required plant specific actions the following are the most important ones: Identification and documentation of those Krsko plant specific severe accident management features (which also resulted from the IPE investigations). The development of the Krsko plant specific background documents (Severe Accident Plant Specific Strategies and SAMG Setpoint Calculation). Also, paper discusses effort done in the areas of NPP Krsko SAMG review (internal and external ), validation on Krsko Full Scope Simulator (Severe Accident sequences are simulated by MAAP4 in real time) and world 1st IAEA Review of Accident Management Programmes (RAMP). (author)

  16. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1987-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  17. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1988-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery management concentrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk, and goes further in considering and formulating the key issue: The most fruitful path to follow in reducing risk even further is through the planning of accident management

  18. The report of the criticality accident in a uranium conversion test plant in Tokai-mura

    International Nuclear Information System (INIS)

    Murata, Hajime; Akashi, Makoto

    2002-03-01

    The criticality accident in the title occurred at around 10:35, on Sep. 30, 1999, cost the lives of two workers and caused many residents concern on their health. Moreover, rumors had both social and economic consequences. This report is a detailed account of the roles that many individuals and groups in the National Institute of Radiological Sciences (NIRS) performed in a range of the areas, and is published to discharge NIRS responsibilities in regards to the accident. The report involves chapters of detailed outline of the accident; acceptance of the victims and communications until the identification of the ''criticality'' accident; initial treatment; dose estimation (medical, hematological, physical and biological ones and that by dental metals activated by the neutron); decision making for therapeutic strategies; cooperation with the Network Council for Radiation Emergency Medicine and other medical facilities; emergency importation of medical supplies; treatment and progress (nursing system and radiation injuries); protection from radiation in medical facilities; response to nearby residents of the Plant; international response; press release; Uranium Processing Plant Criticality Accident Investigation Committee and the Health Management Committee organized by the Nuclear Safety Commission; handling of information; and radiation emergency medical preparedness at the NIRS (future issues and prospect). The report is hoped to be useful in preventing the occurrence of future accidents. (K.H.)

  19. Severe accidents: in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    A ''severe'' nuclear accident refers to a reactor accident that could exceed reactor design specifications to such a degree as to prevent cooling of the reactor's core by normal means. This report summarizes the work of a NEA Senior Group of Experts who have studied the potential response of existing light-water reactors to severe accidents and have found that current designs of reactors are far more capable of coping with severe accidents than design specifications would suggest. The report emphasises the specific knowledge and means that can be used for diagnosing a severe accident and for managing its progression in order to prevent or mitigate its consequences

  20. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report

    International Nuclear Information System (INIS)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-01

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  1. Operators' arrangement for handling nuclear accidents at power plants

    International Nuclear Information System (INIS)

    Bertron, L.; Meclot, B.

    1986-01-01

    Given the preventive measures adopted by Electricite de France (EDF), the probability of a nuclear accident occurring in a power plant is extremely low but cannot, even so, be considered to be zero. The operator must therefore be prepared for this possibility. Apart from dealing with the consequences of the accident, the organization he sets up must fulfil the double objective of preventing any worsening of the accident and ensuring that the social, political and economic effects remain in proportion to the seriousness of the accident. The paper describes the organization set up by EDF in co-operation with the public authorities, indicating the concepts on which it is based and the logistical resources brought into play, in particular for telecommunications. Reports on the TMI incident showed that public telecommunications services can well be saturated in the event of an emergency. EDF, relying on the combined advantages of all transmission systems which the French Postal and Telecommunications Office can place at its disposal, as well as private networks with a concession from the Government, has taken the necessary precautions to deal with this problem. The organization is also designed to respond to the requirements of the media and the population at large for correct information. These systems are naturally all tested during training exercises which ensure that the organization as a whole can cope, in terms both of manpower and equipment, with a very improbable event. (author)

  2. Radiation protection service for a nucleonic control system of continuous casting plant after events of accident

    International Nuclear Information System (INIS)

    Chakrabarti, Santanu; Massand, O.P.

    1998-01-01

    Extensive use of nucleonic control systems like level controllers was observed during radiation protection surveys in industries such as refineries, steel plants etc., located in the eastern region of India. There were two accidents at continuous casting plant in 1995 which affected the nucleonic control system installed in 1992. The authorities contacted Bhabha Atomic Research Centre (BARC) for radiation protection surveys for the involved nucleonic gauges. The present paper describes the radiation protection services rendered by BARC during such accidents. (author)

  3. Phenomenology and course of severe accidents in PWR-plants training by teaching and demonstration

    International Nuclear Information System (INIS)

    Sonnenkalb, M.; Rohde, J.

    1999-01-01

    A special one day training course on 'Phenomenology and Course of Severe Accidents in PWR-Plants' was developed at GRS initiated by the interest of German utilities. The work was done in the frame of projects sponsored by the German Ministries for Environment, Nature Conservation and Nuclear Safety (BMW) and for Education, Science, Research and Technology (BMBF). In the paper the intention and the subject of this training course are discussed and selected parts of the training course are presented. Demonstrations are made within this training course with the GRS simulator system ATLAS to achieve a broader understanding of the phenomena discussed and the propagation of severe accidents on a plant specific basis. The GRS simulator system ATLAS is linked in this case to the integral code MELCOR and pre-calculated plant specific severe accident calculations are used for the demonstration together with special graphics showing plant specific details. Several training courses have been held since the first one in November, 1996 especially to operators, shift personal and the management board of a German PWR. In the meantime the training course was updated and suggestions for improvements from the participants were included. In the future this training course will be made available for members of crisis teams, instructors of commercial training centres and researchers of different institutions too. (author)

  4. The accident at the Chernobyl' nuclear power plant and its consequences. Pt. 1. General material

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a presentation of the Chernobyl' nuclear power station and of the RBMK-1000 reactor, including its principal physical characteristics, the safety systems and a description of the site and of the surrounding region. After a chronological account of the events which led to the accident and an analysis of the accident using a mathematical model it is concluded that the prime cause of the accident was an extremely improbable combination of violations of instructions and operating rules committed by the staff of the unit. Technical and organizational measures for improving the safety of nuclear power plants with RBMK reactors have been taken. A detailed description of the actions taken to contain the accident and to alleviate its consequences is given and includes the fire fighting at the nuclear power station, the evaluation of the state of the fuel after the accident, the actions taken to limit the consequences of the accident in the core, the measures taken at units 1, 2 and 3 of the nuclear power station, the monitoring and diagnosis of the state of the damaged unit, the decontamination of the site and of the 30 km zone and the long-term entombment of the damaged unit. The measures taken for environmental radioactive contamination monitoring, starting by the assessment of the quantity, composition and dynamics of fission products release from the damaged reactor are described, including the main characteristics of the radioactive contamination of the atmosphere and of the ground, the possible ecological consequences and data on the exposure of plant and emergency service personnel and of the population in the 30 km zone around the plant. The last part of the report presents some recommendations for improving nuclear power safety, including scientific, technical and organizational aspects and international measures. Finally, an overview of the development of nuclear power in the USSR is given

  5. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment.

  6. Domino effect in chemical accidents: main features and accident sequences

    OpenAIRE

    Casal Fàbrega, Joaquim; Darbra Roman, Rosa Maria

    2010-01-01

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes a...

  7. Bubble-vacuum system of accident localization of reference nuclear power plant with two WWER's

    International Nuclear Information System (INIS)

    Sykora, D.; Sykorova, I.

    1988-01-01

    Higher efficiency of the safety system for removing the consequences of project design accidents and higher radiation safety of a nuclear power plant with two WWER-440 units is the subject of Czechoslovak patent document 243961. The principle consists in interconnecting air chambers which are the end parts of safety systems for the two units. The air chamber is separated from the other parts of the safety system by double swing-check valves or closures. The connecting pipes of the two air chambers do not in any way reduce the reliability of the safety system thanks to their high technical safety and totally passive function. The benefits of the interconnection of the air chambers are given by the fact that it reduces maximum accident overpressure both in the air chambers and in the airtight zones. The reduction of the overpressure reduces the total leakage of radioactive substances and the radiation burden of the environment in case of a nuclear power plant accident. (Z.M.). 2 figs

  8. Estimation of the economic impacts of Three Mile Island nuclear power plant accident

    International Nuclear Information System (INIS)

    Sagara, Aya; Fujimoto, Noboru; Fukuda, Kenji

    1998-01-01

    The Three Mile Island nuclear power plant accident had an immediate negative impact on the economy of the seven-country area which surrounds the plant site. In order to estimate the social effect of the nuclear power plant accident economically, immediate and short term economical impacts on some industrial classification have been evaluated. The economical effect to Metropolitan Edison Co., the circumstantial payment of the insurance and the lawsuit for the compensation for damages, etc. have been estimated at dollar 90 million for the manufacturing and nonmanufacturing industry, dollar 5 million for the tourist industry and dollar 50,000 for agriculture. The total loss for the state and country governments is about dollar 90,000. Metropolitan Edison Co. expended also dollar 111 million for the substitute energy and dollar 760 million for the decontamination cost. Since the lawsuit for the compensation for damages is still continuing, the total impacts cost is calculated more than a billion dollar. (author)

  9. WIPP conceptual design report. Addendum G. Accident analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Metcalf, J.H.

    1977-06-01

    The types of accidents or risks pertinent to the Waste Isolation Pilot Plant (WIPP) are presented. Design features addressing these risks are discussed. Also discussed are design features that protect the public

  10. Prediction of accident sequence probabilities in a nuclear power plant due to earthquake events

    International Nuclear Information System (INIS)

    Hudson, J.M.; Collins, J.D.

    1980-01-01

    This paper presents a methodology to predict accident probabilities in nuclear power plants subject to earthquakes. The resulting computer program accesses response data to compute component failure probabilities using fragility functions. Using logical failure definitions for systems, and the calculated component failure probabilities, initiating event and safety system failure probabilities are synthesized. The incorporation of accident sequence expressions allows the calculation of terminal event probabilities. Accident sequences, with their occurrence probabilities, are finally coupled to a specific release category. A unique aspect of the methodology is an analytical procedure for calculating top event probabilities based on the correlated failure of primary events

  11. Automations influence on nuclear power plants: a look at three accidents and how automation played a role.

    Science.gov (United States)

    Schmitt, Kara

    2012-01-01

    Nuclear power is one of the ways that we can design an efficient sustainable future. Automation is the primary system used to assist operators in the task of monitoring and controlling nuclear power plants (NPP). Automation performs tasks such as assessing the status of the plant's operations as well as making real time life critical situational specific decisions. While the advantages and disadvantages of automation are well studied in variety of domains, accidents remind us that there is still vulnerability to unknown variables. This paper will look at the effects of automation within three NPP accidents and incidents and will consider why automation failed in preventing these accidents from occurring. It will also review the accidents at the Three Mile Island, Chernobyl, and Fukushima Daiichi NPP's in order to determine where better use of automation could have resulted in a more desirable outcome.

  12. Lessons Learned after Nuclear Power Plants and Hydropower Plants Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, A., E-mail: gce@gce.ru [GCE Group, Saint Petersburg (Russian Federation)

    2014-10-15

    Full text: The World is becoming more open and free for communication. However, the experience (positive or negative) is still badly cross over sectorial borders. I would like to illustrate the point with the examples, even with several unexpected ones. I would like to start with a few words regarding the Sayano – Shushenskaya Hydro Power Plant accident and the factors that caused it. Sayano – Shushenskaya Hydro Power Plant is a unique Hydro Power Plant with efficiency factor of 96 %. Nevertheless, the efficiency factor, in particular, caused a series of restrictions: hydro-electric units vibration amplitude must not exceed 4 micron!!! (Slide 1: Vibration amplitude dependence on output capacity) As it is clearly seen, there is a so called “prohibited area”, which the hydro-electric unit must pass over. Operations in the area are prohibited in accordance with the regulatory documents. However, due to the changes that occurred in Russian power supply industry, the hydro-electric unit passed through the prohibited area more than 12 times, if we take into account only the day of the accident. The bolts keeping the turbine cover, keeping water apart from the machinery hall, were too much released. The mentioned above reasons led to the hydro-electric unit disruption and the machinery hall flooding. Water inflow was possible to stop by putting down the regulating valves. However, the regulating valves control console was in the flooded machinery hall. There was standby emergency control console, but it was in the machinery hall, as well. The machinery hall was flooded, consequently, main and standby systems were destroyed. Moreover, the machinery hall, where all the units were disposed, was a huge hall without dividing walls, etc. (Photo) Take a look at the next slide. (Photo – Chernobyl Nuclear Power Plant machinery hall). Take note of Fukushima–1 Nuclear Power Plant: standby power supply source was situated in the same place and destroyed by water. All the

  13. Accident on the Chernobyl nuclear power plant. Getting over the consequences and lessons learned

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Prister, B.S.

    2006-01-01

    The book is devoted to the 20 anniversary of the accident on the 4th Power Unit of the Chernobyl NPP. The power plant construction history, accident reasons, its consequences, the measures on its liquidation are represented. The current state of activity on the Chernobyl power unit decommission, the 'Shelter' object conversion into the ecologically safe system is described. The future of the Chernobyl NPP site and disposal zone is discussed

  14. Strategy generation in accident management support

    International Nuclear Information System (INIS)

    Sirola, M.

    1995-01-01

    An increased interest for research in the field of Accident Management can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accident in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The ideal of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information form the plant will help the strategy planning. (author). 12 refs, 2 figs

  15. TEPCO's costs and risks which invited the nuclear power plant accident

    International Nuclear Information System (INIS)

    Soeda, Takashi

    2017-01-01

    The National Diet of Japan Fukushima Nuclear Accident Independent Investigation Commission (Diet Accident Investigation Commission) considered two patterns against the tsunami risk of nuclear plant: (1) Risk management for the purpose of safety (Pattern A), and (2) Risk management for the purpose of utilization rate and cost of nuclear reactor (Pattern B). Pattern B emphasizes avoiding 'countermeasure cost generation' and 'operation shutdown' rather than preparing for a tsunami that we do not know when to come. Diet Accident Investigation Commission analyzed that the behavioral principles concerning the crisis response of Tokyo Electric Power Company (TEPCO) had the stronger tendency of Pattern B. Regarding the accident of TEPCO, there were class actions that asked the responsibility of TEPCO and the government. This paper examined the contents of the opinions of government-side experts submitted for this issue. The government-side experts argued that there was no 'scientific consensus' for tsunami forecast, and that preliminary measures against unexpected tsunami was impossible. However, both of these government's arguments are irrational due to difference from the fact. TEPCO president at the time of accident insisted in the firm that 'cost cut in another dimension' was indispensable and reduced expenses. TEPCO and the government had continued Pattern B, even knowing that tsunami risk measures were insufficient from more than ten years ago. (A.O.)

  16. A fast prediction of plant behaviour in the steam generator tube rupture accident at Mihama unit 2 using a similar case

    International Nuclear Information System (INIS)

    Gofuku, Akio; Tanaka, Yutaka; Numoto, Atsushi; Yoshikawa, Hidekazu.

    1996-01-01

    It is important to predict fast and accurately future trend of behaviour of a nuclear power plant in an emergency situation. The case-based reasoning is a strong tool for this purpose because it solves a problem by effectively using past similar cases. This study investigates the applicability of the case-based reasoning as a fast prediction technique of plant behaviour. This paper discusses a prediction of initial plant behaviour in the steam generator tube rupture accident happened at the Mihama nuclear power plant unit 2 by using the behaviour data of an accident of the same type happened at Prairie Island nuclear power plant unit 1. The prediction results coincide well with the reported plant behaviour although there are several important differences in the detailed plant specifications and operator actions between the two SGTR accidents. (author)

  17. Accident source terms for Light-Water Nuclear Power Plants. Final report

    International Nuclear Information System (INIS)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it

  18. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    For the safety enhancement of Nuclear Power Plants (NPPs), continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of the present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of SA, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of AM. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the SA analysis codes and the AM knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2012 are as follows; Analytical study on OECD/NEA projects such as MCCI, SERENA and SFP projects, and support in making regulation for SA. (author)

  19. Knowledge data base for severe accident management of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    For the safety enhancement of Nuclear Power Plants (NPPs), continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of the present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of SA, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of AM. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the SA analysis codes and the AM knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2012 are as follows; Analytical study on OECD/NEA projects such as MCCI, SERENA and SFP projects, and support in making regulation for SA. (author)

  20. Medical emergency planning in case of severe nuclear power plant accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1980-01-01

    This paper is an attempt to discuss a three-step-plan on medical emergency planning in case of severe accidents at nuclear power plants on the basis of own experiences in the regional area as well as on the basis of recommendations of the Federal Minister of the Interior. The medical considerations take account of the severity and extension of an accident whereby the current definitions used in nuclear engineering for accident situations are taken as basis. A comparison between obligatory and actual state is made on the possibilities of medical emergency planning, taking all capacities of staff, facilities, and equipment available in the Federal Republic of Germany into account. To assure a useful and quick utilization of the existing infra-structure as well as nation-wide uniform training of physicians and medical assistants in the field of medical emergency in case of a nuclear catastrophe, a federal law for health protection is regarded urgently necessary. (orig.) [de

  1. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-10-01

    The Reactor Safety Study was sponsored by the U. S. Atomic Energy Commission to estimate the public risks that could be involved in potential accidents in commercial nuclear power plants of the type now in use. It was performed under the independent direction of Professor Norman C. Rasmussen of the Massachusetts Institute of Technology. The risks had to be estimated, rather than measured, because although there are about 50 such plants now operating, there have been no nuclear accidents to date resulting in significant releases of radioactivity in U.S. commercial nuclear power plants. The objective of the study was to make a realistic estimate of these risks and, to provide perspective, to compare them with non-nuclear risks to which our society and its individuals are already exposed. This information may be of help in determining the future reliance by society on nuclear power as a source of electricity. The results from this study suggest that the risks to the public from potential accidents in nuclear power plants are comparatively small.

  2. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Executive summary

    International Nuclear Information System (INIS)

    1975-10-01

    The Reactor Safety Study was sponsored by the U. S. Atomic Energy Commission to estimate the public risks that could be involved in potential accidents in commercial nuclear power plants of the type now in use. It was performed under the independent direction of Professor Norman C. Rasmussen of the Massachusetts Institute of Technology. The risks had to be estimated, rather than measured, because although there are about 50 such plants now operating, there have been no nuclear accidents to date resulting in significant releases of radioactivity in U.S. commercial nuclear power plants. The objective of the study was to make a realistic estimate of these risks and, to provide perspective, to compare them with non-nuclear risks to which our society and its individuals are already exposed. This information may be of help in determining the future reliance by society on nuclear power as a source of electricity. The results from this study suggest that the risks to the public from potential accidents in nuclear power plants are comparatively small

  3. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  4. Comprehensive Health Risk Management after the Fukushima Nuclear Power Plant Accident.

    Science.gov (United States)

    Yamashita, S

    2016-04-01

    Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Telephone counseling for the public after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Horiguchi, T.; Kojima, K.; Itoh, T.

    2011-01-01

    After the Fukushima Daiichi Nuclear Power Plant accident, Kinki University Atomic Energy Research Institute provided telephone counseling services in order to respond the public's growing concerns about radiation and nuclear energy. Three telephone lines were newly installed for the counseling and the number of consultation marked 705 between March 24 and April 2. In this report, by summarizing the contents of the counseling, we will show what the public concerned about shortly after the accident and report how we responded to the concerns. (author)

  6. Real-time assessment of radiation burden of the population in the vicinity of nuclear power plants during radiation accidents

    International Nuclear Information System (INIS)

    Stubna, M.

    1986-01-01

    The method is presented of real-time calculation of the radiation situation (dose equivalents) in the environs of a nuclear power plant in case of an accident involving the release of radioactive substances into the atmosphere, this for the potentially most significant exposure paths in the initial and medium stages of the accident. The method allows to take into consideration the time dependence of the rate of radioactive substance release from the nuclear power plant and to assess the development in space and time of the radiation situation in the environs of the nuclear power plant. The use of the method is illustrated by an example of the calculation of the development of the radiation situation for model accidents of a hypothetical PWR with containment. (author)

  7. Study of Containment Vent Strategies During Severe Accident Progression for the CANDU6 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Youngho; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In March, 2011, Fukushima daichi nuclear power plants experienced a long term station blackout. Severe core damage occurred and a large amount of radioactive materials are released outside of the plants. After this terrible accident Nuclear Safety and Security Commission (NSSC) enforced to increase nuclear safety for all operating plants in Korea. To increase plant safety, both hardware reinforcement and software improvement are encouraged. Hardware reinforcement includes the preparation of the external water injection paths to the RCS and the spent fuel pool, a filtered containment venting system (CFVS), and AC power generating truck. Software improvement includes the increase of the effectiveness of the severe accident management guidance (SAMG) and plant staff training. To comply with NSSC's request, Wolsong Unit 1 has fulfilled the hardware reinforcement including the installation of a CFVS and started the extension of a SAMG to the low power and shutdown operation mode. Current SAMG deals accident occurred during full power operation only. The CFVS is designed to open and to close isolation valves manually. It does not require AC power. The operation of the CFVS prevents the reactor containment building failure due to the over-pressurization but it may release radioactive materials out of the reactor containment building. This paper discusses the radiological source terms for the containment vent strategy during severe accident progression which occurred during shutdown operation mode. This work is a part of the development of shutdown SAMG.. The CFVS is an effective means to control the containment pressure when the local air coolers are unavailable. Radioactive materials may release through the CFVS, but their amounts are reduced significantly. The alternative means, i.e., containment vent through the ventilation system which does not have an effective filter, is not a good choice to control the containment condition. It can maintain the containment

  8. Development of Draft Regulatory Guide on Accident Analysis for Nuclear Power Plants with New Safety Design Features

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Woo, Sweng Woong; Hwang, Tae Suk [KINS, Daejeon (Korea, Republic of); Sim, Suk K; Hwang, Min Jeong [Environment and Energy Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The present paper discusses the development process of the draft version of regulatory guide (DRG) on accident analysis of the NPP having the NSFD and its result. Based on the consideration on the lesson learned from the previous licensing review, a draft regulatory guide (DRG) on accident analysis for NPP with new safety design features (NSDF) was developed. New safety design features (NSDF) have been introduced to the new constructing nuclear power plants (NPP) since the early 2000 and the issuance of construction permit of SKN Units 3 and 4. Typical examples of the new safety features includes Fluidic Device (FD) within Safety Injection Tanks (SIT), Passive Auxiliary Feedwater System (PAFS), ECCS Core Barrel Duct (ECBD) which were adopted in APR1400 design and/or APR+ design to improve the safety margin of the plants for the postulated accidents of interest. Also several studies of new concept of the safety system such as Hybrid ECCS design have been reported. General and/or specific guideline of accident analysis considering the NSDF has been requested. Realistic evaluation of the impact of NSDF on accident with uncertainty and separated accident analysis accounting the NSDF impact were specified in the DRG. Per the developmental process, identification of key issues, demonstration of the DRG with specific accident with specific NSDF, and improvement of DGR for the key issues and their resolution will be conducted.

  9. State-of-the-art report on accident analysis and risk analysis of reprocessing plants in European countries

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1985-12-01

    This report summarizes informations obtained from America, England, France and FRG concerning methodology, computer code, fundamental data and calculational model on accident/risk analyses of spent fuel reprocessing plants. As a result, the followings are revealed. (1) The system analysis codes developed for reactor plants can be used for reprocessing plants with some code modification. (2) Calculational models and programs have been developed for accidental phenomenological analyses in FRG, but with insufficient data to prove them. (3) The release tree analysis codes developed in FRG are available to estimate radioactivity release amount/probability via off-gas/exhaustair lines in the case of accidents. (4) The computer codes developed in America for reactor-plant environmental transport/safety analyses of released radioactivity can be applied to reprocessing facilities. (author)

  10. Dose estimation and evaluation of protector measures for a power plant's accidents scenario, using geographical information system

    International Nuclear Information System (INIS)

    Costa, E.M.; Biagio, R.M.S.; Alves, R.N.

    1999-01-01

    Since the initial phase of a project of a nuclear plant several environmental studies are carried out, and a considerable amount of relevant information is generated. Therefore, there is an increasing need of an integrated analysis of this information in order to better evaluate the potential impact associated to hypothetical accident scenarios of such plants. This paper presents a case-study, in which a hypothetical accident scenario is analysed taking into account the environmental and populational information of the Brazilian nuclear power plants region by using a geographical information system. Important areas for planning of protective measures are identified to provide a basis for further analysis. (author)

  11. Internal event analysis for Laguna Verde Unit 1 Nuclear Power Plant. Accident sequence quantification and results

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1994-01-01

    The Level 1 results of Laguna Verde Nuclear Power Plant PRA are presented in the I nternal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant, CNSNS-TR 004, in five volumes. The reports are organized as follows: CNSNS-TR 004 Volume 1: Introduction and Methodology. CNSNS-TR4 Volume 2: Initiating Event and Accident Sequences. CNSNS-TR 004 Volume 3: System Analysis. CNSNS-TR 004 Volume 4: Accident Sequence Quantification and Results. CNSNS-TR 005 Volume 5: Appendices A, B and C. This volume presents the development of the dependent failure analysis, the treatment of the support system dependencies, the identification of the shared-components dependencies, and the treatment of the common cause failure. It is also presented the identification of the main human actions considered along with the possible recovery actions included. The development of the data base and the assumptions and limitations in the data base are also described in this volume. The accident sequences quantification process and the resolution of the core vulnerable sequences are presented. In this volume, the source and treatment of uncertainties associated with failure rates, component unavailabilities, initiating event frequencies, and human error probabilities are also presented. Finally, the main results and conclusions for the Internal Event Analysis for Laguna Verde Nuclear Power Plant are presented. The total core damage frequency calculated is 9.03x 10-5 per year for internal events. The most dominant accident sequences found are the transients involving the loss of offsite power, the station blackout accidents, and the anticipated transients without SCRAM (ATWS). (Author)

  12. Stability of medicines after repackaging into multicompartment compliance aids: eight criteria for detection of visual alteration

    OpenAIRE

    Albert, Valerie; Lanz, Michael; Imanidis, Georgios; Hersberger, Kurt E.; Arnet, Isabelle

    2017-01-01

    Introduction Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1–2 weeks, although little and controversial information exists on the stability of repackaged medicines. Objective We aimed to validate the usefulness of a simple screening method capable of detecting visual stability pr...

  13. Administrative professional's role in the processing, retrieval, dissemination and repackaging of information in the networked enterprise

    OpenAIRE

    2008-01-01

    The purpose of this research was to establish the administrative professional's role in the processing, retrieval, dissemination and repackaging of digital information in the networked enterprise, and to determine how the administrative professional can add value to the organisation and enhance its competitive position in industry. The digital economy has changed business practices to such an extent that research of the digital office environment and the administrative professional’s role in ...

  14. Safety improvements at Canadian nuclear power plants in the aftermath of Fukushima accident

    International Nuclear Information System (INIS)

    Rzentkowski, G.; Khouaja, H.

    2014-01-01

    This paper describes the safety review of operating nuclear power plants undertaken by the Canadian Nuclear Safety Commission in light of the March 11, 2011 accident at the Fukushima Daiichi Nuclear Power Plants (NPPs). The review confirmed that the Canadian NPPs are robust and have a strong design relying on multiple layers of defence to protect the public from credible external events. Nevertheless, in the spirit of continuous safety improvements, the review identified a number of recommendations to further strengthen reactor defence-in-depth in preventing and mitigating the consequences of beyond design basis accidents, enhance onsite and offsite emergency response, and improve the CNSC regulatory framework. Progress achieved to date, in implementing these measures, is described in this paper along with a summary of safety benefits for each level of the reactor defence-in-depth. (author)

  15. Safety improvements at Canadian nuclear power plants in the aftermath of Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Rzentkowski, G.; Khouaja, H. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2014-07-01

    This paper describes the safety review of operating nuclear power plants undertaken by the Canadian Nuclear Safety Commission in light of the March 11, 2011 accident at the Fukushima Daiichi Nuclear Power Plants (NPPs). The review confirmed that the Canadian NPPs are robust and have a strong design relying on multiple layers of defence to protect the public from credible external events. Nevertheless, in the spirit of continuous safety improvements, the review identified a number of recommendations to further strengthen reactor defence-in-depth in preventing and mitigating the consequences of beyond design basis accidents, enhance onsite and offsite emergency response, and improve the CNSC regulatory framework. Progress achieved to date, in implementing these measures, is described in this paper along with a summary of safety benefits for each level of the reactor defence-in-depth. (author)

  16. Learning from nuclear accident experience

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1984-01-01

    Statistical procedures are developed to estimate accident occurrence rates from historical event records, to predict future rates and trends, and to estimate the accuracy of the rate estimates and predictions. Maximum likelihood estimation is applied to several learning models, and results are compared to earlier graphical and analytical estimates. The models are based on (1) the cumulative number of operating years, (2) the cumulative number of plants built, and (3) accidents (explicitly), with the accident rate distinctly different before and after an accident. The statistical accuracies of the parameters estimated are obtained in analytical form using the Fisher information matrix. Using data on core damage accidents in electricity producing plants, it is estimated that the probability for a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the equivalent frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year, partly due to the increasing population of plants. 10 references, 7 figures, 2 tables

  17. Development of resilience evaluation method for nuclear power plant. Part 1. Proposal of resilience index for assessment of safety of nuclear power plant under severe accident

    International Nuclear Information System (INIS)

    Demachi, Kazuyuki; Suzuki, Masaaki; Itoi, Tatsuya

    2016-01-01

    In this research, a new index 'The Resilience Index' was proposed to evaluate the capability of nuclear power plant to recover from the situation of safety function lost. Three elements assumed to evaluate the resilience index are the achievement rate, necessary time, and probability of success of each accident management activity. The resilience index is expected to visualize the improvement of safety of each nuclear power plant against severe accidents. (author)

  18. Time series changes in radiocaesium distribution in tea plants (Camellia sinensis (L.)) after the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Hirono, Yuhei; Nonaka, Kunihiko

    2016-01-01

    Radiocaesium ( 134 Cs and 137 Cs) release following the accident at the Fukushima Dai-ichi Nuclear Power Plant, belonging to the Tokyo Electric Power Company caused severe contamination of new tea plant (Camellia sinensis (L.)) shoots by radiocaesium in many prefectures in eastern Japan. Because tea plants are perennial crops, there is the fear that the contamination might last for a long time. The objectives of this study were to reveal time series changes in the distribution of radiocaesium in tea plants after radioactive fallout and to evaluate the effect of pruning on reduction of radiocaesium concentrations in new shoots growing next year. The experimental tea field was located in Shizuoka, Japan, approximately 400 km away from the Fukushima Dai-ichi Nuclear Power Plant in a southwest direction. Time series changes in radiocaesium concentrations in unrefined tea, a tea product primarily produced for making Japanese green tea, from May 2011 to June 2013 and distribution of radiocaesium in tea plants from May 2011 to May 2012 were monitored. The radiocaesium concentrations in unrefined tea exponentially decreased; the effective half-lives for 134 Cs and 137 Cs were 0.30 and 0.36 y during the first 2 y after the accident, respectively. With time, the highest concentrations of 137 Cs moved from the upper to the lower parts of plants. Medium pruning 2–3 months after the accident reduced the concentration of 137 Cs in new shoots harvested in the first crop season of the following year by 56% compared with unpruned tea plants; thus, pruning is an effective measure for reducing radiocaesium concentration in tea. - Highlights: • Effective half-life of 137 Cs for first 2 y in new shoots of tea plants is 0.36 y. • Effective half-life of 134 Cs for first 2 y in new shoots of tea plants is 0.30 y. • 81% of radiocaesium existed in foliar layer and branches in 3 months after fallout. • High radiocaesium activity moved from upper to lower parts of tea plants

  19. State of Level 2 analyses and severe accident management in Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Otero, R.

    1998-01-01

    The state of the PSA/IPE studies in the Spanish NPPs is presented in this report, as well as the plans to implement the severe accident management strategy both in the Spanish BWRs and PWRs. First, the Spanish LWRs are introduced, and the scope of the IPE analyses required by the Spanish Regulatory Commission (CSN) is given. The general overview is completed with the current degree of development for the IPE studies in each plant. In the second part the methods and tools are shown which are used by the Spanish plants to develop their Level 2 analysis. The different strategies for severe accident management adopted by the BWPs and PWRs in Spain are also outlined. The sources and implementation of the Severe Accident Guidelines (SAG) are described. More detail is given in the following chapters to the containment analysis of Trillo (PWR, KWU design) and Cofrentes (BWR/6, GE design) NPPs, whose development is being carried out by IBERDROLA. The analysis which has been performed up to date for Trillo is limited to the Plant Damage State (PDS) definition. However, the main phenomena challenging its containment performance have been identified, and they are summarized here. The Level 2 analysis for Cofrentes is comparatively more developed. The main phenomena and the key equipment affecting its containment behaviour are presented. Finally the conclusions of this report are elaborated. (author)

  20. Flamanville plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Flamanville plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 2 parts: one part dedicated to the first 2 reactors of the plant and the second part to the EPR that is being built. Each part is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  1. Development of stable walking robot for accident condition monitoring on uneven floors in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seog; Jang, You Hyun [Central Research Institute of Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)

    2017-04-15

    Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.

  2. Possible emission of radioactive fission products during off-design accidents at a nuclear power plant with VVER-1000 reactor

    International Nuclear Information System (INIS)

    Dubkov, A.P.; Kozlov, V.F.; Luzanova, L.M.

    1995-01-01

    It is well known that eight nuclear power plants with VVER-1000 reactors have been constructed in Russia, Ukraine, and in the Republic of Belarus and they have been operating successfully without any serious accidents since 1980. These facilities have been analyzed for various accident scenarios, and measures have been incorporated which will prevent core damage during these possible events. However, an off-design accident can occur, and in such a case, the radiological consequences would exceed the worst design accidents. This paper reviews a number of potential off-design accidents in order to develop an accident plan to mitigate the consequences of such an accident

  3. Evaluation of severe accident environmental conditions taking accident management strategy into account for equipment survivability assessments

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Jeong, Ji Hwan; Na, Man Gyun; Kim, Soong Pyung

    2003-01-01

    This paper presents a methodology utilizing accident management strategy in order to determine accident environmental conditions in equipment survivability assessments. In case that there is well-established accident management strategy for specific nuclear power plant, an application of this tool can provide a technical rationale on equipment survivability assessment so that plant-specific and time-dependent accident environmental conditions could be practically and realistically defined in accordance with the equipment and instrumentation required for accident management strategy or action appropriately taken. For this work, three different tools are introduced; Probabilistic Safety Assessment (PSA) outcomes, major accident management strategy actions, and Accident Environmental Stages (AESs). In order to quantitatively investigate an applicability of accident management strategy to equipment survivability, the accident simulation for a most likely scenario in Korean Standard Nuclear Power Plants (KSNPs) is performed with MAAP4 code. The Accident Management Guidance (AMG) actions such as the Reactor Control System (RCS) depressurization, water injection into the RCS, the containment pressure and temperature control, and hydrogen concentration control in containment are applied. The effects of these AMG actions on the accident environmental conditions are investigated by comparing with those from previous normal accident simulation, especially focused on equipment survivability assessment. As a result, the AMG-involved case shows the higher accident consequences along the accident environmental stages

  4. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  5. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  6. The Fukushima Daiichi Nuclear Power Plant Accident: OECD/NEA Nuclear Safety Response and Lessons Learnt

    International Nuclear Information System (INIS)

    2013-01-01

    Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, all NEA member countries took early action to ensure and confirm the continued safety of their nuclear power plants and the protection of the public. After these preliminary safety reviews, all countries with nuclear facilities carried out comprehensive safety reviews, often referred to as 'stress tests', which reassessed safety margins of nuclear facilities with a primary focus on challenges related to conditions experienced at the Fukushima Daiichi nuclear power plant, for example extreme external events and the loss of safety functions, or capabilities to cope with severe accidents. As appropriate, improvements are being made to safety and emergency response systems to ensure that nuclear power plants are capable of withstanding events that lead to loss of electrical power and/or cooling capability. In the weeks following the accident, the NEA immediately began establishing expert groups in the nuclear safety and radiological protection areas, as well as contributing to information exchange with the Japanese authorities and other international organisations. It promptly provided a forum for high-level decision makers and regulators within the G8-G20 frameworks. The NEA actions taken at the international level in response to the accident have been carried out primarily by the three NEA standing technical committees concerned with nuclear and radiation safety issues - the Committee on Nuclear Regulatory Activities (CNRA), the Committee on the Safety of Nuclear Installations (CSNI) and the Committee on Radiation Protection and Public Health (CRPPH) - under the leadership of the CNRA. More than two years following the accident, the NEA continues to assist the Japanese authorities in dealing with their nuclear safety and recovery efforts as well as to facilitate international co-operation on nuclear safety and radiological protection matters. It is strongly supporting the establishment of

  7. Golfech plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Golfech plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  8. Tricastin plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Tricastin plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  9. Bugey plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Bugey plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  10. Fessenheim plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Fessenheim plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  11. Chinon plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Chinon B plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  12. Blayais plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Blayais plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  13. Civaux plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Civaux plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  14. Cattenom plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Cattenom plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  15. Gravelines plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Gravelines plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  16. Replacement of the criticality accident alarm system in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Momose, Takumaro; Suzuki, Kei; Kawai, Keiichi

    2008-01-01

    A Criticality Accident Alarm System (CAAS) was installed as part of criticality safety management for use in reducing the radiation workers could be exposed to in the rare case of a criticality accident. The initial CAAS version was installed the Tokai Reprocessing Plant (TRP) in the 1980s. It includes units that can detect gamma-rays or neutron-rays released in criticality accidents (CADs), one of which consists of three plastic scintillation gamma detectors and three solid state neutron detectors with fissile material, and in being highly reliable utilizes the 2 out of 3 voting system. The purpose of this study is to give the design principles and procedures for determining the adequate relocation of the CADs within the TRP. The optimal places for the CADs to be relocated to were determined using a conservative evaluation method. Firstly, equipment needing to be monitored for criticality accidents was selected with consideration given to the risk of excessive exposure to workers. Secondly, the detection threshold of a minimum accident was set to be an increase in power of 10 15 fissions/s occurring within a rise-time of between 0.5 ms and 1 s. The sum of neutron and gamma doses of a minimum accident (10 15 fissions) was 0.3 Gy at an unshielded distance of 1 m. Finally, doses at where the CADs were installed were evaluated using parameters calculated with MCNP and ANISN. As a result, the alarm trip level of both the gamma detector and the neutron detector being set at 2.0 mGy/h enabled minimum criticality accidents to be conservatively detected. These results were then applied to the new CAD positions. (author)

  17. Lessons Learned in Protection of the Public for the Accident at the Fukushima Daiichi Nuclear Power Plant.

    Science.gov (United States)

    Callen, Jessica; Homma, Toshimitsu

    2017-06-01

    What insights can the accident at the Fukushima Daiichi nuclear power plant provide in the reality of decision making on actions to protect the public during a severe reactor and spent fuel pool emergency? In order to answer this question, and with the goal of limiting the consequences of any future emergencies at a nuclear power plant due to severe conditions, this paper presents the main actions taken in response to the emergency in the form of a timeline. The focus of this paper is those insights concerning the progression of an accident due to severe conditions at a light water reactor nuclear power plant that must be understood in order to protect the public.

  18. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Gook Young; Yoon, Ho Joon

    2014-01-01

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage

  19. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  20. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  1. Comparison of radiocesium concentration changes in leguminous and non-leguminous herbaceous plants observed after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Uchida, Shigeo; Tagami, Keiko

    2018-06-01

    Transfer of radiocesium from soil to crops is an important pathway for human intake. In the period from one to two years after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, food monitoring results showed that radiocesium concentrations in soybean (a legume) were higher than those in other annual agricultural crops; in these crops, root uptake is the major pathway of radiocesium from soil to plant. However, it was not clear whether or not leguminous and non-leguminous herbaceous plants have different Cs uptake abilities from the same soil because crop sample collection fields were different. In this study, therefore, we compared the concentrations of 137 Cs in seven herbaceous plant species including two leguminous plants (Trifolium pratense L. and Vicia sativa L.) collected in 2012-2016 from the same sampling field in Chiba, Japan that had been affected by the FDNPP accident fallout. Among these species, Petasites japonicus (Siebold & Zucc.) Maxim. showed the highest 137 Cs concentration in 2012-2016. The correlation factor between all concentration data for 137 Cs and those for 40 K in these seven plants was R = 0.54 (p plants did not differ significantly, but 137 Cs data in the Poaceae family plants were significantly lower than those in T. pratense (p plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimization of the Severe Accident Management Strategy for Domestic Plants and Validation Experiments

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, H. D.; Koo, K. M.; Park, R. J.; Hong, S. H.; Cho, Y. R.; Kim, J. T.; Ha, K. S.; Kang, K. H.

    2007-04-01

    nuclear power plants, a technical basis report and computational aid tools were developed in parallel with the experimental and analytical works for the resolution of the uncertain safety issues. ELIAS experiments were carried out to quantify the boiling heat removal rate at the upper surface of a metallic layer for precise evaluations on the effect of a late in-vessel coolant injection. T-HERMES experiments were performed to examine the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulator in the APR1400. Detailed analyses on the hydrogen control in the APR1400 containment were performed focused on the effect of spray system actuation on the hydrogen burning and the evaluation of the hydrogen behavior in the IRWST. To develop the technical basis report for the severe accident management, analyses using SCDAP/RELAP5 code were performed for the accident sequences of the OPR1000. Based on the experimental and analytical results performed in this study, the computational aids for the evaluations of hydrogen flammability in the containment, criteria of the in-vessel corium cooling, criteria of the external reactor vessel cooling were developed. An ASSA code was developed to validate the signal from the instrumentations during the severe accidents and to process the abnormal signal. Since ASSA can perform the signal processing from the direct input of the nuclear power plant during the severe accident, it can be platform of the computational aids. In this study, the ASSA was linked with the computaional aids for the hydrogen flammability

  3. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S. E-mail: reyessuarezl@llnl.gov; Latkowski, J.F.; Gomez del Rio, J.; Sanz, J

    2001-05-21

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  4. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Science.gov (United States)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  5. Optimization of the Severe Accident Management Strategy for Domestic Plants and Validation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. B.; Kim, H. D.; Koo, K. M.; Park, R. J.; Hong, S. H.; Cho, Y. R.; Kim, J. T.; Ha, K. S.; Kang, K. H

    2007-04-15

    nuclear power plants, a technical basis report and computational aid tools were developed in parallel with the experimental and analytical works for the resolution of the uncertain safety issues. ELIAS experiments were carried out to quantify the boiling heat removal rate at the upper surface of a metallic layer for precise evaluations on the effect of a late in-vessel coolant injection. T-HERMES experiments were performed to examine the two-phase natural circulation phenomena through the gap between the reactor vessel and the insulator in the APR1400. Detailed analyses on the hydrogen control in the APR1400 containment were performed focused on the effect of spray system actuation on the hydrogen burning and the evaluation of the hydrogen behavior in the IRWST. To develop the technical basis report for the severe accident management, analyses using SCDAP/RELAP5 code were performed for the accident sequences of the OPR1000. Based on the experimental and analytical results performed in this study, the computational aids for the evaluations of hydrogen flammability in the containment, criteria of the in-vessel corium cooling, criteria of the external reactor vessel cooling were developed. An ASSA code was developed to validate the signal from the instrumentations during the severe accidents and to process the abnormal signal. Since ASSA can perform the signal processing from the direct input of the nuclear power plant during the severe accident, it can be platform of the computational aids. In this study, the ASSA was linked with the computaional aids for the hydrogen flammability.

  6. Accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The accidents which accurred at Wuergassen, Browns Ferry and Three Mile Island are each briefly described and discussed. The last is naturally treated in much more detail than the first two. Damage to the fuel elements is briefly considered and the release of fission products, radiation doses to the population and their expected consequences are discussed. The accidents are evaluated and related to risk evaluations, especially in WASH-1400. (JIW)

  7. Hand-calculation technique for the evaluation of public risk from a severe accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Linn, M.A.; Schmoyer, R.E.

    1993-01-01

    The Nuclear Regulatory Commission (NRC) is in the process of promulgating a proposed rule 10 CFR Part 54, ''Requirements for Renewal of Operating Licensees for Nuclear Power Plants,'' which will allow licenses to renew the operating licenses on their nuclear power plants for an additional 20 years beyond the original 40-year limit. A Generic Environmental Impact Statement (GEIS) prepared by the Oak Ridge National Laboratory (ORNL) in conjunction with and for the Nuclear Regulatory Commission to assess the environmental issues associated with this proposed rule. The evaluation of the environmental impact from postulated severe accidents was included in the GEIS. During this evaluation of postulated severe accidents, a method was developed to estimate the public health consequences of atmospheric releases from severe accidents that is much simpler to use than existing consequence computer codes. From the results of this work, it is concluded that the simplified methodology does provide reasonable and conservative estimates of public risk from atmospheric releases from severe accidents

  8. Seismic Vulnerability Assessment of Site-Vicinity Infrastructure for Supporting the Accident Management of a Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    T. J. Katona

    2017-01-01

    Full Text Available Nuclear power plants shall be designed to resist the effects of large earthquakes. The design basis earthquake affects large area around the plant site and can cause serious consequences that will affect the logistical support of the emergency actions at the plant, influence the psychological condition of the plant personnel, and determine the workload of the country’s disaster management personnel. In this paper the main qualitative findings of a study are presented that have been performed for the case of a hypothetical 10−4/a probability design basis earthquake for the Paks Nuclear Power Plant, Hungary. The study covers the qualitative assessment of the postearthquake conditions at the settlements around the plant site including quantitative evaluation of the condition of dwellings. The main goal of the recent phase of the study was to identify public utility vulnerabilities that define the outside support conditions of the nuclear power plant accident management. The results of the study can be used for the planning of logistical support of the plant accident management staff. The study also contributes to better understanding of the working conditions of the disaster management services in the region around the nuclear power plant.

  9. Diagnostic and prognostic system for identification of accident scenarios and prediction of 'source term' in nuclear power plants under accident conditions

    International Nuclear Information System (INIS)

    Santhosh; Gera, B.; Kumar, Mithilesh

    2014-01-01

    Nuclear power plant experiences a number of transients during its operations. These transients may be due to equipment failure, malfunctioning of process support systems etc. In such a situation, the plant may result in an abnormal state which is undesired. In case of such an undesired plant condition, the operator has to carry out diagnostic and corrective actions. When an event occurs starting from the steady state operation, instruments' readings develop a time dependent pattern and these patterns are unique with respect to the type of the particular event. Therefore, by properly selecting the plant process parameters, the transients can be distinguished. In this connection, a computer based tool known as Diagnostic and Prognostic System has been developed for identification of large pipe break scenarios in 220 MWe Pressurised Heavy Water Reactors (PHWRs) and for prediction of expected 'Source Term' and consequence for a situation where Emergency Core Cooling System (ECCS) is not available or partially available. Diagnostic and Prognostic System is essentially a transient identification and expected source term forecasting system. The system is based on Artificial Neural Networks (ANNs) that continuously monitors the plant conditions and identifies a Loss Of Coolant Accident (LOCA) scenario quickly based on the reactor process parameter values. The system further identifies the availability of injection of ECCS and in case non-availability of ECCS, it can forecast expected 'Source Term'. The system is a support to plant operators as well as for emergency preparedness. The ANN is trained with a process parameter database pertaining to accident conditions and tested against blind exercises. In order to see the feasibility of implementing in the plant for real-time diagnosis, this system has been set up on a high speed computing facility and has been demonstrated successfully for LOCA scenarios. (author)

  10. Dose estimation from food intake due to the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Yamaguchi, Ichiro; Terada, Hiroshi; Kunugita, Naoki; Takahashi, Kunihiko

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident, concerns have arisen about the radiation safety of food raised at home and abroad. Therefore, many measures have been taken to address this. To evaluate the effectiveness of these measures, dose estimation due to food consumption has been attempted by various methods. In this paper, we show the results of dose estimation based on the monitoring data of radioactive materials in food published by the Ministry of Health, Labour and Welfare. The Radioactive Material Response Working Group in the Food Sanitation Subcommittee of the Pharmaceutical Affairs and Food Sanitation Council reported such dose estimation results on October 31, 2011 using monitoring data from immediately after the accident through September, 2011. Our results presented in this paper were the effective dose and thyroid equivalent dose integrated up to December 2012 from immediately after the accident. The estimated results of committed effective dose by age group derived from the radioiodine and radiocesium in food after the Fukushima Daiichi nuclear power plant accident showed the highest median value (0.19 mSv) in children 13-18 years of age. The highest 95% tile value, 0.33 mSv, was shown in the 1-6 years age range. These dose estimations from food can be useful for evaluation of radiation risk for individuals or populations and for radiation protection measures. It would also be helpful for the study of risk management of food in the future. (author)

  11. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Executive summary: main report

    International Nuclear Information System (INIS)

    1975-10-01

    Information is presented concerning the objectives and organization of the reactor safety study; the basic concepts of risk; the nature of nuclear power plant accidents; risk assessment methodology; reactor accident risk; and comparison of nuclear risks to other societal risks

  12. Nuclear accidents at the Fukushima Dai-ichi power plant. History, events and consequences

    International Nuclear Information System (INIS)

    Berniolles, Jean Marc

    2011-01-01

    Written few weeks after the accident, this article first recalls the circumstances (earthquake and tsunami), and then describes the accidental process within the primary vessels of the Fukushima Dai-ichi number 1, 2 and 3 reactors. The author then describes the interventions which aimed at cooling these three reactors, the problem faced for the storage of used fuels, and then the sequence of accidents: loss of cooling means leading to an explosion, problems faced in the different storage pools. He describes the various steps of recovery (primary cooling, electricity supply), discusses the consequences in terms of radioactivity releases in the plant environment with a comparison with Chernobyl, and also in terms of nature and quantity of radioactive elements. He comments radioactivity controls and measurements, evacuation measures, measurements performed by the IAEA, measurements of sea radioactivity, and the establishment of maps of ground radioactivity around the plant. He discusses the perspectives associated with these measurements for the surroundings of the Fukushima site

  13. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Takuya, E-mail: t.matsumoto@iaea.org [Isotope Hydrology Section, Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna International Centre, 1400 Vienna (Austria); Maruoka, Teruyuki [Division of Integrative Environmental Sciences Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572 (Japan); Shimoda, Gen [Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba City, Ibaraki 305-8561 (Japan); Obata, Hajime [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 (Japan); Kagi, Hiroyuki [Geochemical Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Suzuki, Katsuhiko [Japan Agency for Marin-Earth Science and Technology, 2-15, Natsushima, Yokosuka, Kanagawa 237-0061 (Japan); Yamamoto, Koshi [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Mitsuguchi, Takehiro [215 Ooma Akadoji-cho Konan, 483-8226 (Japan); Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi 781-1164 (Japan); Hagino, Kyoko; Tomioka, Naotaka [Institute for Study of the Earth' s Interior, Okayama University at Misasa, 827 Yamada, Misasa, Tottori 682-0193 (Japan); Sambandam, Chinmaya; Brummer, Daniela; Klaus, Philipp Martin; Aggarwal, Pradeep [Isotope Hydrology Section, Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna International Centre, 1400 Vienna (Austria)

    2013-02-15

    Tritium concentrations in Japanese precipitation samples collected after the March 2011 accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) were measured. Values exceeding the pre-accident background were detected at three out of seven localities (Tsukuba, Kashiwa and Hongo) southwest of the FNPP1 at distances varying between 170 and 220 km from the source. The highest tritium content was found in the first rainfall in Tsukuba after the accident; however concentrations were 500 times less than the regulatory limit for tritium in drinking water. Tritium concentrations decreased steadily and rapidly with time, becoming indistinguishable from the pre-accident values within five weeks. The atmospheric tritium activities in the vicinity of the FNPP1 during the earliest stage of the accident was estimated to be 1.5 × 10{sup 3} Bq/m{sup 3}, which is potentially capable of producing rainwater exceeding the regulatory limit, but only in the immediate vicinity of the source. - Highlights: ► We measured the {sup 3}H contents of Japanese rain collected after the Fukushima accident. ► {sup 3}H level became 30 times higher than pre-accident level in the first rain at Tsukuba. ► Some locality within 220 km from the source showed elevated {sup 3}H levels. ► These high {sup 3}H signals disappear in a few weeks. ► Atmospheric {sup 3}H level at the source during the earliest stage was estimated to be 1500 Bq/m{sup 3}.

  14. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Appendices VII, VIII, IX, and X

    International Nuclear Information System (INIS)

    1975-10-01

    Information is presented concerning the release of radioactivity in reactor accidents; physical processes in reactor meltdown accidents; safety design rationale for nuclear power plants; and design adequacy

  15. Strategy generator in computerized accident management support system

    International Nuclear Information System (INIS)

    Sirola, M.

    1994-02-01

    An increased interest for research in the field of accident management of nuclear power plants can be noted. Several international programmes have been started in order to be able to understand the basic physical and chemical phenomena in accident conditions. A feasibility study has shown that it would be possible to design and develop a computerized support system for plant staff in accident situations. To achieve this goal the Halden Project has initiated a research programme on Computerized Accident Management Support (CAMS project). The aim is to utilize the capabilities of computerized tools to support the plant staff during the various accident stages. The system will include identification of the accident state, assessment of the future development of the accident and planning of accident mitigation strategies. A prototype is developed to support operators and the Technical Support Centre in decision making during serious accidents in nuclear power plants. A rule based system has been built to take care of the strategy generation. This system assists plant personnel in planning control proposals and mitigation strategies from normal operation to severe accident conditions. The idea of a safety objective tree and knowledge from the emergency procedures have been used. Future prediction requires good state identification of the plant status and some knowledge about the history of some critical variables. The information needs to be validated as well. Accurate calculations in simulators and a large database including all important information from the plant will help the strategy planning. (orig.). (40 refs., 20 figs.)

  16. Tests of qualification of national components of nuclear power plants under design basis accident

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1990-01-01

    With the purpose of qualifying national components of nuclear power plants, whose working must be maintained during and after an accident, the Thermohydraulic Division of CDTN have done tests to check the equipment stability, under Design Basis Accident conditions. Until this moment, the following components were tested: electrical junction boxes (connectors); coating systems for wall, inside cover and steel containment; hydraulics components of personnel and equipment airlock. This work describes the test instalation, the tests performed and its results. The components tested, in a general way, fulfil the specified requirements. (author) [pt

  17. Measurement of {sup 14}C/{sup 12}C ratios in plant samples that were affected by the Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Risa; Inoue, Aki; Muramatsu, Yasuyuki [Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588 (Japan); Matsuzaki, Hiroyuki [The University of Tokyo, Micro Analysis Laboratory, Tandem Accelerator, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2014-07-01

    In nature, {sup 14}C is produced by cosmic ray reactions in the upper atmosphere, and its production is influenced by the flux of cosmic rays. This nuclide is also released into the atmosphere by anthropogenic sources such as nuclear weapons testing and a nuclear accident. The produced {sup 14}C immediately becomes {sup 14}CO{sub 2} and it is absorbed by plants through photosynthesis. Therefore, plants are reflected by atmospheric {sup 14}C levels at that time. Although there are many papers reporting the release of several nuclides by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident occurred in March, 2011, it is not clear whether appreciable amounts of {sup 14}C were released into the environment due to the accident. In this study, we focus on {sup 14}C levels in plant samples collected from several locations in Fukushima Prefecture (Okuma, Namie, Iitate, and Fukushima-city) and examine the possible influence on the {sup 14}C revels in plants. Since cedars and pines are evergreen, the leaves should have been contaminated at the time of the accident. We analyzed old leaves, which were grown before the accident, and new leaves, which were grown after the accident. Both old and new leaves were collected in the same branch. In order to compare delta {sup 14}C values in leaves collected from Fukushima Prefecture with background values, we have used plant samples collected from remote areas such as Chiba and Niigata Prefectures. The samples were dried, pulverized in a blender and homogenized. Then samples were placed between copper oxide wires in a quarts tube, burned and oxidized. The produced CO{sub 2} mixed gases were purified in a vacuum line. To prepare a graphite target for AMS, the purified CO{sub 2} was reduced. {sup 14}C/{sup 12}C ratio in the graphite was measured by AMS at the University of Tokyo or Japan Atomic Energy Agency. Analytical results showed that delta {sup 14}C values in plant samples collected from the highly contaminated areas such as

  18. Saint-Alban plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Saint-Alban plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  19. Enhancement of organizational resilience in light of the Fukushima Dai-ichi Nuclear Power Plant accident (1). Analysis of responding structure

    International Nuclear Information System (INIS)

    Yoshizawa, Atsufumi; Furuhama, Yutaka; Mutou, Keiko; Oba, Kyoko; Kitamura, Masaharu

    2014-01-01

    Through the critical situations experienced at the Fukushima Daiichi Nuclear Power Plant accident, it became evident that plant personnel are the essential driving force toward resilience for mitigating the severe nuclear accident. In such situation, the key factors are skill and attitude of human operators who struggled sincerely against the accident. It is also evident that future nuclear safety needs to aim at Safety- which is a newly introduced notion of safety proposed in conjunction with resilience engineering. Safety-I was defined as a condition where as little as possible went wrong;. Safety-II is defined as a condition where as much as possible goes wright. Among the four core capabilities (i.e. Learning, Responding, Monitoring, Anticipating) proposed in the framework of resilience engineering, the constituents of 'Responding' is mainly studied in this paper. Four constituents such as Skill Attitude, Health and Environment have been identified through in-depth reviewing of accident reports and reflection of one of the authors who served as a unit director of Fukushima Daiichi Nuclear Power Plant. (author)

  20. Computer code TRANS-ACE predicting for fire and explosion accidents in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Nishio; Gunji; Naito, Yoshitaka

    1993-11-01

    The accident analysis code TRANS-ACE was developed to evaluate the safety of a ventilation system in a reprocessing plant in the event of fire and explosion accidents. TRANS-ACE can evaluate not only the integrity of a ventilation system containing HEPA filters but also the source term of radioactive materials for release out of a plant. It calculates the temperature, pressure, flow rate, transport of combustion materials and confinement of radioactive materials in the network of a ventilation system that might experience a fire or explosion accident. TRANS-ACE is based on the one-dimensional compressible thermo-fluid analysis code EVENT developed by Los Alamos National Laboratory (LANL). Calculational functions are added for the radioactive source term, heat transfer and radiation to cell and duct walls and HEPA filter integrity. For the second edition in the report, TRANS-ACE has been improved incorporating functions for the initial steady-state calculation to determine the flow rates, pressure drops and temperature in the network before an accident mode analysis. It is also improved to include flow resistance calculations of the filters and blowers in the network and to have an easy to use code by simplifying the input formats. This report is to prepare an explanation of the mathematical model for TRANS-ACE code and to be the user's manual. (author)

  1. Accident scenario diagnostics with neural networks

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  2. The handling of radiation accidents

    International Nuclear Information System (INIS)

    1977-01-01

    The symposium was attended by 204 participants from 39 countries and 5 international organizations. Forty-two papers were presented in 8 sessions. The purpose of the meeting was to foster an exchange of experiences gained in establishing and exercising plans for mitigating the effects of radiation accidents and in the handling of actual accident situations. Only a small number of accidents were reported at the symposium, and this reflects the very high standards of safety that has been achieved by the nuclear industry. No accidents of radiological significance were reported to have occurred at commercial nuclear power plants. Of the accidents reported, industrial radiography continues to be the area in which most of the radiation accidents occur. The experience gained in the reported accident situations served to confirm the crucial importance of the prompt availability of medical and radiological services, particularly in the case of uptake of radioactive material, and emphasized the importance of detailed investigation into the causes of the accident in order to improve preventative measures. One of the principal themes of the symposium involved emergency procedures related to nuclear power plant accidents, and several papers defining the scope, progression and consequences of design base accidents for both thermal and fast reactor systems were presented. These were complemented by papers defining the resultant protection requirements that should be satisfied in the establishment of plans designed to mitigate the effects of the postulated accident situations. Several papers were presented describing existing emergency organizational arrangements relating both to specific nuclear power plants and to comprehensive national schemes, and a particularly informative session was devoted to the topic of training of personnel in the practical conduct of emergency arrangements. The general feeling of the participants was one of studied confidence in the competence and

  3. The Role of Countermeasures in Mitigating the Radiological Consequences of Nuclear Power Plant Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, F. S.; Abdel-Aal, M.M., E-mail: basant572000@yahoo.com [Siting & Environmental Department, Nuclear and Radiological Regulatory Authority, Cairo (Egypt)

    2014-10-15

    During the Fukushima accident the mitigation actions played an important role to decrease the consequences of the accident. The countermeasures are the actions that should be taken after the occurrence of a nuclear accident to protect the public against the associated risk. The actions may be represented by sheltering, evacuation, distribution of stable iodine tablets and/or relocation. This study represents a comprehensive probabilistic study to investigate the role of the adoption of the countermeasures in case of a hypothetical accident of type LOCA for a nuclear power plant of PWR (1000 Mw) type. This work was achieved through running of the PC COSYMA{sup (1)} code. The effective doses in different organs, short and long term health effects, and the associated risks were calculated with and without countermeasures. In addition, the overall costs of the accident and the costs of countermeasures are estimated which represent our first trials to know how much the postulated accident costs. The source term of a hypothetical accident is determined by knowing the activity of the core inventory. The meteorological conditions around the site in addition to the population distribution were utilized as input parameters. The stability conditions and the height of atmospheric boundary layers ABL of the concerned site were determined by developing a computer program utilizing Pasquill-Gifford atmospheric stability conditions. The results showed that, the area around the site requires early and late countermeasures actions after the accident especially in the downwind sectors. For late countermeasures, the duration of relocation ranged from about two to 10 years. The adoption of the countermeasures increases the costs of emergency planning by 40% but reduces the risk associated with the accident. (author)

  4. Characteristics of Hydrogen Monitoring Systems for Severe Accident Management at a Nuclear Power Plant

    Science.gov (United States)

    Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.

    2018-02-01

    One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase

  5. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  6. Development of the simulation system IMPACT for analysis of nuclear power plant severe accidents

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system IMPACT for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT's distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data

  7. Using MARS to assist in managing a severe accident

    International Nuclear Information System (INIS)

    Raines, J.C.; Hammersley, R.J.; Henry, R.E.

    2004-01-01

    During an accident, information about the current and possible future states of the plant provides guidance for accident managers in evaluating which actions should be taken. However, depending upon the nature of the accident and the stress levels imposed on the plant staff responding to the accident the current and future plant assessments may be very difficult or nearly impossible to perform without supplemental training and/or appropriate tools. The MAAP Accident Response System (MARS) has been developed as a calculational aid to assist the responsible accident management individuals. Specifically MARS provides additional insights on the current and possible future states of the plant during an accident including the influence of operator actions. In addition to serving as a calculational aid, the MARS software can be an effective means for providing supplemental training. The MARS software uses engineering calculations to perform an integral assessment of the plant status including a consistency assessment of the available instrumentation. In addition, it uses the Modular Accident Analysis Program (MAAP) to provide near term predictions of the plant response if corrective actions are taken. This paper will discuss the types of information that are beneficial to the accident manager and how MARS addresses each. The MARS calculational functions include: instrumentation, validation and simulation, projected operator response based on the EOPs, as well as estimated timing and magnitude of in-plant and off-site radiation dose releases. Each of these items is influential in the management of a severe accident. (author)

  8. SAMEX: A severe accident management support expert

    International Nuclear Information System (INIS)

    Park, Soo-Yong; Ahn, Kwang-Il

    2010-01-01

    A decision support system for use in a severe accident management following an incident at a nuclear power plant is being developed which is aided by a severe accident risk database module and a severe accident management simulation module. The severe accident management support expert (SAMEX) system can provide the various types of diagnostic and predictive assistance based on the real-time plant specific safety parameters. It consists of four major modules as sub-systems: (a) severe accident risk data base module (SARDB), (b) risk-informed severe accident risk data base management module (RI-SARD), (c) severe accident management simulation module (SAMS), and (d) on-line severe accident management guidance module (on-line SAMG). The modules are integrated into a code package that executes within a WINDOWS XP operating environment, using extensive user friendly graphics control. In Korea, the integrated approach of the decision support system is being carried out under the nuclear R and D program planned by the Korean Ministry of Education, Science and Technology (MEST). An objective of the project is to develop the support system which can show a theoretical possibility. If the system is feasible, the project team will recommend the radiation protection technical support center of a national regulatory body to implement a plant specific system, which is applicable to a real accident, for the purpose of immediate and various diagnosis based on the given plant status information and of prediction of an expected accident progression under a severe accident situation.

  9. Measuring Risk Aversion for Nuclear Power Plant Accident: Results of Contingent Valuation Survey in Korea

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of nuclear power plant (NPP) severe accident is one of the major topics to be addressed. For the evaluation of the external cost of NPP severe accident, the effect of public risk averse behavior against the group accidents, such as NPP accident, dam failure, must be addressed. Although the equivalent fatalities from a single group accident are not common and its risk is very small compared to other accidents, people perceive the group accident more seriously. In other words, people are more concerned about low probability/high consequence events than about high probability/low consequence events having the same mean damage. One of the representative method to integrate the risk aversion in the external costs of severe nuclear reactor accidents was developed by Eeckoudt et al., and he used the risk aversion coefficient, mainly based on the analysis of financial risks in the stock markets to evaluate the external cost of nuclear severe accident. However, the use of financial risk aversion coefficient to nuclear severe accidents is not appropriate, because financial risk and nuclear severe accident risk are entirely different. In this paper, the individual-level survey was conducted to measure the risk aversion coefficient and estimate the multiplication factor to integrate the risk aversion in the external costs of NPP severe accident. This study propose an integrated framework on estimation of the external cost associated with severe accidents of NPP considering public risk aversion behavior. The theoretical framework to estimate the risk aversion coefficient/multiplication factor and to assess economic damages from a hypothetical NPP accident was constructed. Based on the theoretical framework, the risk aversion coefficient can be analyzed by conducting public survey with a carefully designed lottery questions. Compared to the previous studies on estimation of the

  10. Measuring Risk Aversion for Nuclear Power Plant Accident: Results of Contingent Valuation Survey in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of nuclear power plant (NPP) severe accident is one of the major topics to be addressed. For the evaluation of the external cost of NPP severe accident, the effect of public risk averse behavior against the group accidents, such as NPP accident, dam failure, must be addressed. Although the equivalent fatalities from a single group accident are not common and its risk is very small compared to other accidents, people perceive the group accident more seriously. In other words, people are more concerned about low probability/high consequence events than about high probability/low consequence events having the same mean damage. One of the representative method to integrate the risk aversion in the external costs of severe nuclear reactor accidents was developed by Eeckoudt et al., and he used the risk aversion coefficient, mainly based on the analysis of financial risks in the stock markets to evaluate the external cost of nuclear severe accident. However, the use of financial risk aversion coefficient to nuclear severe accidents is not appropriate, because financial risk and nuclear severe accident risk are entirely different. In this paper, the individual-level survey was conducted to measure the risk aversion coefficient and estimate the multiplication factor to integrate the risk aversion in the external costs of NPP severe accident. This study propose an integrated framework on estimation of the external cost associated with severe accidents of NPP considering public risk aversion behavior. The theoretical framework to estimate the risk aversion coefficient/multiplication factor and to assess economic damages from a hypothetical NPP accident was constructed. Based on the theoretical framework, the risk aversion coefficient can be analyzed by conducting public survey with a carefully designed lottery questions. Compared to the previous studies on estimation of the

  11. An endothermic chemical process facility coupled to a high temperature reactor. Part I: Proposed accident scenarios within the chemical plant

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► The paper identifies possible transient and accident scenarios in a coupled PBMR and thermochemical sulfur cycle based hydrogen plant. ► Key accidents scenarios were investigated through qualitative reasoning. ► The accidents were found to constitute loss of heat sink event for the nuclear reactor. - Abstract: Hydrogen generation using a high temperature nuclear reactor as a thermal driving vector is a promising future option for energy carrier production. In this scheme, the heat from the nuclear reactor drives an endothermic water-splitting plant, via coupling, through an intermediate heat exchanger. Quantitative study of the possible operational or accident events within the coupled plant is largely absent from the literature. In this paper, seven unique case studies are proposed based on a thorough review of possible events. The case studies are: (1) feed flow failure from one section of the chemical plant to another with an accompanying parametric study of the temperature in an individual reaction chamber, (2) product flow failure (recycle) within the chemical plant, (3) rupture or explosion within the chemical plant, (4) nuclear reactor helium inlet overcooling due to a process holding tank failure, (5) helium inlet overcooling as an anticipated transient without emergency nuclear reactor shutdown, (6) total failure of the chemical plant, (7) control rod insertion in the nuclear reactor. The qualitative parameters of each case study are outlined as well as the basis in literature. A previously published modeling scheme is described and adapted for application as a simulation platform for these transient events. The results of the quantitative case studies are described within part II of this paper.

  12. Nuclear accidents

    International Nuclear Information System (INIS)

    1987-01-01

    On 27 May 1986 the Norwegian government appointed an inter-ministerial committee of senior officials to prepare a report on experiences in connection with the Chernobyl accident. The present second part of the committee's report describes proposals for measures to prevent and deal with similar accidents in the future. The committee's evaluations and proposals are grouped into four main sections: Safety and risk at nuclear power plants; the Norwegian contingency organization for dealing with nuclear accidents; compensation issues; and international cooperation

  13. ASSESSMENT OF THE FUKUSIMA NUCLEAR POWER PLANT ACCIDENT CONSEQUENCES BY THE POPULATION IN THE FAR EAST

    Directory of Open Access Journals (Sweden)

    G. V. Arkhangelskaya

    2012-01-01

    Full Text Available The article analyzes the attitude of the population in the five regions of the Far East to the consequences of the accident at the Fukushimai nuclear power plant, as well as the issues of informing about the accident. The analysis of public opinion is based on the data obtained by anonymous questionnaire survey performed in November 2011. In spite of the rather active informing and objective information on the absence of the contamination, most of the population of the Russian Far East believes that radioactive contamination is presented in the areas of their residence, and the main cause of this contamination is the nuclear accident in Japan.

  14. Benchmarking MARS (accident management software) with the Browns Ferry fire

    International Nuclear Information System (INIS)

    Dawson, S.M.; Liu, L.Y.; Raines, J.C.

    1992-01-01

    The MAAP Accident Response System (MARS) is a userfriendly computer software developed to provide management and engineering staff with the most needed insights, during actual or simulated accidents, of the current and future conditions of the plant based on current plant data and its trends. To demonstrate the reliability of the MARS code in simulatng a plant transient, MARS is being benchmarked with the available reactor pressure vessel (RPV) pressure and level data from the Browns Ferry fire. The MRS software uses the Modular Accident Analysis Program (MAAP) code as its basis to calculate plant response under accident conditions. MARS uses a limited set of plant data to initialize and track the accidnt progression. To perform this benchmark, a simulated set of plant data was constructed based on actual report data containing the information necessary to initialize MARS and keep track of plant system status throughout the accident progression. The initial Browns Ferry fire data were produced by performing a MAAP run to simulate the accident. The remaining accident simulation used actual plant data

  15. SEVERE ACCIDENT MANAGEMENT STATUS AT Loviisa

    International Nuclear Information System (INIS)

    Kymalainen, O.; Tuomisto, H.

    1997-01-01

    Some of the specific design features of IVO's Loviisa Plant, most notably the ice-condenser containment, strongly affect the plant response in a hypothetical core melt accident. They have together with the relatively stringent Finnish regulatory requirements forced IVO to develop a tailor made severe accident management strategy for Loviisa. The low design pressure of the ice-condenser containment complicates the design of the hydrogen management system. On the other hand, the ice-condensers and the water available from them are facilitating factors regarding in-vessel retention of corium by external cooling of reactor pressure vessel. This paper summarizes the Finnish severe accident requirements, IVO's approach to severe accidents, and its application to the Loviisa Plant

  16. Common Risk Target for severe accidents of nuclear power plants based on IAEA INES scale

    International Nuclear Information System (INIS)

    Vitázková, Jiřina; Cazzoli, Errico

    2013-01-01

    The IAEA has repeatedly recommended that the nuclear community should arrive at a common understanding and definition of safety goals for severe accidents in nuclear power plants. The recommendation has only found partial answers, despite the numerous working groups and forums devoted to this effort. The most widely accepted definition of goals is based on the concept of Large (Early) Release Frequencies (L(E)RF) and its derivatives, a surrogate concept derived from results of Probabilistic Safety Assessments (PSAs) which was first introduced in the USA almost twenty years ago and much later accepted by the USNRC for risk informed decision making, but not for safety demonstrations. Other types of Safety Goals have been adopted by some nuclear authorities, but the main drawback of all current definitions is that they may apply only to LWRs. The lack of unifying safety/risk parameter throughout of PSAs worldwide is the basis of the present work, and an attempt is made to arrive at the definition of a Risk Target for severe accidents in NPPs, consistent with the IAEA definitions having a technical basis, which can be adopted without modifications for Generation IV power plants. The proposal of Common Risk Target in this work represents an attempt to define a Common Risk Target based on technical reasoning, reflecting IAEA definitions as well as harmonization requirements raised by the whole European Community in various OECD, ASAMPSA2 and SARNET (Guentay et al., 2006) conclusions and Council Directive of The European Union (Community Framework, 2009) as well as lastly performed stress tests of nuclear power plants throughout the Europe (Peer Review Report, 2012). The basic concept of CRT was first introduced and developed within the European project ASAMPSA2 by the authors of this article and was accepted by majority of world PSA experts participating in final evaluation and survey of the project (Guentay, 2011). In the proposed Risk Target concept an innovative

  17. Common Risk Target for severe accidents of nuclear power plants based on IAEA INES scale

    Energy Technology Data Exchange (ETDEWEB)

    Vitázková, Jiřina, E-mail: jirina@snus.sk [Vitázková-Vitty, Sládkovičova 24, 900 28 Ivanka pri Dunaji (Slovakia); Cazzoli, Errico, E-mail: erik.cazzoli@gmx.net [Cazzoli Consulting, Wiesenweg 14, CH-5415 Nussbaumen (Switzerland)

    2013-09-15

    The IAEA has repeatedly recommended that the nuclear community should arrive at a common understanding and definition of safety goals for severe accidents in nuclear power plants. The recommendation has only found partial answers, despite the numerous working groups and forums devoted to this effort. The most widely accepted definition of goals is based on the concept of Large (Early) Release Frequencies (L(E)RF) and its derivatives, a surrogate concept derived from results of Probabilistic Safety Assessments (PSAs) which was first introduced in the USA almost twenty years ago and much later accepted by the USNRC for risk informed decision making, but not for safety demonstrations. Other types of Safety Goals have been adopted by some nuclear authorities, but the main drawback of all current definitions is that they may apply only to LWRs. The lack of unifying safety/risk parameter throughout of PSAs worldwide is the basis of the present work, and an attempt is made to arrive at the definition of a Risk Target for severe accidents in NPPs, consistent with the IAEA definitions having a technical basis, which can be adopted without modifications for Generation IV power plants. The proposal of Common Risk Target in this work represents an attempt to define a Common Risk Target based on technical reasoning, reflecting IAEA definitions as well as harmonization requirements raised by the whole European Community in various OECD, ASAMPSA2 and SARNET (Guentay et al., 2006) conclusions and Council Directive of The European Union (Community Framework, 2009) as well as lastly performed stress tests of nuclear power plants throughout the Europe (Peer Review Report, 2012). The basic concept of CRT was first introduced and developed within the European project ASAMPSA2 by the authors of this article and was accepted by majority of world PSA experts participating in final evaluation and survey of the project (Guentay, 2011). In the proposed Risk Target concept an innovative

  18. Strategies of modeling the cognitive tasks of human operators for accident scenarios in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Sur, Sang Moon; Lee, Yong Hee; Lee, Jeong Wun

    1993-01-01

    This paper presents the development strategies of cognitive task network modeling for accident scenarios in nuclear power plant control rooms. Task network modeling is used to provide useful predictions of operator's performance times and error rates, based upon plant procedures and/or control room changes. Two accident scenarios, small-break loss of coolant accident (LOCA) and steam generator tube rupture (SGTR), are selected for task simulation. To obtain the input data for the model, task elements are extracted by the task analysis of emergency operating procedures. The input data include task performance time, communication ink, panel location, component operating mode, and data for performance shaping factors (PSFs). Operator's verbs are categorized according to the elements of cognitive behavior. The simulation of the task network for the small-break LOCA scenario is presented in this paper. (Author)

  19. Including severe accidents in the design basis of nuclear power plants: An organizational factors perspective after the Fukushima accident

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Frutuoso e Melo, P.F.

    2015-01-01

    Highlights: • The Fukushima accident was man-made and not caused by natural phenomena. • Vulnerabilities were known by regulator and licensee but measures were not taken. • There was lack of independence and transparency of the regulatory body. • Laws and regulations have not been updated to international standards. • Organizational failures have played an important role in the Fukushima accident. - Abstract: The Fukushima accident was clearly an accident made by humans and not caused by natural phenomena as was initially thought. Vulnerabilities were known by both regulators and operator but they postponed measures. The emergency plan was not effective in protecting the public, because the involved parties were not sufficiently prepared to make the right decisions. The shortcomings and faults mentioned above resulted from the lack of independence and transparency of the regulatory body. Even laws and regulations, and technical standards, have not been upgraded to international standards. Regulators have not defined requirements and left for the operator to decide what would be more appropriate. In this aspect, there was clearly a lack of independence between these bodies and operator’s lobby power. The above situation raised the question of urgent updating of institutions, in particular those responsible for nuclear safety. The above evidences show that several nuclear safety principles were not followed. This paper intends to highlight some existing safety criteria that were developed from the operational experience of the severe accidents that occurred at TMI and Chernobyl that should be incorporated in the design of new nuclear power plants and to provide appropriate design changes (backfittings) for reactors that belong to the previous generation prior to the occurrence of these accidents, through the study of design vulnerabilities. Furthermore, the main criteria that define an effective regulatory agency are also discussed. Although these

  20. Report of the Fukushima nuclear accident by the National Academy of Science. Lessons learned from the Fukushima nuclear accident for improving safety of U.S. nuclear plants

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2014-01-01

    U.S. National Academy of Science investigated the accident at the Fukushima Daiichi nuclear plant initiated by the Great East Japan Earthquake for two years and published a draft report in July 24, 2014. Investigation results were summarized in nine new findings and made ten recommendations in a wide horizon; (1) hardware countermeasures against severe accidents and training of operators, (2) upgrade of risk assessment capability for beyond design basis accident, (3) incorporation of new information about hazards in safety regulations, (4) needed improvement of off-site emergency preparedness, and (5) improvements of nuclear safety culture. New information about hazards related with tsunami assessment, new risk assessment for beyond design basis accident, advice of foreigner resident evacuations, regulatory capture, and safety culture and regulator's specialty were discussed as Japanese issues. (T. Tanaka)

  1. Aerosols released in accidents in reprocessing plants

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Owczarski, P.C.; Hashimoto, K.; Nishio, G.; Jordan, S.; Lindner, W.

    1987-01-01

    For analyzing the thermodynamic and radiological consequences of solvent fire accidents in reprocessing plants, intensive investigations on burning contaminated condensible liquids were performed at Kernforschungszentrum Karlsruhe (KfK), Pacific Northwest Laboratory (PNL), and Japan Atomic Energy Research Institute (JAERI). In small- and large-scale tests, KfK studied the behavior of kerosene, tributyl phosphate, HNO 3 mixture fires in open air and closed containments. The particle release from uranium-contaminated pool fires was investigated. Different filter devices were tested. For analyzing fires, PNL has developed the FIRIN computer code and has generated small-scale fire data in support of that code. The results of the experiments in which contaminated combustible liquids were burned demonstrate the use of the FIRIN code in simulating a solvent fire in a nuclear reprocessing plant. To demonstrate the safety evaluation of a postulated solvent fire in an extraction process of a reprocessing pant, JAERI conducted large-scale fire tests. Behavior of solvent fires in a cell and the integrity of high-efficiency particulate air (HEPA) filters due to smoke plugging were investigated. To evaluate confinement of radioactive materials released from the solvent fire, the ventilation systems with HEPA filters were tested under postulated fire conditions

  2. Questions concerning safety and risk after the nuclear accidents in Japan. Deepened accident analysis for the Fukushima Daiichi power plant; Sicherheits- und Risikofragen im Nachgang zu den nuklearen Stoer- und Unfaellen in Japan. Vertiefte Ereignisanalyse zur Anlage Fukushima-Daini

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Darmstadt (Germany)

    2015-02-25

    The study questions concerning safety and risk in Japanese power plants following the disastrous nuclear accident covers the following issues: the nuclear facility Fukushima Daiichi, site characterization, important technical equipment, important electro-technical equipment, personal; description of the accident progression in the Fukushima nuclear power plant: impact of the earthquake, impact of the tsunami, short-term measures of the operating personnel, pressure and temperature situation in the containments, restoration of the after-heat cooling system in the units 1/2 and 4, fuel element storage pool, summarized parameters during the accident progress; comparative analysis of the accident progression at the Fukushima Daiichi site.

  3. Modeling operator actions during a small break loss-of-coolant accident in a Babcock and Wilcox nuclear power plant

    International Nuclear Information System (INIS)

    Ghan, L.S.; Ortiz, M.G.

    1991-01-01

    A small break loss-of-accident (SBLOCA) in a typical Babcock and Wilcox (B ampersand W) nuclear power plant was modeled using RELAP5/MOD3. This work was performed as part of the United States Regulatory Commission's (USNRC) Code, Scaling, Applicability and Uncertainty (CSAU) study. The break was initiated by severing one high pressure injection (HPI) line at the cold leg. Thus, the small break was further aggravated by reduced HPI flow. Comparisons between scoping runs with minimal operator action, and full operator action, clearly showed that the operator plays a key role in recovering the plant. Operator actions were modeled based on the emergency operating procedures (EOPs) and the Technical Bases Document for the EOPs. The sequence of operator actions modeled here is only one of several possibilities. Different sequences of operator actions are possible for a given accident because of the subjective decisions the operator must make when determining the status of the plant, hence, which branch of the EOP to follow. To assess the credibility of the modeled operator actions, these actions and results of the simulated accident scenario were presented to operator examiners who are familiar with B ampersand W nuclear power plants. They agreed that, in general, the modeled operator actions conform to the requirements set forth in the EOPs and are therefore plausible. This paper presents the method for modeling the operator actions and discusses the simulated accident scenario from the viewpoint of operator actions

  4. Dampierre-en-Burly plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Dampierre-en-Burly plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  5. Belleville-sur-Loire plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Belleville-sur-Loire plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  6. Nogent-sur-Seine plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Nogent-sur-Seine plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  7. Teaching of severe accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power

    International Nuclear Information System (INIS)

    Saito, Shinzo

    2011-01-01

    The Great East Japan Earthquake and accompanied tsunami brought about the severe accident at Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. For 'No more Fukushima', twelve teaching of the accident was pointed out as follows: 1) natural disasters and external events shall be taken into consideration, 2) severe accident shall be included into safety regulation, 3) all possibility of hydrogen explosion shall be excluded, 4) diversity of safety important component and equipment shall be added with sufficient period of outage, 5) siting of multiple units at the same site shall be avoided at quake-prone country like Japan, 6) accident response environment for operators shall be improved, 7) accident convergence termination system shall be established so as to concentrate technical experience and knowledge, 8) off-site center shall be improved, 9) resident evacuation, consumption limit of food, radiation exposure and soil contamination limit shall be decided openly, 10) nuclear regulation and prevention of disaster shall be conducted by unitary organization to gain public trust, 11) fostering of safety culture among relevant enterprises shall be more encouraged and 12) nuclear industry shall develop reactor such as with no core meltdown or no evacuation and environmental contamination even if reactor core would be meltdown. (T. Tanaka)

  8. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  9. Accident management-defence in depth in Indian PHWRS

    International Nuclear Information System (INIS)

    Jagannad, V.B.L.; Reddy, V.V.; Hajela, Sameer; Bhatia, C.M.; Nair, Suma

    2015-01-01

    Defence in Depth (DiD) is the established safety principle for the design of Nuclear Power Plants (NPPs). Accident at Fukushima Dai-ichi had highlighted the importance of provisions at Level-4 and 5 of DiD. Post Fukushima accident, on-site measures have been strengthened for Indian Nuclear Power Plants. On procedural front, Accident Management Guidelines have been introduced to handle events more severe than design basis accidents. This paper elaborates enhancement of Defence in Depth provisions for Indian Nuclear Power Plants. (author)

  10. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  11. Fast dose assessment models, parameters and code under accident conditions for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Hu, E.B.; Meng, X.C.; Zhang, Y.; Yao, R.T.

    1993-01-01

    According to requirement of accident emergency plan for Qinshan Nuclear Power Plant, a Gaussian straight-line model was adopted for estimating radionuclide concentration in surface air. In addition, the effects of mountain body on atmospheric dispersion was considered. By combination of field atmospheric dispersion experiment and wind tunnel modeling test, necessary modifications have been done for some models and parameters. A computer code for assessment was written in Quick BASIC (V4.5) language. The radius of assessment region is 10 km and the code is applicable to early accident assessment. (1 tab.)

  12. Basic study on BWR plant behavior under the condition of severe accident (2)

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Ueda, Masataka; Sasaki, Hajime

    2016-01-01

    In this paper, we report on the results using the BWR plant simulator about the plant behavior under the condition of the two types of severe accidents that LOCA occurs but ECCS fails the water irrigation into the reactor core and SBO occurs and at the same time the reclosed failure of SRV occurs. The simulation experiments were carried out for the cases that LOCA has occurred in the main feed-water piping. As for the results about the relationship between the LOCA area and the time from LOCA occurs until the fuel temperature rise start, the effect that RCIC operated was extremely big for small and middle LOCA area. In the case of main feed-water system LOCA, the core water level suddenly decreased for large LOCA of 2000 cm"2 area, however, if the irrigation into the reactor core was carried out 30 min after LOCA occurrence, the core had little damage. In addition, the H_2 concentration in the containment vessel did not exceed both limits of H_2 explosion nor detonation. The pressure of the containment vessel was around 3 kg/cm"2 of design value, so the soundness of the containment vessel was confirmed. On the other hand, for the accident of SBO with reclosed failure of SRV, it has been shown that the accidents continue to progress rapidly as compared with the case of normally operating of SRV. Because SRV has the function that keep the inside pressure of reactor core by repeating opened and closed in response of the inside pressure and prevent the decrease of water level inside reactor core. However, if the irrigation into the reactor core was carried out 30 min after SBO occurrence, the core had little damage and also the H_2 concentration in the containment vessel did not exceed limits of H_2 explosion. Further, as for the accident of reclosed failure of SRV, it has been shown that there are very good correspondence with the simulation results of main steam piping LOCA of area 180 cm"2 corresponding to the inlet cross-sectional area SRV installed on the piping

  13. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident

    International Nuclear Information System (INIS)

    Yamashita, S.; Takamura, N.; Ohtsuru, A.; Suzuki, S.

    2016-01-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. (authors)

  14. Accident analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Silva, D.E. da

    1981-01-01

    The way the philosophy of Safety in Depth can be verified through the analysis of simulated accidents is shown. This can be achieved by verifying that the integrity of the protection barriers against the release of radioactivity to the environment is preserved even during accident conditions. The simulation of LOCA is focalized as an example, including a study about the associated environmental radiological consequences. (Author) [pt

  15. Severe accident training simulator APROS SA

    International Nuclear Information System (INIS)

    Raiko, Eerikki; Salminen, Kai; Lundstroem, Petra; Harti, Mika; Routamo, Tomi

    2003-01-01

    APROS SA is a severe accident training simulator based on the APROS simulation environment. APROS SA has been developed in Fortum Nuclear Services Ltd to serve as a training tool for the personnel of the Loviisa NPP. Training with APROS SA gives the personnel a deeper understanding of the severe accident phenomena and thus it is an important part of the implementation of the severe accident management strategy. APROS SA consists of two parts, a comprehensive Loviisa plant model and an external severe accident model. The external model is an extension to the Loviisa plant model, which allows the simulation to proceed into the severe accident phase. The severe accident model has three submodels: the core melting and relocation model, corium pool model and fission product model. In addition to these, a new thermal-hydraulic solver is introduced to the core region of the Loviisa plant model to replace the more limited APROS thermal-hydraulic solver. The full APROS SA training simulator has a graphical user interface with visualizations of both severe accident management panels at the operator room and the important physical phenomena during the accident. This paper describes the background of the APROS SA training simulator, the severe accident submodels and the graphical user interface. A short description how APROS SA will be used as a training tool at the Loviisa NPP is also given

  16. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  17. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  18. Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident.

    Science.gov (United States)

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Uekusa, Yoshinori; Hachisuka, Akiko; Matsuda, Rieko; Teshima, Reiko

    2015-01-01

    As a result of the Fukushima Daiichi nuclear power plant (NPP) accident, various radionuclides were released into the environment. In this study, we surveyed strontium-90 ((90)Sr) concentrations in several foodstuffs. Strontium-90 is thought to be the third most important residual radionuclide in food collected after the Fukushima Daiichi, NPP accident after following cesium-137 ((137)Cs) and cesium-134 ((134)Cs). Results of (90)Sr analyses indicated that (90)Sr was detect in 25 of the 40 radioactive cesium (r-Cs) positive samples collected in areas around the Fukushima Daiichi NPP, ranging in distance from 50 to 250 km. R-Cs positive samples were defined as containing both (134)Cs and (137)Cs which are considered to be indicators of the after-effects of the Fukushima Daiichi NPP accident. We also detected (90)Sr in 8 of 13 r-Cs negative samples, in which (134)Cs was not detected. Strontium-90 concentrations in the r-Cs positive samples did not significantly exceed the (90)Sr concentrations in r-Cs negative samples or the (90)Sr concentration ranges in comparable food groups found in previous surveys before the Fukushima Daiichi NPP accident. Thus, (90)Sr concentrations in r-Cs positive samples were indistinguishable from the background (90)Sr concentrations arising from global fallout prior to the Fukushima accident, suggesting that no marked increase of (90)Sr concentrations has occurred in r-Cs positive samples as a result of the Fukushima Daiichi NPP accident.

  19. Critique of the RASMUSSEN report (WASH-1400) on accident risks in U.S. commercial nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1976-06-01

    The RASMUSSEN study represents an excellent survey of the current possibilities to assess quantitatively the operational risk of nuclear power plants. To close the big gaps which turned out to be still existent in calculating the possible accidents sequences and their consequences but also in the statistical materials, only rough models could be used because of the limited capability of theoretical analyses to replace lacking experience. Contrary to previous studies the risk estimates have not deliberately been maximized, apart from the fact that in many cases no 'safe' side does a priori exist. Rather, the RASMUSSEN study tried to make 'reasonable realistic' assumptions concerning accident sequences and activity release consequences, but it is difficult to refute that the results will tend to underestimate systematically the accident consequences. Besides, in every case the range of uncertainty will very likely be greater than stated in the study, not least also because the results are substantially influenced by technical features of the nuclear power plants under discussion. This should be given attention in discussions using the quantitative results of the study as well as the fact that planning, construction and operation of nuclear power plants must be done with utmost accuracy to achieve the specified low orders of risk. (author)

  20. To improve nuclear plant safety by learning from accident's experience

    International Nuclear Information System (INIS)

    Matsumoto, Hidezo; Kida, Masanori; Kato, Hiroyuki; Hara, Shin-ichi

    1994-01-01

    The ultimate goal of this study is to produce an expert system that enables the experience (records and information) gained from accidents to be put to use towards improving nuclear plant safety. A number of examples have been investigated, both domestic and overseas, in which experience gained from accidents was utilized by utilities in managing and operating their nuclear power stations to improve safety. The result of investigation has been used to create a general 'basic flow' to make the best use of experience. The ultimate goal is achieved by carrying out this 'basic flow' with artificial intelligence (AI). To do this, it is necessary (1) to apply language analysis to process the source information (primary data base; domestic and overseas accident's reports) into the secondary data base, and (2) to establish an expert system for selecting (screening) significant events from the secondary data base. In the processing described in item (1), a multi-lingual thesaurus for nuclear-related terms become necessary because the source information (primary data bases) itself is multi-lingual. In the work described in item (2), the utilization of probabilistic safety assessment (PSA), for example, is a candidate method for judging the significance of events. Achieving the goal thus requires developing various new techniques. As the first step of the above long-term study project, this report proposes the 'basic flow' and presents the concept of how the nuclear-related AI can be used to carry out this 'basic flow'. (author)

  1. Criticality accident in uranium fuel processing plant. Questionnaires from Research Committee of Nuclear Safety

    International Nuclear Information System (INIS)

    Kataoka, Isao; Sekimoto, Hiroshi

    2000-01-01

    The Research Committee of Nuclear Safety carried out a research on criticality accident at the JCO plant according to statement of president of the Japan Atomic Energy Society on October 8, 1999, of which results are planned to be summarized by the constitutions shown as follows, for a report on the 'Questionnaires of criticality accident in the Uranium Fuel Processing Plant of the JCO, Inc.': general criticality safety, fuel cycle and the JCO, Inc.; elucidation on progress and fact of accident; cause analysis and problem picking-up; proposals on improvement; and duty of the Society. Among them, on last two items, because of a conclusion to be required for members of the Society at discussions of the Committee, some questionnaires were send to more than 1800 of them on April 5, 2000 with name of chairman of the Committee. As results of the questionnaires contained proposals and opinions on a great numbers of fields, some key-words like words were found on a shape of repeating in most questionnaires. As they were thought to be very important nuclei in these two items, they were further largely classified to use for summarizing proposals and opinions on the questionnaires. This questionnaire had a big characteristic on the duty of the Society in comparison with those in the other organizations. (G.K.)

  2. Two codes used in analysis of rod ejection accident for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhu Xinguan

    1987-12-01

    Two codes were developed to analyse rod ejection accident for Qinshan Nuclear Power Plant. One was based on point model with temperature reactivity feedback. In this code, the worth of ejected rod was obtained under'adiabatic' approximation. In the other code, the Nodal Green's Function Method was used to solve space-time dependent neutron diffusion equation. Using these codes, the transient core-power have been calculated for two rod ejection cases at beginning of core-life in Qinshan Nuclear Power Plant

  3. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

  4. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident.

    Science.gov (United States)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-08-01

    Sweden received about 5 % of the total release of (137)Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of (137)Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of (137)Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of (137)Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the

  5. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert

    2014-01-01

    Sweden received about 5 % of the total release of "1"3"7Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of "1"3"7Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of "1"3"7Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of "1"3"7Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest

  6. Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Alinaghizadeh, Hassan; Tondel, Martin; Walinder, Robert [Uppsala University, Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2014-08-15

    Sweden received about 5 % of the total release of {sup 137}Cs from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of {sup 137}Cs and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of {sup 137}Cs from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of {sup 137}Cs at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with

  7. Regulatory approach to accident management in Sweden

    International Nuclear Information System (INIS)

    Hoegberg, L.

    1989-01-01

    The Swedish accident management program includes the following components: definition of overall safety and radiation protection objectives for the program; definition of appropriate accident management strategies to reach these objectives, based on plant-specific severe accident analysis; development and installation of appropriate accident management systems and associated management procedure; definition of roles and resposibilities for plant staff involved in accident management and implementation of appropriate training programs. The discussion of these components tries to highlight the basic technical concepts and approaches and the underlying safety philosophy rather than going into design details. 5 figs., 7 refs

  8. A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

    Science.gov (United States)

    Bertch, Timothy Creston

    1998-12-01

    Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept. The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges. This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted. The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release

  9. Strategies for the prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Ader, C.; Heusener, G.; Snell, V.G.

    1999-01-01

    The currently operating nuclear power plants have, in general, achieved a high level of safety, as a result of design philosophies that have emphasized concepts such as defense-in-depth. This type of an approach has resulted in plants that have robust designs and strong containments. These designs were later found to have capabilities to protect the public from severe accidents (accidents more severe than traditional design basis in which substantial damage is done to the reactor core). In spite of this high level of safety, it has also been recognized that future plants need to be designed to achieve an enhanced level of safety, in particular with respect to severe accidents. This has led both regulatory authorities and utilities to develop guidance and/or requirements to guide plant designers in achieving improved severe accident performance through prevention and mitigation. The considerable research programs initiated after the TMI-2 accident have provided a large body of technical data, analytical methods, and the expertise necessary to provide for an understanding of a range of severe accident phenomena. This understanding of the ways severe accidents can progress and challenge containments, combined with the wide use of probabilistic safety assessments, have provided designers of evolutionary water cooled reactors opportunities to develop designs that minimize the challenges to the plant and to the public from severe accidents, including the development of accident management strategies intended to further reduce the risk of severe accidents. This paper describes some of the recent progress made in the understanding of severe accidents and related safety assessment methodology and how this knowledge has supported the incorporation of features into representative evolutionary designs that will prevent or mitigate many of the severe accident challenges present in current plants. (author)

  10. Plant state identification using fuzzy logic in the framework of computerized accident management support (CAMS)

    International Nuclear Information System (INIS)

    Van Dyck, Claude

    1997-05-01

    CAMS (computerized accident management support) is a system that will provide assistance in case of accident in a nuclear power plant. In order to support the user in evaluating the plant state, it contains a state identification module. The state identification module provides high-level, qualitative information about the status of critical safety functions, about the availability of safety systems and about the occurrence of initiating events. This information is sent to the man-machine interface and to other CAMS modules. The state identification module is developed using a specific tool: GPS (Goal Processing System) which is based on the Goal Tree - Success Tree formalism. GPS is a tool designed to manage ''process related'' knowledge and aimed at process supervision via real-time acquisition of process variables. Fuzzy logic has been introduced in GPS in order to have smoother transitions between different states of critical safety functions and systems changes and to have a truth value associated to each piece of information provided to the user. The whole system has been tested, integrated with the rest of CAMS, on several accident scenarios. The test results are satisfactory. A brief comparison is made between the present work and previous related work at the HRP. (author)

  11. JAEA's activities relating the Fukushima Nuclear Plant accident

    International Nuclear Information System (INIS)

    Tagawa, Akihiro

    2012-01-01

    JAEA started the activities relating to the Fukushima nuclear plant accident immediately after the Great East Japan Earthquake. The Office of Fukushima Partnership Operations for Environmental Remediation was opened and the JAEA staff was stationed as the base of cooperation with other organizations. It is conducting environmental radiation monitoring, environmental radioactivity analyses, resident public consulting, and demonstration of decontamination technology. Experts of JAEA are providing technical advice and supports to the Nuclear Safety Commission of Japan and the Ministry of Education, Culture and Sports. Furthermore, the water radiolysis leading to hydrogen gas evolution by Cs 137 adsorbed zeolite and the technique for radioactive waste process and its disposal of fuel debris are being studied. JAEA's Nuclear Emergency Assistance and Training Center (NEAT) is acting as a center of these supporting activities of JAEA. (S. Ohno)

  12. Saint-Laurent-des-Eaux plant - Report on the complementary safety assessment of nuclear facilities in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Saint-Laurent-des-Eaux plant to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. Robustness is the ability for the plant to withstand events beyond the level for which the plant was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence. Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like EDF's crisis organization, the organization of radiation protection, and work organization via subcontracting are also taken into consideration. The creation of a nuclear rapid action force (FARN) is proposed: this will be a national emergency force made up of specialized teams equipped to intervene in less than 24 hours on a nuclear site hit by an accident. This report is divided into 8 main chapters: 1) features of the site, 2) earthquake risk, 3) flooding risk, 4) risks due to other extreme natural disasters, 5) the loss of electrical power supplies and of heat sink, 6) management of severe accidents (accidents with core melt), 7) task subcontracting policy, 8) synthesis and list of improvements. 4 following appendices review: EDF's crisis organization, the FARN, radiation protection organization and accidental event trees. (A.C.)

  13. The main regularities of 137Cs accumulation by medicinal plants after nuclear accidents

    International Nuclear Information System (INIS)

    Orlov, A.A.; Krasnov, V.P.; Get'manchuk, A.I.

    2004-01-01

    The main regularities of 137 Cs accumulation by medicinal plants after nuclear accidents have been analyzed. Tendencies in study of this problem have been underlined on literary data. The mean values of transfer factor of 137 Cs from soil to medicinal row in different habitat types have been elucidated for Ukrainian Polessye. It was found that species with the wide ecological amplitude were characterized by the highest intensity of 137 Cs accumulation in forest habitats in comparison with non-forest ones. For some species of medicinal plants multiyear dynamics of 137 Cs specific activity has been shown on stationary experimental plots. (author)

  14. Evaluation and communication of potential risk of radionuclide contamination of foods after Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Sekizawa, Jun; Nakamura, Yumiko

    2011-01-01

    A large scale nuclear power plant accident happened after the great earthquake with a huge tsunami in the Eastern part of Japan in March 2011. Potential risk from radionuclide contamination in foods after the nuclear power plant accident was estimated using data of radiological food contamination from the Ministry of Health, Labour and Welfare. Data analyzed by combining nuclide, food, level of radiation detection, period, age-classified population, were compared to provisional index levels of radionuclides, and existing contamination levels in food by natural radioactive potassium. Health risk was shown to be very low or negligible considering presence of background radiological exposure from foods and the environment. Appropriate explanation of risk to various stakeholders of the society is imperative and results of trials were reported. (author)

  15. Accident for natural gas well with hydrogen sulfide in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    Tan Chengjun; Shangguang Zhihong; Sha Xiangdong

    2010-01-01

    In order to make assessment to the potential impact from accident of natural gas wells with hydrogen sulfide on the habitability of main control room of nuclear power plant (NPP), several assumptions such as source terms of maximum credible accident, conservative atmospheric conditions and release characteristics were proposed in the paper, and the impact on the habitability of main control room was evaluated using toxicity thresholds recommended by foreign authority. Case results indicate that the method can provide the reference for the preliminary assessment to external human-induced events during the siting phrase of NPP. (authors)

  16. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  17. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United States: Volume 1, Main report: Final report

    International Nuclear Information System (INIS)

    1989-04-01

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report (NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  18. Accident analysis device for nuclear power plants

    International Nuclear Information System (INIS)

    Ito, Masayuki.

    1982-01-01

    Purpose: To enable rapid recognition of and countermeasure required for accidents upon scram, by identifying the first contact point of causes for resulting the scram and displaying the contact point of causes. Constitution: When a scram signal is inputted by way of process input device, the time of the input is determined by a timer and the contact point of causes generated just before is taken as the point whose changes occurred prior to but most closely to the generation of the signal while referring to the data memory section for the time of change of the contact point of the cause, and sent to the accident analyzing display. The accident analyzing display extracts, based on the contact point of cause, a list for the forecast accidents corresponding thereto from the data memory section and also extracts the list for the corresponding confirmation items of the accident detection and displays them together with the system from which the scram signal has been generated, the time of generation, the name of the contact point of causes operated at first, and the value of the state quantity contained in the data memory section for the store of contact point of cause at the change. (Kawakami, Y.)

  19. The accident of the Fukushima-Daiichi nuclear plant. Status two years after the event

    International Nuclear Information System (INIS)

    2013-03-01

    In a first part, this report briefly recalls the circumstances and occurrence of the accident, gives an overview of actions undertaken by the IRSN (calculations of installation damages, modelling of contaminated air movements, simulations of radionuclide dispersion in the sea environment, information of French nationals in Japan, press and public information), and an overview of strength tests of nuclear installations (additional safety assessments and European stress tests). The second part gives an overview of the situation in Japan two years after the accident: evolution of governance in terms of nuclear risk management, condition of the Fukushima plant in January 2013, health and environmental impact and post-accidental management, actions undertaken by the IRSN (assessment of doses potentially received by populations, strengthening of cooperation between Japan and France in the field of severe accidents, participation to the Fukushima Dialogue). The third part presents the contribution of the IRSN to the strengthening of nuclear safety and radiation protection at the international level, at the European level, and in France

  20. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    International Nuclear Information System (INIS)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L.; Forester, J.; Johnson, J.

    1995-03-01

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively

  1. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

    1995-03-01

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  2. Application of the accident consequences model of the German risk study to assessments of accident risks in different types of nuclear power plants

    International Nuclear Information System (INIS)

    Ehrhardt, J.; Bayer, A.

    1982-01-01

    Within the scope of the 'German Risk Study for Nuclear Power Plants' (Phase A) the accident consequence model UFOMOD was developed in the Karlsruhe Nuclear Research Center. This model originally developed for pressurized water reactors has now been extended in order to obtain results about accidental releases of activity from fast breeder and high-temperature reactors, too. (RW) [de

  3. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  4. Radiation Exposure and Thyroid Cancer Risk After the Fukushima Nuclear Power Plant Accident in Comparison with the Chernobyl Accident.

    Science.gov (United States)

    Yamashita, S; Takamura, N; Ohtsuru, A; Suzuki, S

    2016-09-01

    The actual implementation of the epidemiological study on human health risk from low dose and low-dose rate radiation exposure and the comprehensive long-term radiation health effects survey are important especially after radiological and nuclear accidents because of public fear and concern about the long-term health effects of low-dose radiation exposure have increased considerably. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project for the purpose of long-term health care administration and medical early diagnosis/treatment for the prefectural residents. Especially on a basis of the lessons learned from the Chernobyl accident, both thyroid examination and mental health care are critically important irrespective of the level of radiation exposure. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, and it is very difficult to estimate retrospectively internal exposure dose from the short-lived radioactive iodines. Therefore, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood thyroid cancer. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  5. Impact of the great east Japan earthquake, tsunami, nuclear power plant accident

    International Nuclear Information System (INIS)

    Hosoya, Mitsuaki

    2013-01-01

    The title subject is described mainly from the pediatric aspect. Shortly after the Quake (Mar. 11, 2011), Disaster Medical Assistance Team (DMAT) and Japan Medical Association Team (JMAT) started on their disaster emergent activity with various personnel and students of Fukushima Medical University (FMU). The Power Plant Accident broke out on the next day, and FMU was the base in charge of multiple managements of radiological medicare as well as the ordinary emergent one. Number of children emergently admitted in or requiring the general pediatric consultation was rather small, and problems of insufficient pediatric articles were virtually solved within 2 weeks. Pediatric support by FMU was done from April to May end for children in evacuation places. At 3 months after the disaster, the birth number markedly decreased near the Plant, and pediatric in- and out-patient number also diminished in the whole Fukushima prefecture, suggesting that many at pregnancy or having infants had evacuated out of the prefecture probably because of their concern of possible radiation health hazard. In consideration of epidemiology of A-bomb survivors and of victims in Chernobyl Accident, so much increased prevalence of pediatric thyroid cancer is conceived to be hardly observed after Fukushima Accident. The project of Fukushima Health Management Survey involves fundamental and detailed examinations. The former subject is to all of prefectural residents who lived at the time of the Quake and the latter, to all children's thyroid with the age <18 y by ultrasonographic follow-up, to all residents dwelled in the evacuation areas by the detailed physical and mental/life-style examinations and to pregnant women by questionnaire and follow-up. Residents' concern is mostly toward the health of infants who are sensitive to radiation. (T.T.)

  6. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Appendices VII, VIII, IX, and X. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the release of radioactivity in reactor accidents; physical processes in reactor meltdown accidents; safety design rationale for nuclear power plants; and design adequacy.

  7. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-07

    (135)Cs/(137)Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure (135)Cs, there were no (135)Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited (135)Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of (134)Cs, (135)Cs, and (137)Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the (134)Cs/(137)Cs activity ratio (1.033 ± 0.006) and (135)Cs/(137)Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace (135)Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%-52.6%. The obtained (135)Cs/(137)Cs database will be useful for its application as a geochemical tracer in the future.

  8. [Research on accidents in a tire-producing plant].

    Science.gov (United States)

    Mete, R; Sabatucci, A

    1989-09-30

    In the autumn of 1987 the U.S.L. health service (prevention, hygiene and occupational safety section) began a study about the accidents in a firm manufacturing tyres, placed in its own area. The retrospective enquiry starts from the analysis of typology, diffusion and seriousness of occupational accidents. The firm's accident register has been analyzed and integrated with other necessary information provided by the firm, by I.N.A.I.L. and by the air force metereological service. The study has been carried out on data concerning the following years: 1984-1985-1986. The accidents considered, implied absence from work and were divided as follows: for absence up till 3 days (in franchise), and more than 3 days (indemnified), applying the average value calculated on one year of the three analyzed. Every accident has been analyzed per year, month, day, hour of event. According to the classes: circumstances, kind of lesion, site of lesion, period of absence from work. The indices of: frequency, seriousness, incidence, mean duration have been calculated. The average monthly values of temperature: max and min. of the area and to the average monthly amount of processed elastomer (rate of production). The statistics we obtained, justified the study and showed the operative solution. The aspect of sanitary education and the general psychological aspect regarding the accident have been considered. Moreover the general operative solutions for the firm and specific ones for every department and for every position have been shown and faced up to. In this way, according to the risks that have emerged from the enquiries on previous accidents and thanks to direct inspection. it was possible to prevent accidents.

  9. Tracing nuclear elements released by Fukushima Nuclear Power Plant accident

    Science.gov (United States)

    Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.

  10. Application of the severe accident code ATHLET-CD. Modelling and evaluation of accident management measures (Project WASA-BOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Polina; Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Schaefer, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety

    2016-07-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. Numerical analyses are used to investigate the accident progression and the complex physical phenomena during the core degradation phase, as well as to evaluate the effectiveness of possible countermeasures in the preventive and mitigative domain [1, 2]. The presented analyses have been performed with the computer code ATHLET-CD developed by GRS [3, 4].

  11. Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project (HDRV)

    International Nuclear Information System (INIS)

    Schriner, J.A.

    1998-08-01

    The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF

  12. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 3. Behaviour of high pressure coolant injection system (HPCI) based on thermodynamic model

    International Nuclear Information System (INIS)

    Maruyama, Shigenao

    2014-01-01

    In order to clarify the process of Accident of Fukushima Nuclear Plants, an accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 3 is analyzed from the data open to the public. Phase equilibrium process model was introduced in which the vapor and water are at saturation point in the vessels. The present accident scenario assumes that the high pressure coolant injection system (HPCI) did not worked properly, but the steam in the reactor pressure vessel (RPV) leaked through the turbine of HPCI to the suppression chamber since 12/3/2011 12:35. It is assumed that the Tsunami flooded the torus room where the suppression chamber was placed. Proposed accident scenario agrees with the data of the plant parameters obtained just after the accident. It is estimated that the water injection by HPIC was stopped since around at 13/3 19:00 and the water level in RPV decreased since then. It is estimated that the RPV broke at 14/3 8:55 and water could injected from fire engines due to the depression due to the rupture of RPV. There was little water left in RPV at the time of the rupture. If the present scenario is correct, the behavior that operators in the plant stopped HPCI at 13/3 2:42 did not affect seriously on the RPV rupture. If HPCI was working properly until the operators stopped it, the plant parameters obtained in the accident cannot be explained. (author)

  13. The application of the health effects models to the severe accident consequence analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Ling; Yeung, M.R.

    1998-01-01

    Health Effect Model (HEM) is an important model used in the analysis of severe accidents consequence of the Nuclear Power Plants (NPP). The accuracy of HEM affects the reliability of the assessment for the accidents consequences, and furthermore, the effectiveness of the emergency countermeasures taken for the health protection of the public around the NPPs. Based on the NUREG/CR4214 series reports, the paper sets appropriate parameters for HEM by studying both early and late HEMs used for domestic NPP accident consequence analysis. In the study, the Guangdong Daya Bay NPP is chosen as an example study to calculate the health risk of the Hong Kong population caused by Daya Bay NPP

  14. A case study of economic incentives and local citizens' attitudes toward hosting a nuclear power plant in Japan: Impacts of the Fukushima accident

    International Nuclear Information System (INIS)

    Kato, Takaaki; Takahara, Shogo; Nishikawa, Masashi; Homma, Toshimitsu

    2013-01-01

    The attitude of local communities near a nuclear power plant (NPP) is a key factor in nuclear policy decision making in Japan. This case study compared local citizens' attitudes in 2010 and 2011 toward the benefits and drawbacks of hosting Kashiwazaki–Kariwa NPP. The Fukushima accident occurred in this period. After the accident, benefit recognition of utility bill refunds clearly declined, while that of public facilities did not, suggesting the influence of a bribery effect. The negative shift of attitudes about hosting the NPP after the accident was more modest in Kariwa Village, which saw a large expansion of social welfare programs, than in the other two areas, which lacked such a budget expansion. Policy implications of these results regarding the provision of economic incentives in NPP host areas after the Fukushima accident were discussed. - Highlights: • The Fukushima accident shocked Japan's nuclear policy. • Citizens' attitudes toward incentives of hosting a nuclear power plant surveyed. • More citizens thought negatively about incentives after the Fukushima accident. • The bribery effect, mode and amount of incentives affected citizens' attitudes

  15. Reactor safety study. An assessment of accident risks in U. S. commercial nuclear power plants. Executive summary: main report. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    Information is presented concerning the objectives and organization of the reactor safety study; the basic concepts of risk; the nature of nuclear power plant accidents; risk assessment methodology; reactor accident risk; and comparison of nuclear risks to other societal risks.

  16. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  17. Final Report for the Restart of the Waste Characterization, Reduction and Repackaging Facility (WCRRF) Contractor Readiness Assessment (CRA)

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Gregory Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-22

    The Los Alamos National Laboratory (LANL or Laboratory) Contractor Readiness Assessment (CRA) required for restart of the Technical Area (TA) 50 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) for remediated nitrate salt (RNS) waste operations was performed in compliance with the requirements of Department of Energy (DOE) Order (O) 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, and LANL procedure FSD-115-001, Verification of Readiness to Start Up or Restart LANL Nuclear Facilities, Activities, and Operations.

  18. Assessment of risks of accidents and normal operation at nuclear power plants

    International Nuclear Information System (INIS)

    Savolainen, Ilkka; Vuori, Seppo.

    1977-01-01

    A probabilistic assessment model for the analysis of risks involved in the operation of nuclear power plants is described. With the computer code ARANO it is possible to estimate the health and economic consequences of reactor accidents both in probabilistic and deterministic sense. In addition the code is applicable to the calculation of individual and collective doses caused by the releases during normal operation. The estimation of release probabilities and magnitudes is not included in the model. (author)

  19. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Ghasemi, M.; Amrollahi, R.; Khamooshi, C.; Parsouzi, Z. [Amirkabir University of Technology, Health Physics and Dosimetry Research Laboratory, Department of Physics, Tehran (Iran, Islamic Republic of)

    2013-05-15

    Unit-1 of the Bushehr nuclear power plant (BNPP-1) is a VVER-type reactor with 1,000-MWe power constructed near Bushehr city at the coast of the Persian Gulf, Iran. The reactor has been recently operational to near its full power. The radiological impact of nuclear power plant (NPP) accidents is of public concern, and the assessment of radiological consequences of any hypothetical nuclear accident on public exposure is vital. The hypothetical accident scenario considered in this paper is a design-basis accident, that is, a primary coolant leakage to the secondary circuit. This scenario was selected in order to compare and verify the results obtained in the present paper with those reported in the Final Safety Analysis Report (FSAR 2007) of the BNPP-1 and to develop a well-proven methodology that can be used to study other and more severe hypothetical accident scenarios for this reactor. In the present study, the version 2.01 of the PC COSYMA code was applied. In the early phase of the accidental releases, effective doses (from external and internal exposures) as well as individual and collective doses (due to the late phase of accidental releases) were evaluated. The surrounding area of the BNPP-1 within a radius of 80 km was subdivided into seven concentric rings and 16 sectors, and distribution of population and agricultural products was calculated for this grid. The results show that during the first year following the modeled hypothetical accident, the effective doses do not exceed the limit of 5 mSv, for the considered distances from the BNPP-1. The results obtained in this study are in good agreement with those in the FSAR-2007 report. The agreement obtained is in light of many inherent uncertainties and variables existing in the two modeling procedures applied and proves that the methodology applied here can also be used to model other severe hypothetical accident scenarios of the BNPP-1 such as a small and large break in the reactor coolant system as well

  20. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H S; Jeon, M H; Cho, N J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  1. Development of system of computer codes for severe accident analysis and its applications

    International Nuclear Information System (INIS)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others

    1992-01-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts

  2. Safety requirement of the nuclear power plants, after TMI-2 accident and their possible implementation on Bushehr NPP

    International Nuclear Information System (INIS)

    Mirhabibi, N.; Tochai, M.T.M.; Ashrafi, A.; Farnoudi, E.

    1985-01-01

    Based on the lessons learned from the TMI-2 accident and other research and developments, many improvements have been required for the design, manufacturing and operation of nuclear power plants in recent years. These requirements have already been implemented to the plants in operation and considered as new safety requirements for new plants. In the present paper these requirements and their possible implementation on Bushehr NPP are discussed. (Author)

  3. EPRI research on accident management

    International Nuclear Information System (INIS)

    Oehlberg, R.N.; Chao, J.

    1991-01-01

    The paper discusses Nuclear Regulatory Commission (NRC) efforts regarding severe reactor accident management and the Nuclear Management and Resources Council (NUMAEX), activities. (EPRI) Electric Power Research Institute accident management program consists of the two products just mentioned plus one related to severe accident plant status information and the MAAP 4.0 computer code. These are briefly discussed

  4. Modelling of radioactive fallout in the vicinity of Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Israel, Y.A.; Petrov, V.N.; Severov, D.A.

    1988-03-01

    Deposition of radioactive products escaping into the atmosphere for a long time from the Chernobylsk-4 reactor resulting in residual radioactive contamination of the region at a distance of up to 100 km from the nuclear power plant is considered. The suggested model may be used for estimation of the possible scope of nuclear danger in the regions of nuclear power plants and creation of conditions ensuring safety of the population at possible accidents. The following topics are developed: height of elevation and conditions of radionuclide transfer in the atmosphere; dynamics of release and dispersive composition of radioactive products; calculations of radiation levels at a close trace [fr

  5. Severe accident management. Prevention and Mitigation

    International Nuclear Information System (INIS)

    1992-01-01

    Effective planning for the management of severe accidents at nuclear power plants can produce both a reduction in the frequency of such accidents as well as the ability to mitigate their consequences if and when they should occur. This report provides an overview of accident management activities in OECD countries. It also presents the conclusions of a group of international experts regarding the development of accident management methods, the integration of accident management planning into reactor operations, and the benefits of accident management

  6. Development of the severe accident risk information database management system SARD

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  7. Development of the severe accident risk information database management system SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  8. The safety assessment of OPR-1000 nuclear power plant for station blackout accident applying the combined deterministic and probabilistic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Gu, E-mail: littlewing@kins.re.kr [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-08-15

    Highlights: • The combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. • The safety assessment of OPR-1000 nuclear power plant for SBO accident is performed by applying the CDPP. • By estimating the offsite power restoration time appropriately, the SBO risk is reevaluated. • It is concluded that the CDPP is applicable to safety assessment of BDBAs without significant erosion of the safety margin. - Abstract: Station blackout (SBO) is a typical beyond design basis accident (BDBA) and significant contributor to overall plant risk. The risk analysis of SBO could be important basis of rulemaking, accident mitigation strategy, etc. Recently, studies on the integrated approach of deterministic and probabilistic method for nuclear safety in nuclear power plants have been done, and among them, the combined deterministic and probabilistic procedure (CDPP) was proposed for safety assessment of the BDBAs. In the CDPP, the conditional exceedance probability obtained by the best estimate plus uncertainty method acts as go-between deterministic and probabilistic safety assessments, resulting in more reliable values of core damage frequency and conditional core damage probability. In this study, the safety assessment of OPR-1000 nuclear power plant for SBO accident was performed by applying the CDPP. It was confirmed that the SBO risk should be reevaluated by eliminating excessive conservatism in existing probabilistic safety assessment to meet the targeted core damage frequency and conditional core damage probability. By estimating the offsite power restoration time appropriately, the SBO risk was reevaluated, and it was finally confirmed that current OPR-1000 system lies in the acceptable risk against the SBO. In addition, it is concluded that the CDPP is applicable to safety assessment of BDBAs in nuclear power plants without significant erosion of the safety margin.

  9. Development of severe accident management advisory and training simulator (SAMAT)

    International Nuclear Information System (INIS)

    Jeong, K.-S.; Kim, K.-R.; Jung, W.-D.; Ha, J.-J.

    2002-01-01

    The most operator support systems including the training simulator have been developed to assist the operator and they cover from normal operation to emergency operation. For the severe accident, the overall architecture for severe accident management is being developed in some developed countries according to the development of severe accident management guidelines which are the skeleton of severe accident management architecture. In Korea, the severe accident management guideline for KSNP was recently developed and it is expected to be a central axis of logical flow for severe accident management. There are a lot of uncertainties in the severe accident phenomena and scenarios and one of the major issues for developing a operator support system for a severe accident is the reduction of these uncertainties. In this paper, the severe accident management advisory system with training simulator, SAMAT, is developed as all available information for a severe accident are re-organized and provided to the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, the previous research results by knowledge-base technique, and the expected plant behavior using the severe accident training simulator. The plant model used in this paper is oriented to severe accident phenomena and thus can simulate the plant behavior for a severe accident. Therefore, the developed system may make a central role of the information source for decision-making for a severe accident management, and will be used as the training simulator for severe accident management

  10. Phenix plant - Complementary safety assessment of the Phenix plant (INB 71) in the light of the Fukushima accident

    International Nuclear Information System (INIS)

    2011-01-01

    This CSA (Complementary Safety Assessment) analyses the robustness of the Phenix reactor to extreme situations such as those that led to the Fukushima accident and proposes a series of improvements. The Phenix reactor stands on the Marcoule site of CEA and was stopped definitely in 2009 for electricity production. Robustness is the ability for the facility to withstand events beyond the level for which the facility was designed. Robustness is linked to safety margins but also to the situations leading to a sudden deterioration of the accident sequence (cliff edge effect). Safety is not only a matter of design or of engineered systems, it is also a matter of organization. So issues like crisis organization and work organization via subcontracting are also taken into consideration. This report is divided into 9 main chapters: 1) main features of the Phenix facility, 2) identification of cliff edge risks as well as structures and equipment essential to safety, 3) earthquake risk, 4) flood risk, 5) risks due to other extreme natural disasters, 6) the loss of electrical power supplies and of cooling systems, 7) management of severe accidents, 8) subcontracting policy, 9) synthesis. This study shows that it is necessary to take some measures to reinforce the robustness of the plant concerning flood risks. (A.C.)

  11. Consideration of severe accidents in design of advanced WWER reactors

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Rogov, M.F.; Podshibyakin, A.K.; Fil, N.S.; Volkov, B.E.; Semishkin, V.P.

    1998-01-01

    Severe accident related requirements formulated in General Regulations for Nuclear Power Plant Safety (OPB-88), in Nuclear Safety Regulations for Nuclear Power Stations' Reactor Plants (PBYa RU AS-89) and in other NPP nuclear and radiation guides of the Russian Gosatomnadzor are analyzed. In accordance with these guides analyses of beyond design basis accidents should be performed in the reactor plant design. Categorization of beyond design basis accidents leading to severe accidents should be made on occurrence probability and severity of consequences. Engineered features and measures intended for severe accident management should be provided in reactor plant design. Requirements for severe accident analyses and for development of measures for severe accident management are determined. Design philosophy and proposed engineered measures for mitigation of severe accidents and decrease of radiation releases are demonstrated using examples of large, WWER-1000 (V-392), and medium size WWER-640 (V-407) reactor plant designs. Mitigation of severe accidents and decrease of radiation releases are supposed to be conducted on basis of consistent realization of the defense in depth concept relating to application of a system of barriers on the path of spreading of ionizing radiation and radioactive materials to the environment and a set of engineered measures protecting these barriers and retaining their effectiveness. Status of fulfilled by OKB Gidropress and other Russian organizations experimental and analytical investigations of severe accident phenomena supporting design decisions and severe accident management procedures is described. Status of the works on retention of core melt inside the WWER-640 reactor vessel is also characterized

  12. Phenomenology of severe accidents in BWR type reactors. First part

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2003-01-01

    A Severe Accident in a nuclear power plant is a deviation from its normal operating conditions, resulting in substantial damage to the core and, potentially, the release of fission products. Although the occurrence of a Severe Accident on a nuclear power plant is a low probability event, due to the multiple safety systems and strict safety regulations applied since plant design and during operation, Severe Accident Analysis is performed as a safety proactive activity. Nuclear Power Plant Severe Accident Analysis is of great benefit for safety studies, training and accident management, among other applications. This work describes and summarizes some of the most important phenomena in Severe Accident field and briefly illustrates its potential use based on the results of two generic simulations. Equally important and abundant as those here presented, fission product transport and retention phenomena are deferred to a complementary work. (Author)

  13. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  14. Development of passive condensers for accident localization systems at nuclear power plants in the former USSR

    International Nuclear Information System (INIS)

    Kuznecov, M.V.

    1992-01-01

    The development is summarized of passive condensers for accident localization systems at nuclear power plants (with RBMK and WWER reactors) in the former USSR. Basic properties and criteria defining their availability are described, as are experimental tests and technical solution optimization results. (author) 2 fig

  15. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  16. Agricultural implications for Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2013-01-01

    The overview of our research projects for Fukushima is presented including how they were derived. Then, where the fallout was found, right after the accident, is briefly summarized for soil, plants, trees, etc. The time of the accident was late winter, there were hardly any plants growing except for the wheat in the farming field. Most of the fallout was found at the surface of soil, tree barks, etc., which were exposed to the air at the time of the accident. The fallout found was firmly adsorbed to anything and did not move for months from the site when they first touched. Therefore, the newly emerged tissue after the accident showed very low radioactivity. The fallout contamination was not uniform, therefore, when radiograph of contaminated soil or leaves were taken, fallout was shown as spots. Generally, plants could not absorb radiocesium adsorbed to soil. Some of the results we obtained will be presented. (author)

  17. Development of an accident sequence precursor methodology and its application to significant accident precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seung Hyun; Park, Sung Hyun; Jae, Moo Sung [Dept. of of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-03-15

    The systematic management of plant risk is crucial for enhancing the safety of nuclear power plants and for designing new nuclear power plants. Accident sequence precursor (ASP) analysis may be able to provide risk significance of operational experience by using probabilistic risk assessment to evaluate an operational event quantitatively in terms of its impact on core damage. In this study, an ASP methodology for two operation mode, full power and low power/shutdown operation, has been developed and applied to significant accident precursors that may occur during the operation of nuclear power plants. Two operational events, loss of feedwater and steam generator tube rupture, are identified as ASPs. Therefore, the ASP methodology developed in this study may contribute to identifying plant risk significance as well as to enhancing the safety of nuclear power plants by applying this methodology systematically.

  18. Severe accident management. Optimized guidelines and strategies

    International Nuclear Information System (INIS)

    Braun, Matthias; Löffler, Micha; Plank, Hermann; Asse, Dietmar; Dimmelmeier, Harald

    2014-01-01

    The highest priority for mitigating the consequences of a severe accident with core melt lies in securing containment integrity, as this represents the last barrier against fission product release to the environment. Containment integrity is endangered by several physical phenomena, especially highly transient phenomena following high-pressure reactor pressure vessel failure (like direct containment heating or steam explosions which can lead to early containment failure), hydrogen combustion, quasi-static over-pressure, temperature failure of penetrations, and basemat penetration by core melt. Each of these challenges can be counteracted by dedicated severe accident mitigation hardware, like dedicated primary circuit depressurization valves, hydrogen recombiners or igniters, filtered containment venting, containment cooling systems, and core melt stabilization systems (if available). However, besides their main safety function these systems often have also secondary effects that need to be considered. Filtered containment venting causes (though limited) fission product release into the environment, primary circuit depressurization leads to loss of coolant, and an ex-vessel core melt stabilization system as well as hydrogen igniters can generate high pressure and temperature loads on the containment. To ensure that during a severe accident any available systems are used to their full beneficial extent while minimizing their potential negative impact, AREVA has implemented a severe accident management for German nuclear power plants. This concept makes use of extensive numerical simulations of the entire plant, quantifying the impact of system activations (operational systems, safety systems, as well as dedicated severe accident systems) on the accident progression for various scenarios. Based on the knowledge gained, a handbook has been developed, allowing the plant operators to understand the current state of the plant (supported by computational aids), to predict

  19. The relationship of JNC and JCO in the uranium processing plant criticality accident

    International Nuclear Information System (INIS)

    Kanamori, Masashi; Yanagibashi, Katsumi; Okamoto, Naritoshi

    2002-12-01

    On September 30th 1999, the criticality accident occurred at JCO's uranium conversion building in Tokai. The accident occurred during reconversion from U 3 O 8 to uranium nitrate solution (UNH) with uranium enriched 18.8% and about 60 kgU. JCO contacted with JNC to supply UNH that is fuel material for the experimental fast breeder reactor 'JOYO'. JNC has contracted with JCO that had started nuclear fuel material processing business following a definite policy of Japanese government and developed SUMITOMO ADU PROCESS'. JNC made the first contract with JCO in 1985 and has made a contact every year. There had never been a problem in their products. JNC inspected products based on contract. JNC discharge our duty as customer inspecting products based on contract. As for safety control, JCO had taken licensing safety review and had been permitted to be 'a processing facility'. Therefore JNC understood that JCO produced following this license. 'The Uranium Processing Plant Criticality Accident Investigation' showed that JCO had been taking a different method from the permit and violating the license. However JNC had never been explained about that and JCO's operation procedures had never described about that. Therefore the Criticality Accident couldn't be avoided. This report describes the relationship of JNC and JCO in the uranium reconversion contract for JOYO, atomic development policy of Japanese government, process to the order and the contents of contract. (author)

  20. Integrated framework for the external cost assessment of nuclear power plant accident considering risk aversion: The Korean case

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2016-01-01

    Recently, the estimation of accident costs within the social costs of nuclear power plants (NPPs) has garnered substantial interest. In particular, the risk aversion behavior of the public toward an NPP accident is considered an important factor when integrating risk aversion into NPP accident cost. In this study, an integrated framework for the external cost assessment of NPP accident that measures the value of statistical life (VSL) and the relative risk aversion (RRA) coefficient for NPP accident based on an individual-level survey is proposed. To derive the willingness to pay and the RRA coefficient for NPP accident risks, a survey was conducted on a sample of 1550 individuals in Korea. The estimation obtained a mean VSL of USD 2.78 million and an RRA coefficient of 1.315. Based on the estimation results in which various cost factors were considered, a multiplication factor of 5.16 and an external cost of NPP accidents of 4.39E−03 USD-cents/kW h were estimated. This study is expected to provide insight to energy policy decision-makers on analyzing the economic validity of NPP compared to other energy sources by reflecting the estimated external cost of NPP accident into the unit electricity generation cost of NPP. - Highlights: •External cost assessment framework for NPP is proposed considering risk aversion. •VSL was derived from WTP for mortality risk reduction from hypothetical NPP accident. •RRA was derived to integrate public risk aversion into external cost of NPP accident. •Individual-level survey was conducted to derive WTP and RRA for NPP accident risk. •The external cost was estimated considering the direct cost factors of NPP accident.

  1. Public opinion on atomic energy after JCO accident

    International Nuclear Information System (INIS)

    Okamoto, Koichi; Miyamoto, Sosuke; Ishikawa, Masayori; Shimomura, Hideo; Hori, Hiromoto; Suzuki, Yasuko; Kamise, Yumiko

    2004-04-01

    JCO accident happened on September 30, 1999. This book deals with the public opinion of atomic energy after JCO accident in Japan and comparison with that of USA and France. The analysis of public opinion structure is also shown. The important chapter is the eighth chapter a n opinion survey after the accident , of which sampling areas consisted of three areas such as JCO accident area, the nuclear power plants and the general cities. The analytical results of data showed that the public opinion in Tokai-mura and Naka-machi, the JCO accident area, indicated moderate opinions. It is the interesting results were obtained that the moderate tendency of opinion was in order JCO accident area, the nuclear power plants and the general cities. People's attitude toward nuclear energy related to their social values. Abstract of JCO accident, JCO structure, the effects of accident on the environment and news stories about the accident are reported. (S.Y.)

  2. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    Science.gov (United States)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  3. Small chances - great consequences or the consequences of a large-scale accident in a nuclear power plant

    International Nuclear Information System (INIS)

    Dijk, G. van; Smit, W.A.

    1977-01-01

    This report is a sequel to the previous Boerderijcahier (no. 7502) which discussed long-term effects of soil contamination in case of a nuclear power plant accident. In this report the short-term health effects are discussed. Models describing the local consequences of a severe accident are developed, taking into account the possible weather conditions (meteorological model), the evacuation possibilities and the inhabitability of certain areas. In each case long-term and short-term effects are discussed. The safety studies by various departments of the Netherlands' government and the Rasmussen report are commented on

  4. Advantages for EDF of using and updating PSAs for the probabilistic analysis of accident scenarios in nuclear power plants

    International Nuclear Information System (INIS)

    Feuillade, Gilles

    2000-01-01

    This paper shows the advantages for EDF of using and updating PSA models of PWR units for the probabilistic assessment of accident scenarios. These advantages may be classified in various categories: The construction of PSA models makes it possible to aggregate knowledge in a variety of fields: thermohydraulics, the behavior of equipment and systems, organization, plant operation, etc. The updating of PSA models makes it possible to monitor the state of progress of PWR unit safety levels and also allows a variety of applications to be used throughout the service life of the unit. The results obtained are directly applicable to the units as the 'reference PSA models' developed by EDF conform to the units in service. The use of PSA for the examination of incident or accident scenarios makes it possible to verify the adequacy of the resources both in terms of 'systems' and 'plant operation'. These two notions are to be taken in the broadest sense, as they cover the aspects of system design, reliability and availability of equipment, organization of plant operation, comprehensiveness of operating procedures, human redundancy, etc. The use of PSA models through the different applications (analyses of predominant sequences, analyses of main equipment failures, analyses main operator actions, analyses according to the power units, etc) is becoming an indispensable supplement to conventional deterministic analyses of the envisaged accident scenarios. Within the scope of accident prevention, it constitutes a tool to assist the decision-maker, especially when evaluating the pertinence of the General Operating Rules (operating procedures, operating technical specifications, periodic testing, etc). (S.Y.)

  5. Case study on chemical plant accidents for flow-sheet design of the HTTR-IS system

    International Nuclear Information System (INIS)

    Homma, Hiroyuki; Sato, Hiroyuki; Kasahara, Seiji; Hara, Teruo; Kato, Ryoma; Sakaba, Nariaki; Ohashi, Hirofumi

    2007-02-01

    At the present time, we are alarmed by depletion of fossil energy and adverse effect of rapid increase in fossil fuel burning on environment such as climate changes and acid rain, because our lives depend still heavily upon fossil energy. It is thus widely recognized that hydrogen is one of important future energy carriers in which it is used without emission of carbon dioxide greenhouse gas and atmospheric pollutants and that hydrogen demand will increase greatly as fuel cells are developed and applied widely in the near future. To meet massive demand of hydrogen, hydrogen production from water utilizing nuclear, especially by thermochemical water-splitting Iodine-Sulphur (IS) process utilizing heat from High-Temperature Gas-cooled Reactors (HTGRs), offers one of the most attractive zero-emission energy strategies and the only one practical on a substantial scale. However, to establish a technology based for the HTGR hydrogen production by the IS process, we should close several technology gaps through R and D with the High-Temperature Engineering Test Reactor (HTTR), which is the only Japanese HTGR built and operated at the Oarai Research and Development Centre of Japan Atomic Energy Agency (JAEA). We have launched design studies of the IS process hydrogen production system coupled with the HTTR (HTTR-IS system) to demonstrate HTGR hydrogen production. In designing the HTTR-IS system, it is necessary to consider preventive and breakdown maintenance against accidents occurred in the IS process as a chemical plant. This report describes case study on chemical plant accidents relating to the IS process plant and shows a proposal of accident protection measures based on above case study, which is necessary for flow-sheet design of the HTTR-IS system. (author)

  6. Nuclear accidents. Three mile Island (United States)

    International Nuclear Information System (INIS)

    Duco, J.

    2004-01-01

    This paper describes the accident of Three Miles Island power plant which occurred the 28 march 1979 in the United States. The accident scenario, the consequences and the reactor core and vessel, after the accident, are analyzed. (A.L.B.)

  7. MDEP Design-Specific Common Position CP-APR1400WG-01. Common position addressing Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2016-05-01

    The MDEP APR1400 Working Group (APR1400WG) members consist of members from Republic of Korea, United Arab Emirates, and the United States. A main objectives of MDEP is to encourage convergence of code, standard and safety goals with exploring the opportunities for harmonization of regulatory practice and cooperation on safety review of APR-1400 specific designs. This common position addressing is aimed at sharing knowledge, information and experience on safety improvement related to lessons learned from the Fukushima Daiichi NPP Accident or Fukushima Daiichi NPP Accident-related issues amongst APR-1400 WG member states to achieve the MEDP goal. Because not all of these Regulators have completed the regulatory review of their APR1400 applications yet, this paper identifies common preliminary approaches to address potential safety improvements for APR1400 plants, as well as common general expectations for new nuclear power plants, as related to lessons learned from the Fukushima Daiichi NPP Accident or Fukushima Daiichi NPP Accident-related issues. While some asymmetry exists among those of three Regulators in terms of design, regulatory practice and licensing milestone sharing information and common understanding on post-Fukushima Daiichi NPP Accident enhancement would be promote resilient design for countering beyond design extreme external event like Fukushima Daiichi NPP nuclear disaster. This common position paper aims at identifying characteristics of post-Fukushima Daiichi NPP Accident enhancements putting in place by each country and setting common position to achieve balanced and harmonized APR-1400 design. After the safety reviews of the APR1400 design applications that are currently in review are completed, the regulators will update this paper to reflect their safety conclusions regarding the APR1400 design and how the design could be enhanced to address Fukushima Daiichi NPP Accident-related issues. The common preliminary approaches are organised into

  8. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  9. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  10. Medical aspects of radiation accidents

    International Nuclear Information System (INIS)

    Messerschmidt, O.

    1990-01-01

    Reactor accidents and nuclear bomb explosions are compared including the release of radioactivity in an accident, results of risk studies, emergency measures of nuclear power plants, and evacuation of the population. The medical aspects refer to the prophylaxies of the thyroid gland, contamination and decontamination of body surfaces, recommendations of the ICRP, radiation injury after total body exposure and medical problems after a reactor accident. (DG)

  11. A database system for the management of severe accident risk information, SARD

    International Nuclear Information System (INIS)

    Ahn, K. I.; Kim, D. H.

    2003-01-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies

  12. A database system for the management of severe accident risk information, SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  13. ADAM: An Accident Diagnostic,Analysis and Management System - Applications to Severe Accident Simulation and Management

    International Nuclear Information System (INIS)

    Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.

    2002-01-01

    The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)

  14. The accident in Fukushima. Preliminary report on the accident progress in the nuclear power plants as a consequence of the earth quake on 11th March 2011; Der Unfall in Fukushima. Zwischenbericht zu den Ablaeufen in den Kernkraftwerken nach dem Erdbeben vom 11. Maerz 2011

    Energy Technology Data Exchange (ETDEWEB)

    Borghoff, Stefan; Brueck, Benjamin; Kilian-Huelsmeyer, Yvonne; Maqua, Michael; Mildenberger, Oliver; Quester, Claudia; Stahl, Thorsten; Thuma, Gernot; Wetzel, Norbert; Wild, Volker

    2011-08-15

    The preliminary report on the accident progress in the nuclear power plants as a consequence of the earth quake on 11th March 2011 describes the chronologic sequence of the accident in the different units of the power plant. The measures for mitigation of the accident impact at the site of Fukushima Daiichi and Fukushima Daini included the efforts to reach and maintain stable plant conditions. The issue radiological situation includes an estimation of the air-borne radionuclide release, the contamination of the environment and the sea water, measures for protection of the public. The lessons learned following the NISA and IAEA fact finding missions and the open questions are summarized.

  15. Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986-1994

    International Nuclear Information System (INIS)

    Ipatyev, V.; Bulavik, I.; Baginsky, V.; Goncharenko, G.; Dvornik, A.

    1999-01-01

    This paper reports basic features of radionuclide migration and the prediction of the radionuclide redistribution and accumulation by forest phytocoenoses after the Chernobyl Nuclear Power Plant (CNPP) accident. The current ecological condition of forest ecosystems is evaluated and scientific aspects of forest management in the conditions of the large-scale radioactive contamination are discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Pu distribution in seawater in the near coastal area off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Bu, W.T.; Zheng, J.; Aono, T.; Wu, J.W.; Tagami, K.; Uchida, S.; Guo, Q.J.; Yamada, M.

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released large amount of radionuclides into the marine environment. Compared with the fission products, data on the distributions of Pu in the marine environment of the western North Pacific after the accident is limited. To better understand the Pu contamination in the marine environment after the accident, for the first time, we determined Pu isotope ratio ( 240 Pu/ 239 Pu) in addition to 239+240 Pu activity in seawater collected in the near coastal area (mostly within the 30 km zone) off the FDNPP site. The 239+240P u activities were 4.16-5.52 mBq/m 3 and the 240 Pu/ 239 Pu atom ratios varied from 0.221 to 0.295. These values were compared with the baseline data for Pu distribution in the near coast seawaters before the FDNPP accident (2008-2010). The results suggested that there is no significant Pu contamination in seawater in the near coastal area off the FDNPP site from the accident two years after the accident. (author)

  17. Radiation monitoring using imaging plate technology: A case study of leaves affected by the Chernobyl nuclear power plant and JCO criticality accidents

    Directory of Open Access Journals (Sweden)

    Kimura Shinzo

    2006-01-01

    Full Text Available This paper describes the use of a photostimulable phosphor screen imaging technique to detect radioactive contamination in the leaves of wormwood (Artemisia vulgaris L and fern (Dryopteris filix-max CL. Schoff plants affected by the Chernobyl nuclear power plant accident. The imaging plate technology is well known for many striking performances in two-dimensional radiation detection. Since imaging plate comprises an integrated detection system, it has been extensively applied to surface contamination distribution studies. In this study, plant samples were collected from high- and low-contaminated areas of Ukraine and Belarus, which were affected due to the Chernobyl accident and exposed to imaging technique. Samples from the highly contaminated areas revealed the highest photo-stimulated luminescence on the imaging plate. Moreover, the radio nuclides detected in the leaves by gamma and beta ray spectroscopy were 137Cs and 90Sr, respectively. Additionally, in order to assess contamination, a comparison was also made with leaves of plants affected during the JCO criticality accident in Japan. Based on the results obtained, the importance of imaging plate technology in environmental radiation monitoring has been suggested.

  18. Severe accident behavior

    International Nuclear Information System (INIS)

    Denning, R.S.

    1986-01-01

    The purpose of this paper is to provide an overview of severe accident behavior. The term source term is defined and a brief history of the regulatory use of source term is presented. The processes in severe accidents in light water reactors are described with particular emphasis on the relationships between accident thermal-hydraulics and chemistry. Those factors which have the greatest impact on predicted source terms are identified. Design differences between plants that affect source term estimation are also described. The principal unresolved issues are identified that are the focus of ongoing research and debate in the technical community

  19. The accidents during shutdown conditions Temelin NPP

    International Nuclear Information System (INIS)

    Sykora, M.; Mlady, O.

    1996-01-01

    Two parallel activities oriented for the accidents during shutdown conditions are performed at Temelin NPP: Development of symptom based emergency operating procedures (EOPs) applicable for the accidents which could occur during operational modes 1 through 4; independent evaluation of plant safety as part of the Temelin Shutdown probabilistic assessment to define the accidents which could occur during mode 5 and 6 for which the EOPs must be extended. Both these activities are in progress now because Temelin plant is still in the construction phase

  20. Mental health problems after the 2011 Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Niwa, Shin-ichi

    2012-01-01

    The name of Fukushima has now become well-known worldwide after Hiroshima and Nagasaki as the third place exposed to radiation in Japan. This radiation pollution has severely damaged the chief industries of Fukushima Prefecture, namely agriculture, fishery, and tourist industry. It has also stimulated strong anxious feelings among parents with young children. The accident has caused a critical situation in the psychiatric and mental health services in Fukushima as well. Five hospitals with psychiatric beds within 30 km from the Fukushima Dai-ichi Nuclear Power Plant were ordered to transfer their inpatients to other hospitals outside the designated 30 km-areas and to close down the hospitals immediately after the nuclear plant accident. In total, more than 800 psychiatric beds disappeared in an instant, and 1,228 persons including psychiatric inpatients and residents of elderly people nursing homes were transferred to other facilities far away. Rational explanation that low-level radiation in Fukushima will not do harm to people did not necessarily relieve existing anxiety among people. The terms 'safety' and 'relief' are usually used in combination; however, 'relief' was separated from 'safety' this time in Fukushima. People gradually began to feel 'relieved', when they themselves got involved in the cleaning work of radiation although its effect remained ambiguous. Now we have the following mental health problems after the 2011 Fukushima Dai-ichi nuclear power plant accident; recovery and maintenance of treatment systems for psychiatric patients in the affected areas, efforts for early detection and intervention of depression, severe stress disorder, adaptation disorder, and alcohol abuse which are expected to occur due to the earthquake and radiation pollution, prevention of suicides, relief from anxiety resulting from radiation pollution, adequate treatment of mental problems among children with long-term evacuation, prevention of fall in physical and mental

  1. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  2. Analysis of accidents at the LPR (Radiochemical Processes Laboratory)

    International Nuclear Information System (INIS)

    Kaufmann, F.; Boutet, L.I.

    1987-01-01

    Accidents are defined as not planned events that may result in the emission of significative quantities of radioactive materials to the environment. The pilot plant has been specifically designed to prevent this type of accidents but there still exists the possibility that one or more accidents can be produced during the plant life. In a first phase, the emission of radionuclides to the environment were evaluated for 13 credible accidents. In a second phase, by means of the calculation program SEDA, specially adapted to this purpose, the critical doses of critical group were calculated for each accident. Due to the small capacity of the pilot plant and the long cooling period of treated fuel, it is concluded that the radiological consequences for the external environment are of very small magnitude. In this way, without need of developing complex fault- or event-trees, it is shown that any of the accidents falls into the non acceptable zone of Farmer diagram. (Author)

  3. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  4. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan

    1991-12-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  5. A strategy to the development of a human error analysis method for accident management in nuclear power plants using industrial accident dynamics

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Kim, Jae Whan; Jung, Won Dae; Ha, Jae Ju

    1998-06-01

    This technical report describes the early progress of he establishment of a human error analysis method as a part of a human reliability analysis(HRA) method for the assessment of the human error potential in a given accident management strategy. At first, we review the shortages and limitations of the existing HRA methods through an example application. In order to enhance the bias to the quantitative aspect of the HRA method, we focused to the qualitative aspect, i.e., human error analysis(HEA), during the proposition of a strategy to the new method. For the establishment of a new HEA method, we discuss the basic theories and approaches to the human error in industry, and propose three basic requirements that should be maintained as pre-requisites for HEA method in practice. Finally, we test IAD(Industrial Accident Dynamics) which has been widely utilized in industrial fields, in order to know whether IAD can be so easily modified and extended to the nuclear power plant applications. We try to apply IAD to the same example case and develop new taxonomy of the performance shaping factors in accident management and their influence matrix, which could enhance the IAD method as an HEA method. (author). 33 refs., 17 tabs., 20 figs

  6. Radiocarbon Releases from the 2011 Fukushima Nuclear Accident

    DEFF Research Database (Denmark)

    Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.

    2016-01-01

    the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg-1 C above...... the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from...

  7. Accident management: What is it and how do you do it?

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.

    2004-01-01

    Accident management is the composite of those actions that would prevent, stop and/or mitigate a severe accident in a nuclear power plant. Since they act to prevent core damage, the Emergency Operating Procedures (EOPs) are an integral part of accident management. Each of the Owners Groups have developed EOPs that are well thought out for instructing the operator to respond to accident conditions which could threaten the core. However, for those very low probability events in which the core could be uncovered and damaged, accident management actions arise from a logical evaluation of possible actions (strategies) for recovering from the accident state and protecting the public health and safety. To understand the character of accident management it is first necessary to define: 1. What is threatened as a result of the accident? 2. Fundamentally, what needs to be protected? 3. What is known during an accident? 4. What have we learned from the TMI-2 accident? 5. What have we learned from the plant specific IPEs? Once these subjects are reviewed on a utility specific and plant specific basis, accident management actions become relatively straightforward and likely can be effectively addressed using the total capability available in a given design. This paper discusses these five questions in a global manner with the aim being to aid plant specific implementation. (author)

  8. Medical countermeasure for Tokyo Electric Power Co. Fukushima Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kondo, Hisayoshi

    2013-01-01

    DMAT (Disaster Medical Assistance Team) is a group of professional medical personnel organized to provide rapid-response medical care at the emergent stage of disasters. At the accident of Fukushima Daiichi Nuclear Power Plant, medical response was difficult because many infrastructures were destroyed. Under this situation, emergent medical treatment for heavy irradiation or contamination, cares for habitants and transportation of patients were conducted. Through these activities, it is suggested that rapid response for the radiation exposure should be definitely include in the medical system for usual disasters. (J.P.N.)

  9. Fukushima Daiichi Nuclear Power Plant accident: facts, environmental contamination, possible biological effects, and countermeasures.

    Science.gov (United States)

    Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji

    2012-01-01

    On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.

  10. Modeling and analyses of postulated UF6 release accidents in gaseous diffusion plant

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.; Dyer, R.H.

    1995-10-01

    Computer models have been developed to simulate the transient behavior of aerosols and vapors as a result of a postulated accident involving the release of uranium hexafluoride (UF 6 ) into the process building of a gaseous diffusion plant. UF 6 undergoes an exothermic chemical reaction with moisture (H 2 O) in the air to form hydrogen fluoride (HF) and radioactive uranyl fluoride (UO 2 F 2 ). As part of a facility-wide safety evaluation, this study evaluated source terms consisting of UO 2 F 2 as well as HF during a postulated UF 6 release accident in a process building. In the postulated accident scenario, ∼7900 kg (17,500 lb) of hot UF 6 vapor is released over a 5 min period from the process piping into the atmosphere of a large process building. UO 2 F 2 mainly remains as airborne-solid particles (aerosols), and HF is in a vapor form. Some UO 2 F 2 aerosols are removed from the air flow due to gravitational settling. The HF and the remaining UO 2 F 2 are mixed with air and exhausted through the building ventilation system. The MELCOR computer code was selected for simulating aerosols and vapor transport in the process building. MELCOR model was first used to develop a single volume representation of a process building and its results were compared with those from past lumped parameter models specifically developed for studying UF 6 release accidents. Preliminary results indicate that MELCOR predicted results (using a lumped formulation) are comparable with those from previously developed models

  11. Design study on dose evaluation method for employees at severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan); Kudo, Seiichi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)

    2001-09-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  12. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2001-01-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  13. The impact of the accident at Three Mile Island on plant control and instumentation philosophy

    International Nuclear Information System (INIS)

    Catlow, F.

    1983-01-01

    Independent commissions which were appointed to evaluate the causes of the accident at the Three Mile Island nuclear power plant in the USA exposed major weakness in the man/machine interface which they felt might be common to other similar plants. Strengthening this link is regarded as twofold: i) Educating the man to enhance his understanding of plant processes; ii) Improving the machine interface. The paper reviews suggested improvements in instumentation which would aid the control of a nuclear plant. These comprise mainly: a) The application of human factors engineering principles to control room design in order to make the 'machine' more manageable; b) improved data feedback so that the operator can make an accurate assessment of plant status at any instant. The author considers that there is a likelihood that the general philosophy of the man/machine interface being applied to the nuclear industry could be applied to some extent to conventional power plants and even other industries

  14. Selection of the important performance influencing factors for the assessment of human error under accident management situations in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J. H.; Jung, W. J.

    1999-01-01

    This paper introduces the process and final results of selection of the important Performance Influencing Factors (PIFs) under emergency operation and accident management situations in nuclear power plants for use in the assessment of human errors. We collected two types of PIF taxonomies, one is the full set PIF list mainly developed for human error analysis, and the other is the PIFs for human reliability analysis (HRA) in probabilistic safety assessment (PSA). 5 PIF taxonomies among the full set PIF list and 10 PIF taxonomies among HRA methodologies (CREAM, SLIM, INTENT, were collected in this research. By reviewing and analyzing PIFs selected for HRA methodologies, the criterion could be established for the selection of appropriate PIFs under emergency operation and accident management situations. Based on this selection criteria, a new PIF taxonomy was proposed for the assessment of human error under emergency operation and accident management situations in nuclear power plants

  15. Containment integrity analysis under accidents

    International Nuclear Information System (INIS)

    Lin Chengge; Zhao Ruichang; Liu Zhitao

    2010-01-01

    Containment integrity analyses for current nuclear power plants (NPPs) mainly focus on the internal pressure caused by design basis accidents (DBAs). In addition to the analyses of containment pressure response caused by DBAs, the behavior of containment during severe accidents (SAs) are also evaluated for AP1000 NPP. Since the conservatism remains in the assumptions,boundary conditions and codes, margin of the results of containment integrity analyses may be overestimated. Along with the improvements of the knowledge to the phenomena and process of relevant accidents, the margin overrated can be appropriately reduced by using the best estimate codes combined with the uncertainty methods, which could be beneficial to the containment design and construction of large passive plants (LPP) in China. (authors)

  16. Implications for accident management of adding water to a degrading reactor core

    International Nuclear Information System (INIS)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J.

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents

  17. Implications for accident management of adding water to a degrading reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents.

  18. Uncertainties and severe-accident management

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1991-01-01

    Severe-accident management can be defined as the use of existing and or alternative resources, systems, and actions to prevent or mitigate a core-melt accident. Together with risk management (e.g., changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-indepth safety philosophy for severe accidents. A significant number of probabilistic safety assessments have been completed, which yield the principal plant vulnerabilities, and can be categorized as (a) dominant sequences with respect to core-melt frequency, (b) dominant sequences with respect to various risk measures, (c) dominant threats that challenge safety functions, and (d) dominant threats with respect to failure of safety systems. Severe-accident management strategies can be generically classified as (a) use of alternative resources, (b) use of alternative equipment, and (c) use of alternative actions. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These include (a) uncertainty in key phenomena, (b) uncertainty in operator behavior, (c) uncertainty in system availability and behavior, and (d) uncertainty in information availability (i.e., instrumentation). This paper focuses on phenomenological uncertainties associated with severe-accident management strategies

  19. The research for the design verification of nuclear power plant based on VR dynamic plant

    International Nuclear Information System (INIS)

    Wang Yong; Yu Xiao

    2015-01-01

    This paper studies a new method of design verification through the VR plant, in order to perform verification and validation the design of plant conform to the requirements of accident emergency. The VR dynamic plant is established by 3D design model and digital maps that composed of GIS system and indoor maps, and driven by the analyze data of design analyzer. The VR plant could present the operation conditions and accident conditions of power plant. This paper simulates the execution of accident procedures, the development of accidents, the evacuation planning of people and so on, based on VR dynamic plant, and ensure that the plant design will not cause bad effect. Besides design verification, simulated result also can be used for optimization of the accident emergency plan, the training of accident plan and emergency accident treatment. (author)

  20. Investigating plutonium contamination in marine sediments off Fukushima coast following the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Bu Wenting; Guo Qiuju; Zheng, Jian; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Zhang, Jing; Yamada, Masatoshi

    2013-01-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident has caused large amounts of anthropogenic radionuclides to be released into the atmosphere as well as directly discharged into the sea. To obtain the vertical distribution of Pu isotopes in marine sediments and to better assess the possible contamination from the FDNPP accident in the marine environment, activities of "2"3"9"+"2"4"0Pu and "2"4"1Pu, as well as the atom ratios of "2"4"0Pu/"2"3"9Pu and "2"4"1Pu/"2"3"9Pu, were investigated in a sediment core collected from the western North Pacific in July 2011. The observed vertical profile of "2"3"9"+"2"4"0Pu activities and "2"4"0Pu/"2"3"9Pu atom ratios showed no extra injection of Pu from the accident, indicating no immediate Pu contamination from the FDNPP accident in the marine sediments in the region investigated. (author)

  1. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Duane J. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Arcieri, William C. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Ward, Leonard W. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States))

    1994-07-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  2. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    International Nuclear Information System (INIS)

    Hanson, Duane J.; Arcieri, William C.; Ward, Leonard W.

    1994-01-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  3. Severe accident management at nuclear power plants - emergency preparedness and response actions

    International Nuclear Information System (INIS)

    Pawar, S.K.; Krishnamurthy, P.R.

    2015-01-01

    This paper describes the current level of emergency planning and preparedness and also improvement in the emergency management programme over the years including lessons learned from Fukushima accident, hazard analysis and categorization of nuclear facilities into hazard category for establishing the emergency preparedness class, classification of emergencies based on the Emergency Action Levels (EAL), development of EAL’s for PHWR, Generic Criteria in terms of projected dose for initiating protective actions (precautionary urgent protective actions, urgent protective actions, early protective actions), operational intervention levels (OIL), Emergency planning zones and distances, protection strategy and reference levels, use of residual dose for establishing reference levels for optimization of protection strategy, criteria for termination of emergency, transition of emergency exposure situation to existing exposure situation or planned exposure situation, criteria for medical managements of exposed persons and guidance for controlling the dose of emergency workers. This paper also highlights the EALs for typical PHWR type reactors for all types of emergencies (plant, site and offsite), transition from emergency operating procedures (EOP) to accident management guidelines (AMG) to emergency response actions and proposed implementation of guidelines

  4. An overview of selected severe accident research and applications

    International Nuclear Information System (INIS)

    Hammersley, R.J.; Henry, R.E.

    2004-01-01

    Severe accident research is being conducted world wide by industry organizations, utilities, and regulatory agencies. As this research is disseminated, it is being applied by utilities when they perform their Individual Plant Examinations (IPEs) and consider the preparation of Accident Management programs. The research is associated with phenomenological assessments of containment challenges and associated uncertainties, severe accident codes and analysis tools, systematic evaluation processes, and accident management planning. The continued advancement of this research and its applications will significantly contribute to the enhanced safety and operation of nuclear power plants. (author)

  5. Radionuclide release calculations for selected severe accident scenarios

    International Nuclear Information System (INIS)

    Denning, R.S.; Leonard, M.T.; Cybulskis, P.; Lee, K.W.; Kelly, R.F.; Jordan, H.; Schumacher, P.M.; Curtis, L.A.

    1990-08-01

    This report provides the results of source term calculations that were performed in support of the NUREG-1150 study. ''Severe Accident Risks: An Assessment for Five US Nuclear Power Plants.'' This is the sixth volume of a series of reports. It supplements results presented in the earlier volumes. Analyses were performed for three of the NUREG-1150 plants: Peach Bottom, a Mark I, boiling water reactor; Surry, a subatmospheric containment, pressurized water reactor; and Sequoyah, an ice condenser containment, pressurized water reactor. Complete source term results are presented for the following sequences: short term station blackout with failure of the ADS system in the Peach Bottom plant; station blackout with a pump seal LOCA for the Surry plant; station blackout with a pump seal LOCA in the Sequoyah plant; and a very small break with loss of ECC and spray recirculation in the Sequoyah plant. In addition, some partial analyses were performed which did not require running all of the modules of the Source Term Code Package. A series of MARCH3 analyses were performed for the Surry and Sequoyah plants to evaluate the effects of alternative emergency operating procedures involving primary and secondary depressurization on the progress of the accident. Only thermal-hydraulic results are provided for these analyses. In addition, three accident sequences were analyzed for the Surry plant for accident-induced failure of steam generator tubes. In these analyses, only the transport of radionuclides within the primary system and failed steam generator were examined. The release of radionuclides to the environment is presented for the phase of the accident preceding vessel meltthrough. 17 refs., 176 figs., 113 tabs

  6. Considering lessons learned about safety culture and their reflection to activity. After Fukushima Daiichi Nuclear Power Plant accident experience

    International Nuclear Information System (INIS)

    Obu, Etsuji; Hamada, Jun; Fukano, Takuya

    2011-01-01

    Fukushima Daiichi Nuclear Power Plant accident forced neighboring residents to evacuate for a long time and gave Public anxieties greatly and significant effects to social activities in Japan. Public trust of nuclear power was lost by not preventing the accident and future of nuclear power became reconsidered, which nuclear industry people regretted deeply. Japan Nuclear Technology Institute (JANTI) had conducted activities enhancing safety culture in nuclear industry. It would be necessary to consider improvements of accident prevention and mitigation measures after evaluating the accident in a viewpoint of 'safety culture'. Based on published information and knowledge accumulated by activities of JANTI, the accident was examined taking account of greatness of nuclear accident and its effects from the side of safety culture. Lessons learned about safety culture were pointed out as; (1) reconfirmation of specialty of nuclear technology. (2) reinforcement of questioning and learning attitudes and (3) improvement of evaluation capability of nuclear safety and safety assurance against external event. These were reflected in activities such as; (1) reconsideration of safety culture assessment, (2) strengthening further support to improve safety culture consciousness and (3) improvement of peer review activity. (T. Tanaka)

  7. Development of Krsko Severe Accident Management Database (SAMD)

    International Nuclear Information System (INIS)

    Basic, I.; Kocnar, R.

    1996-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. Krsko Severe Accident Management Database documents the severe accident management activities which are developed in the NPP Krsko, based on the Krsko IPE (Individual Plant Examination) insights and Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidance). (author)

  8. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  9. Dose to man from a hypothetical loss-of-coolant accident at the Rancho Seco Nuclear Power Plant

    International Nuclear Information System (INIS)

    Peterson, K.R.; Greenly, G.D.

    1981-02-01

    At the request of the Sacramento Municipal Utilities District, we used our computer codes, MATHEW and ADPIC, to assess the environmental impact of a loss-of-coolant accident at the Rancho Seco Nuclear Power Plant, about 40 kilometres southeast of Sacramento, California. Meteorological input was selected so that the effluent released by the accident would be transported over the Sacramento metropolitan area. With the release rates provided by the Sacramento Municipal Utilities District, we calculated the largest total dose for a 24-hour release as 70 rem about one kilometre northwest of the reactor. The largest total dose in the Sacramento metropolitan area is 780 millirem. Both doses are from iodine-131, via the forage-cow-milk pathway to an infant's thyroid. The largest dose near the nuclear plant can be minimized by replacing contaminated milk and by giving the cows dry feed. To our knowledge, there are no milk cows within the Sacramento metropolitan area

  10. Factors associated with nurses' intention to leave their jobs after the Fukushima Daiichi Nuclear Power plant accident.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Sato

    Full Text Available We conducted a survey among nurses who were working at the Fukushima Medical University Hospital at the time of the Fukushima Daiichi Nuclear Power Plant accident to clarify the factors associated with their intention to leave their jobs during the radiation emergency. We asked 345 nurses (17 men and 328 women about their intention to leave their jobs after the accident. We also asked about relevant factors including the participants' demographic factors, living situation, working status, and knowledge of radiation health effects. We found that living with preschoolers (OR = 1.87, 95%CI: 1.02-3.44, p = 0.042, anxiety about life in Fukushima City after the accident (OR = 5.55, 95%CI: 1.18-26.13, p = 0.030, consideration of evacuation from Fukushima after the accident (OR = 2.42, 95%CI: 1.45-4.06, p = 0.001, consideration of the possible radiation health effects in children (OR = 1.90, 95%CI: 1.02-3.44, p = 0.042, and anxiety about relationships with colleagues in the hospital after the accident (OR = 3.23, p = 0.001 were independently associated with the nurses' intention to leave their jobs after the accident. On the other hand, the percentage of nurses with knowledge on radiation health effects was relatively low among those who had the intention to leave the job and among those who did not have the intention to leave the job after the accident, with no significant differences between the two groups. Our results suggest the need for an education program for nurses regarding radiation health effects.

  11. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.

    1993-10-01

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  12. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    A recently completed Oak Ridge effort proposes two management strategies for mitigation of the events that might occur in-vessel after the onset of significant core damage in a BWR severe accident. While the probability of such an accident is low, there may be effective yet inexpensive mitigation measures that could be implemented employing the existing plant equipment and requiring only additions to the plant emergency procedures. In this spirit, accident management strategies have been proposed for use of a borated solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and for containment flooding to maintain the core debris within the reactor vessel if injection systems cannot be restored. The proposed strategy for poisoning of the water used for vessel reflood should injection systems be restored after control blade damage has occurred has great promise, using only the existing plant equipment but employing a different chemical form for the boron poison. The dominant BWR severe accident sequence is Station Blackout and without means for mechanical stirring or heating of the storage tank, the question of being able to form the poisoned solution under accident conditions becomes of supreme importance. On the other hand, the proposed strategy for drywell flooding to cool the reactor vessel bottom head and prevent the core and structure debris from escaping to the drywell holds less promise. This strategy does, however, have potential for future plant designs in which passive methods might be employed to completely submerge the reactor vessel under severe accident conditions without the need for containment venting

  13. The accident at the Harrisburg nuclear reactor - Interim conclusions

    International Nuclear Information System (INIS)

    Yiftah, S.

    1979-07-01

    This work describes the first minutes, first day and first week following the Three Mile Island accident. It shows the failures that occurred and the lessons which should be derived. It is pointed out that the doses of radiation that escaped from the TMI plant were at no time large enough to have had any effect on the 2 million people living on a radius of 80 km from the plant. Although no casualties occurred the Harrisburg accident will create an impulse for a new study and understanding of the nuclear plant safety and might serve as a live safety laboratory. After the TMI accident nuclear plants are already safer, one of the conclusions being that a new planning of the operation room is required, with the operators acquiring a better understanding of what is going on during a nuclear reactor accident. (B.G.)

  14. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  15. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  16. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  17. United States position on severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F.

    1988-01-01

    The United States policy on severe accidents was published in 1985 for both new plant applications and for existing plants. Implementation of this policy is in progress. This policy, aided by a related safety goal policy and by analysis capabilities emerging from improved understanding of accident phenomenology, is viewed as a logical development from the pioneering work in the WASH-1400 Reactor Safety Study published by the United States Nuclear Regulatory Commission (NRC) in 1975. This work provided an estimate of the probability and consequences of severe accidents which, prior to that time, had been mostly evaluated by somewhat arbitrary assumptions dating back 30 years. The early history of severe accident evaluation is briefly summarized for the period 1957-1979. Then, the galvanizing action of Three Mile Island Unit 2 (TMI-2) on severe accident analysis, experimentation and regulation is reviewed. Expressions of US policy in the form of rulemaking, severe accident policy, safety research, safety goal policy and court decisions (on adequacy of safety) are discussed. Finally, the NRC policy as of March 1988 is stated, along with a prospective look at the next few years. (author). 19 refs

  18. Dose assessment for emergency workers in early phase of Fukushima Daiichi nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Nahid; Ahangari, Rohollah; Kasesaz, Yaser; Noori-kalkhoran, O. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School

    2017-11-15

    In the case of Fukushima Daiichi nuclear power plant (FNP) accident, the radioactive material was released from reactor units 1-3 and transported to short and long distances due to the atmospheric pathways-motions. Power sources for monitoring posts were lost due to earthquake and tsunami. Based on air dose rates and other data measured by monitoring cars, the amount of radioactive material released to the atmosphere from the power station was obtained. The atmospheric dispersion and the transport model used in the RASCAL code, estimate the radionuclide concentrations downwind, both in the air and on the ground due to deposition. The calculated concentrations are then used to estimate the projected doses for workers in vicinity of the accident area in the first minutes of accident time. For dose modeling, we assumed that each worker was 15 min in vicinity of FNP in accident situation, once without and once with protective clothes or respirator. According to Tokyo Electric Power Company (TEPCO) report six workers had received doses over 250 mSv (309 to 678 mSv) apparently due to inhaling Iodine-131 fume. In this paper the calculated dose results using RASCAL code shows that, if emergency workers who work in early phase of accident had not used protective equipment, for 15 min, inhalation doses from iodine in their thyroid gland up to 12 March afternoon would have been 520 mSv. A comparison between calculation results and TEPCO report shows that dose calculated virtually is nearly equal to TEPCO measurement results.

  19. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  20. Generic evaluation of small break loss-of-coolant accident behavior in Babcock and Wilcox designed 177-FA operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    Slow system depressurization resulting from small break loss-of-coolant accidents (LOCAs) in the reactor coolant system have not, until recently, received detailed analytical study comparable to that devoted to large breaks. Following the TMI-2 accident, the staff had a series of meetings with Babcock and Wilcox (B and W) and the B and W licensees. The staff requested that B and W and the licensees: (1) systematically evaluate plant response for small break loss-of-coolant accidents; (2) address each of the concerns documented in the Michelson report; (3) validate the computer codes used against the TMI-2 accident; (4) extend the break spectrum analysis to very small breaks, giving special consideration to failure of pressurizer valves to close; (5) analyze degraded conditions where AFW is not available; (6) prepare design changes aimed at reducing the probability of loss-of-coolant accidents produced by the failure of a PORV to close; and (7) develop revised emergency procedures for small breaks. This report describes the review of the generic analyses performed by B and W based on the requests stated above

  1. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hoover, M.D.; Newton, G.J.; Farrell, R.F.

    1996-01-01

    This qualitative hazard evaluation systematically assessed potential doses to workers during postulated accident conditions at the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP). Postulated accidents included the spontaneous ignition of a waste drum, puncture of a waste drum by a forklift, dropping of a waste drum from a forklift, and simultaneous dropping of seven drums during a crane failure. The descriptions and estimated frequencies of occurrence for these accidents were developed by the Hazard and Operability Study for CH TRU Waste Handling System (WCAP 14312). The estimated materials at risk, damage ratios, airborne release fractions and respirable fractions for these accidents were taken from the 1995 Safety Analysis Report (SAR) update and from the DOE handbook Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities (DOE-HDBK-3010-94). A Monte Carlo simulation was used to estimate the range of worker exposures that could result from each accident. Guidelines for evaluating the adequacy of defense-in-depth for worker protection at WIPP were adopted from a scheme presented by the International Commission on Radiological Protection in its publication on Protection from Potential Exposure: A Conceptual Framework (ICRP Publication 64). Probabilities of exposures greater than 5, 50, and 300 rem were less than 10 -2 , 10 -4 , and 10 -6 per year, respectively. In conformance with the guidance of DOE standard 3009-94, Appendix A (draft), we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposure under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, as well as members of the public and the environment

  2. Procedures for analysis of accidents in shutdown modes for WWER nuclear power plants. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1997-07-01

    Operational events occurring during shutdown conditions contribute significantly to the NPP risk due to the fact that both preventive and mitigatory capabilities of the plant are somehow degraded. The need for detailed information in the performance and review of accident analysis for WWER type NPPs was identified as a priority within IAEA Extrabudgetary Program on Safety of WWER and RBMK NPPs. The present guidelines were developed through two consultants meetings in 1995 and 1996. The guidelines establish a set of criteria for performing deterministic analysis of accidents, initiated by events occurring under shutdown conditions. This report is mostly relevant for licensing type calculations, and may to a certain extent, also used for development, improvement or justification of the plant limits and conditions, emergency operating procedures, operator training programs and probabilistic safety studies. The guidelines apply to all WWER plants in operation and/or under construction

  3. Implications of the accident at Chernobyl for safety regulation of commercial nuclear power plants in the United Sates: Volume 2, Appendix - Public comments and their disposition: Final report

    International Nuclear Information System (INIS)

    1989-04-01

    This report was prepared by the Nuclear Regulatory Commission (NRC) staff to assess the implications of the accident at the Chernobyl nuclear power plant as they relate to reactor safety regulation for commercial nuclear power plants in the United States. The facts used in this assessment have been drawn from the US fact-finding report(NUREG-1250) and its sources. The general conclusions of the document are that there are generic lessons to be learned but that no changes in regulations are needed due to the substantial differences in the design, safety features and operation of US plants as compared to those in the USSR. Given these general conclusions, further consideration of certain specific areas is recommended by the report. These include: administrative controls over reactor regulation, reactivity accidents, accidents at low or zero power, multi-unit protection, fires, containment, emergency planning, severe accident phenomena, and graphite-moderated reactors

  4. Severe Accidents: French Regulatory Practice for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Colin, M.

    1997-01-01

    In the framework of a continuous and iterative process, the French Safety Authority asks the utility EDF to implement equipment and procedure modifications on the operating reactors, in order to cope with the most likely Severe Accident sequences. As a result of Probabilistic Safety Assessments published in 1990, important equipment and procedure modifications are being implemented on the French PWRs to improve the safety in shutdown states. The implementation of another set of modifications against some reactivity accident sequences is also in progress. More recently, the Safety Authority expressed specific Severe Accident requirements in terms of instrumentation, equipment qualification, high pressure core melt accidents and hydrogen risk prevention. In that respect, EDF was asked to implement hydrogen recombiners on its reactors. On the other hand, the French Safety authority is involved with its German counterpart in the assessment process of the European Pressurized Water Reactor Project. In consistency with the common recommendations of the Safety Authorities involved, Severe Accident provisions for this reactor are being taken into account at the design stage

  5. Cernavoda CANDU severe accident evaluation

    International Nuclear Information System (INIS)

    Negut, G.; Marin, A.

    1997-01-01

    The papers present the activities dedicated to Romania Cernavoda Nuclear Power Plant first CANDU Unit severe accident evaluation. This activity is part of more general PSA assessment activities. CANDU specific safety features are calandria moderator and calandria vault water capabilities to remove the residual heat in the case of severe accidents, when the conventional heat sinks are no more available. Severe accidents evaluation, that is a deterministic thermal hydraulic analysis, assesses the accidents progression and gives the milestones when important events take place. This kind of assessment is important to evaluate to recovery time for the reactor operators that can lead to the accident mitigation. The Cernavoda CANDU unit is modeled for the of all heat sinks accident and results compared with the AECL CANDU 600 assessment. (orig.)

  6. An analysis of LOCA sequences in the development of severe accident analysis DB

    International Nuclear Information System (INIS)

    Choi, Young; Park, Soo Yong; Ahn, Kwang-Il; Kim, D.H.

    2006-01-01

    Although a Level 2 PSA was performed for the Korean Standard Power Plants (KSNPs), and it considered the necessary sequences for an assessment of the containment integrity and source term analysis. In terms of an accident management, however, more cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results. At present, KAERI is calculating the severe accident sequences intensively for various initiating events and generating a database for the accident progression including thermal hydraulic and source term behaviours. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by knowledge-base technique, and the expected plant behaviour. The plant model used in this paper is oriented to the case of LOCAs related severe accident phenomena and thus can simulate the plant behaviours for a severe accident. Therefore the developed system may play a central role as an information source for decision-making for a severe accident management, and will be used as a training simulator for a severe accident management. (author)

  7. Aid system in the attention direction for accidents diagnosis at nuclear power plants based on artificial intelligence

    International Nuclear Information System (INIS)

    Costa, Rafael Gomes da

    2009-01-01

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event Several systems based on specialist systems, neural-networks, and fuzzy logic have been developed for transient identification. In the work, we investigate the possibility of using a Neuro Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A preliminary evaluation of the developed system was made at the Human-System Interface Laboratory (LABIHS). The obtained results show that the system can help the operators to take decisions during transients/accidents in the plant (author)

  8. Normal Accident at Three Mile Island.

    Science.gov (United States)

    Perrow, Charles

    1981-01-01

    Discusses some aspects of the accident at the Three Mile Island nuclear power plant. Explains a number of factors involved including the type of accident, warnings, design and equipment failure, operator error, and negative synergy. Presents alternatives to systems with catastrophic potential. (MK)

  9. Simulation and dose analysis of a hypothetical accident in Sanmen nuclear power plant

    International Nuclear Information System (INIS)

    Zhu, Yangmo; Guo, Jianghua; Nie, Chu; Zhou, Youhua

    2014-01-01

    Highlights: • Atmospheric dispersion following a hypothetical accident in Sanmen NPP is simulated. • Japan, North Korea and Russia are slightly influenced in this accident. • In Taiwan and South Korea, population on 100% and 35% of the land should be given information about reducing dose. • In mainland China, about 284 thousand people are likely to get cancer. - Abstract: In November 2013, an AP1000 nuclear power plant (NPP) will be put into commercial operation. An atmospheric dispersion of radionuclides during a severe hypothetical accident in Sanmen NPP, Zhejiang province, China, is simulated with a Lagrangian particle dispersion model FLEXPART. The accident assumes that a station blackout (SBO) accident occurred on August 25, 2011, 55% core was damaged and 49 radionuclides were released into the atmosphere. Our simulation indicates that, during this dispersion, the radioactive plume will cover the mainland China, Taiwan, Japan, North Korea, South Korea and Russia. The radiation dose levels in Japan, North Korea and Russia are the lightest, usually less than 1 mSv. The influenced areas in these countries are 9901 km 2 , 31,736 km 2 and 2,97,524 km 2 , respectively; dose levels in Taiwan and South Korea are moderate, no more than 20 mSv. Information about reducing dose should be given to the public. Total influenced areas in these two countries are 3621 km 2 and 42,370 km 2 , which take up 100% of the land in Taiwan and 35% of the land in South Korea; the worst situation happens in mainland China. The total influenced area is 3 × 106 km 2 and 1,40,000 km 2 in this area has a dose level higher than 20 mSv. Measurement must be taken to reduce the dose. More than 284 thousand residents will face the risk of developing cancer. Furthermore, 96% of this population is mainly concentrated in Zhejiang province, where Sanmen NPP locates

  10. Scientific aspects of the Tohoku earthquake and Fukushima nuclear accident

    Science.gov (United States)

    Koketsu, Kazuki

    2016-04-01

    We investigated the 2011 Tohoku earthquake, the accident of the Fukushima Daiichi nuclear power plant, and assessments conducted beforehand for earthquake and tsunami potential in the Pacific offshore region of the Tohoku District. The results of our investigation show that all the assessments failed to foresee the earthquake and its related tsunami, which was the main cause of the accident. Therefore, the disaster caused by the earthquake, and the accident were scientifically unforeseeable at the time. However, for a zone neighboring the reactors, a 2008 assessment showed tsunamis higher than the plant height. As a lesson learned from the accident, companies operating nuclear power plants should be prepared using even such assessment results for neighboring zones.

  11. Thermal analyses for the spend fuel pool of Taiwan BWR plants during the loss of cooling accident

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B-Y.; Yeh, C-L.; Wei, W-C.; Chen, Y-S., E-mail: onepicemine@iner.gov.tw, E-mail: clinyeh@iner.gov.tw, E-mail: hn150456@iner.gov.tw, E-mail: yschen@iner.gov.tw [Inst. of Nuclear Energy Research, Longtan Township, Taoyuan County, Taiwan (China)

    2014-07-01

    After the Fukushima nuclear accident, the safety of the spent fuel pool has become an important concern. In this study, thermal analysis of the spent fuel pool under a loss of cooling accident is performed. The BWR spent fuel pools in Taiwan are investigated, including the Chinshan, Kuosheng, and Lungmen plants. The transient pool temperature and level behaviors are calculated based on lumped energy balance. After the pool level drops below the top of the fuel, the peak cladding temperature is predicted by the Computational Fluid Dynamics (CFD) analysis. The influence to the cladding temperature of the uniform and checkboard fuel loading patterns is also investigated. (author)

  12. Jose Cabrera NPP severe accident management activities

    International Nuclear Information System (INIS)

    Blanco, J.; Almeida, P.; Saiz, J.; Sastre, J.L.; Delgado, R.

    1998-01-01

    To prepare a common acting plan with respect to Severe Accident Management, in 1994 was founded the severe accident management ''ad-hoc'' working group from the Spanish Westinghouse PWR Nuclear Power Plant Owners Group. In this group actively collaborated the Jose Cabrera NPP Training Centre and the Department of Nuclear Engineering of UNION FENOSA. From this moment, Jose Cabrera NPP began the planning of its specific Severe Accident Management Program, which main point are Severe Accident Management Guidelines (SAMG). To elaborate this guidelines, the Spanish translation of Westinghouse Owners Group (WOG) Severe Accident Management Guidelines were considered the reference documents. The implementation of this Guidelines to Jose Cabrera NPP started on January 1997. Once the specific guidelines have been implemented to the plant, training activities for the personnel involved in severe accident issues will be developed. To prepare the training exercises MAAP4 code will be used, and with this intention, a specific Jose Cabrera NPP MAAP-GRAAPH screen has been developed. Furthermore, a wide selection of MAAP input files for the simulation of different scenarios and accidental events is available. (Author)

  13. [Measures against Radiation Exposure Due to Large-Scale Nuclear Accident in Distant Place--Radioactive Materials in Nagasaki from Fukushima Daiichi Nuclear Power Plant].

    Science.gov (United States)

    Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro

    2015-01-01

    To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.

  14. Risk of Thyroid Cancer after the Fukushima Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Yamashita, S.

    2016-01-01

    Full text: A sound scientific understanding about the relationship between radiation dose and health risk is needed to apply any countermeasure against radiological and nuclear accidents. Since the Great East Japan earthquake and the Fukushima Daiichi Nuclear Power Plant accident in Japan, Fukushima Prefecture has started the Fukushima Health Management Survey Project since June 2011 for the purpose of long-term health care administration for the prefectural residents. There are considerable differences between Chernobyl and Fukushima regarding radiation dose to the public, however, it is still difficult to estimate retrospectively accurate internal exposure dose individually from the short-lived radioactive iodines. Another difficult challenge is to how to manage non-radiation–related health effects, such as post-disaster mental impact and lifestyle changes. As we support residents in their recovery and return to their homes, understanding each individual’s state with respect to radiation and regular monitoring of their health conditions contribute to the region’s rebirth and restoration. Therefore, as one of the tools of risk communication, the necessity of thyroid ultrasound examination in Fukushima and the intermediate results of this survey targeting children will be reviewed and discussed in order to avoid any misunderstanding or misinterpretation of the high detection rate of childhood and adolescent thyroid cancer by mass screening. (author

  15. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, M.D.; Farrell, R.F. [DOE, Carlsbad, NM (United States); Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  16. Evaluation of hazards from industrial activity near nuclear power plants. Study of typical accidents

    International Nuclear Information System (INIS)

    Lannoy, A.; Gobert, T.; Granier, J.P.

    1981-08-01

    The design and dimensioning of nuclear power plant structures necessitate the evaluation of risks due to industrial activity. Among these risks, those due to the storage or transport of dangerous products merit special attention. They result, inter alia, in the explosion of flammable gas clouds. Such clouds can drift before igniting and, once alight, the resulting pressure wave can cause serious damage, even at a distance. A methodology both deterministic and probabilistic enabling this risk to be quantified has therefore been developed. It is based in part on an analysis of the statistics of actual accidents that have occurred. After briefly recalling the probabilistic model, the typical accidents selected are described and for three usual cases (storage under pressure, rail tank cars and road units) the main characteristics of the rupture are explicited. The deterministic models that have been worked out to calculate the consequences of such an accident: flow rate at the bursting point, evaporation, drift and atmospheric dispersion of the cloud formed, explosion of this cloud, are then described. At the present time the overpressure wave is quantified against a TNT equivalent of the explosive mixture. Some data are given as examples for three commonly employed hydrocarbons (butane, propane, propylene) [fr

  17. Formulating the Canadian regulatory position on severe accidents

    International Nuclear Information System (INIS)

    Viktorov, Alex

    2006-01-01

    In response to the increasing potential of new nuclear build in Canada, and as part of documentation harmonization effort, CNSC staff has initiated development of requirements for design of nuclear power plants. These requirements build both on the IAEA standards, most notably, NS-R-1, and the Canadian practices and experience. The three safety objectives, formulated by the IAEA, are adopted, and Safety Goals are proposed consistent with the international trend. This Canadian standard will require, for the first time, explicit consideration of severe accidents in design and safety assessments. Specific requirements are formulated for several plant systems that assure an effective fourth level of defence in depth. Available results from probabilistic safety assessments indicate that the risks posed by severe accidents are acceptably low. Nevertheless, such risks are not negligible. CNSC staff considers that severe accident management (SAM) represents the most practical way to achieve risk reduction with a moderate effort. Ultimately, SAM actions are aimed at bringing the reactor, and the plant in general, into a controlled and stable state. For the operating reactors, SAM provides an additional defense barrier against the consequences of those accidents that fall beyond the scope of events considered in the reactor design basis. The establishment of a SAM program ensures availability of the information, procedures, and resources necessary to take full advantage of existing plant capabilities to arrest core degradation, and prevent or mitigate large releases of radioactive material. To the extent practicable, a SAM program builds on the existing emergency operating procedures and makes use of the plant design capabilities. On this basis, the CNSC requested nuclear power reactor licensees to develop and implement SAM at all operating reactors. To be able to demonstrate compliance with requirements for plant design and severe accident management, it is necessary to

  18. [A Survey about the Radiation Effects and A Health Survey of Fukushima Inhabitants after the Fukushima Daiichi Nuclear Power Plant Accident].

    Science.gov (United States)

    Okazaki, Ryuji; Ohga, Kazuhiro; Yoko-O, Makoto; Kohzaki, Masaoki

    According to questionnaire surveys in 2011 and 2013 about the health effects of radiation after the Fukushima Daiichi Nuclear Power Plant Accident, the guardians of child patients were more anxious than doctors and medical students. Also, according to the thyroid examinations in a Fukushima health survey, 190 cases of thyroid cancer were reported, and anxiety about radiation effects remained. This study is based on a survey about the guardians of child patients anxiety about radiation effects six years after the nuclear power plant accident, and includes a questionnaire survey about radiation effects and thyroid examinations in a Fukushima health survey. Anonymous question sheets with 20 questions were sent to pediatric medical facilities in Fukushima, and the parents of children who consulted the pediatric and medical staff answered the questionnaire. Thirty percent of the guardians of child patients had never been educated about radiation and 67% had never been educated about the effects of radiation on humans. The guardians of child patients were more anxious than the medical staff about thyroid cancer, health effects on children and genetic effects. Our results indicate that the guardians of child patients think that the increase in the incidence of thyroid cancer is due to radiation effects after the nuclear power plant accident and they desire continued thyroid examinations.

  19. Accident progression event tree analysis for postulated severe accidents at N Reactor

    International Nuclear Information System (INIS)

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M.; Medford, G.T.

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied

  20. A model of the operator cognitive behaviors during the steam generator tube rupture accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Mun, J. H.; Kang, C. S.

    1996-01-01

    An integrated framework of modeling the human operator cognitive behavior during nuclear power plant accident scenarios is presented. It incorporates both plant and operator models. The basic structure of the operator model is similar to that of existing cognitive models, however, this model differs from those existing ones largely in two aspects. First, using frame and membership function, the pattern matching behavior, which is identified as the dominant cognitive process of operators responding to an accident sequence, is explicitly implemented in this model. Second, the non-task-related human cognitive activities like effects of stress and cognitive biases such as confirmation bias and availability bias, are also considered. A computer code, OPEC is assembled to simulate this framework and is actually applied to an SGTR sequence, and the resultant simulated behaviors of operator are obtained. 28 refs., 4 figs., 6 tabs. (author)

  1. Nuclear power plant severe accident research plan. Revision 1

    International Nuclear Information System (INIS)

    Marino, G.P.

    1986-04-01

    Subsequent to the Three Mile Island Unit 2 accident, recommendations were made by a number of review committees to consider regulatory changes which would provide better protection of the public from severe accidents. Over the past six years a major research effort has been underway by the NRC to develop an improved understanding of severe accidents and to provide a technical basis to support regulatory decisions. The purpose of this report is to describe current plans for the completion and extension of this research in support of ongoing regulatory actions in this area

  2. Severe accident simulation at Olkiuoto

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  3. OSSA. A second generation of severe accident management

    International Nuclear Information System (INIS)

    Sauvage, E.C.; Musoyan, G.; Ducros, V.D.

    2009-01-01

    Nowadays the severe accident and their management are an integrated part of the new generation of power plants. The EPR, as the third generation of nuclear plants, includes both systems and instrumentation to mitigate a severe accident, but also a new generation of severe accident management guidelines: the OSSA. Severe accident management guidelines are highly dependent on human means available: emergency organization actors, training and knowledge shall be taken in consideration in an innovative way. Their impacts on ergonomy and content of the document lead to a new generation of guidelines with several innovative features. This second generation of severe accident management guidelines was developed in parallel with the PSA level 2, the human reliability analyses, the validation and verification process, the severe accident simulator progresses. By taking in consideration this variety of input the OSSA were developed in a user aspect orientation. For example in the OSSA a larger responsibility is given to the operational crew to better support the technical support group evaluation. Their existing knowledge of the plant and of the systems and instrumentation is used. This collaboration work implies a strong communication tool that has been developed to enhance the permanent communication within the emergency organization, but although to ensure the main up-to-date information for evaluation will be available where required. The entry condition is based on a strong and stand alone diagnostic for all plant states, that uses in particular a curve of core exit temperature as a function of primary pressure for a fixed core cladding temperature, or its equivalent in term of containment conditions. It ensures relatively consistent core conditions on entry. A first criterion for ultimate final primary depressurization is provided, ensuring all attempts to reflood the core with the available means have been ensured before the OSSA entry condition is reached. This

  4. Hemostatic homeostasis in liquidators of the aftereffects of the Chernobyl power plant accident

    International Nuclear Information System (INIS)

    Chekalina, S.I.; Lyasko, L.I.; Sushkevich, G.N.; Pashkov, E.I.; Savina, H.P.

    1995-01-01

    The function of the hemostasis system was examined in 128 participants in the liquidation of the aftereffects of the Chernobyl power plant accident 4 years, on an average, after their work in the radioactive zone of the 4th energy block. Signs of functional disorganization in the hemostasis system wer revealed: hemocoagulation and platelet aggregation activation in the presence of reduced fibrinolysis activity and antithrombogenic properties of vascular walls. The said trends were best of all detected by functional loading (local circulatory hypoxia) of the vascular wall. 11 refs

  5. Accident Sequence Precursor Analysis for SGTR by Using Dynamic PSA Approach

    International Nuclear Information System (INIS)

    Lee, Han Sul; Heo, Gyun Young; Kim, Tae Wan

    2016-01-01

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. Based on the results of a sampling analysis and data from the conventional PSA model, the CDF caused by Sequence no. 26 can be realistically estimated. For a TLOFW accident with LOCA, second accident timings were categorized according to plant condition. Indicators were selected as branch point using the flow chart and tables, and a corresponding sequence tree model was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model

  6. MIGRATORY GAME BIRDS AS A SOURCE OF PUBLIC EXPOSURE FROM THE FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2011-01-01

    Full Text Available This article examines assessments of the impact of the Fukushima nuclear power plant accident on exposure of the Russian Federation population related to the seasonal migration of game birds. Intake of artificial radionuclides with meat of migratory game birds is shown to be one of the major pathways for the population exposure in the Far Eastern region of the country.

  7. Are the sea foods on our table safe after the Fukushima Nuclear Power Plant Accident?

    International Nuclear Information System (INIS)

    Enriquez, E.B.; Palad, L.J.H.; Encabo, R.R.; Cruz, P.T.F.; Garcia, T.Y.

    2015-01-01

    The Fukushima Nuclear Power Plant Accident that occurred in March 2011 raised immediate public concern on the safety of marine organisms caught in the Philippine waters. This is because of Japan’s proximity to the Philippine archipelago and the threat of contamination reaching our shores became a major issue. Immediately after the accident, the Philippine Nuclear Research Institute (PNRI) established an extensive marine monitoring program to assess any possible effect of one of the worst nuclear accidents that occurred in recent time. This study is under the framework of the project entitled “Radiological Impact Assessment of the Fukushima Nuclear Accident in the Philippine Marine Environment”. Species of fish, mollusks and crustaceans were analyzed for anthropogenic radionuclides cesium-134 (Cs-134) and Cesium-137 (Cs-137) Using a high purify Germanium (HPGe) detector from ORTEC Inc. Major fishing grounds and coastal areas in the west and eastern seaboards as well as in the north and south were selected as sources of biota samples. Commonly eaten and popular species of fish such as tuna, mackerel, sardines, etc were purchased from local markets in the area; processed and analyzed by gamma spectrometry. The results showed that the average Cs-137 activity concentration in fish samples (n=103) was found to be 0.74 ± 0.28 Becquerel/kilogram wet. The Cs-137 concentrations in mollusks (n=12) and crustaceans (n=4) were all below the Lowest Limit of Detection (LLD). Cs-134 was not detected in any of the samples analyzed. The low concentration of the radionuclides studied showed that, thus far, the Fukushima NPP accident has no Impact to the Philippines marine environment. (author)

  8. Structural aspects of the Chernobyl accident

    International Nuclear Information System (INIS)

    Murray, R.C.; Cummings, G.E.

    1988-01-01

    On April 26, 1986 the world's worst nuclear power plant accident occurred at the Unit 4 of the Chernobyl Nuclear Power Station in the USSR. This paper presents a discussion of the design of the Chernobyl Power Plant, the sequence of events that led to the accident and the damage caused by the resulting explosion. The structural design features that contributed to the accident and resulting damage will be highlighted. Photographs and sketches obtained from various worldwide news agencies will be shown to try and gain a perspective of the extent of the damage. The aftermath, clean-up, and current situation will be discussed and the important lessons learned for the structural engineer will be presented. 15 refs., 10 figs

  9. The nature of reactor accidents

    International Nuclear Information System (INIS)

    Domaratzki, Z.; Campbell, F.R.; Atchison, R.J.

    1981-01-01

    Reactor accidents are events which result in the release of radioactive material from a nuclear power plant due to the failure of one or more critical components of that plant. The failures, depending on their number and type, can result in releases whose consequences range from negligible to catastrophic. By way of examples, this paper describes four specific accidents which cover this range of consequence: failure of a reactor control system, loss of coolant, loss of coolant with impaired containment, and reactor core meltdown. For each a possible sequence of events and an estimate of the expected frequency are presented

  10. On the sequence and consequences of the Chernobyl reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, H H

    1986-01-01

    A serious reactor accident occurred on April 26, 1986 at Chernobyl near Kiev (Soviet Union) where, after melting of the core, there was a considerable release of radioactivity to the environment and to the atmosphere. The radioactivity release caused irradiation of the operating staff, which led to 24 deaths by June 1986. Hardly anything is known about the irradiation of the environment of the reactor plant, but the population within a radius of 30 km was evacuated. The radioactivity released into the atmosphere spread all over Europe, and Germany was affected a few days after the accident. The article gives a short description of the plant which suffered the accident, one tries to describe the course of the accident and to discuss the applicability to German plants.

  11. Effect of marine condition on feature of natural circulation after accident in floating nuclear power plant

    International Nuclear Information System (INIS)

    Yang Fan; Zhang Dan; Tan Changlu; Ran Xu; Yu Hongxing

    2015-01-01

    The incline and swing effect on natural circulation of floating nuclear power plant under site black out (SBO) accident is studied using self-developing marine condition system code RELAP5/MC. It shows that, for floating nuclear power plant under marine condition, the pressurizer fluctuating flow rate, the parallel heat sink (steam generator) have significant influences on the direct passive reactor heat removal (PRHR) system, which is different from other secondary PRHR under marine condition. The flow exchange between the loop and the pressurizer have major effect on cooling capacity for the left side loop. (authors)

  12. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi [Nuclear Power Corp. (Japan)] [and others

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed by three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.

  13. A quantitative assessment method for the NPP operators' diagnosis of accidents

    International Nuclear Information System (INIS)

    Kim, M. C.; Seong, P. H.

    2003-01-01

    In this research, we developed a quantitative model for the operators' diagnosis of the accident situation when an accident occurs in a nuclear power plant. After identifying the occurrence probabilities of accidents, the unavailabilities of various information sources, and the causal relationship between accidents and information sources, Bayesian network is used for the analysis of the change in the occurrence probabilities of accidents as the operators receive the information related to the status of the plant. The developed method is applied to a simple example case and it turned out that the developed method is a systematic quantitative analysis method which can cope with complex relationship between the accidents and information sources and various variables such accident occurrence probabilities and unavailabilities of various information sources

  14. Use of NUREG-1150 and IPEs in accident management

    International Nuclear Information System (INIS)

    Mauersberger

    1992-01-01

    The fundamental objective of the accident management program is to assure, in the event of a severe accident at a nuclear plant, that the effectiveness of personnel and equipment is maximized in preventing or mitigating the consequences of the accident. This document studies the use of NUREG-1150 and IPEs in accident management. Figs

  15. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    International Nuclear Information System (INIS)

    1992-04-01

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained

  16. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-15

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained.

  17. The computer aided education and training system for accident management

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Masuda, Takahiro; Kubota, Ryuji; Fujiwara, Tadashi; Sakuma, Hitoshi

    2000-01-01

    Under severe accident conditions of a nuclear power plant, plant operators and technical support center (TSC) staffs will be under a amount of stress. Therefore, those individuals responsible for managing the plant should promote their understanding about the accident management and operations. Moreover, it is also important to train in ordinary times, so that they can carry out accident management operations effectively on severe accidents. Therefore, the education and training system which works on personal computers was developed by Japanese BWR group (Tokyo Electric Power Co.,Inc., Tohoku Electric Power Co. ,Inc., Chubu Electric Power Co. ,Inc., Hokuriku Electric Power Co.,Inc., Chugoku Electric Power Co.,Inc., Japan Atomic Power Co.,Inc.), and Hitachi, Ltd. The education and training system is composed of two systems. One is computer aided instruction (CAI) education system and the other is education and training system with a computer simulation. Both systems are designed to execute on MS-Windows(R) platform of personal computers. These systems provide plant operators and technical support center staffs with an effective education and training tool for accident management. TEPCO used the simulation system for the emergency exercise assuming the occurrence of hypothetical severe accident, and have performed an effective exercise in March, 2000. (author)

  18. Categorization of PWR accident sequences and guidelines for fault trees: seismic initiators

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1984-09-01

    This study developed a set of dominant accident sequences that could be applied generically to domestic commercial PWRs as a standardized basis for a probabilistic seismic risk assessment. This was accomplished by ranking the Zion 1 accident sequences. The pertinent PWR safety systems were compared on a plant-by-plant basis to determine the applicability of the dominant accident sequences of Zion 1 to other PWR plants. The functional event trees were developed to describe the system functions that must work or not work in order for a certain accident sequence to happen, one for pipe breaks and one for transients

  19. Regulatory approach to enhanced human performance during accidents

    International Nuclear Information System (INIS)

    Palla, R.L. Jr.

    1990-01-01

    It has become increasingly clear in recent years that the risk associated with nuclear power is driven by human performance. Although human errors have contributed heavily to the two core-melt events that have occurred at power reactors, effective performance during an event can also prevent a degraded situation from progressing to a more serious accident, as in the loss-of-feedwater event at Davis-Besse. Sensitivity studies in which human error rates for various categories of errors in a probabilistic risk assessment (PRA) were varied confirm the importance of human performance. Moreover, these studies suggest that actions taken during an accident are at least as important as errors that occur prior to an initiating event. A program that will lead to enhanced accident management capabilities in the nuclear industry is being developed by the US Nuclear Regulatory Commission (NRC) and industry and is a key element in NRC's integration plan for closure of severe-accident issues. The focus of the accident management (AM) program is on human performance during accidents, with emphasis on in-plant response. The AM program extends the defense-in-depth principle to plant operating staff. The goal is to take advantage of existing plant equipment and operator skills and creativity to find ways to terminate accidents that are beyond the design basis. The purpose of this paper is to describe the NRC's objectives and approach in AM as well as to discuss several human performance issues that are central to AM

  20. Socioeconomic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Tawil, J.J.; Callaway, J.W.; Coles, B.L.; Cronin, F.J.; Currie, J.W.; Imhoff, K.L.; Lewis, P.M.; Nesse, R.J.; Strenge, D.L.

    1984-06-01

    This report identifies and characterizes the off-site socioeconomic consequences that would likely result from a severe radiological accident at a nuclear power plant. The types of impacts that are addressed include economic impacts, health impacts, social/psychological impacts and institutional impacts. These impacts are identified for each of several phases of a reactor accident - from the warning phase through the post-resettlement phase. The relative importance of the impact during each accident phase and the degree to which the impact can be predicted are indicated. The report also examines the methods that are currently used for assessing nuclear reactor accidents, including development of accident scenarios and the estimating of socioeconomic accident consequences with various models. Finally, a critical evaluation is made regarding the use of impact analyses in estimating the contribution of socioeconomic consequences to nuclear accident reactor accident risk. 116 references, 7 figures, 15 tables

  1. Summary of severe accident assessment for Atucha 2 Nuclear Power Plant using RELAP5/SCDAPSIM Mod3.6

    International Nuclear Information System (INIS)

    Bonelli, Analia; Mazzantini, Oscar; Siefken, Larry; Allison, Chris

    2014-01-01

    A severe accident assessment was performed for the Atucha 2 Nuclear Power Plant in Argentina. Atucha 2 is a PHWR, cooled and moderated by heavy water, presently in commissioning process. Its 451 fuel assemblies are 6.03m high and each composed of 37 Zircaloy clad fuel rods. Each assembly is placed inside an individual Zircaloy coolant channel. Heavy water coolant flows inside the channels which are all immersed inside the moderator tank. The RPV lower plenum is occupied by a massive steel structure called 'filling body' that was designed to minimize heavy water inventory. Due to some unique design characteristics, severe accident progression in Atucha 2 is expected to be somewhat different from that predicted for regular PWRs. Therefore, a very detailed assessment was performed, focused on the different accident stages and expected phenomena by the use of different input models and nodalizations. When possible, linking to available experimental data was performed. RELAP/SCDAPSIM Mod 3.6 was the computer code selected to perform this task. The modeling of Atucha 2's unique characteristics required several extensions to the code. For the severe accident assessment of Atucha 2, three different input models were developed that were key instruments for the debugging and evaluation process. A Single Channel Model was used to evaluate the first stages of core heatup (including the boiloff of the channels and moderator tank), an RPV standalone model was used to assess the interaction between components in the complete core and for the evaluation of late in-core melting and relocation. Then, a Lower Plenum standalone model was developed to assess the behavior of the melted and slumped core material on top of the filling body and to analyze ex-vessel cooling as a possible severe accident management action. For each of the cases, highlights of key results are shown and general conclusions are drawn. In the case of a severe accident with significant meltdown of

  2. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Goemans, T.; Schwarz, J.J.

    1988-01-01

    This study is directed towards the estimation of the economic damage which arises from a severe possible accident with a newly built 1000 MWE nuclear power plant in the Netherlands. A number of cases have been considered which are specified by the weather conditions during and the severity of the accident and the location of the nuclear power plant. For each accident case the economic damage has been estimated for the following impact categories: loss of the power plant, public health, evacuation and relocation of population, export of agricultural products, working and living in contaminated regions, decontamination, costs of transportation and incoming foreign tourism. The consequences for drinking water could not be quantified adequately. The total economic damage could reach 30 billion guilders. Besides the power plant itself, loss of export and decreasing incoming foreign tourism determine an important part of the total damage. 12 figs.; 52 tabs

  3. We are to do everything possible to prevent severe accidents

    International Nuclear Information System (INIS)

    Asmolov, V.

    2011-01-01

    The fundamental approach to safety assurance at a nuclear power plant is the principle of defence-in-depth. It means two key aspects: prevention of accidents through the creation and maintenance of engineering barriers, as well as mitigation of the consequences of accident. After Fukushima-1 accident re-evaluation was carried out of the effectiveness the defence-in-depth measures at Russian nuclear power plants, particularly in view of the very low-probability external events. The results of this evaluation demonstrated that all plants are fully compliant with the requirements of the current Russian safety standards [ru

  4. Light water reactor severe accident seminar. Seminar presentation manual

    International Nuclear Information System (INIS)

    2004-01-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans

  5. Light water reactor severe accident seminar. Seminar presentation manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans.

  6. Methodology to classify accident sequences of an Individual Plant Examination according to the severe releases for BWR type reactors

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2001-01-01

    The Light Water Reactor (LWR) operation regulations require to every operating plant to perform of an Individual Plant Examination study (Ipe). One of the main purposes of an Ipe is t o gain a more quantitative understanding of the overall probabilities of core damage and fission product releases . Probabilistic Safety Analysis (PSA) methodologies and Severe Accident Analysis are used to perform Ipe studies. PSA methodologies are used to identify and analyse the set of event sequences that might originate the fission product release from a nuclear power plant; these methodologies are combinatorial in nature and generate thousands of sequences. Among other uses within an Ipe, severe accident simulations are used to determine the characteristics of the fission product release for the identified sequences and in this way, the releases can be understood and characterized. A vast amount of resources is required to simulate and analyse every Ipe sequence. This effort is unnecessary if similar sequences are grouped. The grouping scheme must achieve an efficient trade off between problem reduction and accuracy. The methodology presented in this work enables an accurate characterization and analysis of the Ipe fission product releases by using a reduced problem. The methodology encourages the use of specific plant simulations. (Author)

  7. Implementation of hydrogen mitigation techniques during severe accidents in nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    concentration and under special geometric conditions, an accelerated flame or even a local detonation may occur which would produce higher dynamic loads than a deflagration and a more serious threat to equipment and structures. Should it occur in spite of its low probability, a global detonation, following prolonged and extensive accumulation of hydrogen in the containment atmosphere, would be a major threat to the containment integrity. The goal of hydrogen mitigation techniques is to prevent loads, resulting from hydrogen combustion, which could threaten containment integrity. The risk of containment failure depends on the overall hydrogen concentration which is dependent on the amount of hydrogen released and the containment volume. A possible containment failure also depends on the containment structure and design which is very important in the resistance of the containment to a global combustion. Geometrical sub-compartmentalization is also very important, because significant amounts of hydrogen could accumulate in compartments to create high local concentrations of hydrogen that could be well within the detonability limits. Once accident management measures aimed at preventing severe accidents from occurring have failed and hydrogen is being generated and released to the containment atmosphere in large amounts, the first step is to reduce the possibility of hydrogen accumulating to flammable concentrations. Where flammable concentrations cannot be precluded, the next step is to minimize the volume of gas at flammable concentrations and the third and last step is to prevent further increasing hydrogen levels from the flammable to detonable mixture concentrations. The purpose of this paper is to present a snapshot, from a technical viewpoint, of the current situation regarding the implementation of hydrogen mitigation techniques for severe accident conditions in nuclear power plants. Broader aspects related to overall accident management policies are not considered here

  8. Accident management information needs

    International Nuclear Information System (INIS)

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R.

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs

  9. Accident management information needs

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.J.; Ward, L.W.; Nelson, W.R.; Meyer, O.R. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-04-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, a methodology has been developed for identifying the plant information needs necessary for personnel involved in the management of an accident to diagnose that an accident is in progress, select and implement strategies to prevent or mitigate the accident, and monitor the effectiveness of these strategies. This report describes the methodology and presents an application of this methodology to a Pressurized Water Reactor (PWR) with a large dry containment. A risk-important severe accident sequence for a PWR is used to examine the capability of the existing measurements to supply the necessary information. The method includes an assessment of the effects of the sequence on the measurement availability including the effects of environmental conditions. The information needs and capabilities identified using this approach are also intended to form the basis for more comprehensive information needs assessment performed during the analyses and development of specific strategies for use in accident management prevention and mitigation. 3 refs., 16 figs., 7 tabs.

  10. Case study of the effects of hypothetical nuclear power plant accident to the northern food chain of lichen-reindeer-man

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, A.P.; Solatie, D. [Radiation and Nuclear Safety Authority - STUK (Finland); Paatero, J. [Finnish Meteorological Institute (Finland)

    2014-07-01

    There are plans to open a new nuclear power plant in Northern Finland at Pyhaejoki. The currently planned reactor type is AES 2006 built by Rosenergoatom. The power output of the AES 2006 is 1200 MWe. In a hypothetical reactor accident at Pyhaejoki large amounts of radioactivity would be released to the environment in Northern Europe. With suitable wind conditions the contaminants would contaminate large areas in the Euro-Arctic region in Northern Scandinavia and in Kola Peninsula. Northern parts of Scandinavia belongs to the sub-arctic region where reindeer herding is an important livelihood for the local and for the indigenous Sami people. As a results of the CEEPRA-project ('Collaboration Network on Environmental Radiation Protection and Research') funded by the EU's Kolarctic ENPI CBC program estimated a possible fallout to Finnish Lapland from a hypothetical nuclear power plant accident occurring at the planned site. Lichen-reindeer-man food chain is an important food chain to the people living in Lapland from traditional and from economical point of views. The food chain is known to enrich radioactive contaminants efficiently. In case of nuclear fallout this food chain would be one of the primary sources of {sup 137}Cs into the inhabitants in Northern regions. The food chain has been well-studied where studies began in the 1960's and was intensified after the Chernobyl accident. This study concentrates on the effects caused by the hypothetical accident, occurring at the planned Pyhaejoki power plant, to the lichen-reindeer-man food chain. The transfer of {sup 137}Cs and {sup 134}Cs to the reindeer meat and possible doses to the man will be estimated. Document available in abstract form only. (authors)

  11. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1992-02-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents

  12. Fukushima accident - reasons and impacts

    International Nuclear Information System (INIS)

    Slugen, V.

    2011-01-01

    The Fukushima accident influenced dramatically the current view on safety of nuclear facilities. Consideration about possible impacts of natural catastrophe in design of nuclear facilities seems to be much more important than before. European commission is focused on the stress-tests at nuclear power plants. His paper will go more in details having in mind reasons and impacts of Fukushima accident (Author)

  13. Social impact of accidents

    International Nuclear Information System (INIS)

    Kuroda, Isao

    1997-01-01

    There is the quite big difference between technological risk and social risk feeling. Various biases of social and sensational factors on accidents must be considered to recognize this difference. 'How safe is safe enough' is the perpetual thema concerning with not only technology but also sociology. The safety goal in aircraft design and how making effort to improve the present safety status in civil jet aircrafts is discussed as an example of social risk allowance. INSAG under IAEA started to discuss the safety culture after Chernobyl nuclear power plant accident on 1986. Safety culture and risk communication are the most important procedures to relieve the social impact for accidents. (author)

  14. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  15. Development of a prototype graphic simulation program for severe accident training

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database interface module. Main functions of

  16. Feature article. Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Ekarinai, Masashi; Ake, Yutaka; Narabayashi, Tadashi

    2011-01-01

    This special feature article consisted of five reports and the minutes of emergency discussion meeting on Fukushima Daiichi Nuclear Power Plant (NPP) accident. Effects of the accident on future electricity supply of electric utilities and also on business development of nuclear industries were discussed. Activities of senior network team of atomic energy society of Japan (AESJ) to conduct severe accident analysis and early restoration from the accident were introduced. Circulating injection reactor cooling system and zeolite decontamination system of accumulated contaminated water was proposed. Effects of the accident on overseas reaction on nuclear development were also reported as well as personal experience of the professor in the US west coast on communications. (T. Tanaka)

  17. Radiation protection issues on preparedness and response for a severe nuclear accident: experiences of the Fukushima accident.

    Science.gov (United States)

    Homma, T; Takahara, S; Kimura, M; Kinase, S

    2015-06-01

    Radiation protection issues on preparedness and response for a severe nuclear accident are discussed in this paper based on the experiences following the accident at Fukushima Daiichi nuclear power plant. The criteria for use in nuclear emergencies in the Japanese emergency preparedness guide were based on the recommendations of International Commission of Radiological Protection (ICRP) Publications 60 and 63. Although the decision-making process for implementing protective actions relied heavily on computer-based predictive models prior to the accident, urgent protective actions, such as evacuation and sheltering, were implemented effectively based on the plant conditions. As there were no recommendations and criteria for long-term protective actions in the emergency preparedness guide, the recommendations of ICRP Publications 103, 109, and 111 were taken into consideration in determining the temporary relocation of inhabitants of heavily contaminated areas. These recommendations were very useful in deciding the emergency protective actions to take in the early stages of the Fukushima accident. However, some suggestions have been made for improving emergency preparedness and response in the early stages of a severe nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  18. Accident management insights after the Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    Degueldre, Didier; Viktorov, Alexandre; Tuomainen, Minna; Ducamp, Francois; Chevalier, Sophie; Guigueno, Yves; Tasset, Daniel; Heinrich, Marcus; Schneider, Matthias; Funahashi, Toshihiro; Hotta, Akitoshi; Kajimoto, Mitsuhiro; Chung, Dae-Wook; Kuriene, Laima; Kozlova, Nadezhda; Zivko, Tomi; Aleza, Santiago; Jones, John; McHale, Jack; Nieh, Ho; Pascal, Ghislain; ); Nakoski, John; Neretin, Victor; Nezuka, Takayoshi; )

    2014-01-01

    The Fukushima Daiichi nuclear power plant (NPP) accident, that took place on 11 March 2011, initiated a significant number of activities at the national and international levels to reassess the safety of existing NPPs, evaluate the sufficiency of technical means and administrative measures available for emergency response, and develop recommendations for increasing the robustness of NPPs to withstand extreme external events and beyond design basis accidents. The OECD Nuclear Energy Agency (NEA) is working closely with its member and partner countries to examine the causes of the accident and to identify lessons learnt with a view to the appropriate follow-up actions to be taken by the nuclear safety community. Accident management is a priority area of work for the NEA to address lessons being learnt from the accident at the Fukushima Daiichi NPP following the recommendations of Committee on Nuclear Regulatory Activities (CNRA), Committee on the Safety of Nuclear Installations (CSNI), and Committee on Radiation Protection and Public Health (CRPPH). Considering the importance of these issues, the CNRA authorised the formation of a task group on accident management (TGAM) in June 2012 to review the regulatory framework for accident management following the Fukushima Daiichi NPP accident. The task group was requested to assess the NEA member countries needs and challenges in light of the accident from a regulatory point of view. The general objectives of the TGAM review were to consider: - enhancements of on-site accident management procedures and guidelines based on lessons learnt from the Fukushima Daiichi NPP accident; - decision-making and guiding principles in emergency situations; - guidance for instrumentation, equipment and supplies for addressing long-term aspects of accident management; - guidance and implementation when taking extreme measures for accident management. The report is built on the existing bases for capabilities to respond to design basis

  19. Progress summary of the Chernobyl accident

    International Nuclear Information System (INIS)

    Iddekinge, F.W. van

    1986-01-01

    Based on two IAEA documents (the report of the USSR State Committee on the Utilization of Atomic Energy named 'The accident at the Chernobyl nuclear power plant and its consequences' prepared for the IAEA Experts Meeting held in Vienna on 25-29 August, 1986 and the INSAG (International Nuclear Safety Advisory Group) summary report on the Post-accident review meeting on the Chernobyl accident, drawn up in Vienna from August 30 until September 5, 1986, this publication tries to present a logic relation between the special features of the RMBK-1000 LWGR, the cause of the accident, and the technical countermeasures. (Auth.)

  20. Generic evaluation of feedwater transients and small break loss-of-coolant accidents in GE-designed operating plants and near-term operating license applications

    International Nuclear Information System (INIS)

    1980-01-01

    The results are presented of a generic evaluation of feedwater transients, small-break loss-of-coolant accidents (LOCAs), and other TMI-2-related events for General Electric Company (GE)-designed operating plants and near-term operating license applications to confirm or establish the bases for the continued safe operation of the operating plants. The results of this evaluation are presented in this report in the form of a set of findings and recommendations in each of the principal review areas. Additional review of the accident is continuing and further information is being obtained and evaluated. Any new information will be reviewed and modifications will be made as appropriate

  1. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  2. A decision theoretic approach to an accident sequence: when feedwater and auxiliary feedwater fail in a nuclear power plant

    International Nuclear Information System (INIS)

    Svenson, Ola

    1998-01-01

    This study applies a decision theoretic perspective on a severe accident management sequence in a processing industry. The sequence contains loss of feedwater and auxiliary feedwater in a boiling water nuclear reactor (BWR), which necessitates manual depressurization of the reactor pressure vessel to enable low pressure cooling of the core. The sequence is fast and is a major contributor to core damage in probabilistic risk analyses (PRAs) of this kind of plant. The management of the sequence also includes important, difficult and fast human decision making. The decision theoretic perspective, which is applied to a Swedish ABB-type reactor, stresses the roles played by uncertainties about plant state, consequences of different actions and goals during the management of a severe accident sequence. Based on a theoretical analysis and empirical simulator data the human error probabilities in the PRA for the plant are considered to be too small. Recommendations for how to improve safety are given and they include full automation of the sequence, improved operator training, and/or actions to assist the operators' decision making through reduction of uncertainties, for example, concerning water/steam level for sufficient cooling, time remaining before insufficient cooling level in the tank is reached and organizational cost-benefit evaluations of the events following a false alarm depressurization as well as the events following a successful depressurization at different points in time. Finally, it is pointed out that the approach exemplified in this study is applicable to any accident scenario which includes difficult human decision making with conflicting goals, uncertain information and with very serious consequences

  3. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang Hyun Gook; Yoon, Ho Joon

    2016-01-01

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results

  4. Sequence Tree Modeling for Combined Accident and Feed-and-Bleed Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In order to address this issue, this study suggests the sequence tree model to analyze accident sequence systematically. Using the sequence tree model, all possible scenarios which need a specific safety action to prevent the core damage can be identified and success conditions of safety action under complicated situation such as combined accident will be also identified. Sequence tree is branch model to divide plant condition considering the plant dynamics. Since sequence tree model can reflect the plant dynamics, arising from interaction of different accident timing and plant condition and from the interaction between the operator action, mitigation system, and the indicators for operation, sequence tree model can be used to develop the dynamic event tree model easily. Target safety action for this study is a feed-and-bleed (F and B) operation. A F and B operation directly cools down the reactor cooling system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. In this study, a TLOFW accident and a TLOFW accident with LOCA were the target accidents. Based on the conventional PSA model and indicators, the sequence tree model for a TLOFW accident was developed. If sampling analysis is performed, practical accident sequences can be identified based on the sequence analysis. If a realistic distribution for the variables can be obtained for sampling analysis, much more realistic accident sequences can be described. Moreover, if the initiating event frequency under a combined accident can be quantified, the sequence tree model can translate into a dynamic event tree model based on the sampling analysis results.

  5. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report; Unfallanalysen in Kernkraftwerken nach anlagenexternen ausloesenden Ereignissen und im Nichtleistungsbetrieb. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-15

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  6. Lessons learned from MONJU sodium leak accident

    International Nuclear Information System (INIS)

    Nakai, Ryodai; Ito, Kazumoto; Nagata, Takashi

    2000-01-01

    MONJU sodium leak accident was a small accident with a large public impact. There was no injures or exposure to radiation, nor was there any loss of safety function such as reactor shutdown or reactor cooling. On the contrary a social impact is considerably large, whereby the plant remains shutdown. This paper describes the lessons learned from the accident, i.e. the impact of the accident and its cause, and the features on risk management in view of social aspect as well as technical aspect. (author)

  7. Analysis of human error in occupational accidents in the power plant industries using combining innovative FTA and meta-heuristic algorithms

    Directory of Open Access Journals (Sweden)

    M. Omidvari

    2015-09-01

    Full Text Available Introduction: Occupational accidents are of the main issues in industries. It is necessary to identify the main root causes of accidents for their control. Several models have been proposed for determining the accidents root causes. FTA is one of the most widely used models which could graphically establish the root causes of accidents. The non-linear function is one of the main challenges in FTA compliance and in order to obtain the exact number, the meta-heuristic algorithms can be used. Material and Method: The present research was done in power plant industries in construction phase. In this study, a pattern for the analysis of human error in work-related accidents was provided by combination of neural network algorithms and FTA analytical model. Finally, using this pattern, the potential rate of all causes was determined. Result: The results showed that training, age, and non-compliance with safety principals in the workplace were the most important factors influencing human error in the occupational accident. Conclusion: According to the obtained results, it can be concluded that human errors can be greatly reduced by training, right choice of workers with regard to the type of occupations, and provision of appropriate safety conditions in the work place.

  8. Accident knowledge and emergency management

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, B; Groenberg, C D

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs.

  9. Accident knowledge and emergency management

    International Nuclear Information System (INIS)

    Rasmussen, B.; Groenberg, C.D.

    1997-03-01

    The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential elements are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of confinement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. (au) 41 tabs., 8 ills.; 79 refs

  10. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents; Notfallschutz und Risk Governance. Zur nuklearen Sicherheit bei Kernkraftwerksunfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlen, Johannes

    2014-07-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  11. Accident prevention ordinance 2.0 Thermal Power Plants

    International Nuclear Information System (INIS)

    Egyptien, H.H.; Fischermann, E.

    This accident prevention ordinance is to cover primarily the very section of a power station where fossil or nuclear energy is converted into thermal energy, e.g. by heating or vaporization of a heat source. In paragraph 1, 40 GJ/h are stipulated as the lower limit of capacity corresponding to about 11 MW. Therefore, the accident prevention ordinance does not only marshal the operation of steam generators in electricity supply utilities but also covers smaller industrial power stations which partly do only meet the company's own requirements. Pipes are only covered as far as they are operated in conjunction with a heat generator. The same applies to coal handling and ash removal facilities. This means that for heat release e.g. in the framework of a district heating grid, the transfer station to the distribution grid is regarded as being a border of the power station and thus a border to the area of application of the accident prevention ordinance. (orig./HP) [de

  12. Instrumentation availability for a pressurized water reactor with a large dry containment during severe accidents

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1991-03-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a pressurized water reactor with a large dry containment. Results from this evaluation include the following: (a) identification of plant conditions that would impact instrument performance and information needs during severe accidents, (b) definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences, and (c) assessment of the availability of plant instrumentation during severe accidents. 16 refs., 3 figs., 4 tabs

  13. Development of Information Display System for Operator Support in Severe Accident

    International Nuclear Information System (INIS)

    Jeong, Kwang Il; Lee, Joon Ku

    2016-01-01

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future

  14. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  15. Lessons for PHWRs learned from the Chernobyl accident

    International Nuclear Information System (INIS)

    Waddington, J.G.; Molloy, T.J.

    1996-01-01

    The Atomic Energy Control Board of Canada examined its criteria for licensing nuclear power plants following the accident to the Chernobyl reactor in 1986. The causes of the accident were studied to ascertain whether they revealed any deficiencies in the safety of CANDU PHWRs. A report published in 1987 contained nine recommendations, and this paper revisits these to indicate how they were dealt with the plant owners and the regulatory authority

  16. First days of the Chernobyl accident. Private experience

    International Nuclear Information System (INIS)

    Karpan, Nikolay

    2013-01-01

    Ex-deputy chief engineer of Chernobyl NPP described the time-series personal experience of the fourth unit accident on 26 April, 1986. He was informed the accident at home at 4 o'clock. He came to the plant at 7 o'clock. He and other newcomers were no informed about what happened at the plant and about details of the accident from top manager of the plant. He gathered important information about the accident from people that were eyewitness of the accident and recorded their evidences. He reported to head engineer and his deputy that solution of boron acid could be brought into reactor for suppression of the chain reaction. Director of NPP asked authorities to bring boron acid to the plant, but the boron acid was not received before the chain reaction. The critical state began approximately 20 in the evening. After 4 hours of the critical state exposition dose rate of gamma radiation was ten times from 20 R/h in the morning and middle of day to 200 R/h. He consider as the first fault of the Governmental Commission was the absence of efforts for bringing boron to gorges of fuel and to shaft of reactor. The second fault was that protective countermeasures for city population protection were not undertaken. The authorities of Chernobyl began to wait for decisions of higher authorities. This means that responsibility was moved to them. (N.T)

  17. Theories of radiation effects and reactor accident analysis

    International Nuclear Information System (INIS)

    Williams, P.M.; Ball, S.J.

    1996-01-01

    Muckerheide's paper was a public breakthrough on how one might assess the public health effects of low-level radiation. By the organization of a wealth of data, including the consequences of Hiroshima and Nagasaki but not including Chernobyl, he was able to conclude that present radioactive waste disposal and cleanup efforts need to be much less arduous than forecast by the U.S. Department of Energy, which, together with regulators, uses the linear hypothesis of radiation damage to humans. While the linear hypothesis is strongly defended and even recommended for extension to noncarcinogenic pollutants, exploration of a conservative threshold for very low level exposures could save billions of dollars in disposing of radioactive waste, enhance the understanding of reactor accident consequences, and assist in the development of design and operating criteria pertaining to severe accidents. In this context, the authors discuss the major differences between design-basis and severe accidents. The authors propose that what should ultimately be done is to develop a regulatory formula for severe-accident analysis that relates the public health effects to the amount and type of radionuclides released and distributed by the Chernobyl accident. Answers to the following important questions should provide the basis of this study: (1) What should be the criteria for distinguishing between design-basis and severe accidents, and what should be the basis for these criteria? (2) How do, and should, these criteria differ for older plants, newer operating plants, type of plant (i.e., gas cooled, water cooled, and liquid metal), advanced designs, and plants of the former Soviet Union? (3) How safe is safe enough?

  18. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role...... for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented...

  19. Applying Functional Modeling for Accident Management of Nucler Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role...... for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented....

  20. Dutch National Plan combat nuclear accidents

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the Dutch National Plan combat nuclear accidents (NPK). Ch. 2 discusses some important starting points which are determining for the framework and the performance of the NPK, in particular the accident typology which underlies the plan. Also the new accident-classification system for the Dutch nuclear power plants, the standardization for the measures to be taken and the staging around nuclear power plants are pursued. In ch. 3 the legal framework of the combat nuclear accidents is described. In particular the Nuclear-power law, the Accident law and the Municipality law are pursued. Also the role of province and municipality are described. Ch. 4 deals with the role of the owner/licensee of the object where the accident occurs, in the combat of accident. In ch. 5 the structure of the nuclear-accident combat at national level is outlined, subdivided in alarm phase, combat phase and the winding-up phase. In ch.'s 6-12 these phases are elaborated more in detail. In ch.'s 10-13 the measures to be taken in nuclear accidents, are described. These measures are distinguished with regard to: protection of the population and medical aspects, water economy, drinking-water supply, agriculture and food supply. Ch. 14 describes the responsibility of the burgomaster. Ch.'s 15 and 16 present an overview of the personnel, material, procedural and juridical modifications and supplements of existing structures which are necessary with regard to the new and modified parts of the structure. Ch. 17 indicates how by means of the appropriate education and exercise it can be achieved that all personnel, services and institutes concerned possess the knowledge and experience necessary for the activities from the NKP to be executed as has been described. Ch. 18 contains a survey of activities to be performed and a proposal how these can be realized. (H.W.). figs.; tabs