WorldWideScience

Sample records for reovirus fast proteins

  1. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor.

    Directory of Open Access Journals (Sweden)

    Jolene Read

    2015-06-01

    Full Text Available Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.

  2. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  3. Reovirus FAST Protein Enhances Vesicular Stomatitis Virus Oncolytic Virotherapy in Primary and Metastatic Tumor Models

    Directory of Open Access Journals (Sweden)

    Fabrice Le Boeuf

    2017-09-01

    Full Text Available The reovirus fusion-associated small transmembrane (FAST proteins are the smallest known viral fusogens (∼100–150 amino acids and efficiently induce cell-cell fusion and syncytium formation in multiple cell types. Syncytium formation enhances cell-cell virus transmission and may also induce immunogenic cell death, a form of apoptosis that stimulates immune recognition of tumor cells. These properties suggest that FAST proteins might serve to enhance oncolytic virotherapy. The oncolytic activity of recombinant VSVΔM51 (an interferon-sensitive vesicular stomatitis virus [VSV] mutant encoding the p14 FAST protein (VSV-p14 was compared with a similar construct encoding GFP (VSV-GFP in cell culture and syngeneic BALB/c tumor models. Compared with VSV-GFP, VSV-p14 exhibited increased oncolytic activity against MCF-7 and 4T1 breast cancer spheroids in culture and reduced primary 4T1 breast tumor growth in vivo. VSV-p14 prolonged survival in both primary and metastatic 4T1 breast cancer models, and in a CT26 metastatic colon cancer model. As with VSV-GFP, VSV-p14 preferentially replicated in vivo in tumors and was cleared rapidly from other sites. Furthermore, VSV-p14 increased the numbers of activated splenic CD4, CD8, natural killer (NK, and natural killer T (NKT cells, and increased the number of activated CD4 and CD8 cells in tumors. FAST proteins may therefore provide a multi-pronged approach to improving oncolytic virotherapy via syncytium formation and enhanced immune stimulation.

  4. Classification of Dutch and German avian reoviruses by sequencing the sigma-C protein.

    NARCIS (Netherlands)

    Kant, A.; Balk, F.R.M.; Born, L.; Roozelaar, van D.; Heijmans, J.; Gielkens, A.; Huurne, ter A.A.H.M.

    2003-01-01

    We have amplified, cloned and sequenced (part of) the open reading frame of the S1 segment encoding the ¿ C protein of avian reoviruses isolated from chickens with different disease conditions in Germany and The Netherlands during 1980 up to 2000. These avian reoviruses were analysed

  5. Reptilian reovirus: a new fusogenic orthoreovirus species

    International Nuclear Information System (INIS)

    Duncan, Roy.; Corcoran, Jennifer; Shou Jingyun; Stoltz, Don

    2004-01-01

    The fusogenic subgroup of orthoreoviruses contains most of the few known examples of non-enveloped viruses capable of inducing syncytium formation. The only unclassified orthoreoviruses at the species level represent several fusogenic reptilian isolates. To clarify the relationship of reptilian reoviruses (RRV) to the existing fusogenic and nonfusogenic orthoreovirus species, we undertook a characterization of a python reovirus isolate. Biochemical, biophysical, and biological analyses confirmed the designation of this reptilian reovirus (RRV) isolate as an unclassified fusogenic orthoreovirus. Sequence analysis revealed that the RRV S1 and S3 genome segments contain a novel conserved 5'-terminal sequence not found in other orthoreovirus species. In addition, the gene arrangement and the coding potential of the bicistronic RRV S1 genome segment differ from that of established orthoreovirus species, encoding a predicted homologue of the reovirus cell attachment protein and a unique 125 residue p14 protein. The RRV S3 genome segment encodes a homologue of the reovirus sigma-class major outer capsid protein, although it is highly diverged from that of other orthoreovirus species (amino acid identities of only 16-25%). Based on sequence analysis, biological properties, and phylogenetic analysis, we propose this python reovirus be designated as the prototype strain of a fifth species of orthoreoviruses, the reptilian reoviruses

  6. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    Science.gov (United States)

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  7. Functional investigation of grass carp reovirus nonstructural protein NS80

    Directory of Open Access Journals (Sweden)

    Shao Ling

    2011-04-01

    Full Text Available Abstract Background Grass Carp Reovirus (GCRV, a highly virulent agent of aquatic animals, has an eleven segmented dsRNA genome encased in a multilayered capsid shell, which encodes twelve proteins including seven structural proteins (VP1-VP7, and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16. It has been suggested that the protein NS80 plays an important role in the viral replication cycle that is similar to that of its homologous protein μNS in the genus of Orthoreovirus. Results As a step to understanding the basis of the part played by NS80 in GCRV replication and particle assembly, we used the yeast two-hybrid (Y2H system to identify NS80 interactions with proteins NS38, VP4, and VP6 as well as NS80 and NS38 self-interactions, while no interactions appeared in the four protein pairs NS38-VP4, NS38-VP6, VP4-VP4, and VP4-VP6. Bioinformatic analyses of NS80 with its corresponding proteins were performed with all currently available homologous protein sequences in ARVs (avian reoviruses and MRVs (mammalian reoviruses to predict further potential functional domains of NS80 that are related to VFLS (viral factory-like structures formation and other roles in viral replication. Two conserved regions spanning from aa (amino acid residues of 388 to 433, and 562 to 580 were discovered in this study. The second conserved region with corresponding conserved residues Tyr565, His569, Cys571, Asn573, and Glu576 located between the two coiled-coils regions (aa ~513-550 and aa ~615-690 in carboxyl-proximal terminus were supposed to be essential to form VFLS, so that aa residues ranging from 513 to 742 of NS80 was inferred to be the smallest region that is necessary for forming VFLS. The function of the first conserved region including Ala395, Gly419, Asp421, Pro422, Leu438, and Leu443 residues is unclear, but one-third of the amino-terminal region might be species specific, dominating interactions with other viral components. Conclusions Our

  8. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    Science.gov (United States)

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor

  9. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    Science.gov (United States)

    Reiter, Dirk M; Frierson, Johnna M; Halvorson, Elizabeth E; Kobayashi, Takeshi; Dermody, Terence S; Stehle, Thilo

    2011-08-01

    Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  10. Crystal structure of reovirus attachment protein σ1 in complex with sialylated oligosaccharides.

    Directory of Open Access Journals (Sweden)

    Dirk M Reiter

    2011-08-01

    Full Text Available Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.

  11. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    Science.gov (United States)

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  12. Fidelity in the translation of reovirus mRNA in oocytes of Xenopus laevis

    International Nuclear Information System (INIS)

    Opperman, D.P.J.; Van der Walt, M.P.K.; Reinecke, C.J.

    1988-01-01

    The translation products formed from reovirus mRNA micro-injected into oocytes of Xenopus laevis were compared with authentic reovirus proteins by polyacrylamide gel electrophoresis, immunoprecipition, isolation of immune complexes by affinity chromatography and peptide mapping using proteolytic digestion with Staphylococcus aureus V8 protease. Products from the s-, m- and l-class mRNAs were detectable in quantities comparable to those synthesized in vivo, confirming that the differences in the translational efficiencies in the oocyte system resemble those found in vivo. The experimental procedures during this study, include the labelling of these translation products with [ 35 S]methionine. Protein μ1C was formed in the oocytes by post-translational cleavage of its precursor, protein μ1. The V8 protease peptide profile of the translation product with the same electrophoretic mobility as protein, σ3, is identical to that of the authentic reovirus protein. All these observations indicate a high degree of fidelity in the translation of reovirus mRNA in the oocyte system. The fidelity in translation, ratios of the various translation products, as well as post-translational modification suggest that the oocyte system might provide a means for studying the mechanism of reovirus morphogenesis

  13. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  14. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.

    Science.gov (United States)

    Danthi, Pranav; Coffey, Caroline M; Parker, John S L; Abel, Ty W; Dermody, Terence S

    2008-12-01

    Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.

  15. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.

    Directory of Open Access Journals (Sweden)

    Pranav Danthi

    2008-12-01

    Full Text Available Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.

  16. PUMA and NF-kB Are Cell Signaling Predictors of Reovirus Oncolysis of Breast Cancer.

    Science.gov (United States)

    Thirukkumaran, Chandini; Shi, Zhong-Qiao; Thirukkumaran, Ponnampalam; Luider, Joanne; Kopciuk, Karen; Spurrell, Jason; Elzinga, Kate; Morris, Don

    2017-01-01

    Reovirus is a ubiquitous RNA virus that exploits aberrant signaling pathways for its replication. The oncolytic potential of reovirus against numerous cancers under pre-clinical/clinical conditions has been documented by us and others. Despite its proven clinical activity, the underlying mechanisms of reovirus oncolysis is still not well elucidated. If reovirus therapy is to be optimized for cancer, including breast cancer patients, it is imperative to understand the mechanisms of reovirus oncolysis, especially in treatment of resistant tumour. In the present study global gene expression profiling was utilized as a preliminary roadmap to tease-out pivotal molecules involved in reovirus induced apoptosis in breast cancer. Reovirus treated HTB133 and MCF7 breast cancer cells revealed transcriptional alteration of a defined subset of apoptotic genes and members of the nuclear factor-kappa B (NF-kB) family and p53 upregulated modulator of apoptosis (PUMA) were prominent. Since NF-kB can paradoxically suppress or promote apoptosis in cancer, the significance of NF-kB in reovirus oncolysis of breast cancer was investigated. Real time PCR analysis indicated a 2.9-4.3 fold increase in NF-kB p65 message levels following reovirus infection of MCF7 and HTB133, respectively. Nuclear translocation of NF-kB p65 protein was also dramatically augmented post reovirus treatment and correlated with enhanced DNA binding. Pharmacologic inhibition of NF-kB lead to oncolytic protection and significant down regulation of PUMA message levels. PUMA down regulation using siRNA suppressed reovirus oncolysis via significantly repressed apoptosis in p53 mutant HTB133 cells. This study demonstrates for the first time that a prominent pathway of reovirus oncolysis of breast cancer is mediated through NF-kB and that PUMA upregulation is dependent on NF-kB activation. These findings represent potential therapeutic indicators of reovirus treatment in future clinical trials.

  17. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    Science.gov (United States)

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  18. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1–S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  19. 21 CFR 866.3470 - Reovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3470 Reovirus... and antisera used in serological tests to identify antibodies to reovirus in serum. The identification...

  20. Efficacy of reovirus against breast cancer

    International Nuclear Information System (INIS)

    Zhu Jingzhi; Chen Jue; Dong Shengxiang; Yan Weili; Wu Zhiyong

    2011-01-01

    To investigate the role of oncolytic reovirus in breast cancer, a tumor xenograft model of NOD/SCID mice was established using a biopsy sample of a primary infiltrating ductal carcinoma obtained from a breast cancer patient. The result of HE and TUNEL was analyzed after injecting the reovirus peritoneally for 3 days. The results showed that estrogen supplementation was required to establish appropriate human breast cancer xenograft model of NOD/SCID mice. 29.6% of these transplanted tumors grew with supplementation of Estrogen. Otherwise none grew (P<0.01). ER of the xenograft model was positive.After treatment with reovirus for 3 days, breast cancer cells were disrupted and disappeared which induced tissue looseness. The rate of apoptosis increased double than before. The biological characteristics of tumor xenograft model confirm with the primary breast cancer. The oncolytic reovirus can kill breast cancer in short time. (authors)

  1. Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells.

    Science.gov (United States)

    Mohamed, Adil; Teicher, Carmit; Haefliger, Sarah; Shmulevitz, Maya

    2015-04-01

    Wild-type mammalian orthoreovirus serotype 3 Dearing (T3wt) is nonpathogenic in humans but preferentially infects and kills cancer cells in culture and demonstrates promising antitumor activity in vivo. Using forward genetics, we previously isolated two variants of reovirus, T3v1 and T3v2, with increased infectivity toward a panel of cancer cell lines and improved in vivo oncolysis in a murine melanoma model relative to that of T3wt. Our current study explored how mutations in T3v1 and T3v2 promote infectivity. Reovirions contain trimers of σ1, the reovirus cell attachment protein, at icosahedral capsid vertices. Quantitative Western blot analysis showed that purified T3v1 and T3v2 virions had ∼ 2- and 4-fold-lower levels of σ1 fiber than did T3wt virions. Importantly, using RNA interference to reduce σ1 levels during T3wt production, we were able to generate wild-type reovirus with reduced levels of σ1 per virion. As σ1 levels were reduced, virion infectivity increased by 2- to 5-fold per cell-bound particle, demonstrating a causal relationship between virion σ1 levels and the infectivity of incoming virions. During infection of tumorigenic L929 cells, T3wt, T3v1, and T3v2 uncoated the outer capsid proteins σ3 and μ1C at similar rates. However, having started with fewer σ1 molecules, a complete loss of σ1 was achieved sooner for T3v1 and T3v2. Distinct from intracellular uncoating, chymotrypsin digestion, as a mimic of natural enteric infection, resulted in more rapid σ3 and μ1C removal, unique disassembly intermediates, and a rapid loss of infectivity for T3v1 and T3v2 compared to T3wt. Optimal infectivity toward natural versus therapeutic niches may therefore require distinct reovirus structures and σ1 levels. Wild-type reovirus is currently in clinical trials as a potential cancer therapy. Our molecular studies on variants of reovirus with enhanced oncolytic activity in vitro and in vivo now show that distinct reovirus structures promote

  2. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  3. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    International Nuclear Information System (INIS)

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-01-01

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  4. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer

    Directory of Open Access Journals (Sweden)

    Prestwich Robin

    2011-06-01

    Full Text Available Abstract Background Reovirus type 3 Dearing (T3D has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication. Methods The effects of reovirus and chemotherapy on in vitro cytotoxicity were investigated in PC3 and Du 145 cells and the interactions between agents were assessed by combination index analysis. An Annexin V/propidium iodide fluorescence-activated cell sorting-based assay was used to determine mode of cell death. The effects of reovirus and docetaxel administered as single agent or combination therapy were tested in vivo in a murine model. The effects of docetaxel and reovirus, alone and together, on microtubule stabilisation were investigated by Western blot analysis. Results Variable degrees of synergistic cytotoxicity were observed in PC3 and Du 145 cells exposed to live reovirus and several chemotherapy agents. Combination of reovirus infection with docetaxel exposure led to increased late apoptotic/necrotic cell populations. Reovirus/docetaxel combined therapy led to reduced tumour growth and increased survival in a PC3 tumour bearing mouse model. Microtubule stabilization was enhanced in PC3 cells treated with reovirus/docetaxel combined therapy compared to other reovirus/chemotherapy combinations. Conclusions The co

  5. Growth performance of broilers in experimental Reovirus infections

    Directory of Open Access Journals (Sweden)

    Sudhakar P. Awandkar

    Full Text Available Background: The avian reoviruses have emerged to induce various manifestations in chickens. They are associated with disease conditions including malabsorption syndrome, tenosynovitis etc. Reoviruses are an important cause of suboptimum performance in broilers, resulting in poor growth performance. Poultry industry in India is facing a catastrophe due to such infections which go unnoticed in field due to masking of the symptoms by secondary infections and commonly observed nutritional disorders. Aim: To investigate the effect of reovirus infection on overall performance of broiler birds. Material and Methods: The broiler birds were challenged with homologous strains of malabsorption syndrome and tenosynovitis syndrome of reovirus. The growth performance was recorded. Results and conclusion: The growth performance and immune response to NDV did not differ in the birds challenged with tenosynovitis syndrome strain of reo virus as compared to un challenged birds. However, poor live body weight, feed intake, FCR, PE and BPEI and better serum NDV titres were found in chicks challenged with malabsorption syndrome strain of reovirus as compared to the chicks from control group. [Vet World 2012; 5(11.000: 685-689

  6. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A.

    Directory of Open Access Journals (Sweden)

    Diana J M van den Wollenberg

    Full Text Available Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.

  7. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  8. American woodcock (Scolopax minor) mortality associated with a reovirus

    Science.gov (United States)

    Docherty, D.E.; Converse, K.A.; Hansen, W.R.; Norman, G.W.

    1994-01-01

    A virus isolate associated with a 1989-90 die-off in American woodcock (Scolopax minor) was identified as a reovirus. Emaciation was a consistent necropsy finding in the woodcock involved in this die-off. This reovirus infection appeared to be systemic, had the potential for fecal-oral virus transmission, and was associated with deterioration of body condition. To our knowledge this is the first report of a virus isolate from wild American woodcock. A survey conducted in 1990-92 indicated that this virus was not present at detectable levels in the woodcock breeding and wintering population. /// Un virus asociado con la mortalidad de becadas o perdices americanas (Scolopax minor) en 1989-1990-fue identificado como reovirus. La emaciaci??n fue un resultado com??n a la necropsia de las aves que murieron. Esta infecci??n por reovirus pareci?? ser sist??mica, ten?-a el potencial de transmisi??n fecal-oral y estuvo asociada con el deterioro del ave. Creemos que este sea el primer reporte de aislamiento viral a partir de becadas americanas. Una encuesta hecha entre 1990 y 1992 indic?? que este virus no estaba presente en los niveles detectables en los reproductores y en las aves invernales.

  9. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    International Nuclear Information System (INIS)

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-01-01

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  10. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  11. Antitumour responses induced by a cell-based Reovirus vaccine in murine lung and melanoma models

    International Nuclear Information System (INIS)

    Campion, Ciorsdan A.; Soden, Declan; Forde, Patrick F.

    2016-01-01

    The ever increasing knowledge in the areas of cell biology, the immune system and the mechanisms of cancer are allowing a new phase of immunotherapy to develop. The aim of cancer vaccination is to activate the host immune system and some success has been observed particularly in the use of the BCG vaccine for bladder cancer as an immunostimulant. Reovirus, an orphan virus, has proven itself as an oncolytic virus in vitro and in vivo. Over 80 % of tumour cell lines have been found to be susceptible to Reovirus infection and it is currently in phase III clinical trials. It has been shown to induce immune responses to tumours with very low toxicities. In this study, Reovirus was examined in two main approaches in vivo, in mice, using the melanoma B16F10 and Lewis Lung Carcinoma (LLC) models. Initially, mice were treated intratumourally (IT) with Reovirus and the immune responses determined by cytokine analysis. Mice were also vaccinated using a cell-based Reovirus vaccine and subsequently exposed to a tumourigenic dose of cells (B16F10 or LLC). Using the same cell-based Reovirus vaccine, established tumours were treated and subsequent immune responses and virus retrieval investigated. Upregulation of several cytokines was observed following treatment and replication-competent virus was also retrieved from treated tumours. Varying levels of cytokine upregulation were observed and no replication-competent virus was retrieved in vaccine-treated mice. Prolongation of survival and delayed tumour growth were observed in all models and an immune response to Reovirus, either using Reovirus alone or a cell-based vaccine was also observed in all mice. This study provides evidence of immune response to tumours using a cell-based Reovirus vaccine in both tumour models investigated, B16F10 and LLC, cytokine induction was observed with prolongation of survival in almost all cases which may suggest a new method for using Reovirus in the clinic

  12. Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation.

    Science.gov (United States)

    Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W

    2018-05-01

    Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate

  13. Respiratory reovirus 1/L induction of diffuse alveolar damage: pulmonary fibrosis is not modulated by corticosteroids in acute respiratory distress syndrome in mice.

    Science.gov (United States)

    London, Lucille; Majeski, Elizabeth I; Altman-Hamamdzic, Sanja; Enockson, Candace; Paintlia, Manjeet K; Harley, Russell A; London, Steven D

    2002-06-01

    Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage (DAD) secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or noninfectious insult. We have previously described a unique animal model in which CBA/J mice infected with reovirus 1/L develop ARDS. This model recapitulates the histopathological changes observed in human ARDS, which consist of the overlapping phases of exudation, including the formation of hyaline membranes, regeneration, and healing via repair with fibrosis. In this report, we show that the development of DAD in the acute phase of the disease and intraalveolar fibrosis in the late phase of the disease was not modulated by treatment with methylprednisolone (MPS). In the presence or absence of MPS, the majority of cells infiltrating the lungs after reovirus 1/L infection were polymorphonuclear leukocytes and macrophages. A number of key proinflammatory and anti-inflammatory cytokines/chemokines that are observed in the BAL fluid of ARDS patients were also found in the lungs of mice after reovirus 1/L infection and were not modulated by MPS. These include interferon-gamma, interleukin-10, and monocyte chemoattractant protein. The histopathology, cytokine/chemokine expression, and response to corticosteroids in reovirus 1/L-induced ARDS are similar to what is observed in human patients, making this a clinically relevant model.

  14. Postvaccinal reovirus infection with high mortality in breeder chicks.

    Science.gov (United States)

    Chénier, Sonia; Boulianne, Martine; Gagnon, Carl A

    2014-12-01

    A broiler breeder flock was subcutaneously vaccinated at the hatchery with a live avian orthoreovirus (ARV) vaccine against viral arthritis. Chicks began to die at 3 days of age and postmortem examination revealed massive subcutaneous hemorrhages and edema on the dorsal aspect of the neck at the site of vaccination, a severe necrotic hepatitis, and pulmonary edema. Microscopically, the main lesion was a multifocal vacuolar degeneration and necrosis of randomly distributed small groups of hepatocytes with presence of apoptotic and multinucleated syncytial cells. Necrotic foci were also found in the lungs as well as a hemorrhagic, granulomatous, and heterophilic cellulitis and myositis of the neck and a generalized depletion and lymphocytolysis of lymphoid organs. At 8 days of age, birds also began to show hock swelling histologically characterized by a fibrinoleucocytic inflammation of the articulation and tendon sheaths, with hyperplasia of the synovial membrane, and lymphoplasmocytic infiltration. PCR and viral culture of livers were positive for ARV. Partial sequencing of the S1 gene from the virus isolate showed 99.2% to 99.8% homology with three vaccinal strains (ARV S1133, 1733, and 2408). Viral particles compatible with reovirus virions were observed at transmission electron microscopy. Investigation at the hatchery revealed that chicks were inadvertently administered an S1133 reovirus vaccine labeled for water administration in 10- to 17-week-old chickens. This human error is most likely the reason for this unusually severe viremic reovirus infection that affected this flock at such an early age.

  15. Active participation of Hsp90 in the biogenesis of the trimeric reovirus cell attachment protein sigma1.

    Science.gov (United States)

    Gilmore, R; Coffey, M C; Lee, P W

    1998-06-12

    The reovirus cell attachment protein, sigma1, is a lollipop-shaped homotrimer with an N-terminal fibrous tail and a C-terminal globular head. Biogenesis of this protein involves two trimerization events: N-terminal trimerization, which occurs cotranslationally and is Hsp70/ATP-independent, and C-terminal trimerization, which occurs posttranslationally and is Hsp70/ATP-dependent. To determine if Hsp90 also plays a role in sigma1 biogenesis, we analyzed sigma1 synthesized in rabbit reticulocyte lysate. Coprecipitation experiments using anti-Hsp90 antibodies revealed that Hsp90 was associated with immature sigma1 trimers (hydra-like intermediates with assembled N termini and unassembled C termini) but not with mature trimers. The use of truncated sigma1 further demonstrated that only the C-terminal half of sigma1 associated with Hsp90. In the presence of the Hsp90 binding drug geldanamycin, N-terminal trimerization proceeded normally, but C-terminal trimerization was blocked. Geldanamycin did not inhibit the association of Hsp90 with sigma 1 but prevented the subsequent release of Hsp90 from the immature sigma1 complex. We also examined the status of p23, an Hsp90-associated cochaperone. Like Hsp90, p23 only associated with immature sigma1 trimers, and this association was mapped to the C-terminal half of sigma1. However, unlike Hsp90, p23 was released from the sigma1 complex upon the addition of geldanamycin. These results highlight an all-or-none concept of chaperone involvement in different oligomerization domains within a single protein and suggest a possible common usage of chaperones in the regulation of general protein folding and of steroid receptor activation.

  16. Reovirus exerts potent oncolytic effects in head and neck cancer cell lines that are independent of signalling in the EGFR pathway

    International Nuclear Information System (INIS)

    Twigger, Katie; Coffey, Matt; Thompson, Brad; Jebar, Adel; Errington, Fiona; Melcher, Alan A; Vile, Richard G; Pandha, Hardev S; Harrington, Kevin J; Roulstone, Victoria; Kyula, Joan; Karapanagiotou, Eleni M; Syrigos, Konstantinos N; Morgan, Richard; White, Christine; Bhide, Shreerang; Nuovo, Gerard

    2012-01-01

    Reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. To test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan

  17. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses

    International Nuclear Information System (INIS)

    Li Maoxiang; Cuff, Christopher F.; Pestka, James J.

    2006-01-01

    Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 x 10 7 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG 2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG 2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses

  18. Identification of mud crab reovirus VP12 and its interaction with the voltage-dependent anion-selective channel protein of mud crab Scylla paramamosain.

    Science.gov (United States)

    Xu, Hai-Dong; Su, Hong-Jun; Zou, Wei-Bin; Liu, Shan-Shan; Yan, Wen-Rui; Wang, Qian-Qian; Yuan, Li-Li; Chan, Siuming Francis; Yu, Xiao-Qiang; He, Jian-Guo; Weng, Shao-Ping

    2015-05-01

    Mud crab reovirus (MCRV) is the causative agent of a severe disease in cultured mud crab (Scylla paramamosain), which has caused huge economic losses in China. MCRV is a double-stranded RNA virus with 12 genomic segments. In this paper, SDS-PAGE, mass spectrometry and Western blot analyses revealed that the VP12 protein encoded by S12 gene is a structural protein of MCRV. Immune electron microscopy assay indicated that MCRV VP12 is a component of MCRV outer shell capsid. Yeast two hybrid cDNA library of mud crab was constructed and mud crab voltage-dependent anion-selective channel (mcVDAC) was obtained by MCRV VP12 screening. The full length of mcVDAC was 1180 bp with an open reading frame (ORF) of 849 bp encoding a 282 amino acid protein. The mcVDAC had a constitutive expression pattern in different tissues of mud crab. The interaction between MCRV VP12 and mcVDAC was determined by co-immunoprecipitation assay. The results of this study have provided an insight on the mechanisms of MCRV infection and the interactions between the virus and mud crab. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantification of the host response proteome after mammalian reovirus T1L infection.

    Directory of Open Access Journals (Sweden)

    Alicia R Berard

    Full Text Available All viruses are dependent upon host cells for replication. Infection can induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays to measure the cellular "transcriptome." We used SILAC (stable isotope labeling by amino acids in cell culture, combined with high-throughput 2-D HPLC/mass spectrometry, to determine relative quantitative differences in host proteins at 6 and 24 hours after infecting HEK293 cells with reovirus serotype 1 Lang (T1L. 3,076 host proteins were detected at 6 hpi, of which 132 and 68 proteins were significantly up or down regulated, respectively. 2,992 cellular proteins, of which 104 and 49 were up or down regulated, respectively, were identified at 24 hpi. IPA and DAVID analyses indicated proteins involved in cell death, cell growth factors, oxygen transport, cell structure organization and inflammatory defense response to virus were up-regulated, whereas proteins involved in apoptosis, isomerase activity, and metabolism were down-regulated. These proteins and pathways may be suitable targets for intervention to either attenuate virus infection or enhance oncolytic potential.

  20. Non-biased enrichment does not improve quantitative proteomic delineation of reovirus T3D-infected HeLa cell protein alterations

    Directory of Open Access Journals (Sweden)

    Jieyuan eJiang

    2012-09-01

    Full Text Available Mass spectrometry-based methods have allowed elucidation of alterations in complex proteomes, such as eukaryotic cells. Such studies have identified and measured relative abundances of thousands of host proteins after cells are infected with a virus. One of the potential limitations in such studies is that generally only the most abundant proteins are identified, leaving the deep richness of the cellular proteome largely unexplored. We differentially labeled HeLa cells with light and heavy stable isotopic forms of lysine and arginine (SILAC and infected cells with reovirus strain T3D. Cells were harvested at 24 hours post-infection. Heavy-labeled infected and light-labeled mock-infected cells were mixed together 1:1. Cells were then divided into cytosol and nuclear fractions and each fraction analyzed, both by standard 2D-HPLC/MS, and also after each fraction had been reacted with a random hexapeptide library (Proteominer® beads to attempt to enrich for low-abundance cellular proteins. A total of 2736 proteins were identified by 2 or more peptides at >99% confidence, of which 66 were significantly up-regulated and 67 were significantly down-regulated. Up-regulated proteins included those involved in antimicrobial and antiviral responses, GTPase activity, nucleotide binding, interferon signaling, and enzymes associated with energy generation. Down-regulated proteins included those involved in cell and biological adhesion, regulation of cell proliferation, structural molecule activity, and numerous molecular binding activities. Comparisons of the r2 correlations, degree of dataset overlap, and numbers of peptides detected suggest that non-biased enrichment approaches may not provide additional data to allow deeper quantitative and comparative mining of complex proteomes.

  1. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  2. Concentration of Reovirus and Adenovirus from Sewage and Effluents by Protamine Sulfate (Salmine) Treatment 1

    Science.gov (United States)

    England, Beatrice

    1972-01-01

    Protamine sulfate was employed to recover reoviruses, adenoviruses, and certain enteroviruses from sewage and treated effluents; 50- to 400-fold concentration of viral content was achieved. PMID:4342842

  3. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming

    Directory of Open Access Journals (Sweden)

    Coffey Matt

    2011-02-01

    Full Text Available Abstract Background As well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses. Results Here we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM, in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK cells, dendritic cells (DC and anti-melanoma cytotoxic T cells (CTL. Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity. Conclusions These data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis.

  4. Enteropathogenicity of Dutch and German avian reoviruses in SPF white leghorn chickens and broilers.

    NARCIS (Netherlands)

    Songserm, T.; Roozelaar, van D.; Kant-Eenbergen, H.C.M.; Pol, J.; Pijpers, A.; Huurne, ter A.A.H.M.

    2003-01-01

    The enteropathogenicity of avian reoviruses (ARVs), isolated from chickens affected with malabsorption syndrome (MAS) from The Netherlands and Germany was studied. In the first trial seven different ARVs isolated from MAS cases were inoculated in 1-day-old specific pathogenic free (SPF) white

  5. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  6. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome.

    Science.gov (United States)

    Lopez, Andrea D; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K; London, Lucille

    2009-12-15

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 x 10(6) (BOOP), or 1 x 10(7) (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Fas(lpr-cg)/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS.

  7. Differential Role of the Fas/Fas Ligand Apoptotic Pathway in Inflammation and Lung Fibrosis Associated with Reovirus 1/L-Induced Bronchiolitis Obliterans Organizing Pneumonia and Acute Respiratory Distress Syndrome1

    Science.gov (United States)

    Lopez, Andrea D.; Avasarala, Sreedevi; Grewal, Suman; Murali, Anuradha K.; London, Lucille

    2010-01-01

    Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 × 106 (BOOP), or 1 × 107 (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Faslpr-cg/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS. PMID:20007588

  8. Astrovirus, reovirus and rotavirus concomitant infection causes decreased weight gain in broad-breasted white poults

    Science.gov (United States)

    Turkey astrovirus type-2 (TAstV-2), turkey rotavirus (TRotV) and turkey reovirus (TReoV) were evaluated for pathogenesis in 3 day-old turkey poults in all possible combinations of one, two or three viruses. Body-weights were recorded at 2, 4, 7, 10 and 14 days post inoculation (PI) and were decreas...

  9. Asprosin, a fasting-induced glucogenic protein hormone

    Science.gov (United States)

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...

  10. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  11. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Chen

    Full Text Available BACKGROUND: Avian reovirus (ARV is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS: The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05 occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE: This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton

  12. Analyzing Protein Denaturation using Fast Differential Scanning Calorimetry

    NARCIS (Netherlands)

    Splinter, R.; Van Herwaarden, A.W.; Iervolino, E.; Vanden Poel, G.; Istrate, D.; Sarro, P.M.

    2012-01-01

    This paper investigates the possibility to measure protein denaturation with Fast Differential Scanning Calorimetry (FDSC). Cancer can be diagnosed by measuring protein denaturation in blood plasma using Differential Scanning Calorimetry (DSC). FDSC can reduce diagnosis time from hours to minutes,

  13. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  14. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  15. Adjustments of Protein Metabolism in Fasting Arctic Charr, Salvelinus alpinus.

    Directory of Open Access Journals (Sweden)

    Alicia A Cassidy

    Full Text Available Protein metabolism, including the interrelated processes of synthesis and degradation, mediates the growth of an animal. In ectothermic animals, protein metabolism is responsive to changes in both biotic and abiotic conditions. This study aimed to characterise responses of protein metabolism to food deprivation that occur in the coldwater salmonid, Arctic charr, Salvelinus alpinus. We compared two groups of Arctic charr: one fed continuously and the other deprived of food for 36 days. We measured the fractional rate of protein synthesis (KS in individuals from the fed and fasted groups using a flooding dose technique modified for the use of deuterium-labelled phenylalanine. The enzyme activities of the three major protein degradation pathways (ubiquitin proteasome, lysosomal cathepsins and the calpain systems were measured in the same fish. This study is the first to measure both KS and the enzymatic activity of protein degradation in the same fish, allowing us to examine the apparent contribution of different protein degradation pathways to protein turnover in various tissues (red and white muscle, liver, heart and gills. KS was lower in the white muscle and in liver of the fasted fish compared to the fed fish. There were no observable effects of food deprivation on the protease activities in any of the tissues with the exception of liver, where the ubiquitin proteasome pathway seemed to be activated during fasting conditions. Lysosomal proteolysis appears to be the primary degradation pathway for muscle protein, while the ubiquitin proteasome pathway seems to predominate in the liver. We speculate that Arctic charr regulate protein metabolism during food deprivation to conserve proteins.

  16. Ramadan Fasting Decreases Body Fat but Not Protein Mass.

    Science.gov (United States)

    Fahrial Syam, Ari; Suryani Sobur, Cecep; Abdullah, Murdani; Makmun, Dadang

    2016-01-01

    Many studies have shown various results regarding the effects of Ramadan fasting on weight and body composition in healthy individuals. This study aimed to evaluate the effect of Ramadan fasting on body composition in healthy Indonesian medical staff. In this study, we examined the influence of Ramadan fasting on body composition in healthy medical staff. The longitudinal study was performed during and after Ramadan fasting in 2013 (August to October). Fourty-three medical staff members (physicians, nurses and nutritionists) at the Internal Medicine Ward of the Dr. Cipto Mangunkusumo General Hospital were measured to compare their calorie intake, weight, body mass index, waist-to-hip ratio (WHR), and body composition, including body fat, protein, minerals and water, on the first and 28(th) days of Ramadan and also 4-5 weeks after Ramadan fasting. Measurements were obtained for all 43 subjects on the 28(th) day of Ramadan, but they were obtained for only 25 subjects 4 - 5 weeks after Ramadan. By the 28(th) day of Ramadan, it was found that the body weight, BMI, body fat, water and mineral measures had decreased significantly (-0.874 ± 0.859 kg, P Ramadan, body weight and composition had returned to the same levels as on the first day of Ramadan. Ramadan fasting resulted in weight loss even it was only a temporary effect, as the weight was quickly regained within one month after fasting. The catabolism catabolic state, which is related to protein loss, was not triggered during Ramadan fasting. Further research is needed to evaluate the effects of weight loss during Ramadan fasting in healthy individuals.

  17. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    Science.gov (United States)

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  18. Avian reovirus S1133-induced apoptosis is associated with Bip/GRP79-mediated Bim translocation to the endoplasmic reticulum.

    Science.gov (United States)

    Lin, Ping-Yuan; Liu, Hung-Jen; Chang, Ching-Dong; Chen, Yo-Chia; Chang, Chi-I; Shih, Wen-Ling

    2015-04-01

    In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK-Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK-Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK-Bim in response to the ARV S1133-mediated apoptosis process.

  19. Visceral organ mass and hepatic protein synthetic capacity in fed and fasted rats

    International Nuclear Information System (INIS)

    Burrin, D.G.; Britton, R.A.; Ferrell, C.L.

    1986-01-01

    Forty-two male rats (avg wt. = 320 g) were used to assess the effect of severe nutrient restriction (72 h fast) on visceral organ mass and hepatic protein synthetic capacity as measured by in vitro incorporation of U- 14 -C-VALINE ( 14 C-VAL) into isolated hepatocytes. Organ weights expressed as a percent of empty body weight for fed vs. fasted rats were; liver (5.21 +/- .54 vs 3.82 +/- .46), kidney (.87 +/- 0.6 vs .89 +/- .05), stomach (.60 +/- .06 vs .61 +/- .06), intestines (3.70 +/- .44 vs 3.41 +/- .37). No differences were observed in in vitro oxygen consumption (15.7 +/- 3.1 vs 16.1 +/- 3.3, umole min -1 g -1 dry tissue) or 14 -C VAL incorporation (4.93 +/- 1.28 vs 4.31 +/- 1.48, dpm min -1 mg -1 dry tissue) for hepatocytes from fed vs. fasted rats. Analysis of perfused liver tissue indicated fed rats had higher protein (152.1 +/- 16.3 vs 136.6 +/- 29.6, mg/g tissue) and RNA (8.81 +/- 1.66 vs 5.97 +/- 1.87, mg/g tissue) with lower DNA (2.19 +/- .31 vs 3.19 +/- .54, mg/g tissue) compared to fasted rats. Protein-nucleic acid ratios suggest liver tissue from fed rats had a greater capacity for protein synthesis compared to fasted rats, however, this was not evident from in vitro hepatocyte 14 -C VAL incorporation estimates. These data indicate that severe nutrient restriction (72 h fast) affects visceral organ mass largely by reduced liver and gut size as well as decreased hepatic protein synthetic capacity

  20. Fasting Lipoprotein Lipase Protein Levels Can Predict a Postmeal Increment of Triglyceride Levels in Fasting Normohypertriglyceridemic Subjects.

    Science.gov (United States)

    Tsuzaki, Kokoro; Kotani, Kazuhiko; Yamada, Kazunori; Sakane, Naoki

    2016-09-01

    Although a postprandial increment in triglyceride (TG) levels is considered to be a risk factor for atherogenesis, tests (e.g., fat load) to assess postprandial changes in TG levels cannot be easily applied to clinical practice. Therefore, fasting markers that predict postprandial TG states are needed to be developed. One current candidate is lipoprotein lipase (LPL) protein, a molecule that hydrides TGs. This study investigated whether fasting LPL levels could predict postprandial TG levels. A total of 17 subjects (11 men, 6 women, mean age 52 ± 11 years) with normotriglyceridemia during fasting underwent the meal test. Several fasting parameters, including LPL, were measured for the area under the curve of postprandial TGs (AUC-TG). The subjects' mean fasting TG level was 1.30 mmol/l, and their mean LPL level was 41.6 ng/ml. The subjects' TG levels increased after loading (they peaked after two postprandial hours). Stepwise multiple regression analysis demonstrated that fasting TG levels were a predictor of the AUC-TG. In addition, fasting LPL mass levels were found to be a predictor of the AUC-TG (β = 0.65, P fasting TG levels. Fasting LPL levels may be useful to predict postprandial TG increment in this population. © 2015 Wiley Periodicals, Inc.

  1. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  2. The role of proteins and metal ions in the protection of chromatin DNA at fast neutrons action

    International Nuclear Information System (INIS)

    Radu, L.; Preoteasa, V.; Radulescu, I.; Constantinescu, B.

    1997-01-01

    The role of chromatin proteins and of some ions on the fast neutrons actions on chromatin DNA from rat Walker tumors was analysed. The DNA in chromatin is effectively protected against fast neutrons actions by DNA bound proteins and specially by histones, because of the limited accessibility of the condensed chromatin DNA to hydroxyl radicals and of the scavenging of radicals by the chromatin proteins. The ions utilised protect chromatin DNA against the damage produced ed by fast neutrons, through the induction of structural DNA changes with a less accessibility to OH radicals. (authors)

  3. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial.

    Science.gov (United States)

    Rittig, Nikolaj; Bach, Ermina; Thomsen, Henrik H; Møller, Andreas B; Hansen, Jakob; Johannsen, Mogens; Jensen, Erik; Serena, Anja; Jørgensen, Jens O; Richelsen, Bjørn; Jessen, Niels; Møller, Niels

    2017-06-01

    Protein-rich beverages are widely used clinically to preserve muscle protein and improve physical performance. Beverages with high contents of leucine or its keto-metabolite β-hydroxy-β-methylbutyrate (HMB) are especially anabolic in muscle, but it is uncertain whether this also applies to catabolic conditions such as fasting and whether common or separate intracellular signaling cascades are involved. To compare a specific leucine-rich whey protein beverage (LWH) with isocaloric carbohydrate- (CHO), soy protein (SOY), and soy protein +3 g HMB (HMB) during fasting-induced catabolic conditions. Eight healthy lean male subjects underwent four interventions (LWH, CHO, SOY, and HMB) using a randomized crossover design. Each trial included a 36 h fast and consisted of a 3 h basal fasting period and a 4 h 'sipping' period. Forearm net balances of phenylalanine (NB phe , measure of net protein loss) improved for all groups (p HMB compared with SOY (p HMB have superior anabolic effects on muscle protein kinetics after 36 h of fasting, and LWH distinctly activates the mTOR pathway. These novel findings suggest that leucine-rich whey protein and/or HMB are specifically beneficial during fasting-induced catabolic conditions. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats

    International Nuclear Information System (INIS)

    Jasmin, B.J.; Lavoie, P.A.; Gardiner, P.F.

    1988-01-01

    In this study, the fast orthograde axonal transport of radiolabeled proteins was measured to determine the effects of endurance-running training on transport velocity and amounts of transported proteins in rat sciatic motoneurons. Female rats were subjected to a progressive running-training program for 10-12 wk. Twenty-four hours after the last training session, rats underwent right L4-L5 dorsal root ganglionectomy. The next day, 20 microCi of [3H]leucine was injected bilaterally in the vicinity of the motoneuronal cell bodies supplying the sciatic nerve, to study axonal transport parameters. Results showed that peak and average transport velocities of labeled proteins were significantly (P less than 0.05) increased by 22 and 29%, respectively, in the deafferented nerves of the runners as compared with controls. Moreover, the amount of total transported protein-bound radioactivity was increased in both left (40%) and right (37%) sciatic nerves of the runners. An exhaustive exercise session reduced (P less than 0.05) peak displacement (8%) and total transported protein-bound radioactivity (36%) in the sciatic nerves of control rats, whereas no changes were noticed in trained animals. The data suggest that chronic endurance running induces significant adaptations in the fast axonal transport of labeled proteins

  5. Fasting-induced adipose factor/angiopoietin-like protein 4: a potential target for dyslipidemia?

    NARCIS (Netherlands)

    Zandbergen, F.J.; Dijk, van S.; Müller, M.R.; Kersten, A.H.

    2006-01-01

    Recently, several proteins with homology to angiopoietins have been discovered. Three members of this new group, designated angiopoietin-like proteins (ANGPTLs), have been linked to regulation of energy metabolism. This review will focus on the fasting-induced adipose factor (FIAF)/ANGPTL4 as an

  6. Postprandial lipemia detects the effect of soy protein on cardiovascular disease risk compared with the fasting lipid profile.

    Science.gov (United States)

    Santo, Antonio S; Santo, Ariana M; Browne, Richard W; Burton, Harold; Leddy, John J; Horvath, Steven M; Horvath, Peter J

    2010-12-01

    Studies examining the effect of soy protein on cardiovascular disease (CVD) risk factors have not taken advantage of the postprandial state as an adjunct to the fasting lipid profile. The American Heart Association has acknowledged the efficacy of soy protein in reducing CVD risk factors to be limited. We hypothesized that the postprandial state would be more sensitive to any favorable changes associated with consuming soy protein compared with the fasting lipid profile. Furthermore, the presence of isoflavones in soy would enhance this effect. Thirty sedentary males aged 18-30 years were randomly assigned to milk protein (Milk), isoflavone-poor soy (Soy-), or isoflavone-rich soy (Soy+). Usual diets were supplemented with 25 g/day of protein for 28 days. Serum samples were collected before and after supplementation in a fasted state and postprandially at 30, 60, 120, 240, and 360 min after a high-fat, 1,000 kcal shake. Triacylglycerol (TAG), total cholesterol, non-esterified fatty acids, apolipoproteins B-100 and A-I and glucose concentrations were quantified. Fasting concentrations were not different after any protein supplementation. Postprandial TAG and TAG AUC increased after Soy-consumption supporting the postprandial state as a more sensitive indicator of soy ingestion effects on CVD risk factors compared with the fasting lipid profile. Furthermore, the absence of isoflavones in soy protein may have deleterious consequences on purported cardio-protective effects.

  7. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast.

    Science.gov (United States)

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Nielsen, Thomas Svava; Viggers, Rikke; Rungby, Jørgen; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2016-07-01

    Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein. Copyright © 2016 the American Physiological Society.

  8. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    Science.gov (United States)

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  9. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast

    DEFF Research Database (Denmark)

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm

    2016-01-01

    release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together...... with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced...... in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2...

  10. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    International Nuclear Information System (INIS)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 μM) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, 14 C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively. (author)

  11. Effects of toluene on protein synthesis and the interaction with ethanol in hepatocytes isolated from fed and fasted rats

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, Aa.; Gadeholt, G.

    1989-01-01

    The effects of three different concentrations (about 20, 100 and 1000 ..mu..M) of toluene on protein synthesis were studied in hepatocytes isolated from fed and fasted rats after 60 and 120 min. of incubation. The interaction between ethanol (60 mM) and the low and high toluene concentrations were also tested. To measure protein synthesis, /sup 14/C-valine was used as the precursor amino acid. Total valine concentration was 2 mM to ensure near-constant specific radioactivity of precursor. Toluene concentrations were measured by head-space gas chromatography. Protein synthesis was unchanged in the presence of low toluene concentrations. Intermediate toluene concentration decreased protein synthesis by about 20% and high toluene concentration decreased protein synthesis by about 60%. Protein synthesis was similar in cells from fed and fasted rats. Ethanol alone inhibited protein synthesis by 20-30%, more in fasted than in fed rats. Toluene and ethanol in combination inhibited protein synthesis additively. The high toluene concentration with or without ethanol appeared to inhibit synthesis/secretion of export proteins in hepatocytes from fasted rats. In conclusion, our study indicates that toluene in relatively high concentrations inhibits general protein synthesis in isolated rat hepatocytes. Toluene and ethanol seems to inhibit protein synthesis additively.

  12. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    Directory of Open Access Journals (Sweden)

    Uhna Sung

    Full Text Available FRET (Förster Resonance Energy Transfer-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms and signal decay (~3 ms. We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP and mRuby2 (acceptor FP to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz.

  13. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  14. Methodology for fast evaluation of Bacillus thuringiensis crystal protein content

    Directory of Open Access Journals (Sweden)

    Alves Lúcia M. Carareto

    2000-01-01

    Full Text Available The development of the production and use of Bacillus thuringiensis in Brazil at a commercial scale faces certain difficulties, among them the establishment of efficient methodologies for the quantitation of toxic products to be commercialized. Presently, the amount of toxin is given in percentage by analyzing the samples total protein content. Such methodology however, does not measure the actual amount of active protein present in the product, since most strains express different endotoxin genes and might even produce b-toxin. Since the various types of toxins exhibit different antigenic characteristics, this work has as objective the utilization of fast immunological techniques to quantify the level of crystal protein. Crystal protein produced by a subspecies of Bacillus thuringiensis var. israelensis was purified by ultracentrifugation and utilized to immunize rabbits and to produce hiperimmune sera. Such sera were latter used to evaluate the level of proteins on commercial bioinsecticide and on laboratory cultures of B. thuringiensis through the immunodot technique. The results were obtained by comparison of data obtained from reactions with known concentrations of crystal protein permitting to evaluate the level of such protein on various materials.

  15. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model

    Directory of Open Access Journals (Sweden)

    Liufeng Zheng

    2016-12-01

    Full Text Available Supplementation of branched-chain amino acids (BCAA has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1 and 28-day-old (Experiment 2 piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle

  16. Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice.

    Science.gov (United States)

    Oarada, Motoko; Tsuzuki, Tsuyoshi; Nikawa, Takeshi; Kohno, Shohei; Hirasaka, Katsuya; Gonoi, Tohru

    2012-05-01

    Elucidating the effects of refeeding a high-protein diet after fasting on disease development is of interest in relation to excessive protein ingestion and irregular eating habits in developed countries. The objective of the present study was to address the hepatic effects of refeeding a high-protein diet after fasting. Mice were fasted for 48 h and then refed with a test diet containing 3, 15, 35, 40, 45 or 50 % casein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and liver immediate-early gene expression levels were sequentially measured for the first 24 h after initiation of refeeding. Refeeding with a 50 % casein diet after 48 h of fasting led to a rapid (within 2-3 h) and abnormal elevation in serum ALT (P = 0·006) and AST (P = 0·001) activities and a marked increase in liver Finkel-Biskis-Jinkins (FBJ) osteosarcoma oncogene (P = 0·007) and nuclear receptor subfamily 4, group A, member 1 (P = 0·002) mRNA levels. In contrast, refeeding of the 3, 15 or 35 % casein diets produced no substantial increases in serum ALT and AST activities in mice. Refeeding of 40, 45 or 50 % casein increased serum ALT and AST activities in proportion to this dietary casein content. In mice refed the 3, 15 or 35, but not 50 %, casein diets, liver heat shock protein 72 transcript levels greatly increased. We conclude from these data that the consumption of a high-protein diet after fasting causes acute hepatocellular injury in healthy animals, and propose that careful attention should be paid to the use of such diets.

  17. Protein and lipid metabolism adjustments in silver catfish (Rhamdia quelen during different periods of fasting and refeeding

    Directory of Open Access Journals (Sweden)

    A. Marqueze

    2017-10-01

    Full Text Available Abstract The fish may experience periods of food deprivation or starvation which produce metabolic changes. In this study, adult Rhamdia quelen males were subjected to fasting periods of 1, 7, 14, and 21 days and of refeeding 2, 4, 6, and 12 days. The results demonstrated that liver protein was depleted after 1 day of fasting, but recovered after 6 days of refeeding. After 14 days of fasting, mobilization in the lipids of the muscular tissue took place, and these reserves began to re-establish themselves after 4 days of refeeding. Plasmatic triglycerides increased after 1 day of fasting, and decreased following 2 days of refeeding. The glycerol in the plasma oscillated constantly during the different periods of fasting and refeeding. Changes in the metabolism of both protein and lipids during these periods can be considered as survival strategies used by R. quelen. The difference in the metabolic profile of the tissues, the influence of the period of fasting, and the type of reserves mobilized were all in evidence.

  18. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis

    Directory of Open Access Journals (Sweden)

    Schlegel Brigitte

    2004-03-01

    Full Text Available Abstract Background High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination. Results 88 different E. coli expression constructs for 17 human protein domains were analysed using high-throughput cloning, purification and folding analysis to obtain candidates suitable for structural analysis. After 96 deep-well microplate expression and automated protein purification, protein domains were directly analysed using 1D 1H-NMR spectroscopy. In addition, analytical hydrophobic interaction chromatography (HIC was used to detect natively folded protein. With these two analytical methods, six constructs (representing two domains were quickly identified as being well folded and suitable for structural analysis. Conclusion The described approach facilitates high-throughput structural analysis. Clones expressing natively folded proteins suitable for NMR structure determination were quickly identified upon small scale expression screening using 1D 1H-NMR and/or analytical HIC. This procedure is especially effective as a fast and inexpensive screen for the 'low hanging fruits' in structural genomics.

  19. Concentration of total protein and degree of acidity (pH of saliva when fasting and after breakfasting

    Directory of Open Access Journals (Sweden)

    Gemella Nur Illahi

    2016-04-01

    Full Text Available Background: While fasting, the mouth does not work to eat and drink so that the salivary glands become less active so saliva production decreased and there was a change in eating timewhich is relation to the mastication process that impact on changes in the degree of acidity (pH Objectives: To determine the concentration of total protein and the degree of acidity (pH of saliva when fasting and after breakfasting. Materials and Methods: The study was observational analytic design with longitudinal (follow up study conducted in the Hj. Halima Dg. Sikati Dental Hospital inKandea in July 2015, the sampling method was purposive sampling. Population was 35 clinical students at the Department of Dental Public Health, Faculty of Dentistry Hasanuddin University with a total sample of 16 students who fit the criteria of the study subjects. To calculate the total protein of saliva concentration using Kyltecautoanalyzerand pH meter to measure the acidity of saliva. Data was analyzed was using SPSS version 17.0 (paired t-test, p <0.05. Results: The mean of total protein (% while fasting by 0135% ± 0.026 and the mean total protein (% after breakfasting at 0.179% ± 0.035, while the average degree of acidity (pH during fasting at 7.26 ± 0:24 and the average degree of acidity (pH after breakfasting at 7.66 ± 0.23 with p-value (0.000. Conclusions: An increase in the total protein concentration and acidity (pH after breakfasting.

  20. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins

    Science.gov (United States)

    Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki

    2018-01-01

    Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.

  1. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP.

    Science.gov (United States)

    Cohen-Khait, Ruth; Schreiber, Gideon

    2018-04-27

    Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.

  2. Molecular Characterization of Bombyx mori Cytoplasmic Polyhedrosis Virus Genome Segment 4

    Science.gov (United States)

    Ikeda, Keiko; Nagaoka, Sumiharu; Winkler, Stefan; Kotani, Kumiko; Yagi, Hiroaki; Nakanishi, Kae; Miyajima, Shigetoshi; Kobayashi, Jun; Mori, Hajime

    2001-01-01

    The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra. PMID:11134312

  3. Comparison of High-Protein, Intermittent Fasting Low-Calorie Diet and Heart Healthy Diet for Vascular Health of the Obese.

    Science.gov (United States)

    Zuo, Li; He, Feng; Tinsley, Grant M; Pannell, Benjamin K; Ward, Emery; Arciero, Paul J

    2016-01-01

    It has been debated whether different diets are more or less effective in long-term weight loss success and cardiovascular disease prevention among men and women. To further explore these questions, the present study evaluated the combined effects of a high-protein, intermittent fasting, low-calorie diet plan compared with a heart healthy diet plan during weight loss, and weight loss maintenance on blood lipids and vascular compliance of obese individuals. The experiment involved 40 obese adults (men, n = 21; women, n = 19) and was divided into two phases: (a) 12-week high-protein, intermittent fasting, low-calorie weight loss diet comparing men and women (Phase 1) and (b) a 1-year weight maintenance phase comparing high-protein, intermittent fasting with a heart healthy diet (Phase 2). Body weight, body mass index (BMI), blood lipids, and arterial compliance outcomes were assessed at weeks 1 (baseline control), 12 (weight loss), and 64 (12 + 52 week; weight loss maintenance). At the end of weight loss intervention, concomitant reductions in body weight, BMI and blood lipids were observed, as well as enhanced arterial compliance. No sex-specific differences in responses were observed. During phase 2, the high-protein, intermittent fasting group demonstrated a trend for less regain in BMI, low-density lipoprotein (LDL), and aortic pulse wave velocity than the heart healthy group. Our results suggest that a high-protein, intermittent fasting and low-calorie diet is associated with similar reductions in BMI and blood lipids in obese men and women. This diet also demonstrated an advantage in minimizing weight regain as well as enhancing arterial compliance as compared to a heart healthy diet after 1 year.

  4. Comparison of High-Protein, Intermittent-Fasting Low-Calorie Diet and Heart Healthy Diet for Vascular Health of the Obese

    Directory of Open Access Journals (Sweden)

    Li Zuo

    2016-08-01

    Full Text Available Aim: It has been debated whether different diets are more or less effective in long-term weight loss success and cardiovascular diseases among men and women. Thus, the present study evaluated the combined effects of a high-protein, intermittent-fasting, low-calorie diet plan compared with heart healthy diet plan during weight loss maintenance on blood lipids and vascular compliance of individuals with obesity. Methods: The experiment involved 40 adults with obesity (men, n = 21; women, n = 19 and was divided into two phases: (a 12-week high-protein, intermittent-fasting, low-calorie weight loss diet comparing men and women (Phase 1 and (b a 1-year (52-week weight loss maintenance comparing high-protein, intermittent-fasting with a heart healthy diet (Phase 2. Body weight, body mass index, blood lipids, and arterial compliance outcomes were assessed at weeks 1 (baseline control, 12 (weight loss, and 64 (12+52 week; weight loss maintenance.Results: At the end of weight loss intervention, concomitant with reductions in body weight, body mass index, blood lipids, and arterial compliance was enhanced (p < 0.05. No sex-specific differences were observed. During phase 2, high-protein, intermittent-fasting, low-calorie group demonstrated less weight regain and percentage change in aortic pulse wave velocity than heart healthy group (p < 0.05. Conclusion: Our results suggest that high-protein, intermittent-fasting and low-calorie diet is associated with body weight loss and reduction in blood lipids. This diet also demonstrated a potential advantage in minimizing weight gain relapse as well as enhancing arterial compliance compared to the heart healthy diet in the long term.

  5. Preparation and properties of fast temperature-responsive soy protein/PNIPAAm IPN hydrogels

    Directory of Open Access Journals (Sweden)

    Liu Yong

    2014-01-01

    Full Text Available The interpenetrating polymer network of fast temperature-responsive hydrogels based on soy protein and poly(N-isopropylacrylamide were successfully prepared using the sodium bicarbonate (NaHCO3 solutions as the reaction medium. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermal gravimetric analysis. The swelling and deswelling kinetics were also investigated in detail. The results have shown that the proposed hydrogels had high porous structure, good miscibility and thermal stability, and fast temperature responsivity. The presence of NaHCO3 had little effect on the volume phase transition temperature (VPTT of the hydrogels, and the VPTTs were at about 32°C. Compared with the traditional hydrogels, the proposed hydrogels had much faster swelling and deswelling rate. The swelling mechanism of the hydrogels was the non-Fickian diffusion. This fast temperature-responsive hydrogels may have potential applications in the field of biomedical materials.

  6. Fast high-pressure freezing of protein crystals in their mother liquor

    International Nuclear Information System (INIS)

    Burkhardt, Anja; Warmer, Martin; Panneerselvam, Saravanan; Wagner, Armin; Zouni, Athina; Glöckner, Carina; Reimer, Rudolph; Hohenberg, Heinrich; Meents, Alke

    2012-01-01

    Protein crystals were vitrified using high-pressure freezing in their mother liquor at 210 MPa and 77 K without cryoprotectants or oil coating. The method was successfully applied to photosystem II, which is representative of a membrane protein with a large unit cell and weak crystal contacts. High-pressure freezing (HPF) is a method which allows sample vitrification without cryoprotectants. In the present work, protein crystals were cooled to cryogenic temperatures at a pressure of 210 MPa. In contrast to other HPF methods published to date in the field of cryocrystallography, this protocol involves rapid sample cooling using a standard HPF device. The fast cooling rates allow HPF of protein crystals directly in their mother liquor without the need for cryoprotectants or external reagents. HPF was first attempted with hen egg-white lysozyme and cubic insulin crystals, yielding good to excellent diffraction quality. Non-cryoprotected crystals of the membrane protein photosystem II have been successfully cryocooled for the first time. This indicates that the presented HPF method is well suited to the vitrification of challenging systems with large unit cells and weak crystal contacts

  7. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures.

    Science.gov (United States)

    Kuriata, Aleksander; Gierut, Aleksandra Maria; Oleniecki, Tymoteusz; Ciemny, Maciej Pawel; Kolinski, Andrzej; Kurcinski, Mateusz; Kmiecik, Sebastian

    2018-05-14

    Classical simulations of protein flexibility remain computationally expensive, especially for large proteins. A few years ago, we developed a fast method for predicting protein structure fluctuations that uses a single protein model as the input. The method has been made available as the CABS-flex web server and applied in numerous studies of protein structure-function relationships. Here, we present a major update of the CABS-flex web server to version 2.0. The new features include: extension of the method to significantly larger and multimeric proteins, customizable distance restraints and simulation parameters, contact maps and a new, enhanced web server interface. CABS-flex 2.0 is freely available at http://biocomp.chem.uw.edu.pl/CABSflex2.

  8. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  9. Fast and accurate protein substructure searching with simulated annealing and GPUs

    Directory of Open Access Journals (Sweden)

    Stivala Alex D

    2010-09-01

    Full Text Available Abstract Background Searching a database of protein structures for matches to a query structure, or occurrences of a structural motif, is an important task in structural biology and bioinformatics. While there are many existing methods for structural similarity searching, faster and more accurate approaches are still required, and few current methods are capable of substructure (motif searching. Results We developed an improved heuristic for tableau-based protein structure and substructure searching using simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods. Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU. Conclusions The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-based structure search with simulated annealing, making it one of the fastest available methods. To the best of our knowledge, this is the first application of a GPU to the protein structural search problem.

  10. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Science.gov (United States)

    Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian

    2010-05-01

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  11. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ruizhuo; Lei Jianping; Ju Huangxian, E-mail: jpl@nju.edu.cn, E-mail: hxju@nju.edu.cn [Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2010-05-07

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 x 10{sup 18} g{sup -1}, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  12. Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted vs. fed mice

    OpenAIRE

    Anderson, Stephanie R.; Gilge, Danielle A.; Steiber, Alison L.; Previs, Stephen F.

    2008-01-01

    The influence of obesity on protein dynamics is not clearly understood. We have designed experiments to test the hypothesis that obesity impairs the stimulation of tissue-specific protein synthesis following nutrient ingestion. C57BL/6J mice were randomized into two groups: group 1 (control, n = 16) were fed a low-fat, high-carbohydrate diet and group 2 (experimental, n = 16) were fed a high-fat, low-carbohydrate diet ad libitum for 9 weeks. On the experiment day, all mice were fasted for 6 h...

  13. A randomized trial of protein supplementation compared with extra fast food on the effects of resistance training to increase metabolism.

    Science.gov (United States)

    Hambre, David; Vergara, Marta; Lood, Yvonne; Bachrach-Lindström, Margareta; Lindström, Torbjörn; Nystrom, Fredrik H

    2012-10-01

    To prospectively evaluate the effects of resistance training combined with increased energy intake or protein-supplementation on lean body-mass, resting metabolic-rate (RMR) and cardiovascular risk factors. Twenty-four healthy males (aged 19-32 years) performed resistance exercise for 12 weeks aiming for at least 1 hour training-sessions 3 times a week. The participants were randomized to consume extra protein (33 g whey protein/day) or a meal of fast-food/day (1350 kcal, 41 g protein). Body-composition was measured with Dual-Energy X-ray Absorptiometry (DEXA) and RMR by indirect calorimetry. Fasting blood samples were drawn before and after the 3-month training period and after 12 months. The body weight increased from 75.1 ± 6.9 kg to 78.7 ± 7.2 kg (p < 0.0001), without differences between the groups. RMR increased from 1787 ± 143 kcal/24 h to 1954 ± 187 kcal/24 h (p < 0.0001, N = 24), which was more than expected from the increase in lean body-mass (increase from 59.7 ± 4.3 kg to 61.8 ± 4.1 kg p = 0.004). Fasting serum-insulin levels increased in the fast-food group compared with the extra-protein group (p = 0.03). ApoB increased from 0.691 ± 0.14 g/L to 0.768 ± 0.17 g/L, p = 0.004, in the fast-food group only. Long-term follow up after 12 months showed that RMR, body weight, total fat and lean body-masses did not differ from baseline (n = 19). Resistance training for 12 weeks increased RMR and lean body-mass similarly when based on either an increased energy-intake or protein supplement. However, the increase in RMR was higher than expected from the increase in lean body-mass. Thus resistance training could potentially decrease the risk of obesity by induction of increased RMR.

  14. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  15. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings.

  17. FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling.

    Science.gov (United States)

    Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2016-07-01

    Speed, accuracy and robustness of building protein fragment library have important implications in de novo protein structure prediction since fragment-based methods are one of the most successful approaches in template-free modeling (FM). Majority of the existing fragment detection methods rely on database-driven search strategies to identify candidate fragments, which are inherently time-consuming and often hinder the possibility to locate longer fragments due to the limited sizes of databases. Also, it is difficult to alleviate the effect of noisy sequence-based predicted features such as secondary structures on the quality of fragment. Here, we present FRAGSION, a database-free method to efficiently generate protein fragment library by sampling from an Input-Output Hidden Markov Model. FRAGSION offers some unique features compared to existing approaches in that it (i) is lightning-fast, consuming only few seconds of CPU time to generate fragment library for a protein of typical length (300 residues); (ii) can generate dynamic-size fragments of any length (even for the whole protein sequence) and (iii) offers ways to handle noise in predicted secondary structure during fragment sampling. On a FM dataset from the most recent Critical Assessment of Structure Prediction, we demonstrate that FGRAGSION provides advantages over the state-of-the-art fragment picking protocol of ROSETTA suite by speeding up computation by several orders of magnitude while achieving comparable performance in fragment quality. Source code and executable versions of FRAGSION for Linux and MacOS is freely available to non-commercial users at http://sysbio.rnet.missouri.edu/FRAGSION/ It is bundled with a manual and example data. chengji@missouri.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Fast hydrogen exchange affects 15N relaxation measurements in intrinsically disordered proteins

    International Nuclear Information System (INIS)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean

    2013-01-01

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, 1 H– 15 N HSQC, is used to measure the 15 N transverse relaxation rate (R 2 ), the measured R 2 rate is convoluted with the HX rate (k HX ) and has higher apparent R 2 values. Since the 15 N R 2 measurement is important for analyzing protein backbone dynamics, the HX effect on the R 2 measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing 15 N R 2 CPMG experiments on α-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R 2 CPMG can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D 2 O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R 2 CPMG values be obtained by methods described herein.

  19. Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa

    Directory of Open Access Journals (Sweden)

    Petrus Jansen van Vuren

    2016-02-01

    Full Text Available We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana associated with Egyptian fruit bats (Rousettus aegyptiacus collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV, were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus. All genome segments of MAHLV contain a 5' terminal sequence (5'-GGUCA that is unique to all currently described viruses of the genus. The smallest genome segment is bicistronic encoding for a 14 kDa protein similar to p14 membrane fusion protein of Bush viper reovirus and an 18 kDa protein similar to p16 non-structural protein of Baboon orthoreovirus. This is the first report on isolation of an orthoreovirus from an arthropod host associated with bats, and phylogenetic and sequence data suggests that MAHLV constitutes a new species within the Orthoreovirus genus.

  20. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Katja E. Menger

    2015-06-01

    Full Text Available Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT, to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster.

  1. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages

    International Nuclear Information System (INIS)

    Liu, Hung J.; Lee, Long H.; Hsu, Hsiao W.; Kuo, Liam C.; Liao, Ming H.

    2003-01-01

    Nucleotide sequences of the S-class genome segments of 17 field-isolates and vaccine strains of avian reovirus (ARV) isolated over a 23-year period from different hosts, pathotypes, and geographic locations were examined and analyzed to define phylogenetic profiles and evolutionary mechanism. The S1 genome segment showed noticeably higher divergence than the other S-class genes. The σC-encoding gene has evolved into six distinct lineages. In contrast, the other S-class genes showed less divergence than that of the σC-encoding gene and have evolved into two to three major distinct lineages, respectively. Comparative sequence analysis provided evidence indicating extensive sequence divergence between ARV and other orthoreoviruses. The evolutionary trees of each gene were distinct, suggesting that these genes evolve in an independent manner. Furthermore, variable topologies were the result of frequent genetic reassortment among multiple cocirculating lineages. Results showed genetic diversity correlated more closely with date of isolation and geographic sites than with host species and pathotypes. This is the first evidence demonstrating genetic variability among circulating ARVs through a combination of evolutionary mechanisms involving multiple cocirculating lineages and genetic reassortment. The evolutionary rates and patterns of base substitutions were examined. The evolutionary rate for the σC-encoding gene and σC protein was higher than for the other S-class genes and other family of viruses. With the exception of the σC-encoding gene, which nonsynonymous substitutions predominate over synonymous, the evolutionary process of the other S-class genes can be explained by the neutral theory of molecular evolution. Results revealed that synonymous substitutions predominate over nonsynonymous in the S-class genes, even though genetic diversity and substitution rates vary among the viruses

  2. The Protein-Sparing Modified Fast Diet

    Directory of Open Access Journals (Sweden)

    Marwan Bakhach MD

    2016-01-01

    Full Text Available Objectives: The protein-sparing modified fast (PSMF is a rigorous way of rapidly losing a large amount of weight. Although adult studies have shown the PSMF to be effective, data in adolescents are lacking. The aim of this study was to determine the efficacy and safety of the PSMF in severely obese adolescents. Methods: 12 subjects who were evaluated in the Obesity Management Program at the Cleveland Clinic from 2011 to 2014 were included. The subjects were initiated on the PSMF after failing other conventional methods of weight loss. Once the goal weight was achieved, subjects were transitioned to the refeeding phase for weight maintenance. Results: Follow-up was scheduled at 3-month (11 patients and 6-month (6 patients intervals. At the 6-month follow-up visit, the average weight loss was 11.19 kg (95% confidence interval = -5.4, -27.8, P = .028, with average of 9.8% from baseline. Fifty percent of subjects had >5% weight loss and 20% had >10% weight loss. Four patients were lost to the follow-up (40%. An improvement was noted in total cholesterol and high-density lipoprotein. Due to a small sample size these results were not statistically significant. Side effects reported by subjects were mild dehydration due to nausea (2 patients, decreased energy (1 patient, and transient labile mood (1 patient. No life-threatening side effects were reported. Conclusion: Our results show that the PSMF diet can be used as an effective and safe method in the outpatient setting for rapid weight loss in adolescents with severe obesity.

  3. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS).

    Science.gov (United States)

    Løvoll, Marie; Wiik-Nielsen, Jannicke; Grove, Søren; Wiik-Nielsen, Christer R; Kristoffersen, Anja B; Faller, Randi; Poppe, Trygve; Jung, Joonil; Pedamallu, Chandra S; Nederbragt, Alexander J; Meyerson, Matthew; Rimstad, Espen; Tengs, Torstein

    2010-11-10

    Cardiomyopathy syndrome (CMS) is a severe disease affecting large farmed Atlantic salmon. Mortality often appears without prior clinical signs, typically shortly prior to slaughter. We recently reported the finding and the complete genomic sequence of a novel piscine reovirus (PRV), which is associated with another cardiac disease in Atlantic salmon; heart and skeletal muscle inflammation (HSMI). In the present work we have studied whether PRV or other infectious agents may be involved in the etiology of CMS. Using high throughput sequencing on heart samples from natural outbreaks of CMS and from fish experimentally challenged with material from fish diagnosed with CMS a high number of sequence reads identical to the PRV genome were identified. In addition, a sequence contig from a novel totivirus could also be constructed. Using RT-qPCR, levels of PRV in tissue samples were quantified and the totivirus was detected in all samples tested from CMS fish but not in controls. In situ hybridization supported this pattern indicating a possible association between CMS and the novel piscine totivirus. Although causality for CMS in Atlantic salmon could not be proven for either of the two viruses, our results are compatible with a hypothesis where, in the experimental challenge studied, PRV behaves as an opportunist whereas the totivirus might be more directly linked with the development of CMS.

  4. (3,2)D GFT-NMR experiments for fast data collection from proteins

    International Nuclear Information System (INIS)

    Xia Youlin; Zhu Guang; Veeraraghavan, Sudha; Gao Xiaolian

    2004-01-01

    High throughput structure determination of proteins will contribute to the success of proteomics investigations. The G-Matrix Fourier Transformation NMR (GFT-NMR) method significantly shortens experimental time by reducing the number of the dimensions of data acquisition for isotopically labeled proteins (Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc.125, 1385). We demonstrate herein a suite of ten 3D → 2D or (3,2)D GFT-NMR experiments using 13 C/ 15 N-labeled ubiquitin. These experiments were completed within 18 hours, representing a 4- to 18-fold reduction in data acquisition time compared to the corresponding conventional 3D experiments. A subset of the GFT-NMR experiments, (3,2)D HNCO, HNCACB, HN(CO)CACB, and 2D 1 H- 15 N HSQC, which are necessary for backbone assignments, were carried out within 6 hours. To facilitate the analysis of the GFT-NMR spectra, we developed automated procedures for viewing and analyzing the GFT-NMR spectra. Our overall strategy allows (3,2)D GFT-NMR experiments to be readily performed and analyzed. Nevertheless, the increase in spectral overlap and the reduction in signal sensitivity in these fast NMR experiments presently limit their application to relatively small proteins

  5. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    Science.gov (United States)

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  6. A miniaturized technique for assessing protein thermodynamics and function using fast determination of quantitative cysteine reactivity.

    Science.gov (United States)

    Isom, Daniel G; Marguet, Philippe R; Oas, Terrence G; Hellinga, Homme W

    2011-04-01

    Protein thermodynamic stability is a fundamental physical characteristic that determines biological function. Furthermore, alteration of thermodynamic stability by macromolecular interactions or biochemical modifications is a powerful tool for assessing the relationship between protein structure, stability, and biological function. High-throughput approaches for quantifying protein stability are beginning to emerge that enable thermodynamic measurements on small amounts of material, in short periods of time, and using readily accessible instrumentation. Here we present such a method, fast quantitative cysteine reactivity, which exploits the linkage between protein stability, sidechain protection by protein structure, and structural dynamics to characterize the thermodynamic and kinetic properties of proteins. In this approach, the reaction of a protected cysteine and thiol-reactive fluorogenic indicator is monitored over a gradient of temperatures after a short incubation time. These labeling data can be used to determine the midpoint of thermal unfolding, measure the temperature dependence of protein stability, quantify ligand-binding affinity, and, under certain conditions, estimate folding rate constants. Here, we demonstrate the fQCR method by characterizing these thermodynamic and kinetic properties for variants of Staphylococcal nuclease and E. coli ribose-binding protein engineered to contain single, protected cysteines. These straightforward, information-rich experiments are likely to find applications in protein engineering and functional genomics. Copyright © 2010 Wiley-Liss, Inc.

  7. Fast automated placement of polar hydrogen atoms in protein-ligand complexes

    Directory of Open Access Journals (Sweden)

    Lippert Tobias

    2009-08-01

    Full Text Available Abstract Background Hydrogen bonds play a major role in the stabilization of protein-ligand complexes. The ability of a functional group to form them depends on the position of its hydrogen atoms. An accurate knowledge of the positions of hydrogen atoms in proteins is therefore important to correctly identify hydrogen bonds and their properties. The high mobility of hydrogen atoms introduces several degrees of freedom: Tautomeric states, where a hydrogen atom alters its binding partner, torsional changes where the position of the hydrogen atom is rotated around the last heavy-atom bond in a residue, and protonation states, where the number of hydrogen atoms at a functional group may change. Also, side-chain flips in glutamine and asparagine and histidine residues, which are common crystallographic ambiguities must be identified before structure-based calculations can be conducted. Results We have implemented a method to determine the most probable hydrogen atom positions in a given protein-ligand complex. Optimality of hydrogen bond geometries is determined by an empirical scoring function which is used in molecular docking. This allows to evaluate protein-ligand interactions with an established model. Also, our method allows to resolve common crystallographic ambiguities such as as flipped amide groups and histidine residues. To ensure high speed, we make use of a dynamic programming approach. Conclusion Our results were checked against selected high-resolution structures from an external dataset, for which the positions of the hydrogen atoms have been validated manually. The quality of our results is comparable to that of other programs, with the advantage of being fast enough to be applied on-the-fly for interactive usage or during score evaluation.

  8. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats.

    Science.gov (United States)

    Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza

    2018-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.

  9. Fast hydrogen exchange affects {sup 15}N relaxation measurements in intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seho; Wu, Kuen-Phon; Baum, Jean, E-mail: jean.baum@rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology (United States)

    2013-03-15

    Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, {sup 1}H-{sup 15}N HSQC, is used to measure the {sup 15}N transverse relaxation rate (R{sub 2}), the measured R{sub 2} rate is convoluted with the HX rate (k{sub HX}) and has higher apparent R{sub 2} values. Since the {sup 15}N R{sub 2} measurement is important for analyzing protein backbone dynamics, the HX effect on the R{sub 2} measurement is investigated and described here by multi-exponential signal decay. We demonstrate these effects by performing {sup 15}N R{sub 2}{sup CPMG} experiments on {alpha}-synuclein, an intrinsically disordered protein, in which the amide protons are exposed to solvent. We show that the HX effect on R{sub 2}{sup CPMG} can be extracted by the derived equation. In conclusion, the HX effect may be pulse sequence specific and results from various sources including the J coupling evolution, the change of steady state water proton magnetization, and the D{sub 2}O content in the sample. To avoid the HX effect on the analysis of relaxation data of unprotected amides, it is suggested that NMR experimental conditions insensitive to the HX should be considered or that intrinsic R{sub 2}{sup CPMG} values be obtained by methods described herein.

  10. Integrated Solid-Phase Extraction-Capillary Liquid Chromatography (speLC) Interfaced to ESI-MS/MS for Fast Characterization and Quantification of Protein and Proteomes

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Such-Sanmartín, Gerard; Larsen, Martin Røssel

    2014-01-01

    min speLC-MS/MS experiment. Analysis by selected reaction monitoring by speLC-SRM-MS/MS of distinct peptides derived from the blood proteins IGF1, IGF2, IBP2, and IBP3 demonstrated protein quantification with CV values below 10% across 96 replicates. The speLC-MS/MS system is ideally suited for fast......The high peptide sequencing speed provided by modern hybrid tandem mass spectrometers enables the utilization of fast liquid chromatographic (LC) separation techniques. We present a robust solid-phase extraction/capillary LC system (speLC) for 5-10 min separation of semicomplex peptide mixtures...

  11. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Opron, Kristopher [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States)

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely

  12. Nonsynonymous substitution rate (Ka is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2011-02-01

    Full Text Available Abstract Background Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results We chose human and eleven other high-coverage mammalian genome data–as well as an avian genome as an outgroup–to analyze orthologous protein-coding genes using nonsynonymous (Ka and synonymous (Ks substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks. When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins, whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion Our study suggests that Ka calculation, which is less biased compared to Ks and Ka

  13. A prospective audit of preprocedural fasting practices on a transplant ward: when fasting becomes starving.

    Science.gov (United States)

    Vidot, Helen; Teevan, Kate; Carey, Sharon; Strasser, Simone; Shackel, Nicholas

    2016-03-01

    To investigate the prevalence and duration of preprocedural medically ordered fasting during a period of hospitalisation in an Australian population of patients with hepatic cirrhosis or following liver transplantation and to identify potential solutions to reduce fasting times. Protein-energy malnutrition is a common finding in patients with hepatic cirrhosis and can impact significantly on survival and quality of life. Protein and energy requirements in patients with cirrhosis are higher than those of healthy individuals. A significant feature of cirrhosis is the induction of starvation metabolism following seven to eight hours of food deprivation. Many investigative and interventional procedures for patients with cirrhosis necessitate a period of fasting to comply with anaesthesia guidelines. An observational study of the fasting episodes for 34 hospitalised patients with hepatic cirrhosis or following liver transplantation. Nutritional status was estimated using subjective global assessment and handgrip strength. The prevalence and duration of fasting practices for diagnostic or investigational procedures were estimated using electronic records and patient notes. Thirty-three patients (97%) were malnourished. Twenty-two patients (65%) were fasted during the observation period. There were 43 occasions of fasting with a median fasting time of 13·5 hours. On 40 occasions fasting times exceeded the maximum six-hour guideline recommended prior to the administration of anaesthesia by the majority of Anaesthesiology Societies. The majority of procedures (77%) requiring fasting occurred after midday. Eating breakfast on the day of the procedure reduced fasting time by 45%. Medically ordered preprocedural fasting times almost always exceed existing guidelines in this nutritionally compromised group. Adherence to fasting guidelines and eating breakfast before the procedure can reduce fasting times significantly and avoid the potential induction of starvation metabolism

  14. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    Science.gov (United States)

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  15. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  16. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples

    Directory of Open Access Journals (Sweden)

    Christina Looße

    2015-06-01

    Full Text Available Relative and absolute quantification of proteins in biological and clinical samples are common approaches in proteomics. Until now, targeted protein quantification is mainly performed using a combination of HPLC-based peptide separation and selected reaction monitoring on triple quadrupole mass spectrometers. Here, we show for the first time the potential of absolute quantification using a direct infusion strategy combined with single ion monitoring (SIM on a Q Exactive mass spectrometer. By using complex membrane fractions of Escherichia coli, we absolutely quantified the recombinant expressed heterologous human cytochrome P450 monooxygenase 3A4 (CYP3A4 comparing direct infusion-SIM with conventional HPLC-SIM. Direct-infusion SIM revealed only 14.7% (±4.1 (s.e.m. deviation on average, compared to HPLC-SIM and a decreased processing and analysis time of 4.5 min (that could be further decreased to 30 s for a single sample in contrast to 65 min by the LC–MS method. Summarized, our simplified workflow using direct infusion-SIM provides a fast and robust method for quantification of proteins in complex protein mixtures.

  17. Analysis of Protein Content in Rices Using Fast Neutron Reaction 14N(n,2 n) N13

    International Nuclear Information System (INIS)

    Sri-Sulamdari; Elin-Nuraini; Chotimah

    2000-01-01

    Protein content in rices such as IR 33 , Cisadane, and Rojolele has beendetermined using fast neutron activation analysis (FNAA). The existence ofprotein is characterized using E γ = 0.511 MeV from nuclear reaction 14 N (n,2 n) N 13 . Two methods of FNAA for quantification were used. Inabsolute method, the protein content was determined by measuring the neutronflux using Al foil, and in comparative additive method it was determined bycomparing to the known N standard which was additive to the samples. Theexperimental results show that the protein content in those rices ranges from(6.33 ± 0.05) % to (6.9 ± 0.11) % in weight. From the reference, thegrained rices contained 6.8 % in weight of protein. The value of the proteinstandard from the reference was in range of the experimental result. Howeverthere were still differences due to nuclear data stability of flux neutron,flux sample composition and the utilization of detector. (author)

  18. Sorting protein lists with nwCompare: a simple and fast algorithm for n-way comparison of proteomic data files.

    Science.gov (United States)

    Pont, Frédéric; Fournié, Jean Jacques

    2010-03-01

    MS, the reference technology for proteomics, routinely produces large numbers of protein lists whose fast comparison would prove very useful. Unfortunately, most softwares only allow comparisons of two to three lists at once. We introduce here nwCompare, a simple tool for n-way comparison of several protein lists without any query language, and exemplify its use with differential and shared cancer cell proteomes. As the software compares character strings, it can be applied to any type of data mining, such as genomic or metabolomic datalists.

  19. Fasting in king penguin. II. Hormonal and metabolic changes during molt.

    Science.gov (United States)

    Cherel, Y; Leloup, J; Le Maho, Y

    1988-02-01

    The coincidence of fast and molt in penguins is an interesting condition for investigating the factors controlling protein metabolism; avian molt involves the utilization of amino acids for synthesis of new feathers, whereas a major factor for adaptation to fasting in birds, as for mammals, is reduction in net protein breakdown. Hormonal and biochemical changes were studied in seven molting king penguins. Their initial body mass was 18 kg. It decreased by 58% over 41 days of fasting. Feather synthesis lasted for the first 3 wk of the fast. It was marked by plasma concentrations of alanine and uric acid 1.5 to 2 times those for nonmolting fast, and plasma thyroxine was increased five times. At the completion of molt all these values returned to levels comparable to those in nonmolting fast. As indicated by high plasma levels of beta-hydroxybutyrate, lipid stores were mobilized readily during molting. The fast ended by a phase of enhancement in protein utilization that was characterized by a fivefold increase in uricacidemia and coincided with an 80% drop in plasma beta-hydroxybutyrate and a fourfold increase in plasma corticosterone. These data suggest that two different hormones control the two successive periods marked by an increased protein mobilization during the molting fast, i.e., thyroxine during feather growth and corticosterone toward the end of the fast, when the molt is completed.

  20. Piscine reovirus, but not Jaundice Syndrome, was transmissible to Chinook Salmon, Oncorhynchus tshawytscha (Walbaum), Sockeye Salmon, Oncorhynchus nerka (Walbaum), and Atlantic Salmon, Salmo salar L.

    Science.gov (United States)

    Garver, Kyle A.; Marty, Gary D.; Cockburn, Sarah N.; Richard, Jon; Hawley, Laura M.; Müller, Anita; Thompson, Rachel L.; Purcell, Maureen K.; Saksida, Sonja M.

    2015-01-01

    A Jaundice Syndrome occurs sporadically among sea-pen-farmed Chinook Salmon in British Columbia, the westernmost province of Canada. Affected salmon are easily identified by a distinctive yellow discolouration of the abdominal and periorbital regions. Through traditional diagnostics, no bacterial or viral agents were cultured from tissues of jaundiced Chinook Salmon; however, piscine reovirus (PRV) was identified via RT-rPCR in all 10 affected fish sampled. By histopathology, Jaundice Syndrome is an acute to peracute systemic disease, and the time from first clinical signs to death is likely jaundiced Chinook Salmon, developed no gross or microscopic evidence of jaundice despite persistence of PRV for the 5-month holding period. The results from this study demonstrate that the Jaundice Syndrome was not transmissible by injection of material from infected fish and that PRV was not the sole aetiological factor for the condition. Additionally, these findings showed the Pacific coast strain of PRV, while transmissible, was of low pathogenicity for Atlantic Salmon, Chinook Salmon and Sockeye Salmon.

  1. GOSSIP: a method for fast and accurate global alignment of protein structures.

    Science.gov (United States)

    Kifer, I; Nussinov, R; Wolfson, H J

    2011-04-01

    The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.

  2. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins

    Science.gov (United States)

    Deng, Jingren; Lazar, Iulia M.

    2016-04-01

    The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.

  3. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  4. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    Science.gov (United States)

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  5. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of Ramadan fasting on serum heat shock protein 70 and serum lipid profile.

    Science.gov (United States)

    Zare, A; Hajhashemi, M; Hassan, Z M; Zarrin, S; Pourpak, Z; Moin, M; Salarilak, S; Masudi, S; Shahabi, S

    2011-07-01

    Ramadan, the holy month for the Islamic world, is a period every year when food and fluid intake is restricted to the pre-sunrise and post-sunset hours. The aim of this study was to evaluate the effect of Ramadan fasting on the serum concentration of heat shock protein 70 (HSP70) and serum lipid profile in healthy men. A total of 32 male volunteers with a mean age of 28.5 (range 23-37) years were selected for the study. Blood samples were obtained one day prior to Ramadan and on the 3rd and 25th days of fasting. Serum HSP70, triglyceride (TG), cholesterol (Chol), low-density lipoprotein (LDL) and high-density lipoprotein (HDL), LDL/HDL and Chol/HDL ratios were investigated. It was observed that the mean concentrations of serum HSP70 and HDL on the 25th day of Ramadan were significantly higher than those recorded one day before Ramadan and on the 3rd day of Ramadan, and the levels on the 3rd day of Ramadan was significantly higher than those recorded one day before Ramadan. Mean concentrations of serum TG, Chol, LDL, and LDL/HDL and Chol/HDL ratios on the 25th day of Ramadan were significantly lower than those recorded one day before Ramadan and on the 3rd day of Ramadan, and the levels found on the 3rd day of Ramadan were also significantly lower than those recorded one day before Ramadan. Ramadan fasting increases serum HSP70 and improves serum lipid profile.

  7. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Associations between piscine reovirus infection and life history traits in wild-caught Atlantic salmon Salmo salar L. in Norway.

    Science.gov (United States)

    Garseth, Ase Helen; Biering, Eirik; Aunsmo, Arnfinn

    2013-10-01

    Piscine Reovirus (PRV), the putative causative agent of heart and skeletal muscle inflammation (HSMI), is widely distributed in both farmed and wild Atlantic salmon (Salmo salar L.) in Norway. While HSMI is a common and commercially important disease in farmed Atlantic salmon, the presence of PRV has so far not been associated with HSMI related lesions in wild salmon. Factors associated with PRV-infection were investigated in returning Atlantic salmon captured in Norwegian rivers. A multilevel mixed-effect logistic regression model confirmed clustering within rivers and demonstrated that PRV-infection is associated with life-history, sex, catch-year and body length as a proxy for sea-age. Escaped farmed salmon (odds ratio/OR: 7.32, p<0.001) and hatchery-reared salmon (OR: 1.69 p=0.073) have higher odds of being PRV-infected than wild Atlantic salmon. Male salmon have double odds of being PRV infected compared to female salmon (OR: 2.11, p<0.001). Odds of being PRV-infected increased with body-length measured as decimetres (OR: 1.20, p=0.004). Since body length and sea-age are correlated (r=0.85 p<0.001), body length serves as a proxy for sea-age, meaning that spending more years in sea increases the odds of being PRV-infected. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  9. Fast axonal transport of 3H-leucin-labelled proteins in the unhurt and isolated optical nerve of rats

    International Nuclear Information System (INIS)

    Wagner, H.E.

    1981-01-01

    The distribution of radioactivity of amino acid molecules incorporated in protein after injection of 3 H-Leucin into the right bulb was investigated and determined along optical nerve after 1, 2, and 4 h. A slightly increased radioactivity at the point of entrance of the optical nerves into the optical duct was found. A slightly reduced axon diameter was discussed as a possible cause. The radioactivity brought into the optical nerve via the vascular system was determined by measuring the contralateral optical nerve. In relation to the axonally transported activity, it was low. The speed of the fast axonal transport is 168 mm/d. If the processes ruling the amino acids in the perikaryon are taken into consideration, the transport speed is 240 mm/d. The application of the protein synthesis prohibitor, Cycloheximide, 5 minutes after the injection of Leucinin completely prevented the appearance of axonally transported labelled proteins. When cycloheximide was administered 2 h after Leucin, a significantly loner radioactivity than in the nerve could be determined after another 2 h; i.e. the incorporation of Leucin was not completed yet after 2 h. The profile of active compounds was the same as in the control group. In other experiments, the axonal transport of labelled proteins in isolated optical nerve fibres was tested. If the separation was carried out 2 h after the injection of Leucin an extreme reduction in activity could be determined after 1 or 2 h. The continued distribution of activity after cycloheximide treatment and removal of perikarya in comparison with the control indicate the continuation of the transport, also after separation of the axon from the perikaryon. This means that, during the time of the experiment, the mechanism of the fast axonal transport functions independently of the perikaryon. (orig./MG) [de

  10. Serum corticosteroid binding globulin expression is modulated by fasting in polar bears (Ursus maritimus).

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Cattet, Marc R L; Stenhouse, Gordon; Obbard, Martyn E; Vijayan, Mathilakath M

    2011-01-01

    Polar bears (Ursus maritimus) from several subpopulations undergo extended fasting during the ice-free season. However, the animals appear to conserve protein despite the prolonged fasting, though the mechanisms involved are poorly understood. We hypothesized that elevated concentrations of corticosteroid binding globulin (CBG), the primary cortisol binding protein in circulation, lead to cortisol resistance and provide a mechanism for protein conservation during extended fasting. The metabolic state (feeding vs. fasting) of 16 field sampled male polar bears was determined based on their serum urea to creatinine ratio (>25 for feeding vs. polar bears sampled. Serum CBG expression was greater in lactating females relative to non-lactating females and males. CBG expression was significantly higher in fasting males when compared to non-fasting males. This leads us to suggest that CBG expression may serve as a mechanism to conserve protein during extended fasting in polar bears by reducing systemic free cortisol concentrations. This was further supported by a lower serum glucose concentration in the fasting bears. As well, a lack of an enhanced adrenocortical response to acute capture stress supports our hypothesis that chronic hunger is not a stressor in this species. Overall, our results suggest that elevated serum CBG expression may be an important adaptation to spare proteins by limiting cortisol bioavailability during extended fasting in polar bears. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. High-throughput fractionation of human plasma for fast enrichment of low- and high-abundance proteins.

    Science.gov (United States)

    Breen, Lucas; Cao, Lulu; Eom, Kirsten; Srajer Gajdosik, Martina; Camara, Lila; Giacometti, Jasminka; Dupuy, Damian E; Josic, Djuro

    2012-05-01

    Fast, cost-effective and reproducible isolation of IgM from plasma is invaluable to the study of IgM and subsequent understanding of the human immune system. Additionally, vast amounts of information regarding human physiology and disease can be derived from analysis of the low abundance proteome of the plasma. In this study, methods were optimized for both the high-throughput isolation of IgM from human plasma, and the high-throughput isolation and fractionation of low abundance plasma proteins. To optimize the chromatographic isolation of IgM from human plasma, many variables were examined including chromatography resin, mobile phases, and order of chromatographic separations. Purification of IgM was achieved most successfully through isolation of immunoglobulin from human plasma using Protein A chromatography with a specific resin followed by subsequent fractionation using QA strong anion exchange chromatography. Through these optimization experiments, an additional method was established to prepare plasma for analysis of low abundance proteins. This method involved chromatographic depletion of high-abundance plasma proteins and reduction of plasma proteome complexity through further chromatographic fractionation. Purification of IgM was achieved with high purity as confirmed by SDS-PAGE and IgM-specific immunoblot. Isolation and fractionation of low abundance protein was also performed successfully, as confirmed by SDS-PAGE and mass spectrometry analysis followed by label-free quantitative spectral analysis. The level of purity of the isolated IgM allows for further IgM-specific analysis of plasma samples. The developed fractionation scheme can be used for high throughput screening of human plasma in order to identify low and high abundance proteins as potential prognostic and diagnostic disease biomarkers.

  12. A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting

    Science.gov (United States)

    Syamsunarno, Mas Rizky A. A.; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; YoshitoTsushima; Endo, Keigo; Hotamisligil, Gökhan S.; Kurabayashi, Masahiko

    2013-01-01

    During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the

  13. Molecular detection of genotype II grass carp reovirus based on nucleic acid sequence-based amplification combined with enzyme-linked immunosorbent assay (NASBA-ELISA).

    Science.gov (United States)

    Zeng, Weiwei; Yao, Wei; Wang, Yingying; Li, Yingying; Bermann, Sven M; Ren, Yan; Shi, Cunbin; Song, Xinjian; Huang, Qiwen; Zheng, Shuchen; Wang, Qing

    2017-05-01

    Grass carp reovirus (GCRV) is the causative agent of the grass carp hemorrhagic disease that has resulted in severe economic losses in the grass carp (Ctenopharyngodon idella) farming industry in China. Early diagnosis and vaccine administration are important priorities for GCRV control. In this study, a nucleic acid sequence-based amplification with enzyme-linked immunosorbent assay (NASBA-ELISA) was developed for to detect genotype II GCRV (GCRV- II). Primers specifically targeting viral RNA genome segment 6 were utilized for amplification in an isothermal digoxigenin-labeling NASBA process, resulting in DIG-labeled RNA amplicons. The amplicons were hybridized to specific biotinylated DNA probes and the products were detected colorimetrically using horseradish peroxidase and a microplate reader. The new method is able to detect GCRV at 14 copies/μL within 5h and had a diagnostic sensitivity and a specificity of 100% when GCRV-II and non-target virus were tested. This NASBA-ELISA was evaluated using a panel of clinical samples (n=103) to demonstrate that it is a rapid, effective and sensitive method for GCRV detection in grass carp aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. One and two-dimensional electrophoresis of fast axonally-transported proteins in rat nerves following acrylamide and 2,5-hexanedione exposure

    International Nuclear Information System (INIS)

    Sickles, D.W.

    1990-01-01

    Transient and repeated deficiencies in protein delivery to the axon are observed following injections of acrylamide (ACR) and 2,5-hexanedione (2,5-HD) (Sickles DW, Neurotoxicology 10: 91;103, 1989; Neurosci Abstr 14:1219, 1988). We have furthered these studies by measuring the effects of single 50 mg/kg ACR and 4 nmole/kg 2,5-HD injections on the quantity of select fast-transported proteins. Proteins were radiolabelled with 3H-leucine injections of the DRG; 1 and 2 dimensional gels were used for separation of the sciatic nerve (9-45mm distal to the ganglion) homogenates. Scintillation counting demonstrated that transport of all proteins studied were affected by both toxicants. Some variation in effect was observed; a direct correlation between molecular weight (r=0.71) and original quantity of radiolabel (r=0.80) with the percent reduction in transport was observed. Some apparent increases in transport of certain proteins were observed on the 2D gels; but this may indicate a change in the isoelectric points of these transported proteins

  15. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  16. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae

    Science.gov (United States)

    McIsaac, R. Scott; Silverman, Sanford J.; McClean, Megan N.; Gibney, Patrick A.; Macinskas, Joanna; Hickman, Mark J.; Petti, Allegra A.; Botstein, David

    2011-01-01

    We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone β-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. β-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of β-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks. PMID:21965290

  17. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    Science.gov (United States)

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  18. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    Science.gov (United States)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  19. Piscine reovirus: Genomic and molecular phylogenetic analysis from farmed and wild salmonids collected on the Canada/US Pacific Coast

    Science.gov (United States)

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul S.; Richmond, Zina; Purcell, Maureen K.; Johns, Robert; Johnson, Stewart C.; Sakasida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period.

  20. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  1. Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic.

    Science.gov (United States)

    Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi

    2016-02-01

    The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Analysis of Low Frequency Protein Truncating Stop-Codon Variants and Fasting Concentration of Growth Hormone.

    Directory of Open Access Journals (Sweden)

    Erik Hallengren

    Full Text Available The genetic background of Growth Hormone (GH secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function.To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone.We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥ 10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH and, if nominally significant, to GH related phenotypes, using linear regression analysis.Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93* [Minor Allele Frequency (MAF = 0.8%] in the Myosin 1A gene (MYO1A was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02 increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100* in the Zink Finger protein 77 gene (ZNF77 (MAF = 4.8% was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02 increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05, waist (β-coefficient, -0.22; p = 0.04, body fat percentage (β-coefficient, -0.23; p = 0.03 and with higher HDL (β-coefficient, 0.23; p = 0.04. The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02 but not with cardiometabolic risk factors.We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our results are preliminary and need replication in

  3. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    Science.gov (United States)

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  4. Temporal partitioning of adaptive responses of the murine heart to fasting.

    Science.gov (United States)

    Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E

    2018-03-15

    Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

    Science.gov (United States)

    Burke, Kelly S; Parul, Dzmitry; Reddish, Michael J; Dyer, R Brian

    2013-08-07

    We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 μs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonaphthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 μs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics.

  6. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    International Nuclear Information System (INIS)

    Hu Pingan; Zhang Jia; Wen Zhenzhong; Zhang Can

    2011-01-01

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10 4 -fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  7. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  8. Energy metabolism and fasting in male and female insectivorous bats Molossus molossus (Chiroptera: Molossidae

    Directory of Open Access Journals (Sweden)

    MB. Freitas

    Full Text Available Metabolic adaptations induced by 24 and 48 hours of fasting were investigated in male and female insectivorous bats (Molossus molossus Pallas, 1766. For this purpose, plasma glucose, non esterified fatty acids (NEFA, glycogen, protein and lipids concentrations in liver and muscles were obtained. Data presented here demonstrate that fed bats showed plasma glucose levels similar to those reported for other mammal species. In response to fasting, glycemia was decreased only in 48 hours fasted females. Plasma NEFA levels were similar in both sexes, and did not exhibit any changes during fasting. Considering the data from energy reserve variations, fed females presented an increased content of liver glycogen as well as higher breast muscle protein and limbs lipids concentrations, compared to fed males. In response to fasting, liver and muscle glycogen levels remained unchanged. Considering protein and lipid reserves, only females showed decreased values following fasting, as seen in breast, limbs and carcass lipids and breast muscle protein reserves, but still fail to keep glucose homeostasis after 48 hours without food. Taken together, our data suggest that the energy metabolism of insectivorous bats may vary according to sexual differences, a pattern that might be associated to different reproduction investments and costs between genders.

  9. Fasting enhances TRAIL-mediated liver natural killer cell activity via HSP70 upregulation.

    Directory of Open Access Journals (Sweden)

    Vu T A Dang

    Full Text Available Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01, as determined by flow cytometric analysis. Furthermore, we found that TRAIL- natural killer cells that were adoptively transferred into Rag-2-/- γ chain-/- mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05 in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05. In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05. These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70.

  10. Ramadan Fasting in Kidney Transplant Recipients: A Single-Centre Retrospective Study

    Directory of Open Access Journals (Sweden)

    Ihab A. Ibrahim

    2018-01-01

    Full Text Available Background. Fasting during the lunar month of Ramadan is mandatory to all healthy adult Muslims. Renal transplant recipients are often worried about the impact of fluid and electrolyte deprivation during fasting on the function of their allograft. We aimed to examine the effect of fasting Ramadan on the graft function in renal transplant recipients. Methods. This retrospective cohort study included patients who underwent kidney transplantation in our tertiary referral center. Baseline pre-Ramadan estimated glomerular filtration rate (eGFR, mean arterial pressure (MAP, and urinary protein excretion were compared to those during and after Ramadan within and between the fasting and non-fasting groups. Results. The study population included 280 kidney transplant recipients who chose to fast during the Ramadan month (June-July 2014 and 285 recipients who did not fast. In the fasting group, baseline eGFR did not change from that during or post-Ramadan (72.6±23.7 versus 72.3±24.5 mL/min/1.73 m2, P=0.53; and 72.6±23.7 versus 72±23.2 mL/min/1.73 m2, P=0.14, respectively. Compared to baseline, there were no significant differences between the fasting and the non-fasting groups in terms of mean percent changes in eGFR, MAP, and urinary protein excretion. Conclusion. Fasting during the month of Ramadan did not have significant adverse effects on renal allograft function.

  11. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    Science.gov (United States)

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  12. Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection

    Directory of Open Access Journals (Sweden)

    Alison W. Ashbrook

    2016-05-01

    Full Text Available Chikungunya virus (CHIKV is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy.

  13. Synergistic antitumor activity of oncolytic reovirus and chemotherapeutic agents in non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Coffey Matthew C

    2009-07-01

    Full Text Available Abstract Background Reovirus type 3 Dearing strain (ReoT3D has an inherent propensity to preferentially infect and destroy cancer cells. The oncolytic activity of ReoT3D as a single agent has been demonstrated in vitro and in vivo against various cancers, including colon, pancreatic, ovarian and breast cancers. Its human safety and potential efficacy are currently being investigated in early clinical trials. In this study, we investigated the in vitro combination effects of ReoT3D and chemotherapeutic agents against human non-small cell lung cancer (NSCLC. Results ReoT3D alone exerted significant cytolytic activity in 7 of 9 NSCLC cell lines examined, with the 50% effective dose, defined as the initial virus dose to achieve 50% cell killing after 48 hours of infection, ranging from 1.46 ± 0.12 ~2.68 ± 0.25 (mean ± SD log10 pfu/cell. Chou-Talalay analysis of the combination of ReoT3D with cisplatin, gemcitabine, or vinblastine demonstrated strong synergistic effects on cell killing, but only in cell lines that were sensitive to these compounds. In contrast, the combination of ReoT3D and paclitaxel was invariably synergistic in all cell lines tested, regardless of their levels of sensitivity to either agent. Treatment of NSCLC cell lines with the ReoT3D-paclitaxel combination resulted in increased poly (ADP-ribose polymerase cleavage and caspase activity compared to single therapy, indicating enhanced apoptosis induction in dually treated NSCLC cells. NSCLC cells treated with the ReoT3D-paclitaxel combination showed increased proportions of mitotic and apoptotic cells, and a more pronounced level of caspase-3 activation was demonstrated in mitotically arrested cells. Conclusion These data suggest that the oncolytic activity of ReoT3D can be potentiated by taxanes and other chemotherapeutic agents, and that the ReoT3D-taxane combination most effectively achieves synergy through accelerated apoptosis triggered by prolonged mitotic arrest.

  14. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters

    Science.gov (United States)

    Wu, Minhao; Dong, Bin; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2015-01-01

    Background PCSK9 has emerged as a key regulator of serum LDL-C metabolism by promoting the degradation of hepatic LDL receptor (LDLR). In this study, we investigated the effect of fasting on serum PCSK9, LDL-C, and hepatic LDLR expression in hamsters and further delineated the molecular pathways involved in fasting-induced repression of PCSK9 transcription. Results Fasting had insignificant effects on serum total cholesterol and HDL-C levels, but reduced LDL-C, triglyceride and insulin levels. The decrease in serum LDL-C was accompanied by marked reductions of hepatic PCSK9 mRNA and serum PCSK9 protein levels with concomitant increases of hepatic LDLR protein amounts. Fasting produced a profound impact on SREBP1 expression and its transactivating activity, while having modest effects on mRNA expressions of SREBP2 target genes in hamster liver. Although PPARα mRNA levels in hamster liver were elevated by fasting, ligand-induced activation of PPARα with WY14643 compound in hamster primary hepatocytes did not affect PCSK9 mRNA or protein expressions. Further investigation on HNF1α, a critical transactivator of PCSK9, revealed that fasting did not alter its mRNA expression, however, the protein abundance of HNF1α in nuclear extracts of hamster liver was markedly reduced by prolonged fasting. Conclusion Fasting lowered serum LDL-C in hamsters by increasing hepatic LDLR protein amounts via reductions of serum PCSK9 levels. Importantly, our results suggest that attenuation of SREBP1 transactivating activity owing to decreased insulin levels during fasting is primarily responsible for compromised PCSK9 gene transcription, which was further suppressed after prolonged fasting by a reduction of nuclear HNF1α protein abundance. PMID:22954675

  15. A Fasting-Responsive Signaling Pathway that Extends Life Span in C. elegans

    Directory of Open Access Journals (Sweden)

    Masaharu Uno

    2013-01-01

    Full Text Available Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown. Through a comprehensive transcriptome analysis in C. elegans, we find that along with the FOXO transcription factor DAF-16, AP-1 (JUN-1/FOS-1 plays a central role in fasting-induced transcriptional changes. KGB-1, one of the C. elegans JNKs, acts as an activator of AP-1 and is activated in response to fasting. KGB-1 and AP-1 are involved in intermittent fasting-induced longevity. Fasting-induced upregulation of the components of the SCF E3 ubiquitin ligase complex via AP-1 and DAF-16 enhances protein ubiquitination and reduces protein carbonylation. Our results thus identify a fasting-responsive KGB-1/AP-1 signaling pathway, which, together with DAF-16, causes transcriptional changes that mediate longevity, partly through regulating proteostasis.

  16. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fasting launches CRTC to facilitate long-term memory formation in Drosophila.

    Science.gov (United States)

    Hirano, Yukinori; Masuda, Tomoko; Naganos, Shintaro; Matsuno, Motomi; Ueno, Kohei; Miyashita, Tomoyuki; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-25

    Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.

  18. Effect of fasting on renal physiology

    OpenAIRE

    Achraf Hendawy

    2014-01-01

    Total abstention from food and water from sunrise to sunset during the month of Ramadan, is practiced by hundreds of millions of Muslims throughout the world. This pattern of fasting during Ramadan is different from the usual fasting as people are allowed to eat and drink between sunset and dawn but not after dawn. The amount and type of food (rich in protein, fat and sugar) eaten during the night may also be significantly different to that usually consumed during the rest of the year, while ...

  19. Prolonged fasting increases purine recycling in post-weaned northern elephant seals.

    Science.gov (United States)

    Soñanez-Organis, José Guadalupe; Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Aguilar, Andres; Crocker, Daniel E; Ortiz, Rudy M

    2012-05-01

    Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of absolute food and water deprivation (fasting). In terrestrial mammals, food deprivation stimulates ATP degradation and decreases ATP synthesis, resulting in the accumulation of purines (ATP degradation byproducts). Hypoxanthine-guanine phosphoribosyl transferase (HGPRT) salvages ATP by recycling the purine degradation products derived from xanthine oxidase (XO) metabolism, which also promotes oxidant production. The contributions of HGPRT to purine recycling during prolonged food deprivation in marine mammals are not well defined. In the present study we cloned and characterized the complete and partial cDNA sequences that encode for HGPRT and xanthine oxidoreductase (XOR) in northern elephant seals. We also measured XO protein expression and circulating activity, along with xanthine and hypoxanthine plasma content in fasting northern elephant seal pups. Blood, adipose and muscle tissue samples were collected from animals after 1, 3, 5 and 7 weeks of their natural post-weaning fast. The complete HGPRT and partial XOR cDNA sequences are 771 and 345 bp long and encode proteins of 218 and 115 amino acids, respectively, with conserved domains important for their function and regulation. XOR mRNA and XO protein expression increased 3-fold and 1.7-fold with fasting, respectively, whereas HGPRT mRNA (4-fold) and protein (2-fold) expression increased after 7 weeks in adipose tissue and muscle. Plasma xanthine (3-fold) and hypoxanthine (2.5-fold) levels, and XO (1.7- to 20-fold) and HGPRT (1.5- to 1.7-fold) activities increased during the last 2 weeks of fasting. Results suggest that prolonged fasting in elephant seal pups is associated with increased capacity to recycle purines, which may contribute to ameliorating oxidant production and enhancing the supply of ATP, both of which would be beneficial during prolonged food deprivation and appear to be adaptive in this species.

  20. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    2014-10-01

    Full Text Available Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  1. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  2. Fasting augments PCB impact on liver metabolism in anadromous Arctic Char

    Science.gov (United States)

    Vijayan, M.M.; Aluru, N.; Maule, A.G.; Jorgensen, E.H.

    2006-01-01

    Anadromous arctic char (Salvelinus alpinus) undertake short feeding migrations to seawater every summer and accumulate lipids, while the rest of the year is spent in fresh water where the accumulated lipid reserves are mobilized. We tested the hypothesis that winter fasting and the associated polychlorinated biphenyls' (PCBs) redistribution from lipid depots to critical tissues impair the liver metabolic capacity in these animals. Char were administered Aroclor 1254 (0, 1, 10, and 100 mg/ kg body mass) orally and maintained for 4 months without feeding to mimic seasonal winter fasting, while fed groups (0 and 100 mg Aroclor 1254/kg) were maintained for comparison. A clear dose-related increase in PCB accumulation and cytochrome P4501A (CYP1A) protein content was observed in the livers of fasted fish. This PCB concentration and CYP1A response with the high dose of Aroclor were 1.5-fold and 3-fold greater in the fasted than in the fed fish, respectively. In fed fish, PCB exposure lowered liver glycogen content, whereas none of the other metabolic indicators were significantly affected. In fasted fish, PCB exposure depressed liver glycogen content and activities of glucose-6-phosphate dehydrogenase, alanine aminotransferase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase and elevated 3-hydroxyacylcoA dehydrogenase activity and glucocorticoid receptor protein expression. There were no significant impacts of PCB on heat shock protein 70 (hsp70) and hsp90 contents in either fed or fasted fish. Collectively, our study demonstrates that winter emaciation associated with the anadromous lifestyle predisposes arctic char to PCB impact on hepatic metabolism including disruption of the adaptive metabolic responses to extended fasting. ?? 2006 Oxford University Press.

  3. Enteric virus with segmented double-stranded RNA genome in broiler chicken: Rotavirus, Reovirus and Picobirnavirus / Virus entéricos RNA fita dupla, segmentado, em aves: Rotavírus, Reovírus e Picobirnavírus

    Directory of Open Access Journals (Sweden)

    Amauri Alcindo Alfieri

    2000-04-01

    Full Text Available Enteric infections account for considerable economic losses to the poultry industry through weight loss, low food conversion, direct and indirect expenses with treatments and increased death rates. Poultry intestinal pathologies, either with local or general manifestations, can be caused by bacteria, protozoa or virus, acting alone or in association. Regarding viral etiology, several genera have been isolated from poultry with enteric disease. However, two genera from the Reoviridae family, the rotavirus and the reovirus are found more frequently in broiler chicken and/or laying hen feces. These viruses have been associated with clinical signs of enteritis in most epidemiological research. This revision aims to present some topics on the etiological agents (rotavirus, reovirus and picobirnavirus, the clinical disease and the diagnostic and control methods and prophylaxis of the infection.As infecções entéricas são responsáveis por consideráveis prejuízos econômicos à indústria avícola representados por perda de peso, baixa conversão alimentar, custos diretos e indiretos com tratamentos e por aumento na taxa de mortalidade. As patologias intestinais em aves, tanto com manifestação local quanto geral, podem ser determinadas por bactérias, protozoários e vírus, atuando de forma isolada ou em associação. Com relação a etiologia virai, vários gêneros têm sido isolados a partir de aves com enteropatias. Porém, dois gêneros na família Reoviridae, o rotavírus e o reovírus são encontrados com maior freqüência em fezes de frangos de corte e/ou galinhas poedeiras. Na maioria dos inquéritos epidemiológicos esses vírus estão associados a sinais clínicos de enterite. Esta revisão tem por objetivo apresentar alguns tópicos relativos aos agentes etiológicos (Rotavírus, Reovírus e Picobirnavírus, à doença clínica e aos métodos de diagnóstico, controle e profilaxia da infecção.

  4. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.

    Directory of Open Access Journals (Sweden)

    Oliver C Redfern

    2007-11-01

    Full Text Available We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure-based method (using graph theory to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these

  5. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  6. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  7. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-01-01

    Full Text Available Aquatic vertebrates are very abundant in the world, and they are of tremendous importance in providing global food security and nutrition. However, emergent and resurgent viruses, such as ranavirus (e.g., Rana grylio virus, RGV and Andriasd avidianus ranavirus, ADRV, herpesvirus (e.g., Carassius carassius herpesvirus, CaHV, reovirus (e.g., grass carp reovirus 109, GCRV-109, Scophthal musmaximus reovirus, SMReV and Micropterus salmoides reovirus, MsReV, and rhabdovirus (e.g., Siniper cachuatsi rhabdovirus, SCRV and Scophthal musmaximus rhabdovirus, SMRV can cause severe diseases in aquaculture animals and wild lower vertebrates, such as frogs, giant salamanders, fish, and so on. Here, we will briefly describe the symptoms produced by the aforementioned viruses and the molecular basis of the virus–host interactions. This manuscript aims to provide an overview of viral diseases in lower vertebrates with an emphasis on visible symptomatic manifestations and pathogenesis.

  8. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  9. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  10. Comparison of three methods for determination of protein ...

    African Journals Online (AJOL)

    However, a six fold greater amount of protein was obtained when FastPrep was applied to lyse LAB cells. Our results also indicate that, this fast and easy extraction method allows more spot-abundant polyacrylamide gels. More clear and consistent strips were detected by SDS-PAGE when proteins were extracted by ...

  11. Effects of protein and energy deficiency on the incorporation of 14C-Chlorella protein hydrolysate into body constituents of adult rats

    International Nuclear Information System (INIS)

    Yamamoto, Shigeru; Wakabayashi, Kazuo; Niiyama, Yoshiaki; Inoue, Goro

    1974-01-01

    The effects of protein and/or energy deficiency on 14 C incorporation into body constituents and 14 C output in expired air and urine were investigated in adult rats using 14 C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received 14 C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory 14 C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed. (author)

  12. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  13. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    Science.gov (United States)

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  14. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    Directory of Open Access Journals (Sweden)

    Meinicke Peter

    2009-09-01

    Full Text Available Abstract Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  15. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  16. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    Science.gov (United States)

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  18. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  19. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Science.gov (United States)

    McTaggart, James S; Lee, Sheena; Iberl, Michaela; Church, Chris; Cox, Roger D; Ashcroft, Frances M

    2011-01-01

    Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  20. FTO is expressed in neurones throughout the brain and its expression is unaltered by fasting.

    Directory of Open Access Journals (Sweden)

    James S McTaggart

    Full Text Available Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.

  1. Effects of protein and energy deficiency on the incorporation of /sup 14/C-Chlorella protein hydrolysate into body constituents of adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Wakabayashi, K; Niiyama, Y; Inoue, G [Tokushima Univ. (Japan). School of Medicine

    1974-12-01

    The effects of protein and/or energy deficiency on /sup 14/C incorporation into body constituents and /sup 14/C output in expired air and urine were investigated in adult rats using /sup 14/C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received /sup 14/C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory /sup 14/C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed.

  2. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.

    Science.gov (United States)

    Cordeiro, Aline; de Souza, Luana Lopes; Oliveira, Lorraine Soares; Faustino, Larissa Costa; Santiago, Letícia Aragão; Bloise, Flavia Fonseca; Ortiga-Carvalho, Tania Maria; Almeida, Norma Aparecida Dos Santos; Pazos-Moura, Carmen Cabanelas

    2013-02-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.

  3. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    Science.gov (United States)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  4. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  5. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.

    Science.gov (United States)

    Hoang, Diep Thi; Vinh, Le Sy; Flouri, Tomáš; Stamatakis, Alexandros; von Haeseler, Arndt; Minh, Bui Quang

    2018-02-02

    The nonparametric bootstrap is widely used to measure the branch support of phylogenetic trees. However, bootstrapping is computationally expensive and remains a bottleneck in phylogenetic analyses. Recently, an ultrafast bootstrap approximation (UFBoot) approach was proposed for maximum likelihood analyses. However, such an approach is still missing for maximum parsimony. To close this gap we present MPBoot, an adaptation and extension of UFBoot to compute branch supports under the maximum parsimony principle. MPBoot works for both uniform and non-uniform cost matrices. Our analyses on biological DNA and protein showed that under uniform cost matrices, MPBoot runs on average 4.7 (DNA) to 7 times (protein data) (range: 1.2-20.7) faster than the standard parsimony bootstrap implemented in PAUP*; but 1.6 (DNA) to 4.1 times (protein data) slower than the standard bootstrap with a fast search routine in TNT (fast-TNT). However, for non-uniform cost matrices MPBoot is 5 (DNA) to 13 times (protein data) (range:0.3-63.9) faster than fast-TNT. We note that MPBoot achieves better scores more frequently than PAUP* and fast-TNT. However, this effect is less pronounced if an intensive but slower search in TNT is invoked. Moreover, experiments on large-scale simulated data show that while both PAUP* and TNT bootstrap estimates are too conservative, MPBoot bootstrap estimates appear more unbiased. MPBoot provides an efficient alternative to the standard maximum parsimony bootstrap procedure. It shows favorable performance in terms of run time, the capability of finding a maximum parsimony tree, and high bootstrap accuracy on simulated as well as empirical data sets. MPBoot is easy-to-use, open-source and available at http://www.cibiv.at/software/mpboot .

  6. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  7. Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.

    Science.gov (United States)

    Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso

    2010-10-12

    Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.

  8. Prolonged fasting activates Nrf2 in post-weaned elephant seals.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Soñanez-Organis, José G; Rodriguez, Ruben; Viscarra, Jose A; Nishiyama, Akira; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Elephant seals naturally experience prolonged periods of absolute food and water deprivation (fasting). In humans, rats and mice, prolonged food deprivation activates the renin-angiotensin system (RAS) and increases oxidative damage. In elephant seals, prolonged fasting activates RAS without increasing oxidative damage likely due to an increase in antioxidant defenses. The mechanism leading to the upregulation of antioxidant defenses during prolonged fasting remains elusive. Therefore, we investigated whether prolonged fasting activates the redox-sensitive transcription factor Nrf2, which controls the expression of antioxidant genes, and if such activation is potentially mediated by systemic increases in RAS. Blood and skeletal muscle samples were collected from seals fasting for 1, 3, 5 and 7 weeks. Nrf2 activity and nuclear content increased by 76% and 167% at week 7. Plasma angiotensin II (Ang II) and transforming growth factor β (TGF-β) were 5000% and 250% higher at week 7 than at week 1. Phosphorylation of Smad2, an effector of Ang II and TGF signaling, increased by 120% at week 7 and by 84% in response to intravenously infused Ang II. NADPH oxidase 4 (Nox4) mRNA expression, which is controlled by smad proteins, increased 430% at week 7, while Nox4 protein expression, which can activate Nrf2, was 170% higher at week 7 than at week 1. These results demonstrate that prolonged fasting activates Nrf2 in elephant seals and that RAS stimulation can potentially result in increased Nox4 through Smad phosphorylation. The results also suggest that Nox4 is essential to sustain the hormetic adaptive response to oxidative stress in fasting seals.

  9. PatternQuery: web application for fast detection of biomacromolecular structural patterns in the entire Protein Data Bank.

    Science.gov (United States)

    Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav

    2015-07-01

    Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. PPI-IRO: A two-stage method for protein-protein interaction extraction based on interaction relation ontology

    KAUST Repository

    Li, Chuanxi; Chen, Peng; Wang, Rujing; Wang, Xiujie; Su, Yaru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identifi cation of biological regulatory networks. This paper presents a novel method based on the idea

  11. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on.

    Science.gov (United States)

    Bergö, Martin; Wu, Gengshu; Ruge, Toralph; Olivecrona, Thomas

    2002-04-05

    During short term fasting, lipoprotein lipase (LPL) activity in rat adipose tissue is rapidly down-regulated. This down-regulation occurs on a posttranslational level; it is not accompanied by changes in LPL mRNA or protein levels. The LPL activity can be restored within 4 h by refeeding. Previously, we showed that during fasting there is a shift in the distribution of lipase protein toward an inactive form with low heparin affinity. To study the nature of the regulatory mechanism, we determined the in vivo turnover of LPL activity, protein mass, and mRNA in rat adipose tissue. When protein synthesis was inhibited with cycloheximide, LPL activity and protein mass decreased rapidly and in parallel with half-lives of around 2 h, and the effect of refeeding was blocked. This indicates that maintaining high levels of LPL activity requires continuous synthesis of new enzyme protein. When transcription was inhibited by actinomycin, LPL mRNA decreased with half-lives of 13.3 and 16.8 h in the fed and fasted states, respectively, demonstrating slow turnover of the LPL transcript. Surprisingly, when actinomycin was given to fed rats, LPL activity was not down-regulated during fasting, indicating that actinomycin interferes with the transcription of a gene that blocks the activation of newly synthesized LPL protein. When actinomycin was given to fasted rats, LPL activity increased 4-fold within 6 h, even in the absence of refeeding. The same effect was seen with alpha-amanitin, another inhibitor of transcription. The response to actinomycin was much less pronounced in aging rats, which are obese and insulin-resistant. These data suggest a default state where LPL protein is synthesized on a relatively stable mRNA and is processed into its active form. During fasting, a gene is switched on whose product prevents the enzyme from becoming active even though synthesis of LPL protein continues unabated.

  12. Molecular packing, hydrogen bonding, and fast dynamics in lysozyme/trehalose/glycerol and trehalose/glycerol glasses at low hydration

    OpenAIRE

    Lerbret, Adrien; Affouard, Frédéric

    2017-01-01

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast ($\\sim$ pico-nanosecond, ps-ns) and small-amplitude ($\\sim$ \\AA ) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme...

  13. Incidence of hepatotropic viruses in biliary atresia.

    Science.gov (United States)

    Rauschenfels, Stefan; Krassmann, Miriam; Al-Masri, Ahmed N; Verhagen, Willem; Leonhardt, Johannes; Kuebler, Joachim F; Petersen, Claus

    2009-04-01

    Biliary atresia (BA) is the most frequent indication for paediatric liver transplantation. We tested the hypothesis of a viral aetiology of this disease by screening liver samples of a large number of BA patients for the common human hepatotropic viruses. Moreover, we correlated our findings to the expression of Mx protein, which has been shown to be significantly up-regulated during viral infections. Seventy-four liver biopsies (taken during Kasai portoenterostomy) were tested by polymerase chain reaction (PCR) for DNA viruses (herpes simplex virus [HSV], Epstein-Barr virus [EBV], varicella zoster virus [VZV], cytomegalovirus [CMV], adenovirus, parvovirus B19 and polyoma BK) and RNA viruses (enteroviruses, rotavirus and reovirus 3). Mx protein expression was assessed by immunohistochemistry. Virus DNA/RNA was found in less than half of the biopsies (8/74 CMV, 1/74 adenovirus; 21/64 reovirus, 1/64 enterovirus). A limited number presented with double infection. Patients that had detectable viral RNA/DNA in their liver biopsies were significantly older than virus-free patients (P = 0.037). The majority (54/59) of the liver biopsies showed expression of Mx proteins in hepatocytes, bile ducts and epithelium. Our data suggest that the known hepatotropic viruses do not play a major role in the aetiology and progression of BA. Their incidence appears to be, rather, a secondary phenomenon. Nonetheless, the inflammatory response in the livers of BA patients mimics that observed during viral infections.

  14. FuncPatch: a web server for the fast Bayesian inference of conserved functional patches in protein 3D structures.

    Science.gov (United States)

    Huang, Yi-Fei; Golding, G Brian

    2015-02-15

    A number of statistical phylogenetic methods have been developed to infer conserved functional sites or regions in proteins. Many methods, e.g. Rate4Site, apply the standard phylogenetic models to infer site-specific substitution rates and totally ignore the spatial correlation of substitution rates in protein tertiary structures, which may reduce their power to identify conserved functional patches in protein tertiary structures when the sequences used in the analysis are highly similar. The 3D sliding window method has been proposed to infer conserved functional patches in protein tertiary structures, but the window size, which reflects the strength of the spatial correlation, must be predefined and is not inferred from data. We recently developed GP4Rate to solve these problems under the Bayesian framework. Unfortunately, GP4Rate is computationally slow. Here, we present an intuitive web server, FuncPatch, to perform a fast approximate Bayesian inference of conserved functional patches in protein tertiary structures. Both simulations and four case studies based on empirical data suggest that FuncPatch is a good approximation to GP4Rate. However, FuncPatch is orders of magnitudes faster than GP4Rate. In addition, simulations suggest that FuncPatch is potentially a useful tool complementary to Rate4Site, but the 3D sliding window method is less powerful than FuncPatch and Rate4Site. The functional patches predicted by FuncPatch in the four case studies are supported by experimental evidence, which corroborates the usefulness of FuncPatch. The software FuncPatch is freely available at the web site, http://info.mcmaster.ca/yifei/FuncPatch golding@mcmaster.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Whole-body protein turnover in malnourished patients with child class B and C cirrhosis on diets low to high in protein energy.

    Science.gov (United States)

    Dichi, J B; Dichi, I; Maio, R; Correa, C R; Angeleli, A Y; Bicudo, M H; Rezende, T A; Burini, R C

    2001-03-01

    The purpose of this study was to determine the rate of whole-body protein turnover in moderately and severely alcoholic, malnourished, cirrhotic patients fed with different amounts of protein or energy. Six male patients (Child classes B and C) and four age- and sex-matched healthy control subjects were studied for 18 d in fasting and feeding states; a single oral dose of [(15)N]glycine was used as a tracer and urinary ammonia was the end product. The kinetic study showed that patients had higher protein catabolism while fasting (patients: 3.14 +/- 1.2 g of lean body mass/9 h; controls: 1.8 +/- 0.3 g of lean body mass/9 h; P hyperproteic/hyperenergetic diet when compared with fasting. Nitrogen retention was consistent with the lower protein-catabolism rate; a statistically significant increase in nitrogen balance was observed when patients were fed with the hyperproteic/hyperenergetic diet compared with fasting (4.3 +/- 3.2 g of nitrogen/d and -2.2 +/- 1.9 g of nitrogen/d, respectively; P hyperproteic/hyperenergetic diet is likely needed to improve their clinical and nutritional status.

  16. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

    International Nuclear Information System (INIS)

    Bieri, Michael; D’Auvergne, Edward J.; Gooley, Paul R.

    2011-01-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  17. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    Science.gov (United States)

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  18. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water.

    Directory of Open Access Journals (Sweden)

    Ignacio Gutiérrez-Del-Río

    Full Text Available Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking

  19. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water.

    Science.gov (United States)

    Gutiérrez-Del-Río, Ignacio; Marín, Laura; Fernández, Javier; Álvarez San Millán, María; Ferrero, Francisco Javier; Valledor, Marta; Campo, Juan Carlos; Cobián, Natalia; Méndez, Ignacio; Lombó, Felipe

    2018-01-01

    Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins) failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking water.

  20. Ultra-fast evaluation of protein energies directly from sequence.

    Directory of Open Access Journals (Sweden)

    Gevorg Grigoryan

    2006-06-01

    Full Text Available The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design and in some methods for protein structure prediction. The cluster expansion (CE method that we employ can, in principle, be extended to model any computable or measurable protein property directly as a function of sequence. Here we show how CE can be applied to the problem of computational protein design, and use it to derive excellent approximations of physical potentials. The approach provides several attractive advantages. First, following a one-time derivation of a CE expansion, the amount of time necessary to evaluate the energy of a sequence adopting a specified backbone conformation is reduced by a factor of 10(7 compared to standard full-atom methods for the same task. Second, the agreement between two full-atom methods that we tested and their CE sequence-based expressions is very high (root mean square deviation 1.1-4.7 kcal/mol, R2 = 0.7-1.0. Third, the functional form of the CE energy expression is such that individual terms of the expansion have clear physical interpretations. We derived expressions for the energies of three classic protein design targets-a coiled coil, a zinc finger, and a WW domain-as functions of sequence, and examined the most significant terms. Single-residue and residue-pair interactions are sufficient to accurately capture the energetics of the dimeric coiled coil, whereas higher-order contributions are important for the two more globular folds. For the task of designing novel zinc-finger sequences, a CE-derived energy function provides significantly better solutions than a standard design protocol, in comparable computation time. Given these advantages

  1. Molecular characterization and expression of the M6 gene of grass carp hemorrhage virus (GCHV), an aquareovirus.

    Science.gov (United States)

    Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y

    2001-07-01

    The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.

  2. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles.

    Science.gov (United States)

    Nesteruk, Monika; Hennig, Ewa E; Mikula, Michal; Karczmarski, Jakub; Dzwonek, Artur; Goryca, Krzysztof; Rubel, Tymon; Paziewska, Agnieszka; Woszczynski, Marek; Ledwon, Joanna; Dabrowska, Michalina; Dadlez, Michal; Ostrowski, Jerzy

    2014-03-01

    Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.

  3. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    Science.gov (United States)

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  4. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences

  5. Physiological adaptations to fasting in an actively wintering canid, the Arctic blue fox (Alopex lagopus).

    Science.gov (United States)

    Mustonen, Anne-Mari; Pyykönen, Teija; Puukka, Matti; Asikainen, Juha; Hänninen, Sari; Mononen, Jaakko; Nieminen, Petteri

    2006-01-01

    This study investigated the physiological adaptations to fasting using the farmed blue fox (Alopex lagopus) as a model for the endangered wild arctic fox. Sixteen blue foxes were fed throughout the winter and 32 blue foxes were fasted for 22 d in Nov-Dec 2002. Half of the fasted blue foxes were food-deprived again for 22 d in Jan-Feb 2003. The farmed blue fox lost weight at a slower rate (0.97-1.02% body mass d(-1)) than observed previously in the arctic fox, possibly due to its higher initial body fat content. The animals experienced occasional fasting-induced hypoglycaemia, but their locomotor activity was not affected. The plasma triacylglycerol and glycerol concentrations were elevated during phase II of fasting indicating stimulated lipolysis, probably induced by the high growth hormone concentrations. The total cholesterol, HDL- and LDL-cholesterol, urea, uric acid and total protein levels and the urea:creatinine ratio decreased during fasting. Although the plasma levels of some essential amino acids increased, the blue foxes did not enter phase III of starvation characterized by stimulated proteolysis during either of the 22-d fasting procedures. Instead of excessive protein catabolism, it is liver dysfunction, indicated by the increased plasma bilirubin levels and alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase activities, that may limit the duration of fasting in the species.

  6. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  7. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  8. Fast computational methods for predicting protein structure from primary amino acid sequence

    Science.gov (United States)

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  9. δ15N value does not reflect fasting in mysticetes.

    Science.gov (United States)

    Aguilar, Alex; Giménez, Joan; Gómez-Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ(15)N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ(15)N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ(15)N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition.

  10. Relationship between fasting glucose, vitamin D and PTH in early postmenopausal women

    DEFF Research Database (Denmark)

    við Streym, Susanna; Rejnmark, Lars; Vestergaard, Peter

      Abstract Relationship between fasting glucose, vitamin D and PTH in early postmenopausal women Súsanna við Streym Thomsen (1), Lars Rejnmark (1), Peter Vestergaard (1), Christine Brot (2), Pia Eiken (3), Pernille Hermann (4) Leif Mosekilde (1). (1) Department of Medicine and Endocrinology C...... postmenopausal Caucasian women (n=2016) aged 45 to 58 years old. Measurements: Fasting blood glucose was measured after an overnight fast by standard laboratory methods. Serum levels of 25OHD were measured by a competitive assay using rachitic rat binding protein. The fat and lean mass was measured by DXA...... between fasting blood glucose and 25OHD and all studied indices. In a multivariate linear regression analyzing fasting blood glucose was significantly associated with BMI (b=0.038 ±0.007 (SE), 2p

  11. Physiological responses to food deprivation in the house sparrow, a species not adapted to prolonged fasting.

    Science.gov (United States)

    Khalilieh, Anton; McCue, Marshall D; Pinshow, Berry

    2012-09-01

    Many wild birds fast during reproduction, molting, migration, or because of limited food availability. Species that are adapted to fasting sequentially oxidize endogenous fuels in three discrete phases. We hypothesized that species not adapted to long fasts have truncated, but otherwise similar, phases of fasting, sequential changes in fuel oxidization, and similar changes in blood metabolites to fasting-adapted species. We tested salient predictions in house sparrows (Passer domesticus biblicus), a subspecies that is unable to tolerate more than ~32 h of fasting. Our main hypothesis was that fasting sparrows sequentially oxidize substrates in the order carbohydrates, lipids, and protein. We dosed 24 house sparrows with [(13)C]glucose, palmitic acid, or glycine and measured (13)CO(2) in their breath while they fasted for 24 h. To ascertain whether blood metabolite levels reflect fasting-induced changes in metabolic fuels, we also measured glucose, triacylglycerides, and β-hydroxybutyrate in the birds' blood. The results of both breath (13)CO(2) and plasma metabolite analyses did not support our hypothesis; i.e., that sparrows have the same metabolic responses characteristic of fasting-adapted species, but on a shorter time scale. Contrary to our main prediction, we found that recently assimilated (13)C-tracers were oxidized continuously in different patterns with no definite peaks corresponding to the three phases of fasting and also that changes in plasma metabolite levels accurately tracked the changes found by breath analysis. Notably, the rate of recently assimilated [(13)C]glycine oxidization was significantly higher (P fast for longer than 32 h is likely related to their inability to accrue large lipid stores, separately oxidize different fuels, and/or spare protein during fasting.

  12. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange

    DEFF Research Database (Denmark)

    Liu, Yi; Dentin, Renaud; Chen, Danica

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory...... expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction...... of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also...

  13. Fast protein tertiary structure retrieval based on global surface shape similarity.

    Science.gov (United States)

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  14. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Science.gov (United States)

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;Pprotein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;Psynthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;Pprotein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620). In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and

  15. A Newly Emergent Turkey Arthritis Reovirus Shows Dominant Enteric Tropism and Induces Significantly Elevated Innate Antiviral and T Helper-1 Cytokine Responses.

    Directory of Open Access Journals (Sweden)

    Tamer A Sharafeldin

    Full Text Available Newly emergent turkey arthritis reoviruses (TARV were isolated from tendons of lame 15-week-old tom turkeys that occasionally had ruptured leg tendons. Experimentally, these TARVs induced remarkable tenosynovitis in gastrocnemius tendons of turkey poults. The current study aimed to characterize the location and the extent of virus replication as well as the cytokine response induced by TARV during the first two weeks of infection. One-week-old male turkeys were inoculated orally with TARV (O'Neil strain. Copy numbers of viral genes were estimated in intestines, internal organs and tendons at ½, 1, 2, 3, 4, 7, 14 days Post inoculation (dpi. Cytokine profile was measured in intestines, spleen and leg tendons at 0, 4, 7 and 14 dpi. Viral copy number peaked in jejunum, cecum and bursa of Fabricius at 4 dpi. Copy numbers increased dramatically in leg tendons at 7 and 14 dpi while minimal copies were detected in internal organs and blood during the same period. Virus was detected in cloacal swabs at 1-2 dpi, and peaked at 14 dpi indicating enterotropism of the virus and its early shedding in feces. Elevation of IFN-α and IFN-β was observed in intestines at 7 dpi as well as a prominent T helper-1 response (IFN-γ at 7 and 14 dpi. IFN-γ and IL-6 were elevated in gastrocnemius tendons at 14 dpi. Elevation of antiviral cytokines in intestines occurred at 7dpi when a significant decline of viral replication in intestines was observed. T helper-1 response in intestines and leg tendons was the dominant T-helper response. These results suggest the possible correlation between viral replication and cytokine response in early infection of TARV in turkeys. Our findings provide novel insights which help elucidate viral pathogenesis in turkey tendons infected with TARV.

  16. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  17. Effects of fast neutrons on chromatin: dependence on chromatin structure

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.

    2002-01-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  18. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    Science.gov (United States)

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  19. Effects of intermittent fasting and chronic swimming exercise on body composition and lipid metabolism.

    Science.gov (United States)

    Moraes, Ruan Carlos Macedo de; Portari, Guilherme Vannucchi; Ferraz, Alex Soares Marreiros; da Silva, Tiago Eugênio Oliveira; Marocolo, Moacir

    2017-12-01

    Intermittent fasting protocol (IFP) has been suggested as a strategy to change body metabolism and improve health. The effects of IFP seem to be similar to aerobic exercise, having a hormetic adaptation according to intensity and frequency. However, the effects of combining both interventions are still unknown. Therefore, the aim of the present study was to evaluate the effects of IFP with and without endurance-exercise training on body composition, food behavior, and lipid metabolism. Twenty-week-old Wistar rats were kept under an inverted circadian cycle of 12 h with water ad libitum and assigned to 4 different groups: control group (ad libitum feeding and sedentary), exercise group (ad libitum feeding and endurance training), intermittent fasting group (IF; intermittent fasting and sedentary), and intermittent fasting and exercise group (IFEX; intermittent fasting and endurance training). After 6 weeks, the body weight of IF and IFEX animals decreased without changes in food consumption. Yet, the body composition between the 2 groups was different, with the IFEX animals containing higher total protein and lower total fat content than the IF animals. The IFEX group also showed increases in total high-density lipoprotein cholesterol and increased intramuscular lipid content. The amount of brown adipose tissue was higher in IF and IFEX groups; however, the IFEX group showed higher expression levels of uncoupling protein 1 in this tissue, indicating a greater thermogenesis. The IFP combined with endurance training is an efficient method for decreasing body mass and altering fat metabolism, without inflicting losses in protein content.

  20. Neighborhood fast food availability and fast food consumption.

    Science.gov (United States)

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-09-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective

  1. Serum Lipid Profile: Fasting or Non-fasting?

    OpenAIRE

    Nigam, P. K.

    2010-01-01

    Serum lipid profile has now become almost a routine test. It is usually done in fasting state due to certain limitations in non-fasting serum sample. In the recent past efforts have been made to simplify blood sampling by replacing fasting lipid profile with non-fasting lipid profile. However, fasting specimen is preferred if cardiovascular risk assessment is based on total cholesterol, LDL cholesterol or non-HDL cholesterol. A lot has yet to be done in this area. Till then we have to believe...

  2. Homozygous missense mutation (G56R in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 in two siblings with fasting chylomicronemia (MIM 144650

    Directory of Open Access Journals (Sweden)

    Hegele Robert A

    2007-09-01

    Full Text Available Abstract Background Mice with a deleted Gpihbp1 gene encoding glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1 develop severe chylomicronemia. We screened the coding regions of the human homologue – GPIHBP1 – from the genomic DNA of 160 unrelated adults with fasting chylomicronemia and plasma triglycerides >10 mmol/L, each of whom had normal sequence of the LPL and APOC2 genes. Results One patient with severe type 5 hyperlipoproteinemia (MIM 144650, fasting chylomicronemia and relapsing pancreatitis resistant to standard therapy was found to be homozygous for a novel GPIHBP1 missense variant, namely G56R. This mutation was absent from the genomes of 600 control subjects and 610 patients with hyperlipidemia. The GPIHBP1 G56 residue has been conserved throughout evolution and the G56R mutation was predicted to have compromised function. Her homozygous brother also had refractory chylomicronemia and relapsing pancreatitis together with early coronary heart disease. G56R heterozygotes in the family had fasting mild hypertriglyceridemia. Conclusion Thus, a very rare GPIHBP1 missense mutation appears to be associated with severe hypertriglyceridemia and chylomicronemia.

  3. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Mann, Florian A; Pichler, Garwin; Natale, Francesco; Krause, Eberhard; Cardoso, M Cristina; Hackenberger, Christian P R; Leonhardt, Heinrich

    2015-11-09

    A novel chemoenzymatic approach for simple and fast site-specific protein labeling is reported. Recombinant tubulin tyrosine ligase (TTL) was repurposed to attach various unnatural tyrosine derivatives as small bioorthogonal handles to proteins containing a short tubulin-derived recognition sequence (Tub-tag). This novel strategy enables a broad range of high-yielding and fast chemoselective C-terminal protein modifications on isolated proteins or in cell lysates for applications in biochemistry, cell biology, and beyond, as demonstrated by the site-specific labeling of nanobodies, GFP, and ubiquitin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fasting up-regulates ferroportin 1 expression via a Ghrelin/GHSR/MAPK signaling pathway.

    Science.gov (United States)

    Luo, Qian-Qian; Zhou, Yu-Fu; Chen, Mesona Yung-Jin; Liu, Li; Ma, Juan; Zhang, Meng-Wan; Zhang, Fa-Li; Ke, Ya; Qian, Zhong-Ming

    2018-01-01

    The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft-L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O-acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft-L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft-L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre-treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway. © 2017 Wiley Periodicals, Inc.

  5. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong; Huang, Sheng-You

    2017-07-03

    Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. High Intensity Exercise: Can It Protect You from A Fast Food Diet?

    Science.gov (United States)

    Duval, Christian; Rouillier, Marc-Antoine; Rabasa-Lhoret, Rémi; Karelis, Antony D

    2017-08-26

    The purpose of this study was to assess the ability of high intensity exercise to counteract the deleterious effects of a fast food diet on the cardiometabolic profile of young healthy men. Fifteen men were subjected to an exclusive fast food diet from a popular fast food restaurant chain (three extra value meals/day + optional snack) for 14 consecutive days. Simultaneously, participants were asked to perform each day high intensity interval training (HIIT) (15 × 60 sec sprint intervals (~90% of maximal heart rate)) on a treadmill. Fast food diet and energy expenditure profiles of the participants during the intervention were assessed as well as body composition (DXA), cardiometabolic profile (lipid, hepatic enzymes, glycated hemoglobin, glucose, insulin, hsC-reactive protein (hsCRP) and blood pressure) and estimated maximal oxygen consumption (VO2 max) pre- and post-experiment. We found significant improvements for fat mass, lean body mass, estimated VO₂ max, fasting glucose, serum lipoprotein(a) and hsCRP after the intervention ( p fast food diet.

  7. Bioinformatic analysis suggests that the Cypovirus 1 major core protein cistron harbours an overlapping gene

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2008-05-01

    Full Text Available Abstract Members of the genus Cypovirus (family Reoviridae are common pathogens of insects. These viruses have linear dsRNA genomes divided into 10–11 segments, which have generally been assumed to be monocistronic. Here, bioinformatic evidence is presented for a short overlapping coding sequence (CDS in the cypovirus genome segment encoding the major core capsid protein VP1, overlapping the 5'-terminal region of the VP1 ORF in the +1 reading frame. In Cypovirus type 1 (CPV-1, a 62-codon AUG-initiated open reading frame (hereafter ORFX is present in all four available segment 1 sequences. The pattern of base variations across the sequence alignment indicates that ORFX is subject to functional constraints at the amino acid level (even when the constraints due to coding in the overlapping VP1 reading frame are taken into account; MLOGD software. In fact the translated ORFX shows greater amino acid conservation than the overlapping region of VP1. The genomic location of ORFX is consistent with translation via leaky scanning. A 62–64 codon AUG-initiated ORF is present in a corresponding location and reading frame in other available cypovirus sequences (2 CPV-14, 1 CPV-15 and an 87-codon ORFX homologue may also be present in Aedes pseudoscutellaris reovirus. The ORFX amino acid sequences are hydrophilic and basic, with between 12 and 16 Arg/Lys residues in each though, at 7.5–10.2 kDa, the putative ORFX product is too small to appear on typical published protein gels.

  8. Increased fat catabolism sustains water balance during fasting in zebra finches.

    Science.gov (United States)

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  9. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    Soeters, Maarten R.; Lammers, Nicolette M.; Dubbelhuis, Peter F.; Ackermans, Mariëtte T.; Jonkers-Schuitema, Cora F.; Fliers, Eric; Sauerwein, Hans P.; Aerts, Johannes M.; Serlie, Mireille J.

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  10. Optimization of memory use of fragment extension-based protein-ligand docking with an original fast minimum cost flow algorithm.

    Science.gov (United States)

    Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka

    2018-03-16

    The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Non-fasting factor VII coagulant activity (FVII:C) increased by high-fat diet

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Marckmann, P; Sandström, B

    1994-01-01

    :Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII:Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet....... The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis. Udgivelsesdato: 1994-Jun......Preliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20...

  12. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  13. The Fast-Casual Conundrum: Fast-Casual Restaurant Entrées Are Higher in Calories than Fast Food.

    Science.gov (United States)

    Schoffman, Danielle E; Davidson, Charis R; Hales, Sarah B; Crimarco, Anthony E; Dahl, Alicia A; Turner-McGrievy, Gabrielle M

    2016-10-01

    Frequently eating fast food has been associated with consuming a diet high in calories, and there is a public perception that fast-casual restaurants (eg, Chipotle) are healthier than traditional fast food (eg, McDonald's). However, research has not examined whether fast-food entrées and fast-casual entrées differ in calorie content. The purpose of this study was to determine whether the caloric content of entrées at fast-food restaurants differed from that found at fast-casual restaurants. This study was a cross-sectional analysis of secondary data. Calorie information from 2014 for lunch and dinner entrées for fast-food and fast-casual restaurants was downloaded from the MenuStat database. Mean calories per entrée between fast-food restaurants and fast-casual restaurants and the proportion of restaurant entrées that fell into different calorie ranges were assessed. A t test was conducted to test the hypothesis that there was no difference between the average calories per entrée at fast-food and fast-casual restaurants. To examine the difference in distribution of entrées in different calorie ranges between fast-food and fast-casual restaurants, χ(2) tests were used. There were 34 fast-food and 28 fast-casual restaurants included in the analysis (n=3,193 entrées). Fast-casual entrées had significantly more calories per entrée (760±301 kcal) than fast-food entrées (561±268; Prestaurants to determine whether the energy content or nutrient density of full meals (ie, entrées with sides and drinks) differs between fast-casual restaurants and fast-food restaurants. Calorie-conscious consumers should consider the calorie content of entrée items before purchase, regardless of restaurant type. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  14. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response

    Science.gov (United States)

    Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.

    2017-01-01

    Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249

  15. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  16. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    Science.gov (United States)

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  17. Protein determination in soya bean by fast neutron activation analysis

    International Nuclear Information System (INIS)

    Szegedi, S.; Mosbah, D.S.; Varadi, M.; Szaloki, I.

    1988-01-01

    For a non-destructive determination of the protein content in soya bean samples, 14-MeV neutron activation analysis was applied. To check the method, the results obtained by X-ray fluorescence analysis and the Kjeldahl procedure were compared. For pressed pellet samples of about 1 g with 15 min irradiation and 10 min measuring times the accuracy of the protein determination was found to be 15%. (author) 7 refs.; 4 figs.; 3 tabs

  18. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia

    OpenAIRE

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover desig...

  19. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Mireia Rovira

    2017-12-01

    Full Text Available Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest

  20. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr

    2012-01-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conduc...

  1. The effect of metformin on monocyte secretory function in simvastatin-treated patients with impaired fasting glucose.

    Science.gov (United States)

    Krysiak, Robert; Okopien, Bogusław

    2013-01-01

    This study was designed to investigate whether metformin affects monocyte secretory function in patients with impaired fasting glucose receiving chronic statin therapy. The study included 48 patients with impaired fasting glucose treated for at least three months with simvastatin (40 mg daily). These patients were randomized to either metformin (3 g daily) or placebo, which was administered together with simvastatin for 90 days. Plasma lipids, glucose homeostasis markers, monocyte cytokine release and plasma C-reactive protein levels were determined before randomization and at the end of the treatment. Compared to placebo, metformin reduced monocyte release of tumor necrosis factor-α, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1 and interleukin-8, as well as decreased plasma C-reactive protein levels, which were accompanied by an improvement in insulin sensitivity. The obtained results suggest that metformin may inhibit monocyte secretory function and reduce systemic inflammation in statin-treated patients with prediabetes. Impaired fasting glucose patients with high cardiovascular risk may receive the greatest benefits from concomitant treatment with a statin and metformin. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  3. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  4. Role of plasma adiponectin /C-reactive protein ratio in obesity and ...

    African Journals Online (AJOL)

    African Health Sciences ... Objective(s): We examined relations between fasting plasma adiponectin (ADIP), C-reactive protein (CRP) ... Methods: Fasting plasma ADIP, CRP, Insulin (IN), HOMA-IR, lipid profiles, body fat percent (%BF), waist ...

  5. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  6. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  7. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d or low protein (0.4 g protein/kg/d energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001. Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03, synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01 and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001 were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042

  8. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  9. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  10. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  11. irGPU.proton.Net: Irregular strong charge interaction networks of protonatable groups in protein molecules--a GPU solver using the fast multipole method and statistical thermodynamics.

    Science.gov (United States)

    Kantardjiev, Alexander A

    2015-04-05

    A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.

  12. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide

    Science.gov (United States)

    Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao

    2012-03-01

    We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.

  13. Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon

    Directory of Open Access Journals (Sweden)

    Bower Neil I

    2009-08-01

    Full Text Available Abstract Background Many fish species experience long periods of fasting in nature often associated with seasonal reductions in water temperature and prey availability or spawning migrations. During periods of nutrient restriction, changes in metabolism occur to provide cellular energy via catabolic processes. Muscle is particularly affected by prolonged fasting as myofibrillar proteins act as a major energy source. To investigate the mechanisms of metabolic reorganisation with fasting and refeeding in a saltwater stage of Atlantic salmon (Salmo salar L. we analysed the expression of genes involved in myogenesis, growth signalling, lipid biosynthesis and myofibrillar protein degradation and synthesis pathways using qPCR. Results Hierarchical clustering of gene expression data revealed three clusters. The first cluster comprised genes involved in lipid metabolism and triacylglycerol synthesis (ALDOB, DGAT1 and LPL which had peak expression 3-14d after refeeding. The second cluster comprised ADIPOQ, MLC2, IGF-I and TALDO1, with peak expression 14-32d after refeeding. Cluster III contained genes strongly down regulated as an initial response to feeding and included the ubiquitin ligases MuRF1 and MAFbx, myogenic regulatory factors and some metabolic genes. Conclusion Early responses to refeeding in fasted salmon included the synthesis of triacylglycerols and activation of the adipogenic differentiation program. Inhibition of MuRF1 and MAFbx respectively may result in decreased degradation and concomitant increased production of myofibrillar proteins. Both of these processes preceded any increase in expression of myogenic regulatory factors and IGF-I. These responses could be a necessary strategy for an animal adapted to long periods of food deprivation whereby energy reserves are replenished prior to the resumption of myogenesis.

  14. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.

    Science.gov (United States)

    Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai

    2015-12-01

    The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Preoperative fasting period of fluids in bariatric surgery].

    Science.gov (United States)

    Simon, P; Pietsch, U-C; Oesemann, R; Dietrich, A; Wrigge, H

    2017-07-01

    Aspiration of stomach content is a severe complication during general anaesthesia. The DGAI (German Society for Anesthesiology and Intensive Care Medicine) guidelines recommend a fasting period for liquids of 2 h, with a maximum of 400 ml. Preoperative fasting can affect the patients' recovery after surgery due to insulin resistance and higher protein catabolism as a response to surgical stress. The aim of the study was to compare a liberal fasting regimen consisting of up to 1000 ml of liquids until 2 h before surgery with the DGAI recommendation. The prospective observational clinical study was approved by the ethics committee of the University of Leipzig. In the liberal fasting group (G lib ) patients undergoing bariatric surgery were asked to drink 1000 ml of tea up to 2 h before surgery. Patients assigned to the restrictive fasting group (G res ) who were undergoing nonbariatric abdominal surgery were asked to drink no more than 400 ml of water up to 2 h preoperatively. Right after anaesthesia induction and intubation a gastric tube was placed, gastric residual volume was measured and the pH level of gastric fluid was determined. Moreover, the occurrence of aspiration was monitored. In all, 98 patients with a body mass index (BMI) of G lib 51.1 kg/m 2 and G res 26.5 kg/m 2 were identified. The preoperative fasting period of liquids was significantly different (G lib 170 min vs. G res 700 min, p fasting regimen (1000 ml of fluid) in the preoperative period is safe in patients undergoing bariatric surgery.

  16. Impact of fasting on growth hormone signaling and action in muscle and fat

    DEFF Research Database (Denmark)

    Moller, Louise; Dalman, Lisa; Norrelund, Helene

    2008-01-01

    CONTEXT: Whether GH promotes IGF-I production or lipolysis depends on nutritional status, but the underlying mechanisms remain unknown. OBJECTIVE: To investigate the impact of fasting on GH-mediated changes in substrate metabolism, insulin sensitivity, and signaling pathways. DESIGN: We conducted...... a randomized crossover study. SUBJECTS: Ten healthy men (age 24.3 +/- 0.6 yr, body mass index 23.1 +/- 0.4 kg/m(2)) participated. INTERVENTION: A GH bolus administered 1) postabsorptively and 2) in the fasting state (37.5 h). Skeletal muscle and adipose tissue biopsies were taken, and a hyperinsulinemic...... signaling protein 3 and IGF-I mRNA. RESULTS: Fasting was associated with reduced MCR of GH (P

  17. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  18. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    Science.gov (United States)

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  19. Fast Atom Bombardment Spectrometry - a novel analytical method for biologically interesting, non-volatile substances

    International Nuclear Information System (INIS)

    Schmid, E.

    1987-03-01

    Today important chemical substances like proteins can be produced easily and in large amounts. The primary structure of proteins can be analysed automatically, however the procedure can take some months of time. A novel method, fast atom bombardment mass spectrometry (FAB-MS) in combination with enzymatic degradation not only decreases the analysis time, but gives also additional information about the primary structure. Especially for the verification of protein structures - which is important for recombinant proteins - FAB-MS is a very useful method. 40 refs., 56 figs. (P.W.)

  20. Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake

    DEFF Research Database (Denmark)

    De Bock, K; Derave, W; Eijnde, B O

    2008-01-01

    program (6 wk, 3 day/wk, 1-2 h, 75% of peak Vo(2)) in moderately active males. They trained in the fasted (F; n = 10) or carbohydrate-fed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20%En fat, 15%En protein]. Before and after...... the training period, substrate use during a 2-h exercise bout was determined. During these experimental sessions, all subjects were in a fed condition and received extra carbohydrates (1 g.kg body wt(-1) .h(-1)). Peak Vo(2) (+7%), succinate dehydrogenase activity, GLUT4, and hexokinase II content were...... adaptations in peak Vo(2) whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed....

  1. Influence of Fasting Status and Sample Preparation on Metabolic Biomarker Measurements in Postmenopausal Women.

    Science.gov (United States)

    Murphy, Neil; Falk, Roni T; Messinger, Diana B; Pollak, Michael; Xue, Xiaonan; Lin, Juan; Sgueglia, Robin; Strickler, Howard D; Gaudet, Mia M; Gunter, Marc J

    2016-01-01

    Epidemiologic data linking metabolic markers-such as insulin, insulin-like growth factors (IGFs)-and adipose tissue-derived factors with cancer are inconsistent. Between-study differences in blood collection protocols, in particular participant's fasting status, may influence measurements. We investigated the impact of fasting status and blood sample processing time on components of the insulin/IGF axis and in adipokines in a controlled feeding study of 45 healthy postmenopausal-women aged 50-75 years. Fasting blood samples were drawn (T0), after which subjects ate a standardized breakfast; subsequent blood draws were made at 1 hour (T1), 3 hours (T3), and 6 hours (T6) after breakfast. Serum samples were assayed for insulin, C-peptide, total- and free-IGF-I, IGF-binding protein [BP]-1 and -3, total and high molecular weight (HMW)-adiponectin, retinol binding protein-4, plasminogen activator inhibitor (PAI)-1, and resistin. Insulin and C-peptide levels followed similar postprandial trajectories; intra-class correlation coefficients [ICC] for insulin = 0.75, (95%CI:0.64-0.97) and C-peptide (ICC = 0.66, 95%CI:0.54-0.77) were similarly correlated in fasting (Spearman correlation, r = 0.78, 95%CI:0.64-0.88) and postprandial states (T1, r = 0.77 (95%CI: 0.62-0.87); T3,r = 0.78 (95%CI: 0.63-0.87); T6,r = 0.77 (95%CI: 0.61-0.87)). Free-IGF-I and IGFBP-1 levels were also affected by fasting status, whereas total-IGF-I and IGFBP-3 levels remained unchanged. Levels of adipokines were largely insensitive to fasting status and blood sample processing delays. Several components of the insulin/IGF axis were significantly impacted by fasting state and in particular, C-peptide levels were substantially altered postprandially and in a similar manner to insulin.

  2. Effects of increasing dietary protein levels on growth, feed utilization ...

    African Journals Online (AJOL)

    Yomi

    2012-01-05

    Jan 5, 2012 ... The effect of different dietary protein levels on growth performance and on feed utilization of catfish. (Heterobranchus ... (Legendre, 1991) because of its taste, fast growth rate ..... diet containing 40% protein had high growth with low food intake and feed ... protein rate (45%) combined with a bad utilization of.

  3. Adjustable chain trees for proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2012-01-01

    A chain tree is a data structure for changing protein conformations. It enables very fast detection of clashes and free energy potential calculations. A modified version of chain trees that adjust themselves to the changing conformations of folding proteins is introduced. This results in much...... tighter bounding volume hierarchies and therefore fewer intersection checks. Computational results indicate that the efficiency of the adjustable chain trees is significantly improved compared to the traditional chain trees....

  4. Metabolic and endocrine adaptations to fasting in lean and obese individuals

    NARCIS (Netherlands)

    Wijngaarden, Marjolein A.

    2015-01-01

    In this thesis we examined several effects of fasting in lean and obese individuals. As expected, both the hormonal response as well as the metabolic shift from glucose towards lipid oxidation was impaired in obese individuals. At baseline, mitochondrial protein content in skeletal muscle of obese

  5. Effect of Ramadan fasting on metabolic markers, dietary intake and abdominal fat distribution in pregnancy.

    Science.gov (United States)

    Gur, E B; Turan, G A; Ince, O; Karadeniz, M; Tatar, S; Kasap, E; Sahin, N; Guclu, S

    2015-01-01

    The aim of this study is to evaluate the effect of Ramadan intermittent fasting on metabolic markers, dietary intake, anthropometric measurements, and abdominal visceral fat thickness (VFT) in pregnancy. Seventy-eight healthy pregnant subjects who had fasted for at least 15 days during the month of Ramadan in 2012 and 2013 and 78 controls were included in this study. Metabolic markers, dietary intake, anthropometric measurements, and ultrasonographic VFT were calculated for each subject before and after Ramadan fasting. When before and after Ramadan values in the fasting group were compared, we found that daily protein intake was increased (p effects and reduction in VFT during pregnancy. Hippokratia 2015; 19 (4): 298-303.

  6. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    Science.gov (United States)

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  7. Safety and feasibility of fasting in combination with platinum-based chemotherapy.

    Science.gov (United States)

    Dorff, Tanya B; Groshen, Susan; Garcia, Agustin; Shah, Manali; Tsao-Wei, Denice; Pham, Huyen; Cheng, Chia-Wei; Brandhorst, Sebastian; Cohen, Pinchas; Wei, Min; Longo, Valter; Quinn, David I

    2016-06-10

    Short-term starvation prior to chemotherapy administration protects mice against toxicity. We undertook dose-escalation of fasting prior to platinum-based chemotherapy to determine safety and feasibility in cancer patients. 3 cohorts fasted before chemotherapy for 24, 48 and 72 h (divided as 48 pre-chemo and 24 post-chemo) and recorded all calories consumed. Feasibility was defined as ≥ 3/6 subjects in each cohort consuming ≤ 200 kcal per 24 h during the fast period without excess toxicity. Oxidative stress was evaluated in leukocytes using the COMET assay. Insulin, glucose, ketones, insulin-like growth factor-1 (IGF-1) and IGF binding proteins (IGFBPs) were measured as biomarkers of the fasting state. The median age of our 20 subjects was 61, and 85 % were women. Feasibility criteria were met. Fasting-related toxicities were limited to ≤ grade 2, most commonly fatigue, headache, and dizziness. The COMET assay indicated reduced DNA damage in leukocytes from subjects who fasted for ≥48 h (p = 0.08). There was a non-significant trend toward less grade 3 or 4 neutropenia in the 48 and 72 h cohorts compared to 24 h cohort (p = 0.17). IGF-1 levels decreased by 30, 33 and 8 % in the 24, 48 and 72 h fasting cohorts respectively after the first fasting period. Fasting for 72 h around chemotherapy administration is safe and feasible for cancer patients. Biomarkers such as IGF-1 may facilitate assessment of differences in chemotherapy toxicity in subgroups achieving the physiologic fasting state. An onging randomized trial is studying the effect of 72 h of fasting. NCT00936364 , registered propectively on July 9, 2009.

  8. Safety and feasibility of fasting in combination with platinum-based chemotherapy

    International Nuclear Information System (INIS)

    Dorff, Tanya B.; Groshen, Susan; Garcia, Agustin; Shah, Manali; Tsao-Wei, Denice; Pham, Huyen; Cheng, Chia-Wei; Brandhorst, Sebastian; Cohen, Pinchas; Wei, Min; Longo, Valter; Quinn, David I.

    2016-01-01

    Short-term starvation prior to chemotherapy administration protects mice against toxicity. We undertook dose-escalation of fasting prior to platinum-based chemotherapy to determine safety and feasibility in cancer patients. 3 cohorts fasted before chemotherapy for 24, 48 and 72 h (divided as 48 pre-chemo and 24 post-chemo) and recorded all calories consumed. Feasibility was defined as ≥ 3/6 subjects in each cohort consuming ≤ 200 kcal per 24 h during the fast period without excess toxicity. Oxidative stress was evaluated in leukocytes using the COMET assay. Insulin, glucose, ketones, insulin-like growth factor-1 (IGF-1) and IGF binding proteins (IGFBPs) were measured as biomarkers of the fasting state. The median age of our 20 subjects was 61, and 85 % were women. Feasibility criteria were met. Fasting-related toxicities were limited to ≤ grade 2, most commonly fatigue, headache, and dizziness. The COMET assay indicated reduced DNA damage in leukocytes from subjects who fasted for ≥48 h (p = 0.08). There was a non-significant trend toward less grade 3 or 4 neutropenia in the 48 and 72 h cohorts compared to 24 h cohort (p = 0.17). IGF-1 levels decreased by 30, 33 and 8 % in the 24, 48 and 72 h fasting cohorts respectively after the first fasting period. Fasting for 72 h around chemotherapy administration is safe and feasible for cancer patients. Biomarkers such as IGF-1 may facilitate assessment of differences in chemotherapy toxicity in subgroups achieving the physiologic fasting state. An onging randomized trial is studying the effect of 72 h of fasting. Clinicaltrials.gov: NCT00936364, registered propectively on July 9, 2009. The online version of this article (doi:10.1186/s12885-016-2370-6) contains supplementary material, which is available to authorized users

  9. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  10. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  11. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Science.gov (United States)

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  12. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    Science.gov (United States)

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of

  13. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

    Science.gov (United States)

    Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A

    2011-04-28

    Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded

  15. Influence of sex, age, and fasting on blood parameters and body, bursa, spleen and yolk sac weights of broiler chicks

    Directory of Open Access Journals (Sweden)

    DL Pires

    2007-12-01

    Full Text Available The effects of water and feed fasting for 24, 48 and 72 hours post-hatching on blood parameters (mean corpuscular volume, MCV; red blood-cell, RBC; hematocrit, HCT; hemoglobin, HGB; plasma glucose, CGP; plasma total protein, PP, and differential leukocytes count, and on body, liver, spleen, bursa, and yolk sac weights were analyzed. Erythrogram data were obtained with a blood cell counter. Total plasma protein and plasma glucose were determined by using the Bradford method (1976 and a glucose PAP liquiform kit (Labtest, cat. n. 84, respectively. Specific leukocyte counts were carried out on blood smears stained with Rosenfeld solution. According to the obtained data, water and feed post-hatching fasting reduced MCV values, which also were lower in males than that in females. Fasting for 48 hours promoted an increase in PP, while fasting for 72 hours reduced HCT. Chicks submitted to fasting presented lower body weights as compared to fed chicks, but their liver weight did not increase between 48 and 72 hours of age. Fasting decreased spleen weight, but bursa and yolk sac weight were not affected. Data showed that female and male chicks react in a similar way to post-hatching fasting, which affects body weight, liver and spleen weight, and HCT and PP values. Moreover, 72 hours of fasting affected more intensely HCT and MCV values.

  16. Prolonged fasting activates hypoxia inducible factors-1α, -2α and -3α in a tissue-specific manner in northern elephant seal pups.

    Science.gov (United States)

    Soñanez-Organis, José G; Vázquez-Medina, José P; Crocker, Daniel E; Ortiz, Rudy M

    2013-09-10

    Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1-2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lymphocytes Mitochondrial Physiology as Biomarker of Energy Metabolism during Fasted and Fed Conditions

    Directory of Open Access Journals (Sweden)

    Erika Cortez

    2012-01-01

    Full Text Available Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.

  18. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  20. Neighborhood fast food restaurants and fast food consumption: a national study.

    Science.gov (United States)

    Richardson, Andrea S; Boone-Heinonen, Janne; Popkin, Barry M; Gordon-Larsen, Penny

    2011-07-08

    Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28) of the National Longitudinal Study of Adolescent Health (n = 13,150). Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.

  1. Neighborhood fast food restaurants and fast food consumption: A national study

    Directory of Open Access Journals (Sweden)

    Gordon-Larsen Penny

    2011-07-01

    Full Text Available Abstract Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28 of the National Longitudinal Study of Adolescent Health (n = 13,150. Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. Results In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Conclusions Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.

  2. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  3. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  4. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  5. Impact of training state on fasting-induced regulation of adipose tissue metabolism in humans

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Stankiewicz, Tomasz

    2018-01-01

    Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study was to investig......Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study...... was to investigate 1) fasting-induced regulation of lipolysis and glyceroneogenesis in human adipose tissue as well as 2) the impact of training state on basal oxidative capacity and fasting-induced metabolic regulation in human adipose tissue. Untrained (VO2max 55ml......RNA content were higher in trained subjects than untrained subjects. In addition, trained subjects had higher adipose tissue hormone sensitive lipase Ser660 phosphorylation and adipose triglyceride lipase protein content as well as higher plasma free fatty acids concentration than untrained subjects during...

  6. Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects

    DEFF Research Database (Denmark)

    Holmer-Jensen, Jens; Mortensen, Lene Sundahl; Astrup, Arne

    2013-01-01

    Non-fasting triglyceridemia is much closer associated to cardiovascular risk compared to fasting triglyceridemia. We hypothesized that there would be acute differential effects of four common dietary proteins (cod protein, whey isolate, gluten, and casein) on postprandial lipemia in obese non......-diabetic subjects. To test the hypothesis we conducted a randomized, acute clinical intervention study with crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins i.e. cod protein, whey protein, gluten or casein. Eleven obese non-diabetic subjects (age: 40-68, body mass index: 30...... concentration in the chylomicron rich fraction (P = .0293). Thus, we have demonstrated acute differential effects on postprandial metabolism of four dietary proteins supplemented to a fat rich mixed meal in obese non-diabetic subjects. Supplementation with whey protein caused lower postprandial lipemia compared...

  7. Functional feeds reduce heart inflammation and pathology in Atlantic Salmon (Salmo salar L. following experimental challenge with Atlantic salmon reovirus (ASRV.

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Rubio

    Full Text Available Heart and Skeletal Muscle Inflammation (HSMI, recently associated with a novel Atlantic salmon reovirus (ASRV, is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2 were compared to a standard commercial reference feed (ST in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA. The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present

  8. Fasting as possible complementary approach for polycystic ovary syndrome: Hope or hype?

    Science.gov (United States)

    Chiofalo, Benito; Laganà, Antonio Simone; Palmara, Vittorio; Granese, Roberta; Corrado, Giacomo; Mancini, Emanuela; Vitale, Salvatore Giovanni; Ban Frangež, Helena; Vrtačnik-Bokal, Eda; Triolo, Onofrio

    2017-08-01

    Polycystic ovary syndrome (PCOS) is a common endocrine system disorder among women of reproductive age. In several cases, PCOS women show infertility or subfertility and other metabolic alteration, such as insulin resistance (InsR), dyslipidaemia, hyperinsulinemia and obesity. Despite the aetiology of the syndrome is still far from be elucidated, it could be considered the result of concurrent endocrine modifications, lifestyle factors and genetic background. In particular, accumulating evidence suggests that InsR and compensatory hyperinsulinemia play a pivotal pathogenic role in the hyperandrogenism of many PCOS phenotypes, which in turn have a clear detrimental effect on chronic anovulation. Different forms of fasting, such as intermittent fasting (IF, including alternate day fasting, or twice weekly fasting, for example) and periodic fasting (PF, lasting several days or longer every 2 or more weeks) are currently being tested in several in vitro and in vivo studies. Changes in the circulating levels of Insulin Growth Factor-1 (IGF-1), Insulin-like Growth Factor-Binding Protein 1 (IGFBP1), glucose and insulin are typical effects of fasting which may play a key role on aging and metabolic homeostasis. Considering the paramount importance of InsR and compensatory hyperinsulinemia, different fasting regimens can reduce IGF-1, IGFBP1, glucose and insulin levels and consequently have beneficial effects on ovarian function, androgen excess and infertility in PCOS women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Effect of Lean-Seafood and Non-Seafood Diets on Fasting and Postprandial Serum Metabolites and Lipid Species

    DEFF Research Database (Denmark)

    Schmedes, Mette; Balderas, Claudia; Aadland, Eli Kristin

    2018-01-01

    The metabolic effects associated with intake of different dietary protein sources are not well characterized. We aimed to elucidate how two diets that varied in main protein sources affected the fasting and postprandial serum metabolites and lipid species. In a randomized controlled trial with cr...

  10. Voluntary Fasting to Control Post-Ramadan Weight Gain among Overweight and Obese Women

    Directory of Open Access Journals (Sweden)

    Suriani Ismail

    2015-01-01

    Full Text Available Objectives: This study aimed to examine the effectiveness of an Islamic voluntary fasting intervention to control post-Ramadan weight gain. Methods: This study was conducted between July and November 2011. Two weight loss intervention programmes were developed and implemented among groups of overweight or obese Malay women living in the Malaysian cities of Putrajaya and Seremban: a standard programme promoting control of food intake according to national dietary guidelines (group B and a faith-based programme promoting voluntary fasting in addition to the standard programme (group A. Participants’ dietary practices (i.e., voluntary fasting practices, frequency of fruit/vegetable consumption per week and quantity of carbohydrates/protein consumed per day, body mass index (BMI, blood pressure, fasting blood high-density lipoprotein cholesterol (HDL-C and total cholesterol (TC:HDL-C ratio were assessed before Ramadan and three months post-Ramadan. Results: Voluntary fasting practices increased only in group A (P <0.01. Additionally, the quantity of protein/carbohydrates consumed per day, mean diastolic pressure and TC:HDL-C ratio decreased only in group A (P <0.01, 0.05, 0.02 and <0.01, respectively. Frequency of fruit/vegetable consumption per week, as well as HDL-C levels, increased only in group A (P = 0.03 and <0.01, respectively. Although changes in BMI between the groups was not significant (P = 0.08, BMI decrease among participants in group A was significant (P <0.01. Conclusion: Control of post-Ramadan weight gain was more evident in the faith-based intervention group. Healthcare providers should consider faith-based interventions to encourage weight loss during Ramadan and to prevent post-Ramadan weight gain among patients.

  11. Voluntary Fasting to Control Post-Ramadan Weight Gain among Overweight and Obese Women

    Science.gov (United States)

    Ismail, Suriani; Shamsuddin, Khadijah; Latiff, Khalib A.; Saad, Hazizi A.; Majid, Latifah A.; Othman, Fadlan M.

    2015-01-01

    Objectives: This study aimed to examine the effectiveness of an Islamic voluntary fasting intervention to control post-Ramadan weight gain. Methods: This study was conducted between July and November 2011. Two weight loss intervention programmes were developed and implemented among groups of overweight or obese Malay women living in the Malaysian cities of Putrajaya and Seremban: a standard programme promoting control of food intake according to national dietary guidelines (group B) and a faith-based programme promoting voluntary fasting in addition to the standard programme (group A). Participants’ dietary practices (i.e., voluntary fasting practices, frequency of fruit/vegetable consumption per week and quantity of carbohydrates/protein consumed per day), body mass index (BMI), blood pressure, fasting blood high-density lipoprotein cholesterol (HDL-C) and total cholesterol (TC):HDL-C ratio were assessed before Ramadan and three months post-Ramadan. Results: Voluntary fasting practices increased only in group A (P <0.01). Additionally, the quantity of protein/carbohydrates consumed per day, mean diastolic pressure and TC:HDL-C ratio decreased only in group A (P <0.01, 0.05, 0.02 and <0.01, respectively). Frequency of fruit/vegetable consumption per week, as well as HDL-C levels, increased only in group A (P = 0.03 and <0.01, respectively). Although changes in BMI between the groups was not significant (P = 0.08), BMI decrease among participants in group A was significant (P <0.01). Conclusion: Control of post-Ramadan weight gain was more evident in the faith-based intervention group. Healthcare providers should consider faith-based interventions to encourage weight loss during Ramadan and to prevent post-Ramadan weight gain among patients. PMID:25685394

  12. Protein structure database search and evolutionary classification.

    Science.gov (United States)

    Yang, Jinn-Moon; Tung, Chi-Hua

    2006-01-01

    As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].

  13. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  14. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  15. A method for fast energy estimation and visualization of protein-ligand interaction

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko; Iitaka, Yoichi

    1987-10-01

    A new computational and graphical method for facilitating ligand-protein docking studies is developed on a three-dimensional computer graphics display. Various physical and chemical properties inside the ligand binding pocket of a receptor protein, whose structure is elucidated by X-ray crystal analysis, are calculated on three-dimensional grid points and are stored in advance. By utilizing those tabulated data, it is possible to estimate the non-bonded and electrostatic interaction energy and the number of possible hydrogen bonds between protein and ligand molecules in real time during an interactive docking operation. The method also provides a comprehensive visualization of the local environment inside the binding pocket. With this method, it becomes easier to find a roughly stable geometry of ligand molecules, and one can therefore make a rapid survey of the binding capability of many drug candidates. The method will be useful for drug design as well as for the examination of protein-ligand interactions.

  16. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  17. Virus interaction with the apical junctional complex.

    Science.gov (United States)

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  18. Association between fasting plasma glucose and high-sensitivity C-reactive protein: gender differences in a Japanese community-dwelling population

    Directory of Open Access Journals (Sweden)

    Takayama Shuzo

    2011-06-01

    Full Text Available Abstract Background High sensitivity C-reactive protein (hsCRP is an acute phase reactant and a sensitive marker of inflammation. Hyperglycemia can potentially promote the production of CRP. The aim of this study was to determine whether increased fasting plasma glucose (FPG levels are associated with elevated hsCRP concentrations by gender. Methods We recruited 822 men (mean age, 61 ± 14 years and 1,097 women (63 ± 12 years during their annual health examination from a single community. We cross-sectionally examined whether FPG levels are associated with hsCRP concentrations, and whether this association is independent of gender, body mass index (BMI and other components of the metabolic syndrome. Results In women only, hsCRP increased significantly and progressively with increasing FPG (r = 0.169, P 2 and higher FPG than in men. Conclusions These results suggested that hsCRP levels increase continuously across the FPG spectrum starting from the lowest FPG in both men and women. However, increase in hsCRP levels was greater in women than men.

  19. Neighborhood fast food restaurants and fast food consumption: A national study

    OpenAIRE

    Richardson, Andrea S; Boone-Heinonen, Janne; Popkin, Barry M; Gordon-Larsen, Penny

    2011-01-01

    Abstract Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled...

  20. Comparison of Fast-Food and Non-Fast-Food Children's Menu Items

    Science.gov (United States)

    Serrano, Elena L.; Jedda, Virginia B.

    2009-01-01

    Objective: Compare the macronutrient content of children's meals sold by fast-food restaurants (FFR) and non-fast-food restaurants (NFF). Design: All restaurants within the designated city limits were surveyed. Non-fast-food children's meals were purchased, weighed, and analyzed using nutrition software. All fast-food children's meals were…

  1. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    Science.gov (United States)

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  2. Role of PGC-1{alpha} in exercise and fasting induced adaptations in mouse liver

    DEFF Research Database (Denmark)

    Haase, Tobias Nørresø; Jørgensen, Stine Ringholm; Leick, Lotte

    2011-01-01

    The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training ind...... role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training induced improvements in oxidative capacity of the liver is regulated by PGC-1a.......The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training...... induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild type (WT) and PGC-1a KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate...

  3. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  4. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  5. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    Science.gov (United States)

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance.

    Science.gov (United States)

    Andres, Allen M; Kooren, Joel A; Parker, Sarah J; Tucker, Kyle C; Ravindran, Nandini; Ito, Bruce R; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E; Gottlieb, Roberta A; Mentzer, Robert M

    2016-07-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. Copyright © 2016 the American Physiological Society.

  7. Fast Food Jobs. National Study of Fast Food Employment.

    Science.gov (United States)

    Charner, Ivan; Fraser, Bryna Shore

    A study examined employment in the fast-food industry. The national survey collected data from employees at 279 fast-food restaurants from seven companies. Female employees outnumbered males by two to one. The ages of those fast-food employees in the survey sample ranged from 14 to 71, with fully 70 percent being in the 16- to 20-year-old age…

  8. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  9. The DExH/D protein family database.

    Science.gov (United States)

    Jankowsky, E; Jankowsky, A

    2000-01-01

    DExH/D proteins are essential for all aspects of cellular RNA metabolism and processing, in the replication of many viruses and in DNA replication. DExH/D proteins are subject to current biological, biochemical and biophysical research which provides a continuous wealth of data. The DExH/D protein family database compiles this information and makes it available over the WWW (http://www.columbia.edu/ ej67/dbhome.htm ). The database can be fully searched by text based queries, facilitating fast access to specific information about this important class of enzymes.

  10. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  11. Lipo-protein emulsion structure in the diet affects protein digestion kinetics, intestinal mucosa parameters and microbiota composition

    OpenAIRE

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion

    2017-01-01

    SCOPE: Food structure is a key factor controlling digestion and nutrient absorption. We tested the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. METHODS & RESULTS: Rats (n = 40) were fed for 3 weeks two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and micro-structure levels. After an overnight fasting, they ingested a 15 N-labeled LFE or GCE te...

  12. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation.

    Science.gov (United States)

    Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek; Tilser, Ivan; Holecek, Milan

    2008-02-01

    The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.

  13. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  14. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    Science.gov (United States)

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced

  15. Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas.

    Science.gov (United States)

    Chaux, Frédéric; Burlacot, Adrien; Mekhalfi, Malika; Auroy, Pascaline; Blangy, Stéphanie; Richaud, Pierre; Peltier, Gilles

    2017-07-01

    During oxygenic photosynthesis, the reducing power generated by light energy conversion is mainly used to reduce carbon dioxide. In bacteria and archae, flavodiiron (Flv) proteins catalyze O 2 or NO reduction, thus protecting cells against oxidative or nitrosative stress. These proteins are found in cyanobacteria, mosses, and microalgae, but have been lost in angiosperms. Here, we used chlorophyll fluorescence and oxygen exchange measurement using [ 18 O]-labeled O 2 and a membrane inlet mass spectrometer to characterize Chlamydomonas reinhardtii flvB insertion mutants devoid of both FlvB and FlvA proteins. We show that Flv proteins are involved in a photo-dependent electron flow to oxygen, which drives most of the photosynthetic electron flow during the induction of photosynthesis. As a consequence, the chlorophyll fluorescence patterns are strongly affected in flvB mutants during a light transient, showing a lower PSII operating yield and a slower nonphotochemical quenching induction. Photoautotrophic growth of flvB mutants was indistinguishable from the wild type under constant light, but severely impaired under fluctuating light due to PSI photo damage. Remarkably, net photosynthesis of flv mutants was higher than in the wild type during the initial hour of a fluctuating light regime, but this advantage vanished under long-term exposure, and turned into PSI photo damage, thus explaining the marked growth retardation observed in these conditions. We conclude that the C. reinhardtii Flv participates in a Mehler-like reduction of O 2 , which drives a large part of the photosynthetic electron flow during a light transient and is thus critical for growth under fluctuating light regimes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    Science.gov (United States)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  17. Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins

    DEFF Research Database (Denmark)

    Diella, F.; Cameron, S.; Gemund, C.

    2004-01-01

    Background: Post-translational phosphorylation is one of the most common protein modifications. Phosphoserine, threonine and tyrosine residues play critical roles in the regulation of many cellular processes. The fast growing number of research reports on protein phosphorylation points to a gener...

  18. Characterization of lipoproteins from the turtle, Trachemys scripta elegans, in fasted and fed states.

    Science.gov (United States)

    Cain, William; Song, Li; Stephens, Gregory; Usher, David

    2003-04-01

    The lipid and apolipoprotein composition of VLDL, IDL, LDL, HDL(2) and HDL(3) were examined in the turtle, Trachemys scripta elegans, in fasted and fed states. The lipid composition of turtle lipoproteins was very similar to their human counterparts. The major apolipoprotein found in LDL, IDL and VLDL, which has a molecular weight of approximately 550 kD, is a homologue of apoB100. The major apolipoprotein found in both HDL(2) and HDL(3), has a molecular weight of 28-kD and is homologous to human apoA-I. HDL(3) also contains a 6.5 kD protein that is homologous to apoA-II, while HDL(2) has two low molecular weight proteins of 6 kD and 7 kD which are also found on the triglyceride rich lipoproteins (TRL). The 7 kD protein is homologous to apoC-III, while the 6 kD protein has a similar size and distribution as apoC-II or apoC-I. In addition, HDL(2) also possesses a protein of 15.8 kD that has no obvious mammalian homologue. In both size and apolipoprotein composition, turtle HDL(2) resembles human HDL(2b) while turtle HDL(3) resembles human HDL(3). In the fasted state, turtles contained very little TRL. When fed a high fat diet, the amount of IDL and LDL sized particles increased significantly.

  19. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.

    Science.gov (United States)

    Jeyapalan, Asumthia S; Orellana, Renan A; Suryawan, Agus; O'Connor, Pamela M J; Nguyen, Hanh V; Escobar, Jeffery; Frank, Jason W; Davis, Teresa A

    2007-08-01

    Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.

  20. Convergence of sampling in protein simulations

    NARCIS (Netherlands)

    Hess, B

    With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a

  1. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2014-01-01

    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  2. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  3. fLPS: Fast discovery of compositional biases for the protein universe.

    Science.gov (United States)

    Harrison, Paul M

    2017-11-13

    Proteins often contain regions that are compositionally biased (CB), i.e., they are made from a small subset of amino-acid residue types. These CB regions can be functionally important, e.g., the prion-forming and prion-like regions that are rich in asparagine and glutamine residues. Here I report a new program fLPS that can rapidly annotate CB regions. It discovers both single-residue and multiple-residue biases. It works through a process of probability minimization. First, contigs are constructed for each amino-acid type out of sequence windows with a low degree of bias; second, these contigs are searched exhaustively for low-probability subsequences (LPSs); third, such LPSs are iteratively assessed for merger into possible multiple-residue biases. At each of these stages, efficiency measures are taken to avoid or delay probability calculations unless/until they are necessary. On a current desktop workstation, the fLPS algorithm can annotate the biased regions of the yeast proteome (>5700 sequences) in 65 million sequences) in as little as ~1 h, which is >2 times faster than the commonly used program SEG, using default parameters. fLPS discovers both shorter CB regions (of the sort that are often termed 'low-complexity sequence'), and milder biases that may only be detectable over long tracts of sequence. fLPS can readily handle very large protein data sets, such as might come from metagenomics projects. It is useful in searching for proteins with similar CB regions, and for making functional inferences about CB regions for a protein of interest. The fLPS package is available from: http://biology.mcgill.ca/faculty/harrison/flps.html , or https://github.com/pmharrison/flps , or is a supplement to this article.

  4. Inorganic component of saliva during fasting and after fast break

    OpenAIRE

    Samad, Rasmidar

    2016-01-01

    Oral health is closely related to salivary components. Saliva consists of water, inorganic and organic materials. Fasting changes one???s meal and drinking time that in turn can affect the environment in oral cavity, including inorganic componenet of saliva. The purpose of this study is to determine the inorganic component of saliva during fasting and after fast break.

  5. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  6. Consecutive treatment with phytase and arazyme influence protein ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... accelerated livestock growth. Key words: Soybean meal, phytase, arazyme, hydrolysis. .... Fast protein liquid chromatography (FPLC) analysis. The FPLC of ..... A study on the effect of substituting soybean oil meal for imported ...

  7. Proximity to Fast-Food Outlets and Supermarkets as Predictors of Fast-Food Dining Frequency.

    Science.gov (United States)

    Athens, Jessica K; Duncan, Dustin T; Elbel, Brian

    2016-08-01

    This study used cross-sectional data to test the independent relationship of proximity to chain fast-food outlets and proximity to full-service supermarkets on the frequency of mealtime dining at fast-food outlets in two major urban areas, using three approaches to define access. Interactions between presence of a supermarket and presence of fast-food outlets as predictors of fast-food dining were also tested. Residential intersections for respondents in point-of-purchase and random-digit-dial telephone surveys of adults in Philadelphia, PA, and Baltimore, MD, were geocoded. The count of fast-food outlets and supermarkets within quarter-mile, half-mile, and 1-mile street network buffers around each respondent's intersection was calculated, as well as distance to the nearest fast-food outlet and supermarket. These variables were regressed on weekly fast-food dining frequency to determine whether proximity to fast food and supermarkets had independent and joint effects on fast-food dining. The effect of access to supermarkets and chain fast-food outlets varied by study population. Among telephone survey respondents, supermarket access was the only significant predictor of fast-food dining frequency. Point-of-purchase respondents were generally unaffected by proximity to either supermarkets or fast-food outlets. However, ≥1 fast-food outlet within a 1-mile buffer was an independent predictor of consuming more fast-food meals among point-of-purchase respondents. At the quarter-mile distance, ≥1 supermarket was predictive of fewer fast-food meals. Supermarket access was associated with less fast-food dining among telephone respondents, whereas access to fast-food outlets were associated with more fast-food visits among survey respondents identified at point-of-purchase. This study adds to the existing literature on geographic determinants of fast-food dining behavior among urban adults in the general population and those who regularly consume fast food. Copyright

  8. The incorporation of 2-[14C]glycine into porcine lens protein

    International Nuclear Information System (INIS)

    Lee, Y.B.; Kauffman, R.G.; DeVenecia, G.

    1977-01-01

    A series of experiments was conducted to estimate the apparent turnover rate of lens soluble protein, the incorporation rate of 2-[ 14 C]glycine into various soluble protein components and the effect of nutritional stress on the disappearance of radioactivity with time. Evidence is presented that there are two fractions of soluble lens protein with different turnover rates: one is a fast turnover fraction with a half-life of 20.8 hr and the other is a metabolically inert fraction with an infinitely long half-life. It is postulated that the fast turnover fraction is present in the newly-formed younger fibers in the periphery, whereas the inert fraction is in the old lens fibers of the cortex and nucleus. Sephadex G-200 column chromatography was used to separate the soluble lens protein into four components: A, B, C and D in the order of elution. The changes in specific activities of the four components with the time course after injection were followed. Prolonged starvation did not affect the disappearance of carbon incorporated into lens protein with the time course after injection, suggesting normal synthesis and degradation of lens protein without regard to dietary stress. (author)

  9. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  10. Fast-ion Dα measurements of the fast-ion distribution (invited)

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2010-01-01

    The fast-ion Dα (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-α light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of Dα light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of ∼1 ms, ∼10 keV, and ∼2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of ∼50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities.

  11. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    Science.gov (United States)

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  12. Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Directory of Open Access Journals (Sweden)

    Raiker Witter

    2015-01-01

    Full Text Available Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT. Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle χ1 and small variations of χ2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.

  13. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F

    2016-01-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-milliseco......Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub......-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution...

  14. Seasonal trends in nesting leatherback turtle (Dermochelys coriacea) serum proteins further verify capital breeding hypothesis

    Science.gov (United States)

    Perrault, Justin R.; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L.

    2014-01-01

    Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5–4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species. PMID:27293623

  15. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2015-01-01

    Full Text Available This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts.

  16. Preoperative fasting times: Prescribed and actual fasting times at ...

    African Journals Online (AJOL)

    The current international guidelines for preoperative fasting for elective surgery are 6 ... to determine whether this policy was being followed and patients were being starved ..... recommended fasting time, so that autonomous patients take care.

  17. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  18. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting.

    Science.gov (United States)

    Liang, Qingning; Zhong, Ling; Zhang, Jialiang; Wang, Yu; Bornstein, Stefan R; Triggle, Chris R; Ding, Hong; Lam, Karen S L; Xu, Aimin

    2014-12-01

    Hepatic gluconeogenesis is a main source of blood glucose during prolonged fasting and is orchestrated by endocrine and neural pathways. Here we show that the hepatocyte-secreted hormone fibroblast growth factor 21 (FGF21) induces fasting gluconeogenesis via the brain-liver axis. Prolonged fasting induces activation of the transcription factor peroxisome proliferator-activated receptor α (PPARα) in the liver and subsequent hepatic production of FGF21, which enters into the brain to activate the hypothalamic-pituitary-adrenal (HPA) axis for release of corticosterone, thereby stimulating hepatic gluconeogenesis. Fasted FGF21 knockout (KO) mice exhibit severe hypoglycemia and defective hepatic gluconeogenesis due to impaired activation of the HPA axis and blunted release of corticosterone, a phenotype similar to that observed in PPARα KO mice. By contrast, intracerebroventricular injection of FGF21 reverses fasting hypoglycemia and impairment in hepatic gluconeogenesis by restoring corticosterone production in both FGF21 KO and PPARα KO mice, whereas all these central effects of FGF21 were abrogated by blockage of hypothalamic FGF receptor-1. FGF21 acts directly on the hypothalamic neurons to activate the mitogen-activated protein kinase extracellular signal-related kinase 1/2 (ERK1/2), thereby stimulating the expression of corticotropin-releasing hormone by activation of the transcription factor cAMP response element binding protein. Therefore, FGF21 maintains glucose homeostasis during prolonged fasting by fine tuning the interorgan cross talk between liver and brain. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model.

    Science.gov (United States)

    Wen, Ya; Ushio, Hideki

    2017-09-26

    As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.

  20. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Directory of Open Access Journals (Sweden)

    Horel Scott A

    2011-05-01

    Full Text Available Abstract Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location and coverage (number of different locations, and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409 who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance or coverage (number indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices.

  1. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Science.gov (United States)

    2011-01-01

    Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409) who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance) or coverage (number) indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices. PMID:21599955

  2. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  3. Fasting and rheumatic diseases

    OpenAIRE

    Mohammad Hassan Jokar

    2015-01-01

    Fasting is one of the important religious practices of Muslims, in which the individuals abstain from eating and drinking from dawn to sunset. Fasting is not obligatory or even not allowed, in case it causes health problems to the fasting individual. Rheumatic diseases are a major group of chronic diseases which can bring about numerous problems while fasting. The aim of this article is to review the impact of Islamic fasting on rheumatic patients, based on the scientific evidences.

  4. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  5. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  6. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults.

    Science.gov (United States)

    Kim, Il-Young; Schutzler, Scott; Schrader, Amy; Spencer, Horace J; Azhar, Gohar; Ferrando, Arny A; Wolfe, Robert R

    2016-01-01

    We have determined whole body protein kinetics, i.e., protein synthesis (PS), breakdown (PB), and net balance (NB) in human subjects in the fasted state and following ingestion of ~40 g [moderate protein (MP)], which has been reported to maximize the protein synthetic response or ~70 g [higher protein (HP)] protein, more representative of the amount of protein in the dinner of an average American diet. Twenty-three healthy young adults who had performed prior resistance exercise (X-MP or X-HP) or time-matched resting (R-MP or R-HP) were studied during a primed continuous infusion of l-[(2)H5]phenylalanine and l-[(2)H2]tyrosine. Subjects were randomly assigned into an exercise (X, n = 12) or resting (R, n = 11) group, and each group was studied at the two levels of dietary protein intake in random order. PS, PB, and NB were expressed as increases above the basal, fasting values (mg·kg lean body mass(-1)·min(-1)). Exercise did not significantly affect protein kinetics and blood chemistry. Feeding resulted in positive NB at both levels of protein intake: NB was greater in response to the meal containing HP vs. MP (P < 0.00001). The greater NB with HP was achieved primarily through a greater reduction in PB and to a lesser extent stimulation of protein synthesis (for all, P < 0.0001). HP resulted in greater plasma essential amino acid responses (P < 0.01) vs. MP, with no differences in insulin and glucose responses. In conclusion, whole body net protein balance improves with greater protein intake above that previously suggested to maximally stimulating muscle protein synthesis because of a simultaneous reduction in protein breakdown. Copyright © 2016 the American Physiological Society.

  7. Fast food consumption in Iranian adults; dietary intake and cardiovascular risk factors: Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Bahadoran, Zahra; Mirmiran, Parvin; Golzarand, Mahdieh; Hosseini-Esfahani, Firoozeh; Azizi, Fereidoun

    2012-06-01

    Although fast food consumption has drastically increased in Iran in recent years; there is a paucity of data in relation to the association between fast food consumption, dietary intake, and cardiovascular risk factors. This study aims to determine fast food consumption status among young and middle-aged Iranian adults, and to assess its impact on dietary intake and cardiovascular disease (CVD) risk factors. This cross-sectional population-based study was conducted on 1944 young and middle-aged adults (840 men and 1104 women), who participated in the Tehran Lipid and Glucose Study (2006-2008). We collected dietary data by using a validated 168 item, semi-quantitative food frequency questionnaire. Total fast food consumption was calculated by summing up weekly consumption of the most commonly consumed fast foods in Iran. Mean consumption of fast food was 161g/week (95% CI: 147-175) for young adults and 108 g/week (95% CI: 101-115) for middle-aged adults. Mean dietary intakes of energy, fat, saturated fat, cholesterol, sodium, meat, and soft drinks increased significantly (P consumption decreased (P fast food in both age groups. In young adults, dietary energy density and protein intake increased significantly (P fast food tertiles (P fast food consumption and body mass index (BMI; β = 0.104; P consumption of fast foods is associated with poor dietary intake and some of the CVD risk factors in Iranian adults.

  8. The challenging measurement of protein in complex biomass-derived samples

    DEFF Research Database (Denmark)

    Haven, M.O.; Jørgensen, H.

    2014-01-01

    and fast protein measurement on this type of samples was the ninhydrin assay. This method has also been used widely for this purpose, but with two different methods for protein hydrolysis prior to the assay - alkaline or acidic hydrolysis. In samples containing glucose or ethanol, there was significant...... that the presence of cellulose, lignin and glucose (above 50 g/kg) could significantly affect the results of the assay. Comparison of analyses performed with the ninhydrin assay and with a CN analyser revealed that there was good agreement between these two analytical methods, but care has to be taken when applying...... the ninhydrin assay. If used correctly, the ninhydrin assay can be used as a fast method to evaluate the adsorption of cellulases to lignin....

  9. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  10. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  11. New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens.

    Science.gov (United States)

    Gilani, S; Howarth, G S; Kitessa, S M; Tran, C D; Forder, R E A; Hughes, R J

    2017-10-01

    Increased intestinal permeability (IP) can lead to compromised health in chickens. As there is limited literature on in vivo biomarkers to assess increased IP in chickens, the objective of this study was to identify a reliable biomarker of IP using DSS ingestion and fasting models. Male Ross chickens (n = 48) were reared until day 14 on the floor pen in an animal care facility, randomized into the following groups: control, DSS and fasting (each with n = 16), and then placed in metabolism cages. DSS was administered in drinking water at 0.75% from days 16 to 21, while controls and fasted groups received water. All birds had free access to feed and water except the birds in the fasting group that were denied feed for 19.5 h on day 20. On day 21, all chickens were given two separate oral gavages comprising fluorescein isothiocyanate dextran (FITC-d, 2.2 mg in 1 ml/bird) at time zero and lactulose, mannitol and rhamnose (LMR) sugars (0.25 g L, 0.05 g M and 0.05 g R in 2 ml/bird) at 60 min. Whole blood was collected from the brachial vein in a syringe 90 min post-LMR sugar gavage. Serum FITC-d and plasma LMR sugar concentrations were measured by spectrophotometry and high-performance ion chromatography respectively. Plasma concentrations of intestinal fatty acid binding protein, diamine oxidase, tight junction protein (TJP), d-lactate and faecal α-antitrypsin inhibitor concentration were also analysed by ELISA. FITC-d increased significantly (p fasting compared with control. L/M and L/R ratios for fasting and L/M ratio for DSS increased compared with control chickens (p fasting but not DSS treatment, compared with controls. Other tests did not indicate changes in IP (p > 0.05). We concluded that FITC-d and LMR sugar tests can be used in chickens to assess changes in IP. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. Fast differential scanning calorimetry of liquid samples with chips

    DEFF Research Database (Denmark)

    Splinter, R.; van Herwaarden, A. W.; van Wetten, I. A.

    2015-01-01

    Based on a modified version of standard chips for fast differential scanning calorimetry, DSC of liquid samples has been performed at temperature scan rates of up to 1000 °C/s. This paper describes experimental results with the protein lysozyme, bovine serum, and olive oil. The heating and cooling....... The bovine serum measurements show two main peaks, in good agreement with standard DSC measurements. Olive oil has been measured, with good agreement for the cooling curve and qualitative agreement for the heater curve, compared to DSC measurements....

  13. The AMPA receptor-associated protein Shisa7 regulates hippocampal synaptic function and contextual memory

    NARCIS (Netherlands)

    Schmitz, Leanne J M; Klaassen, Remco V; Ruiperez-Alonso, Marta; Zamri, Azra Elia; Stroeder, Jasper; Rao-Ruiz, Priyanka; Lodder, Johannes C; van der Loo, Rolinka J; Mansvelder, Huib D; Smit, August B; Spijker, Sabine; Verhage, Matthijs

    2017-01-01

    Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with

  14. Fasting induces the generation of serum thyronine-binding globulin in Zucker rats

    International Nuclear Information System (INIS)

    Young, R.A.; Rajatanavin, R.; Moring, A.F.; Braverman, L.E.

    1985-01-01

    Five-month-old lean and obese Zucker rats were fasted for up to 7 days (lean rats) or 28 days (obese rats), and serum total and free T4 and T3 concentrations, percent free T4 and T3 by equilibrium dialysis, and the binding of [ 125 I] T4 to serum proteins by gel electrophoresis were measured. In the lean rats, a 4- or 7-day fast resulted in significant decreases in serum total and free T4 and T3 concentrations. There was a decrease in the percent free T3 after 7 days of starvation. In contrast, a 4- or 7-day fast did not alter any of these variables in the obese rats. However, after 14 or more days of starvation, serum total T4 and T3 concentrations increased, and the percent free T4 and T3 decreased, resulting in no change in the serum free T4 or T3 concentrations in the obese rats. The percent of [ 125 I]T4 bound to serum thyronine-binding globulin increased and the percent bound to thyronine-binding prealbumin decreased with the duration of the fast in both the lean and obese rats. The increase in serum thyronine-binding globulin binding of T4 can explain the increase in serum total T4 and T3 concentrations, the decrease in percent free T4 and T3, and the normal free hormone concentration in the long term fasted obese rats. The findings in the lean rats appear to be due to a combination of the known central hypothyroidism that occurs during 4-7 days of fasting and the fasting-induced changes in T4 binding in serum. Changes in T4 and T3 binding in serum during fasting in the rat must be considered when the effects of fasting on serum concentrations of the thyroid hormones, thyroid hormone kinetics, and the peripheral action of the thyroid hormones are evaluated

  15. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  16. Ramadan, faste og graviditet

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  17. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  18. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  19. Uncoupling Protein 3 Content Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    Keizer; E.E. Blaak; P. Schrauwen; G. Schaart; dr. Lars B. Borghouts; Saris; M.K.C. Hesselink

    2001-01-01

    Recently, a role for uncoupling protein-3 (UCP3) in carbohydrate metabolism and in type 2 diabetes has been suggested. Mice overexpressing UCP3 in skeletal muscle showed reduced fasting plasma glucose levels, improved glucose tolerance after an oral glucose load, and reduced fasting plasma insulin

  20. Marketing fast food: impact of fast food restaurants in children's hospitals.

    Science.gov (United States)

    Sahud, Hannah B; Binns, Helen J; Meadow, William L; Tanz, Robert R

    2006-12-01

    The objectives of this study were (1) to determine fast food restaurant prevalence in hospitals with pediatric residencies and (2) to evaluate how hospital environment affects purchase and perception of fast food. We first surveyed pediatric residency programs regarding fast food restaurants in their hospitals to determine the prevalence of fast food restaurants in these hospitals. We then surveyed adults with children after pediatric outpatient visits at 3 hospitals: hospital M with an on-site McDonald's restaurant, hospital R without McDonald's on site but with McDonald's branding, and hospital X with neither on-site McDonald's nor branding. We sought to determine attitudes toward, consumption of, and influences on purchase of fast food and McDonald's food. Fifty-nine of 200 hospitals with pediatric residencies had fast food restaurants. A total of 386 outpatient surveys were analyzed. Fast food consumption on the survey day was most common among hospital M respondents (56%; hospital R: 29%; hospital X: 33%), as was the purchase of McDonald's food (hospital M: 53%; hospital R: 14%; hospital X: 22%). McDonald's accounted for 95% of fast food consumed by hospital M respondents, and 83% of them bought their food at the on-site McDonald's. Using logistic regression analysis, hospital M respondents were 4 times more likely than respondents at the other hospitals to have purchased McDonald's food on the survey day. Visitors to hospitals M and R were more likely than those at hospital X to believe that McDonald's supported the hospital financially. Respondents at hospital M rated McDonald's food healthier than did respondents at the other hospitals. Fast food restaurants are fairly common in hospitals that sponsor pediatric residency programs. A McDonald's restaurant in a children's hospital was associated with significantly increased purchase of McDonald's food by outpatients, belief that the McDonald's Corporation supported the hospital financially, and higher rating

  1. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin.

    Directory of Open Access Journals (Sweden)

    DeVita Anne

    2002-04-01

    Full Text Available Abstract Background Proteorhodopsin (pR is a light-activated proton pump homologous to bacteriorhodopsin and recently discovered in oceanic γ-proteobacteria. One perplexing difference between these two proteins is the absence in pR of homologues of bR residues Glu-194 and Glu-204. These two residues, along with Arg-82, have been implicated in light-activated fast H+ release to the extracellular medium in bR. It is therefore uncertain that pR carries out its physiological activity using a mechanism that is completely homologous to that of bR. Results A pR purification procedure is described that utilizes Phenylsepharose™ and hydroxylapatite columns and yields 85% (w/w purity. Through SDS-PAGE of the pure protein, the molecular weight of E.-coli-produced pR was determined to be 36,000, approximately 9,000 more than the 27,000 predicted by the DNA sequence. Post-translational modification of one or more of the cysteine residues accounts for 5 kDa of the weight difference as measured on a cys-less pR mutant. At pH 9.5 and in the presence of octylglucoside and diheptanoylphosphotidylcholine, flash photolysis results in fast H+ release and a 400-nm absorbing (M-like photoproduct. Both of these occur with a similar rise time (4–10 μs as reported for monomeric bR in detergent. Conclusions The presence of fast H+ release in pR indicates that either different groups are responsible for fast H+ release in pR and bR (i.e. that the H+ release group is not highly conserved; or, that the H+ release group is conserved and is therefore likely Arg-94 itself in pR (and Arg-82 in bR, correspondingly.

  2. [Use of energy reserves during the breeding fast of the emperor penguin, Aptenodvtes forsteri].

    Science.gov (United States)

    Groscolas, R; Clément, C

    1976-01-19

    During the breeding fasting of the emperor penguin, the lipid and protein stores are steadily used to meet the metabolic needs; they represent respectively 93 and 7% of the energy production in the animal. The role of the glucid stores are quantitively negligible. Loss of tissue water represents 35,3% of body weight loss. Increased weight loss below 20 kg a "critical weight", is associated with a conversion to protein catabolism when lipid supplies are exhausted. These results allow the estimation of the metabolism when the body weight loss is considered in this antartic penguin.

  3. Trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh.

    Science.gov (United States)

    ALFaris, Nora A; Al-Tamimi, Jozaa Z; Al-Jobair, Moneera O; Al-Shwaiyat, Naseem M

    2015-01-01

    Background : Saudi Arabia has passed through lifestyle changes toward unhealthy dietary patterns such as high fast food consumption. Adolescents and young adults, particularly girls, are the main groups exposed to and affected by these adverse eating behaviors. Objective : The aim of this study was to examine the trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh, and to compare between them. Design : In a cross-sectional survey, 127 adolescent Saudi girls (13-18 years) and 69 young adult Saudi girls (19-29 years) were randomly recruited to participate in this study. Weight, height, waist circumference, and hip circumference were measured using standardized methods. Twenty-four-hour diet recall and a face-to-face interview food questionnaire were performed. Results : Most of the participants had adequate intake of protein, riboflavin, iron, and sodium, but exhibited low intake for several other nutrients. Among study participants, 95.4% consume restaurants' fast food and 79.1% eat fast food at least once weekly. Burgers and carbonated soft drinks were the main kinds of fast food meals and beverages usually eaten by girls. Adolescent girls who usually ate large portion sizes of fast food had significantly higher mean waist circumference and hip circumference. Participants eat fast food primarily for enjoying the delicious taste, followed by convenience. Restaurants' hygiene and safety standards were the main concern regarding fast food for 62.2% of girls. Finally, international restaurants were preferable by participants to buy fast food compared with local restaurants (70.9% vs. 29.1%). Conclusion : Our findings provide evidence on the high prevalence of fast food consumption among Saudi girls, suggesting an urgent need for community-based nutrition interventions that consider the trends of fast food consumption and targeted eating behaviors of adolescent and young adult girls.

  4. Trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh

    Directory of Open Access Journals (Sweden)

    Nora A. ALFaris

    2015-03-01

    Full Text Available Background: Saudi Arabia has passed through lifestyle changes toward unhealthy dietary patterns such as high fast food consumption. Adolescents and young adults, particularly girls, are the main groups exposed to and affected by these adverse eating behaviors. Objective: The aim of this study was to examine the trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh, and to compare between them. Design: In a cross-sectional survey, 127 adolescent Saudi girls (13–18 years and 69 young adult Saudi girls (19–29 years were randomly recruited to participate in this study. Weight, height, waist circumference, and hip circumference were measured using standardized methods. Twenty-four-hour diet recall and a face-to-face interview food questionnaire were performed. Results: Most of the participants had adequate intake of protein, riboflavin, iron, and sodium, but exhibited low intake for several other nutrients. Among study participants, 95.4% consume restaurants’ fast food and 79.1% eat fast food at least once weekly. Burgers and carbonated soft drinks were the main kinds of fast food meals and beverages usually eaten by girls. Adolescent girls who usually ate large portion sizes of fast food had significantly higher mean waist circumference and hip circumference. Participants eat fast food primarily for enjoying the delicious taste, followed by convenience. Restaurants’ hygiene and safety standards were the main concern regarding fast food for 62.2% of girls. Finally, international restaurants were preferable by participants to buy fast food compared with local restaurants (70.9% vs. 29.1%. Conclusion: Our findings provide evidence on the high prevalence of fast food consumption among Saudi girls, suggesting an urgent need for community-based nutrition interventions that consider the trends of fast food consumption and targeted eating behaviors of adolescent and young adult girls.

  5. Trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh

    Science.gov (United States)

    ALFaris, Nora A.; Al-Tamimi, Jozaa Z.; Al-Jobair, Moneera O.; Al-Shwaiyat, Naseem M.

    2015-01-01

    Background Saudi Arabia has passed through lifestyle changes toward unhealthy dietary patterns such as high fast food consumption. Adolescents and young adults, particularly girls, are the main groups exposed to and affected by these adverse eating behaviors. Objective The aim of this study was to examine the trends of fast food consumption among adolescent and young adult Saudi girls living in Riyadh, and to compare between them. Design In a cross-sectional survey, 127 adolescent Saudi girls (13–18 years) and 69 young adult Saudi girls (19–29 years) were randomly recruited to participate in this study. Weight, height, waist circumference, and hip circumference were measured using standardized methods. Twenty-four-hour diet recall and a face-to-face interview food questionnaire were performed. Results Most of the participants had adequate intake of protein, riboflavin, iron, and sodium, but exhibited low intake for several other nutrients. Among study participants, 95.4% consume restaurants’ fast food and 79.1% eat fast food at least once weekly. Burgers and carbonated soft drinks were the main kinds of fast food meals and beverages usually eaten by girls. Adolescent girls who usually ate large portion sizes of fast food had significantly higher mean waist circumference and hip circumference. Participants eat fast food primarily for enjoying the delicious taste, followed by convenience. Restaurants’ hygiene and safety standards were the main concern regarding fast food for 62.2% of girls. Finally, international restaurants were preferable by participants to buy fast food compared with local restaurants (70.9% vs. 29.1%). Conclusion Our findings provide evidence on the high prevalence of fast food consumption among Saudi girls, suggesting an urgent need for community-based nutrition interventions that consider the trends of fast food consumption and targeted eating behaviors of adolescent and young adult girls. PMID:25792229

  6. GLUCOSE AND TOTAL PROTEIN LEVEL IN LABORATORY RATS UNDER CONDITIONS OF SHORT-TERM FASTING

    Directory of Open Access Journals (Sweden)

    Damir Suljević

    2013-09-01

    Full Text Available Glucose level (UV enzymatic method and total protein level (Biuret method were measured in the blood samples of the rats exposed to short-term starvation. We found a statistically significant increase in the glucose level in experimental animals during starvation, which is also evident in males and females in the experimental group (p <0.05, while decrease in the total protein level was not statistically significant. During starvation, more significant weight loss was observed in females compared to males.Key words: glucose, total protein, serum, Rattus

  7. Intestinal DNA concentration and protein synthesis in response to ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... Full Length Research Paper. Intestinal ... transporters are membrane-bound proteins and operate ... sporters that are similar to those found on other plasma ... on fastDNA® kit (application manual revision 6540-400-4H01) and.

  8. Physiology of Ramadan fasting

    OpenAIRE

    Shokoufeh Bonakdaran

    2016-01-01

    Considering the emphasis of Islam on the importance of fasting, Muslims attempt to fast from dawn until sunset during the holy month of Ramadan. Fasting is associated with several benefits for normal and healthy individuals. However, it could pose high risks to the health of diabetic patients due to certain physiological changes. This study aimed to compare the physiological changes associated with fasting in healthy individuals and diabetic patients during Ramadan. Furthermore, we reviewed t...

  9. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  10. Combined method for the fast determination of pure beta emitting radioisotopes in food samples

    International Nuclear Information System (INIS)

    Kabai, Eva; Savkin, Birgit; Mehlsam, Isabell; Poppitz-Spuhler, Angela

    2017-01-01

    Fast radioanalytical methods are essential for a rapid response of decision makers. A fast method for the simultaneous determination of the pure beta emitting radionuclides 89 Sr/ 90 Sr and 99 Tc in food samples was developed. It includes the precipitation of fat and proteins with trichloroacetic acid for milk and dairy products and microwave digestion for other food products, followed by an anion exchange step to separate strontium from technetium. The purification steps for strontium and technetium are done using Sr-resin and TEVA-resin, respectively. Typical chemical yields are around 70 % for both radionuclides. The whole determination takes only around 20 h. (author)

  11. Induction of fibroblast growth factor 21 does not require activation of the hepatic X-box binding protein 1 in mice

    Directory of Open Access Journals (Sweden)

    Shantel Olivares

    2017-12-01

    Full Text Available Objective: Fibroblast growth factor 21 (FGF21, a key regulator of the metabolic response to fasting, is highly induced by endoplasmic reticulum (ER stress. The X-box binding protein 1 (Xbp1 is one of several ER stress proteins that has been shown to directly activate the FGF21 promoter. We aimed to determine whether hepatic Xbp1 is required for induction of hepatic FGF21 in vivo. Methods: Mice bearing a hepatocyte-specific deletion of Xbp1 (Xbp1LKO were subjected to fasting, pharmacologic ER stress, or a ketogenic diet, all potent stimuli of Fgf21 expression. Results: Hepatocyte-specific Xbp1 knockout mice demonstrated normal induction of FGF21 in response to fasting or pharmacologic ER stress and enhanced induction of FGF21 in response to a ketogenic diet. Consistent with preserved induction of FGF21, Xbp1LKO mice exhibited normal induction of FGF21 target genes and normal ketogenesis in response to fasting or a ketogenic diet. Conclusion: Hepatic Xbp1 is not required for induction of FGF21 under physiologic or pathophysiologic conditions in vivo. Keywords: Unfolded protein response, Endoplasmic reticulum stress, Fasting, Fatty acid oxidation, Ketogenic diet

  12. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    Science.gov (United States)

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  13. Comparison of Protein Extracts from Various Unicellular Green Sources.

    Science.gov (United States)

    Teuling, Emma; Wierenga, Peter A; Schrama, Johan W; Gruppen, Harry

    2017-09-13

    Photosynthetic unicellular organisms are considered as promising alternative protein sources. The aim of this study is to understand the extent to which these green sources differ with respect to their gross composition and how these differences affect the final protein isolate. Using mild isolation techniques, proteins were extracted and isolated from four different unicellular sources (Arthrospira (spirulina) maxima, Nannochloropsis gaditana, Tetraselmis impellucida, and Scenedesmus dimorphus). Despite differences in protein contents of the sources (27-62% w/w) and in protein extractability (17-74% w/w), final protein isolates were obtained that had similar protein contents (62-77% w/w) and protein yields (3-9% w/w). Protein solubility as a function of pH was different between the sources and in ionic strength dependency, especially at pH < 4.0. Overall, the characterization and extraction protocol used allows a relatively fast and well-described isolation of purified proteins from novel protein sources.

  14. Protein Modification: A Proposed Mechanism for the Long-Term Pathogenesis of Traumatic Brain Injury

    Science.gov (United States)

    2015-06-04

    Protein A affinity chromatography (HiTrap Protein A HP column (17-0403-01; GE Healthcare, Buckinghamshire, United Kingdom) on a GE ÄKTA FPLC fast...protein liquid chromatography instrument (FPLC; 18-1900-26; GE Healthcare), aliquoted for single-use and stored at -80°C. Immunodetection of...II: Springer Protocols Handbooks . 22. Boyd-Kimball D, Castegna A, Sultana R, Poon H, Petroze R, et al. 2005. Proteomic identification of proteins

  15. A new approach to protein enzymatic digestion for fast protein identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Dyčka, Filip; Laštovičková, Markéta; Bobálová, Janette

    2008-01-01

    Roč. 102, č. 15 (2008), s967-s968 ISSN 1803-2389. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] R&D Projects: GA AV ČR IAA600040701 Institutional research plan: CEZ:AV0Z40310501 Keywords : enzymatic digest ion * fast approach Subject RIV: CB - Analytical Chemistry, Separation

  16. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  17. Nutrient Intake during Ramadan in Fasting People Referring to Health Centers in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hozoori

    2017-06-01

    Full Text Available Background and Objectives: During Ramadan, the ninth month in the Islamic calendar, Muslims abstain from eating and drinking from sunrise adhaan to sunset adhaan. This long fasting period can cause change in certain metabolic and hormonal indices and affect eating behaviors and nutrient intake. Therefore, the purpose of this study was to assess nutrient intake in fasting people in Qom, Iran. Methods: We enrolled 120 fasting people aged 20-45 years old living in Qom in Ramadan, 2014. A dietary records questionnaire was used to survey the nutrient intake. All questionnaires were collected after three days. The nutrient intake was determined by Nutritionist IV software and then data compared with recommended values. Results: Energy and macronutrients intake were higher than the recommended values (carbohydrate, 110%; protein, 139%; and fat, 114% of daily values. Except iron (19.8 mg or 108% of daily value, intake of all other micronutrients was lower than the recommended values. Conclusion: The nutrient intake of fasting people in Qom is not appropriate, and is characterized by increased intake of energy and energy suppliers. Therefore, given the undeniable role of proper and adequate nutrient intake in health, it seems necessary for fasting people to receive nutrition education to enhance nutrient intake from various food groups.

  18. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  19. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  20. Fast food (image)

    Science.gov (United States)

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  1. Fast and Cache-Oblivious Dynamic Programming with Local Dependencies

    DEFF Research Database (Denmark)

    Bille, Philip; Stöckel, Morten

    2012-01-01

    are widely used in bioinformatics to compare DNA and protein sequences. These problems can all be solved using essentially the same dynamic programming scheme over a two-dimensional matrix, where each entry depends locally on at most 3 neighboring entries. We present a simple, fast, and cache......-oblivious algorithm for this type of local dynamic programming suitable for comparing large-scale strings. Our algorithm outperforms the previous state-of-the-art solutions. Surprisingly, our new simple algorithm is competitive with a complicated, optimized, and tuned implementation of the best cache-aware algorithm...

  2. Islamic Fasting and Diabetes

    Directory of Open Access Journals (Sweden)

    Fereidoun Azizi

    2013-07-01

    Full Text Available The aim of this article is to review health-related aspects of Ramadan fasting in normal individuals and diabetics. During fasting days of Ramadan, glucose homeostasis is maintained by meal taken bepore dawn and by liver glycogen stores. Changes in serum lipids are variable and defend on the quality and quantity of food consumption and changes in weight. Compliant, well controlled type 2 diabetics may observe Ramadan fasting; but fasting is not recommended for type 1, non complaint, poorly controlled and pregnant diabetics. Although Ramadan fasting is safe for all healthy individuals and well controlled diabetics, those with uncontrolled diabetics and diabetics with complications should consult physicians and follow scientific recommendations.

  3. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  4. Novel Aflatoxin Derivatives and Protein Conjugates

    Directory of Open Access Journals (Sweden)

    Reinhard Niessner

    2007-03-01

    Full Text Available Aflatoxins, a group of structurally related mycotoxins, are well known for their toxic and carcinogenic effects in humans and animals. Aflatoxin derivatives and protein conjugates are needed for diverse analytical applications. This work describes a reliable and fast synthesis of novel aflatoxin derivatives, purification by preparative HPLC and characterisation by ESI-MS and one- and two-dimensional NMR. Novel aflatoxin bovine serum albumin conjugates were prepared and characterised by UV absorption and MALDI-MS. These aflatoxin protein conjugates are potentially interesting as immunogens for the generation of aflatoxin selective antibodies with novel specificities.

  5. An Antibiotic Selection System For Protein Overproducing Bacteria

    DEFF Research Database (Denmark)

    Rennig, Maja; Nørholm, Morten

    2015-01-01

    Introduction: Protein overproduction is a major bottleneck for analyses of membrane proteins and for the construction of cell factories. Screening for optimized protein production can be very time consuming. In this study we show that the coupling of antibiotic resistance to poorly produced...... membrane proteins of Escherichia coli can be used as a fast and simple selection system for protein overproduction.Methods: We designed an expression plasmid encoding the gene of interest and an additional, inducible antibiotic resistance marker. Both genes were linked by a hairpin structure...... that translationally couples the genes. Consequently, high expressing gene variants also allow for higher production of the coupled antibiotic resistance marker. Therefore, high expressing gene variants in a library can be determined either by plating the expression library on selection plates or by growing...

  6. HCUP Fast Stats

    Data.gov (United States)

    U.S. Department of Health & Human Services — HCUP Fast Stats provides easy access to the latest HCUP-based statistics for health information topics. HCUP Fast Stats uses visual statistical displays in...

  7. Analysis of the free-energy surface of proteins from reversible folding simulations.

    Directory of Open Access Journals (Sweden)

    Lucy R Allen

    2009-07-01

    Full Text Available Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  8. Fast-prototyping of VLSI

    International Nuclear Information System (INIS)

    Saucier, G.; Read, E.

    1987-01-01

    Fast-prototyping will be a reality in the very near future if both straightforward design methods and fast manufacturing facilities are available. This book focuses, first, on the motivation for fast-prototyping. Economic aspects and market considerations are analysed by European and Japanese companies. In the second chapter, new design methods are identified, mainly for full custom circuits. Of course, silicon compilers play a key role and the introduction of artificial intelligence techniques sheds a new light on the subject. At present, fast-prototyping on gate arrays or on standard cells is the most conventional technique and the third chapter updates the state-of-the art in this area. The fourth chapter concentrates specifically on the e-beam direct-writing for submicron IC technologies. In the fifth chapter, a strategic point in fast-prototyping, namely the test problem is addressed. The design for testability and the interface to the test equipment are mandatory to fulfill the test requirement for fast-prototyping. Finally, the last chapter deals with the subject of education when many people complain about the lack of use of fast-prototyping in higher education for VLSI

  9. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    Science.gov (United States)

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fast form alpha-2-macroglobulin

    DEFF Research Database (Denmark)

    Biltoft, Daniel; Gram, Jørgen Brodersen; Larsen, Anette

    2017-01-01

    Objectives: Investigation of the blood compatibility requires a number of sensitive assays to quantify the activation of the blood protein cascades and cells induced by biomaterials. A global assay measuring the blood compatibility of biomaterials could be a valuable tool in such regard....... In this study, we investigated whether an enzyme-linked immunosorbent assay (ELISA), that specifically measures the electrophoretic "fast form" of α2-macroglobulin (F-α2M), could be a sensitive and global marker for activation of calcium dependent and in-dependent proteases in plasma exposed to biomaterials...... in vitro. Methods: A F-α2M specific monoclonal antibody was generated and applied in an ELISA setup. Using the F-α2M ELISA, we investigated activation of calcium dependent and in-dependent proteases by polyvinylchloride (n=10), polytetrafluoroethylene (n=10) and silicone (n=10) tubings as well as glass...

  11. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  12. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  13. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  14. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  15. The Adverse Effects and Treatment Results of Smoking Cessation Pharmacotherapy During Fasting/Non-Fasting State.

    Science.gov (United States)

    Iliaz, Sinem; Tural Onur, Seda; Uysal, Mehmet Atilla; Chousein, Efsun Gonca Uğur; Tanriverdi, Elif; Bagci, Belma Akbaba; Bahadir, Ayse; Hattatoglu, Didem Gorgun; Ortakoylu, Mediha Gonenc; Yurt, Sibel

    2017-07-03

    Cigarette smoking is one of the most common addictions worldwide. Muslim smokers reduce the number of cigarettes they smoke during Ramadan due to the long fasting hours. We aimed to share our experience in a smoking cessation clinic during Ramadan by analyzing the efficacy and adverse effects of once-daily dosing of bupropion or varenicline in a fasting group compared with conventional dosing in a non-fasting group. We analyzed 57 patients who attended our smoking cessation clinic during Ramadan of 2014 and 2015, and at least one follow-up visit. For the fasting patients, we prescribed bupropion or varenicline after dinner (once daily) as the maintenance therapy. We recorded demographic characteristics of the patients, fasting state, drugs taken for smoking cessation, and the dosage of the medication. At the first follow-up visit, adverse effects seen with the treatment were recorded. We conducted telephone interviews 6 months after the first visits of the patients to learn the current smoking status of the groups. Of the total 57 patients, 20 (35.1%) were fasting and 37 (64.9%) were not fasting. Fasting and non-fasting patients were similar for sex, age, smoking pack-years, marital status, educational status, and mean Fagerström scores (p >.05). Adverse effects and quit rates after 6 months of follow-up were similar between the fasting and non-fasting groups (p >.05). Although our sample size was small, we found no difference in the rates of adverse effects or smoking cessation using a single daily oral dose of bupropion or varenicline between a fasting group and a non-fasting group that received conventional dosing.

  16. Simultaneous pre-concentration and separation on simple paper-based analytical device for protein analysis.

    Science.gov (United States)

    Niu, Ji-Cheng; Zhou, Ting; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Yang, Fu-Quan; Wu, Zhi-Yong

    2018-02-01

    In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.

  17. Fast-track rehabilitation in elective colorectal surgery patients: a prospective clinical and immunological single-centre study.

    Science.gov (United States)

    Wichmann, Matthias W; Eben, Ricarda; Angele, Martin K; Brandenburg, Franzis; Goetz, Alwin E; Jauch, Karl-Walter

    2007-07-01

    Recent clinical data indicate that fast-track surgery (multimodal rehabilitation) leads to shorter postoperative length of hospital stay, faster recovery of gastrointestinal function as well as reduced morbidity and mortality rates. To date, no study has focused on the effects of fast-track surgery on postoperative immune function. This study was initiated to determine whether fast-track rehabilitation results in improved clinical and immunological outcome of patients undergoing colorectal surgery. Forty patients underwent either conventional or fast-track rehabilitation after colorectal surgery. In addition to clinical parameters (return of gastrointestinal function, food intake, pain score, complication rates and postoperative length of stay), we determined parameters of perioperative immunity by flow cytometry (lymphocyte subgroups) and enzyme-linked immunosorbent assay (interleukin-6). Our findings indicate a better-preserved cell-mediated immune function (T cells, T-helper cells, natural killer cells) after fast-track rehabilitation, whereas the pro-inflammatory response (C-reactive protein, interleukin-6) was unchanged in both study groups. Furthermore, we detected a significantly faster return of gastrointestinal function (first bowel movement P<0.001, food intake P<0.05), significantly reduced pain scores in the postoperative course (P < 0.05) and a significantly shorter length of postoperative stay (P<0.001) in patients undergoing fast-track rehabilitation. Fast-track rehabilitation after colorectal surgery results in better-preserved cell-mediated immunity when compared with conventional postoperative care. Furthermore, patients undergoing fast-track rehabilitation suffer from less pain and have a faster return of gastrointestinal function in the postoperative course. In addition, postoperative length of hospital stay was significantly shorter in fast-track patients.

  18. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery...

  19. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  20. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  1. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  2. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    Directory of Open Access Journals (Sweden)

    Suneng Fu

    2012-08-01

    Full Text Available Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  3. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    Science.gov (United States)

    Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N; Watkins, Steve M; Hotamisligil, Gökhan S

    2012-08-01

    Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  4. Fast track-hoftealloplastik

    DEFF Research Database (Denmark)

    Hansen, Torben Bæk; Gromov, Kirill; Kristensen, Billy B

    2017-01-01

    Fast-track surgery implies a coordinated perioperative approach aimed at reducing surgical stress and facilitating post-operative recovery. The fast-track programme has reduced post-operative length of stay and has led to shorter convalescence with more rapid functional recovery and decreased...... morbidity and mortality in total hip arthroplasty. It should now be a standard total hip arthroplasty patient pathway, but fine tuning of the multiple factors in the fast-track pathway is still needed in patients with special needs or high comorbidity burden....

  5. Increased mitochondrial energy efficiency in skeletal muscle after long-term fasting: its relevance to animal performance.

    Science.gov (United States)

    Bourguignon, Aurore; Rameau, Anaïs; Toullec, Gaëlle; Romestaing, Caroline; Roussel, Damien

    2017-07-01

    In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin ( Aptenodytes patagonicus ) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency. © 2017. Published by The Company of Biologists Ltd.

  6. A preliminary fast may potentiate response to a subsequent low-salt, low-fat vegan diet in the management of hypertension - fasting as a strategy for breaking metabolic vicious cycles.

    Science.gov (United States)

    McCarty, M F

    2003-05-01

    Although a salted diet appears to be a sine qua non for the development of essential hypertension, low-salt diets often have a modest or even negligible impact on the blood pressure of hypertensives; this suggests that salt, perhaps often acting in concert with other aspects of a modern, rich diet, may set in place certain metabolic vicious cycles that sustain blood pressure elevation even when dietary salt is eliminated. Therapeutic fasting is known to lower elevated blood pressure - presumably in large part because it minimizes insulin secretion - and may have the potential to break some of these vicious cycles. Goldhamer has recently reported that a regimen comprised of a water-only fast of moderate duration, followed by a transition to a low-fat, low-salt, whole-food vegan diet, achieves dramatic reductions in the blood pressure of hypertensives, such that the large majority of patients can be restored to normotensive status, in the absence of any drug therapy. Although long-term follow-up of these subjects has been sporadic, the available data suggest that these large reductions is blood pressure can be conserved in patients who remain compliant with the follow-up diet - in other words, a 'cure' for hypertension may be feasible. If a protein-sparing modified fast can be shown to be virtually as effective as a total fast for achieving these benefits, it may be possible to implement this regimen safely on an outpatient basis. The ability of therapeutic fasts to break metabolic vicious cycles may also contribute to the efficacy of fasting in the treatment of type 2 diabetes and autoimmune disorders. As a general principle, if a metabolic disorder is susceptible to prevention - but not reversal - by a specific diet, and therapeutic fasting has a temporary favorable impact on this disorder, then a more definitive therapy may consist of a therapeutic fast, followed up by the protective diet as a maintenance regimen.

  7. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    Science.gov (United States)

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.

  8. Fast Flux Watch: A mechanism for online detection of fast flux networks

    Directory of Open Access Journals (Sweden)

    Basheer N. Al-Duwairi

    2014-07-01

    Full Text Available Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch, a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network.

  9. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  10. Adaptive GDDA-BLAST: fast and efficient algorithm for protein sequence embedding.

    Directory of Open Access Journals (Sweden)

    Yoojin Hong

    2010-10-01

    Full Text Available A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.. Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low

  11. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    International Nuclear Information System (INIS)

    Putri, Mirasari; Syamsunarno, Mas Rizky A.A.; Iso, Tatsuya; Yamaguchi, Aiko; Hanaoka, Hirofumi; Sunaga, Hiroaki; Koitabashi, Norimichi; Matsui, Hiroki; Yamazaki, Chiho; Kameo, Satomi; Tsushima, Yoshito

    2015-01-01

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36 −/− mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36 −/− mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue 125 I-BMIPP and the glucose analogue 18 F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36 −/− mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36 −/− mice after cold exposure. These findings strongly suggest that CD36 −/− mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36 −/− mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is reduced in thermogenic tissues during

  12. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  13. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    Science.gov (United States)

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  14. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    Science.gov (United States)

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  15. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  16. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Viguiliouk, Effie; Stewart, Sarah E; Jayalath, Viranda H; Ng, Alena Praneet; Mirrahimi, Arash; de Souza, Russell J; Hanley, Anthony J; Bazinet, Richard P; Blanco Mejia, Sonia; Leiter, Lawrence A; Josse, Robert G; Kendall, Cyril W C; Jenkins, David J A; Sievenpiper, John L

    2015-12-01

    Previous research on the effect of replacing sources of animal protein with plant protein on glycemic control has been inconsistent. We therefore conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of this replacement on glycemic control in individuals with diabetes. We searched MEDLINE, EMBASE, and Cochrane databases through 26 August 2015. We included RCTs ≥ 3-weeks comparing the effect of replacing animal with plant protein on HbA1c, fasting glucose (FG), and fasting insulin (FI). Two independent reviewers extracted relevant data, assessed study quality and risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD) with 95% confidence intervals (CIs). Heterogeneity was assessed (Cochran Q-statistic) and quantified (I²-statistic). Thirteen RCTs (n = 280) met the eligibility criteria. Diets emphasizing a replacement of animal with plant protein at a median level of ~35% of total protein per day significantly lowered HbA1c (MD = -0.15%; 95%-CI: -0.26, -0.05%), FG (MD = -0.53 mmol/L; 95%-CI: -0.92, -0.13 mmol/L) and FI (MD = -10.09 pmol/L; 95%-CI: -17.31, -2.86 pmol/L) compared with control arms. Overall, the results indicate that replacing sources of animal with plant protein leads to modest improvements in glycemic control in individuals with diabetes. Owing to uncertainties in our analyses there is a need for larger, longer, higher quality trials. ClinicalTrials.gov registration number: NCT02037321.

  17. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  18. Parabolic section and distance excess of space curves applied to protein structure classification

    DEFF Research Database (Denmark)

    Røgen, Peter; Karlsson, Per W.

    2008-01-01

    Proteins are long chain molecules that fold up into beautiful and complicated three-dimensional structures before fulfilling their biological functions in the living organisms. With the aim of providing an efficient tool for describing the proteins' native folds, we present a global geometric mea...... measure of a space curve. This geometric measure allows us to define descriptors of protein structures that quantify how parallel the secondary structure elements of a protein are. These descriptors are C-2 in deformations of the protein structure, are evaluated very fast and reliably...

  19. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  20. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    Science.gov (United States)

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults.

    Science.gov (United States)

    Gonzalez, Javier T; Richardson, Judith D; Chowdhury, Enhad A; Koumanov, Francoise; Holman, Geoffrey D; Cooper, Scott; Thompson, Dylan; Tsintzas, Kostas; Betts, James A

    2018-02-15

    In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue. In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue. The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt. Insulin-stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole-body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down-regulation to prevent excessive de novo lipogenesis. This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty-nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin-stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up-regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97-1.30) versus 0.80 (95% CI: 0.64-0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33-2.16) versus 1.09 (95% CI: 0.67-1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in genes involved in lipid turnover (all

  2. Fasting and Urinary Stones

    Directory of Open Access Journals (Sweden)

    Ali Shamsa

    2013-11-01

    Full Text Available Introduction: Fasting is considered as one of the most important practices of Islam, and according to Prophet Mohammad, fasting is obligatory upon Muslims. The aim of this study is to evaluate the effects of fasting on urinary stones. Materials and Methods: Very few studies have been carried out on urinary stones and the effect of Ramadan fasting. The sources of the present study are Medline and articles presented by local and Muslim researchers. Meanwhile, since we are acquainted with three well-known researchers in the field of urology, we contacted them via email and asked for their professional opinions. Results: The results of studies about the relationship of urinary stones and their incidence in Ramadan are not alike, and are even sometimes contradictory. Some believe that increased incidence of urinary stones in Ramadan is related not to fasting, but to the rise of weather temperature in hot months, and an increase in humidity. Conclusion: Numerous biological and behavioral changes occur in people who fast in Ramadan and some researchers believe that urinary stone increases during this month.

  3. Fast large-scale clustering of protein structures using Gauss integrals

    DEFF Research Database (Denmark)

    Harder, Tim; Borg, Mikael; Boomsma, Wouter

    2011-01-01

    trajectories. Results: We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by rst mapping structures to Gauss integral vectors – which were introduced by Røgen and co......-workers – and subsequently performing K-means clustering. Conclusions: Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a signicantly larger number of structures, while providing state-ofthe- art results. The number of low energy structures generated...

  4. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  5. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    Science.gov (United States)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  6. Sistem Gesture Accelerometer dengan Metode Fast Dynamic Time Warping (FastDTW

    Directory of Open Access Journals (Sweden)

    Sam Farisa Chaerul Haviana

    2016-01-01

    Full Text Available In the modern environment, the interaction between humans and computers require a more natural form of interaction. Therefore, it is important to be able to build a system that can meet these demands, such as by building a hand gesture recognition system or gesture to create a more natural form of interaction. This study aims to design a smartphone’s accelerometer gesture system as human computer interaction interfaces using FastDTW (Fast Dynamic Time Warping.The result of this study is form of gesture interaction which implemented in a system that can make the process of recognition of the human hand movements based on a smartphone accelerometer which generates a command to run the media player application functions as a case study. FastDTW as the development of Dynamic Time Warping method (DTW is able to compute faster than DTW and have an accuracy approaching DTW. From the test results, FastDTW show a fairly high degree of accuracy reached 86% and showed a better computing speed compared to DTW   Keywords: Human and Computer Interaction, Accelerometer-based gesture, FastDTW, Media player application function

  7. Obesity surgery and Ramadan: a prospective analysis of nutritional intake, hunger and satiety and adaptive behaviours during fasting.

    Science.gov (United States)

    Al-Ozairi, Ebaa; Al Kandari, Jumana; AlHaqqan, Dalal; AlHarbi, Obaid; Masters, Yusuf; Syed, Akheel A

    2015-03-01

    Fasting for religious or lifestyle reasons poses a challenge to people who have undergone bariatric surgery. A total fast (abstaining from all forms of nourishment including liquids) during long summer days puts these patients at risk of dehydration and poor calorie and nutrient intake. We undertook telephone surveys of 24-h food recall, hunger and satiety scores, medication use, adverse symptoms and depression scores on a fasting day in Ramadan and a non-fasting day subsequently. We studied 207 participants (166 women) who had undergone sleeve gastrectomy. The mean (standard error) age was 35.2 (0.7) years. Men and women consumed 20.4 % (P = 0.018) and 16.9 % (P fasting, respectively. There was no significant difference in the intake of fluids or incidence of adverse gastrointestinal, hypoglycaemic and sympathoadrenal symptoms. Of participants on pharmacotherapy, 89.5 % took their prescribed medications; 86.3 % made no changes to the doses, but 80.4 % changed the timing of the medications. Both women and men reported feeling less hungry and a preference for savoury foods during Ramadan. There was no difference in depression and work impairment scores. Fasting was well tolerated in persons who had undergone sleeve gastrectomy. It may be advisable to raise awareness about dietary protein intake and managing medications appropriately during fasting.

  8. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  9. Prolonged fasting increases the response of the renin-angiotensin-aldosterone system, but not vasopressin levels, in postweaned northern elephant seal pups

    Science.gov (United States)

    Ortiz, R. M.; Wade, C. E.; Ortiz, C. L.

    2000-01-01

    The 8- to 12-week postweaning fast exhibited by northern elephant seal pups (Mirounga angustirostris) occurs without any apparent deleterious effects on fluid and electrolyte homeostasis. However, during the fast the role of vasopressin (AVP) has been shown to be inconclusive and the involvement of the renin-angiotensin-aldosterone system (RAAS) has yet to be examined. To examine the effects of prolonged fasting on these osmoregulatory hormones, 15 postweaned pups were serially blood-sampled during the first 49 days of their fast. Fasting did not induce significant changes in ionic or osmotic concentrations, suggesting electrolyte homeostasis. Total proteins were reduced by day 21 of fasting and remained depressed, suggesting a lack of dehydration. Aldosterone and plasma renin activity exhibited a correlated, linear increase over the first 49 days of the fast, suggesting an active RAAS. Aldosterone exhibited a parabolic trend over the fast with a peak at day 35, suggesting a shift in the sensitivity of the kidney to aldosterone later in the fast. AVP was elevated at day 49 only, but concentrations were relatively low. RAAS was modified during the postweaning fast in pups and appears to play a significant role in the regulation of electrolyte and, most likely, water homeostasis during this period. Copyright 2000 Academic Press.

  10. Decoding the Mobility and Time Scales of Protein Loops.

    Science.gov (United States)

    Gu, Yina; Li, Da-Wei; Brüschweiler, Rafael

    2015-03-10

    The flexible nature of protein loops and the time scales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. In order to obtain a predictive understanding of the dynamic properties of loops, 500 ns molecular dynamics (MD) computer simulations of 38 different proteins were performed and validated using NMR chemical shifts. A total of 169 loops were analyzed and classified into three types, namely fast loops with correlation times Web server (http://spin.ccic.ohio-state.edu/index.php/loop). The results demonstrate that loop dynamics with their time scales can be predicted rapidly with reasonable accuracy, which will allow the screening of average protein structures to help better understand the various roles loops can play in the context of protein-protein interactions and binding.

  11. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    International Nuclear Information System (INIS)

    Qiao, Juan; Kim, Jin Yong; Wang, Yuan Yuan; Qi, Li; Wang, Fu Yi; Moon, Myeong Hee

    2016-01-01

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  12. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Juan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Kim, Jin Yong [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of); Wang, Yuan Yuan [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Wang, Fu Yi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190 (China); Moon, Myeong Hee, E-mail: mhmoon@yonsei.ac.kr [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 120-749 (Korea, Republic of)

    2016-02-04

    Fast and effective protein digestion is a vital process for mass spectrometry (MS) based protein analysis. This study introduces a porous polymer membrane enzyme reactor (PPMER) coupled to nanoflow liquid chromatography-tandem MS (nLC-ESI-MS/MS) for on-line digestion and analysis of proteins. Poly (styrene-co-maleic anhydride) (PS-co-MAn) was fabricated by the breath figure method to make a porous polymer membrane in which the MAn group was covalently bound to enzyme. Based on this strategy, microscale PPMER (μPPMER) was constructed for on-line connection with the nLC-ESI-MS/MS system. Its capability for enzymatic digestion with bovine serum albumin (BSA) was evaluated with varied digestion periods. The on-line proteolysis of BSA and subsequent analysis with μPPMER-nLC-ESI-MS/MS revealed that peptide sequence coverage increased from 10.3% (digestion time 10 min) to 89.1% (digestion time 30 min). μPPMER can efficiently digest proteins due to the microscopic confinement effect, showing its potential application in fast protein identification and protease immobilization. Applications of on-line digestion using μPPMER with human plasma and urinary proteome samples showed that the developed on-line method yielded equivalent or better performance in protein coverage and identified more membrane proteins than the in-solution method. This may be due to easy accommodation of hydrophobic membrane proteins within membrane pores. - Highlights: • A porous polymer membrane enzyme reactor was developed. • Breath figure method was used for the fabrication of porous polymer membrane. • The enzyme reactor was coupled to nLC-ESI-MS/MS for proteins on-line digestion.

  13. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES

    Science.gov (United States)

    Thornton, Lukar E; Bentley, Rebecca J; Kavanagh, Anne M

    2009-01-01

    Background While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES) – a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. Methods The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly) from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut). Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant. Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions) as well as individual and area socio-economic characteristics. Results Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 – 1.25) after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio-economic predictors

  14. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES.

    Science.gov (United States)

    Thornton, Lukar E; Bentley, Rebecca J; Kavanagh, Anne M

    2009-05-27

    While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES) - a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly) from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut). Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant.Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions) as well as individual and area socio-economic characteristics. Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 - 1.25) after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio-economic predictors. Although we found an independent

  15. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES

    Directory of Open Access Journals (Sweden)

    Kavanagh Anne M

    2009-05-01

    Full Text Available Abstract Background While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES – a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. Methods The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut. Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant. Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions as well as individual and area socio-economic characteristics. Results Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 – 1.25 after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio

  16. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  17. [Hygienic assessment of student's nutrition through vending machines (fast food)].

    Science.gov (United States)

    Karelin, A O; Pavlova, D V; Babalyan, A V

    2015-01-01

    The article presents the results of a research work on studying the nutrition of students through vending machines (fast food), taking into account consumer priorities of students of medical University, the features and possible consequences of their use by students. The object of study was assortment of products sold through vending machines on the territory of the First Saint-Petersburg Medical University. Net calories, content of proteins, fats and carbohydrates, glycemic index, glycemic load were determined for each product. Information about the use of vending machines was obtained by questionnaires of students 2 and 4 courses of medical and dental faculties by standardized interview method. As was found, most sold through vending machines products has a high energy value, mainly due to refined carbohydrates, and was characterized by medium and high glycemic load. They have got low protein content. Most of the students (87.3%) take some products from the vending machines, mainly because of lack of time for canteen and buffets visiting. Only 4.2% students like assortment of vending machines. More than 50% students have got gastrointestinal complaints. Statistically significant relationship between time of study at the University and morbidity of gastrointestinal tract, as well as the number of students needing medical diet nutrition was found. The students who need the medical diet use fast food significantly more often (46.6% who need the medical diet and 37.7% who don't need it).

  18. Venom Protein C activators as diagnostic agents for defects of protein C System.

    Science.gov (United States)

    Ramzan, Faiqah; Asmat, Andleeb

    2018-06-18

    Background Protein C is a vitamin K dependent plasma zymogen. It prevents clotting by inhibiting clotting by inactivating factor V and factor VIII. Protein C activation pathway involves three steps: (i) Activation of protein C; (ii) Inhibition of coagulation through inactivating factor V and VIII by activated protein C and (iii) Inhibition of activated protein C by plasma protease inhibitors specific for this enzyme. Proteinases converts the zymogen Protein C (PC) of vertebrates into activated PC, which has been detected in several snake venoms. Most PC activators have been purified from venom of snake species belonging to the genera of the Agkistrodon complex. Unlike the physiological thrombin-catalyzed PC activation reaction which requires thrombomodulin as a cofactor, most snake venom activators directly convert the zymogen PC into the catalytically active form which can easily be determined by means of coagulation or chromogenic substrate techniques. Conclusion The fast-acting PC activator Protac® from Agkistrodon contortrix (southern copperhead snake) venom has been found to have broad application in diagnostic practice for the determination of disorders in the PC pathway. Recently, screening assays for the PC pathway have been introduced, based on the observation that the PC pathway is probably the most important physiological barrier against thrombosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wrzesinski, Krzysztof; Larsen, Peter Mose

    2003-01-01

    quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting...... synthase beta-subunit phosphoisoform in diabetic muscle correlated inversely with fasting plasma glucose levels. These data suggest a role for phosphorylation of ATP synthase beta-subunit in the regulation of ATP synthesis and that alterations in the regulation of ATP synthesis and cellular stress proteins...

  20. Effects of wastewater sludge and its detergents on the stability of rotavirus

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L. (Sandia Labs., Albuquerque, NM); Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium.

  1. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  2. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  3. Acute metabolic response to fasted and postprandial exercise

    Directory of Open Access Journals (Sweden)

    Lima FD

    2015-08-01

    Full Text Available Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB, Brasília, DF, BrazilAbstract: The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial, with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%, 9.97 g of protein (12.90%, 8.01 g of lipids (10.37%, with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase

  4. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  5. Protein intrinsic disorder in plants.

    Science.gov (United States)

    Pazos, Florencio; Pietrosemoli, Natalia; García-Martín, Juan A; Solano, Roberto

    2013-09-12

    To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously) with different partners. Similarly, they also serve as signal integrators in signaling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms cannot escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  6. Postprandial Triglyceride Is Associated with Fasting Triglyceride and HOMA-IR in Korean Subjects with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Seo Hee Lee

    2011-08-01

    Full Text Available BackgroundRecent studies indicate postprandial triglyceride (TG had a better association with cardiovascular events and metabolic syndrome than fasting TG. The authors of the present study investigated the metabolic and clinical relevance of postprandial TG.MethodsIn a cross-sectional retrospective study, the authors of the present study compared fasting and postprandial TG and analyzed the relationship between postprandial TG and various demographic and metabolic parameters in 639 Korean subjects with type 2 diabetes (T2D, group I, n=539 and impaired fasting glucose (IFG, group II, n=100 after ingestion of a standardized liquid meal (total 500 kcal, 17.5 g fat, 68.5 g carbohydrate, and 17.5 g protein.ResultsFasting and postprandial TG were significantly correlated (r=0.973, r=0.937, P<0.001 in group I and II, respectively. Of the variables, total cholesterol, waist circumference and body mass index were significantly correlated with fasting and postprandial TG in both groups. Only postprandial TG showed a significant correlation with glucose metabolic parameters (e.g., postprandial glucose, homeostatic model assessment of insulin resistance [HOMA-IR], and fasting C-peptide in subjects with T2D. Multiple regression analysis showed fasting TG and HOMA-IR could be predictable variables for postprandial TG in subjects with T2D.ConclusionPostprandial TG was very strongly correlated with fasting TG. The authors of the present study suggest insulin resistance may be more associated with postprandial TG than fasting TG in Korean T2D patients on a low-fat diet.

  7. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    Science.gov (United States)

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  8. Islamic fasting and multiple sclerosis

    Science.gov (United States)

    2014-01-01

    Background Month-long daytime Ramadan fasting pose s major challenges to multiple sclerosis (MS) patients in Muslim countries. Physicians should have practical knowledge on the implications of fasting on MS. We present a summary of database searches (Cochrane Database of Systematic Reviews, PubMed) and a mini-symposium on Ramadan fasting and MS. In this symposium, we aimed to review the effect of fasting on MS and suggest practical guidelines on management. Discussion In general, fasting is possible for most stable patients. Appropriate amendment of drug regimens, careful monitoring of symptoms, as well as providing patients with available evidence on fasting and MS are important parts of management. Evidence from experimental studies suggests that calorie restriction before disease induction reduces inflammation and subsequent demyelination and attenuates disease severity. Fasting does not appear to have unfavorable effects on disease course in patients with mild disability (Expanded Disability Status Scale (EDSS) score ≤3). Most experts believed that during fasting (especially in summer), some MS symptoms (fatigue, fatigue perception, dizziness, spasticity, cognitive problems, weakness, vision, balance, gait) might worsen but return to normal levels during feasting. There was a general consensus that fasting is not safe for patients: on high doses of anti-convulsants, anti-spastics, and corticosteroids; with coagulopathy or active disease; during attacks; with EDSS score ≥7. Summary These data suggest that MS patients should have tailored care. Fasting in MS patients is a challenge that is directly associated with the spiritual belief of the patient. PMID:24655543

  9. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    Science.gov (United States)

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Dounreay fast reactor

    International Nuclear Information System (INIS)

    Maclennan, R.; Eggar, T.; Skeet, T.

    1992-01-01

    The short debate which followed a private notice question asking for a statement on Government policy on the future of the European fast breeder nuclear research programme is reported verbatim. In response to the question, the Minister for Energy said that the Government had decided in 1988 that the Dounreay prototype fast reactor would close in 1994. That decision had been confirmed. Funding of fast breeder research and development beyond 1993 is not a priority as commercialization is not expected until well into the next century. Dounreay will be supported financially until 1994 and then for its subsequent decommissioning and reprocessing of spent fuel. The debate raised issues such as Britain losing its lead in fast breeder research, loss of jobs and the Government's nuclear policy in general. However, the Government's position was that the research had reached a stage where it could be left and returned to in the future. (UK)

  11. Knowledge management in fast reactors

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Satya Murty, S.A.V.; Swaminathan, P.; Raj, Baldev

    2010-01-01

    This paper highlights the work that is being carried out in Knowledge Management of Fast Reactors at Indira Gandhi Centre for Atomic Research (IGCAR) including a few examples of how the knowledge acquired because of various incidents in the initial years has been utilized for the successful operation of Fast Breeder Test Reactor. It also briefly refers to the features of the IAEA initiative on the preservation of Knowledge in the area of Fast Reactors in the form of 'Fast Reactor Knowledge Organization System' (FR-KOS), which is based on a taxonomy for storage and mining of Fast Reactor Knowledge. (author)

  12. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    OpenAIRE

    Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R; Horel, Scott A

    2011-01-01

    Abstract Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environmen...

  13. FastScatTM: An Object-Oriented Program for Fast Scattering Computation

    Directory of Open Access Journals (Sweden)

    Lisa Hamilton

    1993-01-01

    Full Text Available FastScat is a state-of-the-art program for computing electromagnetic scattering and radiation. Its purpose is to support the study of recent algorithmic advancements, such as the fast multipole method, that promise speed-ups of several orders of magnitude over conventional algorithms. The complexity of these algorithms and their associated data structures led us to adopt an object-oriented methodology for FastScat. We discuss the program's design and several lessons learned from its C++ implementation including the appropriate level for object-orientedness in numeric software, maintainability benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.

  14. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  15. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  16. Comprehensive modulation of tumor progression and regression with periodic fasting and refeeding circles via boosting IGFBP-3 loops and NK responses.

    Science.gov (United States)

    Chen, Xiancheng; Lin, Xiaojuan; Li, Meng

    2012-10-01

    Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.

  17. RFP tags for labeling secretory pathway proteins

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liyang; Zhao, Yanhua [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Xi; Peng, Jianxin [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Xu, Pingyong, E-mail: pyxu@ibp.ac.cn [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Huan, Shuangyan, E-mail: shuangyanhuan@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Mingshu, E-mail: mingshu1984@gmail.com [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.

  18. Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food.

    Science.gov (United States)

    Goldstone, Anthony P; Prechtl, Christina G; Scholtz, Samantha; Miras, Alexander D; Chhina, Navpreet; Durighel, Giuliana; Deliran, Seyedeh S; Beckmann, Christian; Ghatei, Mohammad A; Ashby, Damien R; Waldman, Adam D; Gaylinn, Bruce D; Thorner, Michael O; Frost, Gary S; Bloom, Stephen R; Bell, Jimmy D

    2014-06-01

    Ghrelin, which is a stomach-derived hormone, increases with fasting and energy restriction and may influence eating behaviors through brain hedonic reward-cognitive systems. Therefore, changes in plasma ghrelin might mediate counter-regulatory responses to a negative energy balance through changes in food hedonics. We investigated whether ghrelin administration (exogenous hyperghrelinemia) mimics effects of fasting (endogenous hyperghrelinemia) on the hedonic response and activation of brain-reward systems to food. In a crossover design, 22 healthy, nonobese adults (17 men) underwent a functional magnetic resonance imaging (fMRI) food-picture evaluation task after a 16-h overnight fast (Fasted-Saline) or after eating breakfast 95 min before scanning (730 kcal, 14% protein, 31% fat, and 55% carbohydrate) and receiving a saline (Fed-Saline) or acyl ghrelin (Fed-Ghrelin) subcutaneous injection before scanning. One male subject was excluded from the fMRI analysis because of excess head motion, which left 21 subjects with brain-activation data. Compared with the Fed-Saline visit, both ghrelin administration to fed subjects (Fed-Ghrelin) and fasting (Fasted-Saline) significantly increased the appeal of high-energy foods and associated orbitofrontal cortex activation. Both fasting and ghrelin administration also increased hippocampus activation to high-energy- and low-energy-food pictures. These similar effects of endogenous and exogenous hyperghrelinemia were not explicable by consistent changes in glucose, insulin, peptide YY, and glucagon-like peptide-1. Neither ghrelin administration nor fasting had any significant effect on nucleus accumbens, caudate, anterior insula, or amygdala activation during the food-evaluation task or on auditory, motor, or visual cortex activation during a control task. Ghrelin administration and fasting have similar acute stimulatory effects on hedonic responses and the activation of corticolimbic reward-cognitive systems during food

  19. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Effie Viguiliouk

    2015-12-01

    Full Text Available Previous research on the effect of replacing sources of animal protein with plant protein on glycemic control has been inconsistent. We therefore conducted a systematic review and meta-analysis of randomized controlled trials (RCTs to assess the effect of this replacement on glycemic control in individuals with diabetes. We searched MEDLINE, EMBASE, and Cochrane databases through 26 August 2015. We included RCTs ≥ 3-weeks comparing the effect of replacing animal with plant protein on HbA1c, fasting glucose (FG, and fasting insulin (FI. Two independent reviewers extracted relevant data, assessed study quality and risk of bias. Data were pooled by the generic inverse variance method and expressed as mean differences (MD with 95% confidence intervals (CIs. Heterogeneity was assessed (Cochran Q-statistic and quantified (I2-statistic. Thirteen RCTs (n = 280 met the eligibility criteria. Diets emphasizing a replacement of animal with plant protein at a median level of ~35% of total protein per day significantly lowered HbA1c (MD = −0.15%; 95%-CI: −0.26, −0.05%, FG (MD = −0.53 mmol/L; 95%-CI: −0.92, −0.13 mmol/L and FI (MD = −10.09 pmol/L; 95%-CI: −17.31, −2.86 pmol/L compared with control arms. Overall, the results indicate that replacing sources of animal with plant protein leads to modest improvements in glycemic control in individuals with diabetes. Owing to uncertainties in our analyses there is a need for larger, longer, higher quality trials. Trial Registration: ClinicalTrials.gov registration number: NCT02037321.

  20. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly.

    Directory of Open Access Journals (Sweden)

    Kendal Prill

    Full Text Available The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf, supporting SMYD1b as an assembly protein during sarcomere formation.

  1. Identification and quantitation of signal molecule-dependent protein phosphorylation

    KAUST Repository

    Groen, Arnoud J.

    2013-09-03

    Phosphoproteomics is a fast-growing field that aims at characterizing phosphorylated proteins in a cell or a tissue at a given time. Phosphorylation of proteins is an important regulatory mechanism in many cellular processes. Gel-free phosphoproteome technique involving enrichment of phosphopeptide coupled with mass spectrometry has proven to be invaluable to detect and characterize phosphorylated proteins. In this chapter, a gel-free quantitative approach involving 15N metabolic labelling in combination with phosphopeptide enrichment by titanium dioxide (TiO2) and their identification by MS is described. This workflow can be used to gain insights into the role of signalling molecules such as cyclic nucleotides on regulatory networks through the identification and quantification of responsive phospho(proteins). © Springer Science+Business Media New York 2013.

  2. A surprising role for conformational entropy in protein function

    Science.gov (United States)

    Wand, A. Joshua; Moorman, Veronica R.; Harpole, Kyle W.

    2014-01-01

    Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a grand challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to experimentally access is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned and what the future may hold for this emerging view of protein function. PMID:23478875

  3. Energy and Protein Supplementation Does Not Affect Protein and Amino Acid Kinetics or Pregnancy Outcomes in Underweight Indian Women.

    Science.gov (United States)

    Dwarkanath, Pratibha; Hsu, Jean W; Tang, Grace J; Anand, Pauline; Thomas, Tinku; Thomas, Annamma; Sheela, C N; Kurpad, Anura V; Jahoor, Farook

    2016-02-01

    In India, the prevalence of low birth weight is high in women with a low body mass index (BMI), suggesting that underweight women are not capable of providing adequate energy and protein for fetal growth. Furthermore, as pregnancy progresses, there is increased need to provide methyl groups for methylation reactions associated with the synthesis of new proteins and, unlike normal-BMI American women, low-BMI Indian women are unable to increase methionine transmethylation and remethylation rates as pregnancy progresses from trimester 1 to 3. This also negatively influences birth weight. The aim was to determine the effect of dietary supplementation with energy and protein from 12 ± 1 wk of gestation to time of delivery compared with no supplement on pregnancy outcomes, protein kinetics, and the fluxes of the methyl group donors serine and glycine. Protein kinetics and serine and glycine fluxes were measured by using standard stable isotope tracer methods in the fasting and postprandial states in 24 pregnant women aged 22.9 ± 0.7 y with low BMIs [BMI (in kg/m(2)) ≤18.5] at 12 ± 1 wk (trimester 1) and 30 ± 1 wk (trimester 3) of gestation. After the first measurement, subjects were randomly assigned to either receive the supplement (300 kcal/d, 15 g protein/d) or no supplement. Supplementation had no significant effect on any variable of pregnancy outcome, and except for fasting state decreases in leucine flux (125 ± 7.14 compared with 113 ± 5.06 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.04) and nonoxidative disposal (110 ± 6.97 compared with 101 ± 3.69 μmol ⋅ kg(-1) ⋅ h(-1); P = 0.02) from trimesters 1 to 3, it had no effect on any other leucine kinetic variable or urea, glycine, and serine fluxes. We conclude that in Indian women with a low BMI, supplementation with energy and protein from week 12 of pregnancy to time of delivery does not improve pregnancy outcome, whole-body protein kinetics, or serine and glycine fluxes. © 2016 American Society for Nutrition.

  4. Causes And Effects Of Fast Food

    OpenAIRE

    Eman Al-Saad

    2015-01-01

    Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  5. NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    Directory of Open Access Journals (Sweden)

    Joost Overduin

    2015-04-01

    Design: Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY] responses were monitored in nine male Wistar rats following isocaloric (11 kcal meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein. Results: In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions: These results indicate that 1 pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2 pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals.

  6. Protein Electrochemistry: Questions and Answers.

    Science.gov (United States)

    Fourmond, V; Léger, C

    This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode. The experiments can be performed with the goal to study the protein or to use it. Here emphasis is on mechanistic studies, which are easier in the configuration where the protein is adsorbed and electron transfer is direct, but we also explain the interpretation of signals obtained when diffusion processes affect the response.This chapter is organized as a series of responses to questions. Questions 1-5 are related to the basics of electrochemistry: what does "potential" or "current" mean, what does an electrochemical set-up look like? Questions 6-9 are related to the distinction between adsorbed and diffusive redox species. The answers to questions 10-13 explain the interpretation of slow and fast scan voltammetry with redox proteins. Questions 14-19 deal with catalytic electrochemistry, when the protein studied is actually an enzyme. Questions 20, 21 and 22 are general.

  7. Nutrition and protein energy homeostasis in elderly.

    Science.gov (United States)

    Boirie, Yves; Morio, Béatrice; Caumon, Elodie; Cano, Noël J

    2014-01-01

    Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Protein mechanics: a route from structure to function

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    and how fast individual amino acid side chains change their conformational ... within the overall protein structure, we could simply analyze the fluctuations of the mean ... value simply acts as an overall scale factor on the final results). In this case .... database (Porter et al 2004) or in an earlier elastic network study (Yang and ...

  9. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  10. Fast-food and full-service restaurant consumption among children and adolescents: effect on energy, beverage, and nutrient intake.

    Science.gov (United States)

    Powell, Lisa M; Nguyen, Binh T

    2013-01-01

    To examine the effect of fast-food and full-service restaurant consumption on total energy intake, dietary indicators, and beverage consumption. Individual-level fixed-effects estimation based on 2 nonconsecutive 24-hour dietary recalls. Nationally representative data from the 2003-2004, 2005-2006, and 2007-2008 National Health and Nutrition Examination Survey. Children aged 2 to 11 years (n = 4717) and adolescents aged 12 to 19 years (n = 4699). Daily total energy intake in kilocalories; intake of grams of sugar, total fat, saturated fat, and protein and milligrams of sodium; and total grams of sugar-sweetened beverages, regular soda, and milk consumed. Fast-food and full-service restaurant consumption, respectively, was associated with a net increase in daily total energy intake of 126.29 kcal and 160.49 kcal for children and 309.53 kcal and 267.30 kcal for adolescents and with higher intake of regular soda (73.77 g and 88.28 g for children and 163.67 g and 107.25 g for adolescents) and sugar-sweetened beverages generally. Fast-food consumption increased intake of total fat (7.03-14.36 g), saturated fat (1.99-4.64 g), and sugar (5.71-16.24 g) for both age groups and sodium (396.28 mg) and protein (7.94 g) for adolescents. Full-service restaurant consumption was associated with increases in all nutrients examined. Additional key findings were (1) adverse effects on diet were larger for lower-income children and adolescents and (2) among adolescents, increased soda intake was twice as large when fast food was consumed away from home than at home. Fast-food and full-service restaurant consumption is associated with higher net total energy intake and poorer diet quality.

  11. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  12. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  13. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    International Nuclear Information System (INIS)

    Rodrigues, G.A.; Moraes, V.M.B.; Cherici, I; Furlan, R.L.; Macari, M.

    1991-01-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T 4 and T 3 concentrations irrespective of protein intake, except T 4 level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs

  14. Effects of previous protein intake on rectal temperature, blood glucose, plasma thyroid hormone and minerals by laying hens during a forced molt

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G A; Moraes, V M.B.; Cherici, I; Furlan, R L; Macari, M [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    1991-12-01

    The effects of forced molting on blood glucose, rectal temperature, plasma T4, T3 and minerals were studied in hens previously fed rations with different protein contents (14, 17 and 20% crude protein). Blood samples were obtained from brachial veins for blood glucose, T4 and T3 were measured by radioimmunoassay, and plasma minerals were determined by atomic absorption spectroscopy. Blood glucose and rectal temperature were reduced during fasting regardless of previous protein intake. Pre molting T4 plasma level was higher in laying hens fed higher protein ration, but feed deprivation reduced T{sub 4} and T{sub 3} concentrations irrespective of protein intake, except T{sub 4} level for 14% crude protein fed birds that increased during fasting. The data obtained in this experiment suggest that previous protein intake does not interfere with the metabolic changes during forced molt. (author). 19 refs, 1 fig, 4 tabs.

  15. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Mirasari [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Syamsunarno, Mas Rizky A.A. [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Department of Biochemistry, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, West Java 45363 (Indonesia); Iso, Tatsuya, E-mail: isot@gunma-u.ac.jp [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamaguchi, Aiko; Hanaoka, Hirofumi [Department of Bioimaging Information Analysis, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Sunaga, Hiroaki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Koitabashi, Norimichi [Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Matsui, Hiroki [Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamazaki, Chiho; Kameo, Satomi [Department of Public Health, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Tsushima, Yoshito [Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); and others

    2015-02-20

    Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36{sup −/−} mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36{sup −/−} mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue {sup 125}I-BMIPP and the glucose analogue {sup 18}F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36{sup −/−} mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36{sup −/−} mice after cold exposure. These findings strongly suggest that CD36{sup −/−} mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation. - Highlights: • We examined the role of CD36 in thermogenesis during cold exposure. • CD36{sup −/−} mice exhibit rapid hypothermia after cold exposure during fasting. • Uptake of fatty acid and glucose is impaired in thermogenic tissues during fasting. • Storage of energy substrates is

  16. Relationships between obesity, lipids and fasting glucose in the menopause.

    Science.gov (United States)

    Netjasov, Aleksandra Simoncig; Vujović, Svetlana; Ivović, Miomira; Tancić-Gajić, Milina; Marina, Ljiljana; Barać, Marija

    2013-01-01

    Menopause leads to the development of central adiposity, a more atherogenic lipid profile and increased incidence of metabolic syndrome independent of age and other factors. The aim of the study was to investigate the relationships between anthropometric characteristics, sex hormones, lipids and fasting glucose in menopausal women. The study included 87 menopausal women, who where divided into groups according to two criteria: BMI > or = 26.7 kg/m2 and BMI > or = 25 kg/m2. Anthropometric characteristics and blood pressure were measured. Blood was taken at 08.00 h for fasting glucose, triglycerides, cholesterol, HDL, LDL, apolipoprotein A, apolipoprotein B, lipoprotein(a) (Lp(a)), C-reactive protein, fibrinogen, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol, progesterone, testosterone and sex hormone binding globulin (SHBG). Significant differences between groups were found for weight, BMI, waist, hips circumference, waist/hip ratio (WHR), systolic and diastolic blood pressure, Lp(a), FSH, LH, PRL (for systolic blood pressure p fasting glucose (p obese and overweight women with BMI > or = 26.7 kg/m2 significant negative correlations were found for FSH and glucose, SHBG and LDL, SHBG and total cholesterol, SHBG and glucose, BMI and HDL, WC and HDL. In obese and overweight women with BMI > or = 25 kg/m2 significant negative correlations were found for BMI and HDL, waist circumference (WC) and HDL, WHR and HDL, FSH and glucose, SHBG and glucose; significant positive correlations were between BMI and glucose, WC and glucose and WHR with triglycerides. Gaining weight and decreased SHBG are related to dyslipidemia and increased fasting glucose confirming increased incidence of metabolic abnormalities in the menopause.

  17. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibito...

  18. Causes And Effects Of Fast Food

    Directory of Open Access Journals (Sweden)

    Eman Al-Saad

    2015-08-01

    Full Text Available Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  19. Alcohol-extracted, but not intact, dietary soy protein lowers lipoprotein(a) markedly

    DEFF Research Database (Denmark)

    Meinertz, Hans; Nilausen, Karin; Hilden, Jørgen

    2002-01-01

    We previously found that dietary soy protein produces higher lipoprotein(a) [Lp(a)] plasma concentrations than does casein. This study tested the hypothesis that soy protein contains Lp(a)-raising alcohol-removable components. Twelve normolipidemic women and men consumed, in a crossover design......, liquid-formula diets containing casein, soy protein, or alcohol-extracted soy protein. Dietary periods of 32 days were separated by washout periods on self-selected diets. Fasting lipid and Lp(a) levels were measured throughout. Median Lp(a) concentration was >2-fold greater after 28 to 32 days on a soy...... protein diet than after an extracted soy protein diet (Psoy protein diets were virtually identical. Women and men responded similarly. When the switch was made from a self-selected to a soy protein diet, median Lp(a) concentration increased 16...

  20. Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems.

    Directory of Open Access Journals (Sweden)

    Wenlin An

    Full Text Available Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI with a destabilizing domain (DD specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models.

  1. Experimental and numerical studies of the fast ions confined in TFR 600 during fast neutrals injection

    International Nuclear Information System (INIS)

    Gagey, B.

    1980-08-01

    We present a comparison between experimental fast neutrals spectrum measured with a very simple electrostatic analyzer which has been absolutely calibrated, spectrum obtained during fast neutrals injection in TFR 600, and numerical fast neutrals spectrum obtained from a modified Monte-Carlo calculation code. This comparison allows us to draw important conclusions on the fast ions behavior in the plasma

  2. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  3. Comparison between analyzed and calculated nutrient content of fast foods using two consecutive versions of the Danish food composition databank: FOODCOMP and FRIDA

    DEFF Research Database (Denmark)

    Biltoft-Jensen, Anja Pia; Knuthsen, Pia; Saxholt, Erling

    2017-01-01

    -to-eat fast foods were collected from fast food outlets, separated into their components and weighed. Typical components were bread, French fries, vegetables, meat and dressings. The fast foods were analyzed, and energy, protein, saturated fat, iron, thiamin, potassium and sodium contents were compared......The objective of this study was to compare the content of selected nutrients of fast foods determined by chemical analysis versus estimated by recipe calculation based on data from two versions of the Danish food composition databank, FOODCOMP and the latest FRIDA. A total of 155 samples of ready....... For the individual fast foods, the error percentages were both acceptable (50%). Future challenges for the databank in relation to recipe calculation are to include more varieties, a better coverage of foods used as ingredients, and inclusion of analytical values of mixed dishes...

  4. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  5. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  6. Predictors of Ramadan fasting during pregnancy

    Directory of Open Access Journals (Sweden)

    Lily A. van Bilsen

    2016-12-01

    Full Text Available Although the health effects of Ramadan fasting during pregnancy are still unclear, it is important to identify the predictors and motivational factors involved in women’s decision to observe the fast. We investigated these factors in a cross sectional study of 187 pregnant Muslim women who attended antenatal care visits in the Budi Kemuliaan Hospital, Jakarta, Indonesia. The odds of adherence to fasting were reduced by 4% for every week increase in gestational age during Ramadan [odds ratio (OR 0.96; 95% confidence interval (CI 0.92, 1.00; p = 0.06] and increased by 10% for every one unit increase of women’s prepregnancy body mass index (BMI (OR 1.10; 95% CI 0.99, 1.23; p = 0.08. Nonparticipation was associated with opposition from husbands (OR 0.34; 95% CI 0.14, 0.82; p = 0.02 and with women’s fear of possible adverse effects of fasting on their own or the baby’s health (OR 0.47; 95% CI 0.22, 1.01; p = 0.05 and OR 0.43; 95% CI 0.21, 0.89; p = 0.02, respectively, although they were attenuated in multivariable analysis. Neither age, income, education, employment, parity, experience of morning sickness, nor fasting during pregnancy outside of Ramadan determined fasting during pregnancy. Linear regression analysis within women who fasted showed that the number of days fasted were inversely associated with women’s gestational age, fear of possible adverse effects of fasting on their own or the fetal health, and with opposition from husbands. In conclusion, earlier gestational age during Ramadan, husband’s opinion and possibly higher prepregnancy BMI, influence women’s adherence to Ramadan fasting during pregnancy. Fear of adverse health effects of Ramadan fasting is common in both fasting and non-fasting pregnant women.

  7. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  8. Protein intrinsic disorder in plants

    Directory of Open Access Journals (Sweden)

    Florencio ePazos

    2013-09-01

    Full Text Available To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity. In concordance, in plants this type of proteins has been found in processes requiring these complex and versatile interaction networks. These include transcription factor networks, where disordered proteins act as integrators of different signals or link different transcription factor subnetworks due to their ability to interact (in many cases simultaneously with different partners. Similarly, they also serve as signal integrators in signalling cascades, such as those related to response to external stimuli. Disordered proteins have also been found in plants in many stress-response processes, acting as protein chaperones or protecting other cellular components and structures. In plants, it is especially important to have complex and versatile networks able to quickly and efficiently respond to changing environmental conditions since these organisms can not escape and have no other choice than adapting to them. Consequently, protein disorder can play an especially important role in plants, providing them with a fast mechanism to obtain complex, interconnected and versatile molecular networks.

  9. Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans.

    Science.gov (United States)

    Ihara, Akiko; Uno, Masaharu; Miyatake, Koichi; Honjoh, Sakiko; Nishida, Eisuke

    2017-01-01

    Cholesterol has attracted significant attention as a possible lifespan regulator. It has been reported that serum cholesterol levels have an impact on mortality due to age-related disorders such as cardiovascular disease. Diet is also known to be an important lifespan regulator. Dietary restriction retards the onset of age-related diseases and extends lifespan in various organisms. Although cholesterol and dietary restriction are known to be lifespan regulators, it remains to be established whether cholesterol is involved in dietary restriction-induced longevity. Here, we show that cholesterol deprivation suppresses longevity induced by intermittent fasting, which is one of the dietary restriction regimens that effectively extend lifespan. We also found that cholesterol is required for the fasting-induced upregulation of transcriptional target genes such as the insulin/IGF-1 pathway effector DAF-16 and that cholesterol deprivation suppresses the long lifespan of the insulin/IGF-1 receptor daf-2 mutant. Remarkably, we found that cholesterol plays an important role in the fasting-induced nuclear accumulation of DAF-16. Moreover, knockdown of the cholesterol-binding protein NSBP-1, which has been shown to bind to DAF-16 in a cholesterol-dependent manner and to regulate DAF-16 activity, suppresses both fasting-induced longevity and DAF-16 nuclear accumulation. Furthermore, this suppression was not additive to the cholesterol deprivation-induced suppression, which suggests that NSBP-1 mediates, at least in part, the action of cholesterol to promote fasting-induced longevity and DAF-16 nuclear accumulation. These findings identify a novel role for cholesterol in the regulation of lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Fast Simulation Chain for ATLAS

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2016-01-01

    In order to generate the huge number of Monte Carlo events that will be required by the ATLAS experiment over the next several runs, a very fast simulation is critical. Fast detector simulation alone, however, is insufficient: with very high numbers of simultaneous proton-proton collisions expected in Run 3 and beyond, the digitization (detector response emulation) and event reconstruction time quickly become comparable to the time required for detector simulation. The ATLAS Fast Chain simulation has been developed to solve this problem. Modules are implemented for fast simulation, fast digitization, and fast track reconstruction. The application is sufficiently fast -- several orders of magnitude faster than the standard simulation -- that the simultaneous proton-proton collisions can be generated during the simulation job, so Pythia8 also runs concurrently with the rest of the algorithms. The Fast Chain has been built to be extremely modular and flexible, so that each sample can be custom-tailored to match ...

  11. mKikGR, a monomeric photoswitchable fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Satoshi Habuchi

    Full Text Available The recent demonstration and utilization of fluorescent proteins whose fluorescence can be switched on and off has greatly expanded the toolkit of molecular and cell biology. These photoswitchable proteins have facilitated the characterization of specifically tagged molecular species in the cell and have enabled fluorescence imaging of intracellular structures with a resolution far below the classical diffraction limit of light. Applications are limited, however, by the fast photobleaching, slow photoswitching, and oligomerization typical for photoswitchable proteins currently available. Here, we report the molecular cloning and spectroscopic characterization of mKikGR, a monomeric version of the previously reported KikGR that displays high photostability and switching rates. Furthermore, we present single-molecule imaging experiments that demonstrate that individual mKikGR proteins can be localized with a precision of better than 10 nanometers, suggesting their suitability for super-resolution imaging.

  12. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  13. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  14. Fast-track totalknæalloplastik

    DEFF Research Database (Denmark)

    Gromov, Kirill; Kristensen, Billy B; Jørgensen, Christoffer Calov

    2017-01-01

    patients are eligible for fast-track TKA, and hence the fast-track concept should be standard at all joint replacement facilities. Future challenges of fast-track TKA include safe introduction of outpatient protocols, acute and chronic pain after surgery and optimal utilization of post......Fast-track total knee arthroplasty (TKA) is a well-established concept including optimized logistics and evidence-based treatment, focusing on minimizing surgical stress and improved post-operative recovery, thus leading to lower mortality and morbidity as well as high patient satisfaction. All...

  15. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  16. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  17. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  18. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  19. Computational identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Gsponer, Jörg

    2015-06-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVMS, is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVMT, is used to identify similarities between regions in a query sequence and MoRFs of the training set. We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. http://www.chibi.ubc.ca/morf/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Targeted mass spectrometry analysis of the proteins IGF1, IGF2, IBP2, IBP3 and A2GL by blood protein precipitation

    DEFF Research Database (Denmark)

    Such-Sanmartín, Gerard; Bache, Nicolai; Callesen, Anne K

    2015-01-01

    aggravated when using fast high-throughput methods, which are necessary for analysis of hundreds and thousands of samples in clinical laboratories. The blood proteins IGF1, IGF2, IBP2, IBP3 and A2GL have been proposed as indirect biomarkers for detection of GH administration and as putative biomarkers...