Blossier, B; Brinet, M; De Soto, F; Du, X; Gravina, M; Liu, Z; Morenas, V; Pène, O; Petrov, K; Rodríguez-Quintero, J
2011-01-01
We study RI/MOM renormalization constants of bilinear quark operators for $N_f=4$ and the strong coupling constant for $N_f=2+1+1$ using Wilson twisted-mass fermions. We use the "egalitarian" method to remove H(4) hypercubic artifacts non-perturbatively, which enables us to study physical quantities in a wide range of momenta. We then apply OPE in studying the running behavior of $Z_q$ and $\\alpha_s$, from which we are able to extract the Landau gauge dimension-two gluon condensate $$ which is of phenomenological interest.
Elias-Miro, Joan; Vitale, Lorenzo G.
Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique to solve strongly coupled QFTs in d=2 spacetime dimensions. Further theoretical developments are needed to increase its accuracy and the range of applicability. With this goal in mind, here we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the UV cutoff than other existing implementations, and yields more accurate spectra. The key idea for achieving this consists in integrating out exactly a certain class of high energy states, which corresponds to performing renormalization at the cubic order in the interaction strength. We test the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d >= 3.
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
Renormalization of the hydrogen sulfide properties due to the strong electron-phonon interaction
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.
2017-01-01
The normal state of a metal is described by generalized Eliashberg theory which takes into account the finite width of an electron band, strong electron-phonon coupling and electron-hole nonequivalence. Reconstructed parameters of the conduction band of the metallic hydrogen sulfide for both the real and imaginary parts of the mass renormalization of the electron Green’s function and the real and imaginary parts of the renormalization of the chemical potential have been found.
Strong parameter renormalization from optimum lattice model orbitals
Brosco, Valentina; Ying, Zu-Jian; Lorenzana, José
2017-01-01
Which is the best single-particle basis to express a Hubbard-like lattice model? A rigorous variational answer to this question leads to equations the solution of which depends in a self-consistent manner on the lattice ground state. Contrary to naive expectations, for arbitrary small interactions, the optimized orbitals differ from the noninteracting ones, leading also to substantial changes in the model parameters as shown analytically and in an explicit numerical solution for a simple double-well one-dimensional case. At strong coupling, we obtain the direct exchange interaction with a very large renormalization with important consequences for the explanation of ferromagnetism with model Hamiltonians. Moreover, in the case of two atoms and two fermions we show that the optimization equations are closely related to reduced density-matrix functional theory, thus establishing an unsuspected correspondence between continuum and lattice approaches.
Nonlinear magnetoplasmons in strongly coupled Yukawa plasmas
Bonitz, M; Ott, T; Kaehlert, H; Hartmann, P
2010-01-01
The existence of plasma oscillations at multiples of the magnetoplasmon frequency in a strongly coupled two-dimensional magnetized Yukawa plasma is reported, based on extensive molecular dynamics simulations. These modes are the analogues of Bernstein modes which are renormalized by strong interparticle correlations. Their properties are theoretically explained by a dielectric function incorporating the combined effect of a magnetic field, strong correlations and finite temperature.
Strong Coupling and Classicalization
Dvali, Gia
2016-01-01
Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...
Bonometto, S A; Musco, I; Mainini, R; Maccio', A V
2014-01-01
Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Tokuyama, Michio
2017-01-01
The renormalized simplified model is proposed to investigate indirectly how the static structure factor plays an important role in renormalizing a quadratic nonlinear term in the ideal mode-coupling memory function near the glass transition. The renormalized simplified recursion equation is then derived based on the time-convolutionless mode-coupling theory (TMCT) proposed recently by the present author. This phenomenological approach is successfully applied to check from a unified point of view how strong liquids are different from fragile liquids. The simulation results for those two types of liquids are analyzed consistently by the numerical solutions of the recursion equation. Then, the control parameter dependence of the renormalized nonlinear exponent in both types of liquids is fully investigated. Thus, it is shown that there exists a novel difference between the universal behavior in strong liquids and that in fragile liquids not only for their transport coefficients but also for their dynamics.
Gauge coupling renormalization in RS1
Agashe, K.; Delgado, A.; Sundrum, R.
2002-11-01
We compute the 4D low energy effective gauge coupling at one-loop order in the compact Randall-Sundrum scenario with bulk gauge fields and charged matter, within controlled approximations. While such computations are subtle, they can be important for studying phenomenological issues such as grand unification. Ultraviolet divergences are cut-off using Pauli-Villars regularization so as to respect 5D gauge and general coordinate invariance. The structure of these divergences on branes and in the bulk is elucidated by a 5D position-space analysis. The remaining finite contributions are obtained by a careful analysis of the Kaluza-Klein spectrum. We comment on the agreement between our results and expectations based on the AdS/CFT correspondence, in particular logarithmic sensitivity to the 4D Planck scale.
Strong-Coupling $\\phi^4$-Theory in $4- \\epsilon$ Dimensions and Critical Exponents
Kleinert, Hagen
1998-01-01
With the help of variational perturbation theory we continue the renormalization constants $\\phi^4$-theories in $4- \\epsilon$ dimensions to strong bare couplings $g_0$ and find their power behavior in $g_0$, thereby determining all critical exponents without renormalization group techniques.
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Noboru, E-mail: noboru.fukushima@gmail.com [Motomachi 13-23, Sanjo, Niigata 955-0072 (Japan)
2011-02-18
Renormalization of non-magnetic and magnetic impurities due to electron double-occupancy prohibition is derived analytically by an improved Gutzwiller approximation. Non-magnetic impurities are effectively weakened by the same renormalization factor as that for the hopping amplitude, whereas magnetic impurities are strengthened by the square root of the spin-exchange renormalization factor, in contrast to results by the conventional Gutzwiller approximation. We demonstrate it by showing that transition matrix elements of number operators between assumed excited states and between an assumed ground state and excited states are renormalized differently than diagonal matrix elements. Deviation from such simple renormalization with a factor is also discussed. In addition, as a related calculation, we correct an error in treatment of the renormalization of charge interaction in the literature. Namely, terms from the second order of the transition matrix elements are strongly suppressed. Since all these results do not depend on the signs of impurity potential or the charge interaction parameter, they are valid both in attractive and repulsive cases.
Kinetic mixing at strong coupling
Del Zotto, Michele; Heckman, Jonathan J.; Kumar, Piyush; Malekian, Arada; Wecht, Brian
2017-01-01
A common feature of many string-motivated particle physics models is additional strongly coupled U (1 )'s. In such sectors, electric and magnetic states have comparable mass, and integrating out modes also charged under U (1 ) hypercharge generically yields C P preserving electric kinetic mixing and C P violating magnetic kinetic mixing terms. Even though these extra sectors are strongly coupled, we show that in the limit where the extra sector has approximate N =2 supersymmetry, we can use formal methods from Seiberg-Witten theory to compute these couplings. We also calculate various quantities of phenomenological interest such as the cross section for scattering between visible sector states and heavy extra sector states as well as the effects of supersymmetry breaking induced from coupling to the minimal supersymmetric Standard Model.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
Supersymmetric QCD: Exact Results and Strong Coupling
Dine, Michael; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao
2011-01-01
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is...
Strong Coupling Gauge Theories in LHC ERA
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
Higgs, or techni-dilaton - composite Higgs near conformality / Koichi Yamawaki -- Phase diagram of strongly interacting theories / Francesco Sannino -- Resizing conformal windows / O. Antipin and K. Tuominen -- Nearly conformal gauge theories on the lattice / Zoltan Fodor ... [et al.] -- Going beyond QCD in lattice gauge theory / G. T. Fleming -- Phases of QCD from small to large N[symbol]: (some) lattice results / A. Deuzeman, E. Pallante and M. P. Lombardo -- Lattice gauge theory and (quasi)-conformal technicolor / D. K. Sinclair and J. B. Kogut -- Study of the running coupling constant in 10-flavor QCD with the Schrodinger functional method / N. Yamada ... [et al.] -- Study of the running coupling in twisted Polyakov scheme / T. Aoyama ... [et al.].Running coupling in strong gauge theories via the lattice / Zoltan Fodor ... [et al.] -- Higgsinoless supersymmetry and hidden gravity / Michael L. Graesser, Ryuichiro Kitano and Masafumi Kurachi -- The latest status of LHC and the EWSB physics / S. Asai -- Continuum superpartners from supersymmetric unparticles / Hsin-Chia Cheng -- Review of minimal flavor constraints for technicolor / Hidenori S. Fukano and Francesco Sannino -- Standard model and high energy Lorentz violation / Damiano Anselmi -- Dynamical electroweak symmetry breaking and fourth family / Michio Hashimoto -- Holmorphic supersymmetric Nambu-Jona-Lasino model and dynamical electroweak symmetry breaking / Dong-Won Jung, Otto C. W. Kong and Jae Sik Lee -- Ratchet model of Baryogenesis / Tatsu Takeuchi, Azusa Minamizaki and Akio Sugamoto -- Classical solutions of field equations in Einstein Gauss-Bonnet gravity / P. Suranyi, C. Vaz and L. C. R. Wijewardhana -- Black holes constitute all dark matter / Paul H. Frampton -- Electroweak precision test and Z [symbol] in the three site Higgsless model / Tomohiro Abe -- Chiral symmetry and BRST symmetry breaking, quaternion reality and the lattice simulation / Sadataka Furui -- Holographic techni-dilaton, or
'True' bosonic coupling strength in strongly correlated superconductors.
Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro
2013-01-01
Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological 'bare' band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems.
‘True’ bosonic coupling strength in strongly correlated superconductors
Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro
2013-01-01
Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological ‘bare’ band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems. PMID:23722675
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Universal critical behavior of noisy coupled oscillators: a renormalization group study.
Risler, Thomas; Prost, Jacques; Jülicher, Frank
2005-07-01
We show that the synchronization transition of a large number of noisy coupled oscillators is an example for a dynamic critical point far from thermodynamic equilibrium. The universal behaviors of such critical oscillators, arranged on a lattice in a d -dimensional space and coupled by nearest-neighbors interactions, can be studied using field-theoretical methods. The field theory associated with the critical point of a homogeneous oscillatory instability (or Hopf bifurcation of coupled oscillators) is the complex Ginzburg-Landau equation with additive noise. We perform a perturbative renormalization group (RG) study in a (4-epsilon)-dimensional space. We develop an RG scheme that eliminates the phase and frequency of the oscillations using a scale-dependent oscillating reference frame. Within Callan-Symanzik's RG scheme to two-loop order in perturbation theory, we find that the RG fixed point is formally related to the one of the model A dynamics of the real Ginzburg-Landau theory with an O2 symmetry of the order parameter. Therefore, the dominant critical exponents for coupled oscillators are the same as for this equilibrium field theory. This formal connection with an equilibrium critical point imposes a relation between the correlation and response functions of coupled oscillators in the critical regime. Since the system operates far from thermodynamic equilibrium, a strong violation of the fluctuation-dissipation relation occurs and is characterized by a universal divergence of an effective temperature. The formal relation between critical oscillators and equilibrium critical points suggests that long-range phase order exists in critical oscillators above two dimensions.
Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.
2016-06-01
We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.
Strongly Enhanced Superconductivity in Coupled t-J Segments.
Reja, Sahinur; van den Brink, Jeroen; Nishimoto, Satoshi
2016-02-12
The t-J Hamiltonian is one of the cornerstones in the theoretical study of strongly correlated copper-oxide based materials. Using the density-matrix renormalization group method we obtain the phase diagram of the one-dimensional t-J chain in the presence of a periodic hopping modulation, as a prototype of coupled-segment models. While in the uniform 1D t-J model the near half-filling superconducting state dominates only at unphysically large values of the exchange coupling constant J/t>3; we show that a small hopping and exchange modulation very strongly reduces the critical coupling to be as low as J/t∼1/3--well within the physical regime. The phase diagram as a function of the electron filling also exhibits metallic, insulating line phases and regions of phase separation. We suggest that a superconducting state is easily stabilized if t-J segments creating local spin-singlet pairing are coupled to each other--another example is the ladder system.
From individual to strongly coupled metallic nanocavities
Salomon, Adi; Kolkowski, Radoslaw; Zyss, Joseph
2013-01-01
Localized plasmonic modes of metallic nanoparticles may hybridize like those of atoms forming a molecule. However, the rapid decay of the plasmonic fields outside the metal severely limits the range of these interactions to tens of nanometers. Herein, we demonstrate very strong coupling of nanocavities in metal films, sparked by propagating surface plasmons and evident even at much larger distances of hundreds of nanometers for the properly selected metal/wavelength combination. Such strong coupling drastically changes the symmetry of the charge distribution around the nanocavities making it amenable to probing by the nonlinear optical response of the medium. We show that when strongly coupled, equilateral triangular nanocavities lose their individual three-fold symmetry to adopt the lower symmetry of the coupled system and then respond like a single dipolar entity. A quantitative model is suggested for the transition from individual to strongly coupled nanocavities.
Anomaly induced transport coefficients, from weak to strong coupling
Pena-Benitez, Francisco
2013-01-01
The existence of new transport phenomena associated to the presence of quantum anomalies has atracted very recently the attention of theorist. These transport coefficient have very interesting properties, for example, they do not renormalize. The most famous case of anomaly induced transport phenomena is the Chiral Magnetic Effect, in which an electric current is produced by a magnetic field if the system has a different number of right handed fermions respect the left handed one. In this thesis we have studied those transport coefficients from Kubo formulas at weak and strong coupling. To finish a fluid/gravity approach is used to compute all the second order anomalous coefficients in an anomalous conformal fluid.
Antonius, Gabriel; Poncé, Samuel; Lantagne-Hurtubise, Étienne; Auclair, Gabriel; Côté, Michel; Gonze, Xavier
2015-03-01
The electron-phonon coupling in solids renormalizes the band structure, reducing the band gap by several tenths of an eV in light-atoms semiconductors. Using the Allen-Heine-Cardona theory (AHC), we compute the zero-point renormalization (ZPR) as well as the quasiparticle lifetimes of the full band structure in diamond, BN, LiF and MgO. We show how dynamical effects can be included in the AHC theory, and still allow for the use of a Sternheimer equation to avoid the summation over unoccupied bands. The convergence properties of the electron-phonon coupling self-energy with respect to the Brillouin zone sampling prove to be strongly affected by dynamical effects. We complement our study with a frozen-phonon approach, which reproduces the static AHC theory, but also allows to probe the phonon wavefunctions at finite displacements and include anharmonic effects in the self-energy. We show that these high-order components tend to reduce the strongest electron-phonon coupling elements, which affects significantly the band gap ZPR.
Strong Coupling between Plasmons and Organic Semiconductors
Directory of Open Access Journals (Sweden)
Joel Bellessa
2014-05-01
Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Gluon scattering amplitudes at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
The Determination of the Strong Coupling Constant
Dissertori, Günther
2016-10-01
The strong coupling constant is one of the fundamental parameters of the Standard Theory of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron-Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.
Inflationary Magnetogenesis without the Strong Coupling Problem
Ferreira, Ricardo J Z; Sloth, Martin S
2013-01-01
The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large back reaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than $10^{-32}$ Gauss today on the $\\Mpc$ scale. Such a strength is insufficient to act as seeds for the galactic dynamo effect, which requires a magnetic field larger than $10^{-20}$ Gauss. In this paper we propose a new simple model, which avoids both the strong coupling and the back reaction problems, and can lead to cosmic magnetic fields from inflation as large as about $10^{-16}$ Gauss today on the $\\Mpc$ scale, thus improving the previous result by 16 orders of magnitude. In the scenario presented here, the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features avoiding previous back reaction and strong coupling constraints.
Cosmological Particle Production at Strong Coupling
Rangamani, Mukund; Van Raamsdonk, Mark
2015-01-01
We study the dynamics of a strongly-coupled quantum field theory in a cosmological spacetime using the holographic AdS/CFT correspondence. Specifically we consider a confining gauge theory in an expanding FRW universe and track the evolution of the stress-energy tensor during a period of expansion, varying the initial temperature as well as the rate and amplitude of the expansion. At strong coupling, particle production is inseparable from entropy production. As a result, we find significant qualitative differences from the weak coupling results: at strong coupling the system rapidly loses memory of its initial state as the amplitude is increased. Furthermore, in the regime where the Hubble parameter is parametrically smaller than the initial temperature, the dynamics is well modelled as a plasma evolving hydrodynamically towards equilibrium.
Biswas, P K; Gogonea, V
2005-10-22
We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature.
Diffusive Mixing in Strongly Coupled Plasmas
Diaw, Abdourahmane; Murillo, Michael
2016-10-01
A multispecies hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon (BBGKY) hierarchy is developed for physical conditions relevant to astrophysical plasmas. The modified transport equations incorporate strong correlations through a density functional theory closure, while fluctuations enters through a mixture BGK operator. This model extends the usual Burgers equations for a dilute gas to strongly coupled and isothermal plasmas mixtures. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling of white dwarfs and neutron stars can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct-correlation function. This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344).
Renormalizing coupled scalars with a momentum dependent mixing angle in the MSSM
Díaz, M A
1994-01-01
The renormalization of a system of coupled scalars fields is analyzed. By introducing a momentum dependent mixing angle we diagonalize the inverse propagator matrix at any momentum p^2. The zeros of the inverse propagator matrix, \\ie, the physical masses, are then calculated keeping the full momentum dependence of the self energies. The relation between this method and others previously published is studied. This idea is applied to the one-loop renormalization of the CP-even neutral Higgs sector of the Minimal Supersymmetric Model, considering top and bottom quarks and squarks in the loops. Presented in the Eighth Meeting of the Division of Particles and Fields of the American Physical Society ``DPF'94'', The University of New Mexico Albuquerque NM, August 2-6, 1994.
Entanglement Entropy Renormalization for the NC scalar field coupled to classical BTZ geometry
Jurić, Tajron
2016-01-01
In this work, we consider a noncommutative (NC) massless scalar field coupled to the classical nonrotational BTZ geometry. In a manner of the theories where the gravity emerges from the underlying scalar field theory, we study the effective action and the entropy derived from this noncommutative model. In particular, the entropy is calculated by making use of the two different approaches, the brick wall method and the heat kernel method designed for spaces with conical singularity. We show that the UV divergent structures of the entropy, obtained through these two different methods, agree with each other. It is also shown that the same renormalization condition that removes the infinities from the effective action can also be used to renormalize the entanglement entropy for the same system. Besides, the interesting feature of the NC model considered here is that it allows an interpretation in terms of an equivalent system comprising of a commutative massive scalar field, but in a modified geometry; that of th...
Combinatorics of Lattice QCD at Strong Coupling
Unger, Wolfgang
2014-01-01
Thermodynamics in the strong coupling limit of lattice QCD has features which may be similar to those of continuum QCD, such as a chiral critical end point and a nuclear liquid gas transition. Here I compare the combinatorics of staggered and Wilson fermions in the strong coupling limit for arbitrary number of colors and flavors. The partition functions can be considered as an expansions in hadronic spatial hoppings from the static limit, where both discretizations can be expressed via formulae with coefficients of distinct combinatorial interpretation. The corresponding multiplicites of hadronic states are evaluated using generalizations of Catalan numbers and Lucas polynomials. I outline how quantum Monte Carlo simulations can be carried out in general, and summarize recent results on the gauge corrections to the strong coupling limit.
Strong coupling, discrete symmetry and flavour
Abel, Steven
2010-01-01
We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.
Analytic Solution of Strongly Coupling Schroedinger Equation
Liao, J Y; Liao, Jinfeng; Zhuang, Pengfei
2002-01-01
The recently developed expansion method for ground states of strongly coupling Schr\\"odinger equations by Friedberg, Lee and Zhao is extended to excited states. The coupling constant dependence of bound states for power-law central forces $V(r) \\propto g^k r^n$ is particularly studied. With the extended method all the excited states of the Hydrogen atom problem are resolved and the low-lying states for Yukawa potential are approximately obtained.
QCD One-Loop Effective Coupling Constant and Quark Mass Given in a Mass-Dependent Renormalization
Institute of Scientific and Technical Information of China (English)
SU Jun-Chen; SHAN Lian-You; CAO Ying-Hui
2001-01-01
The QCD one-loop renormalization is restudied in a mass-dependent subtraction scheme in which the quark mass is not set to vanish and the renormalization point is chosen to be an arbitrary time-like momentum. The correctness of the subtraction is ensured by the Ward identities which are respected in all the processes of subtraction.By considering the mass effect, the effective coupling constant and the effective quark masses derived by solving the renormalization group equations are given in improved expressions which are different from the previous results.PACS numbers: 11.10.Gh, 11.10.Hi, 12.38.-t, 12.38.Bx
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
Georg Wolschin
2003-05-01
Different from the early universe, heavy-ion collisions at very high energies do not reach statistical equilibrium, although thermal models explain many of their features. To account for nonequilibrium strong-coupling effects, a Fokker–Planck equation with time-dependent diffusion coefﬁcient is proposed. A schematic model for rapidity distributions of participant baryons is set up and solved analytically. The evolution from SIS via AGS and SPS to RHIC energies is discussed. Strong-coupling diffusion produces double-peaked spectra in central collisions at the higher SPS momentum of 158 A$\\cdot$GeV/c and beyond.
Antonov, N. V.; Kakin, P. I.
2017-02-01
Applying the standard field theory renormalization group to the model of landscape erosion introduced by Pastor-Satorras and Rothman yields unexpected results: the model is multiplicatively renormalizable only if it involves infinitely many coupling constants (i.e., the corresponding renormalization group equations involve infinitely many β-functions). We show that the one-loop counterterm can nevertheless be expressed in terms of a known function V (h) in the original stochastic equation and its derivatives with respect to the height field h. Its Taylor expansion yields the full infinite set of the one-loop renormalization constants, β-functions, and anomalous dimensions. Instead of a set of fixed points, there arises a two-dimensional surface of fixed points that quite probably contains infrared attractive regions. If that is the case, then the model exhibits scaling behavior in the infrared range. The corresponding critical exponents turn out to be nonuniversal because they depend on the coordinates of the fixed point on the surface, but they satisfy certain universal exact relations.
Renormalization and causality violations in classical gravity coupled with quantum matter
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Damiano [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy)
2007-01-15
I prove that classical gravity coupled with quantized matter can be renormalized with a finite number of independent couplings, plus field redefinitions, without introducing higher-derivative kinetic terms in the gravitational sector, but adding vertices that couple the matter stress-tensor with the Ricci tensor. The theory is called 'acausal gravity', because it predicts the violation of causality at high energies. Renormalizability is proved by means of a map M that relates acausal gravity with higher-derivative gravity. The causality violations are governed by two parameters, a and b, that are mapped by M into higher-derivative couplings. At the tree level causal prescriptions exist, but they are spoiled by the one-loop corrections. Some ideas are inspired by the usual treatments of the Abraham-Lorentz force in classical electrodynamics.
Alvarez, G.
2009-09-01
The purpose of this paper is (i) to present a generic and fully functional implementation of the density-matrix renormalization group (DMRG) algorithm, and (ii) to describe how to write additional strongly-correlated electron models and geometries by using templated classes. Besides considering general models and geometries, the code implements Hamiltonian symmetries in a generic way and parallelization over symmetry-related matrix blocks. Program summaryProgram title: DMRG++ Catalogue identifier: AEDJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: See file LICENSE No. of lines in distributed program, including test data, etc.: 15 795 No. of bytes in distributed program, including test data, etc.: 83 454 Distribution format: tar.gz Programming language: C++, MPI Computer: PC, HP cluster Operating system: Any, tested on Linux Has the code been vectorized or parallelized?: Yes RAM: 1 GB (256 MB is enough to run included test) Classification: 23 External routines: BLAS and LAPACK Nature of problem: Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies rely on the use of tight-binding lattice models that consider electron localization, where states on one site can be labeled by spin and orbital degrees of freedom. The calculation of properties from these Hamiltonians is a computational intensive problem, since the Hilbert space over which these Hamiltonians act grows exponentially with the number of sites on the lattice. Solution method: The DMRG is a numerical variational technique to study quantum many body Hamiltonians. For one-dimensional and quasi one-dimensional systems, the
Patterns of strong coupling for LHC searches
Liu, Da; Pomarol, Alex; Rattazzi, Riccardo; Riva, Francesco
2016-11-01
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or W W scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.
Strongly Coupled Quark Gluon Plasma (SCQGP)
Bannur, V M
2006-01-01
We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.
Nonperturbative enhancement of superloop at strong coupling
Belitsky, A. V.
2016-10-01
We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of the 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the Pentagon Operator Product Expansion, via the dual superWilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass mh which is exponentially suppressed in the 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit, τ ≪ 1 /mh. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area - a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.
Nonperturbative enhancement of superloop at strong coupling
Belitsky, A V
2015-01-01
We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of 't Hooft coupling in planar maximally supersymmetric Yang-Mills theory. We complement recent studies of this observable within the context of the pentagon operator product expansion, via the dual super Wilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass which is exponentially suppressed in 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area, --- a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.
Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-01-08
I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.
Patterns of Strong Coupling for LHC Searches
Liu, Da; Rattazzi, Riccardo; Riva, Francesco
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, d...
Renormalization Scheme Dependence and Renormalization Group Summation
McKeon, D G C
2016-01-01
We consider logarithmic contributions to the free energy, instanton effective action and Laplace sum rules in QCD that are a consequence of radiative corrections. Upon summing these contributions by using the renormalization group, all dependence on the renormalization scale parameter mu cancels. The renormalization scheme dependence in these processes is examined, and a renormalization scheme is found in which the effect of higher order radiative corrections is absorbed by the behaviour of the running coupling.
Inflationary magnetogenesis without the strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S., E-mail: ferreira@cp3.dias.sdu.dk, E-mail: jain@cp3.dias.sdu.dk, E-mail: sloth@cp3.dias.sdu.dk [CP3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)
2013-10-01
The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large backreaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than 10{sup −32}G today on the Mpc scale. Such a strength is insufficient to act as seed for the galactic dynamo effect, which requires a magnetic field larger than 10{sup −20}G. In this paper we analyze simple extensions of the minimal model, which avoid both the strong coupling and back reaction problems, in order to generate sufficiently large magnetic fields on the Mpc scale today. First we study the possibility that the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features. Subsequently, we consider the effect of lowering the energy scale of inflation jointly with a scenario of prolonged reheating where the universe is dominated by a stiff fluid for a short period after inflation. In the latter case, a systematic study shows upper bounds for the magnetic field strength today on the Mpc scale of 10{sup −13}G for low scale inflation and 10{sup −25}G for high scale inflation, thus improving on the previous result by 7-19 orders of magnitude. These results are consistent with the strong coupling and backreaction constraints.
On the strongly coupled heterotic string
Dudas, E A; Dudas, Emilian; Mourad, Jihad
1997-01-01
We analyze in detail the anomaly cancellation conditions for the strongly coupled $E_8 \\times E_8$ heterotic string introduced by Horava and Witten and find new features compared to the ten-dimensional Green-Schwarz mechanism. We project onto ten dimensions the corresponding Lagrangian of the zero-mode fields. We find that it has a simple interpretation provided by the conjectured heterotic string/fivebrane duality. The part which originates from eleven-dimensions is naturally described in fivebrane language. We discuss physical couplings and scales in four dimensions.
Simple supersymmetric strongly coupled preon model
Fajfer, S.; Tadić, D.
1988-08-01
This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.
Strongly Coupled Graphene on the Lattice
Lähde, Timo A
2011-01-01
The two-dimensional carbon allotrope graphene has recently attracted a lot of attention from researchers in the disciplines of Lattice Field Theory, Lattice QCD and Monte Carlo calculations. This interest has been prompted by several remarkable properties of the conduction electrons in graphene. For instance, the conical band structure of graphene at low energies is strongly reminiscent of relativistic Dirac fermions. Also, due the low Fermi velocity of v_F = c/300, where c is the speed of light in vacuum, the physics of the conduction electrons in graphene is qualitatively similar to Quantum Electrodynamics in a strongly coupled regime. In turn, this opens up the prospect of the experimental realization of gapped, strongly correlated states in the electronic phase diagram of graphene. Here, we review the experimental and theoretical motivations for Lattice Field Theory studies of graphene, and describe the directions that such research is likely to progress in during the next few years. We also give a brief ...
Renormalization Scheme Dependence and the Renormalization Group Beta Function
Chishtie, F. A.; McKeon, D. G. C.
2016-01-01
The renormalization that relates a coupling "a" associated with a distinct renormalization group beta function in a given theory is considered. Dimensional regularization and mass independent renormalization schemes are used in this discussion. It is shown how the renormalization $a^*=a+x_2a^2$ is related to a change in the mass scale $\\mu$ that is induced by renormalization. It is argued that the infrared fixed point is to be a determined in a renormalization scheme in which the series expan...
Higgs boson mass and muon g -2 with strongly coupled vectorlike generations
Nishida, Michinobu; Yoshioka, Koichi
2016-11-01
We study the Higgs boson mass and the muon anomalous magnetic moment (the muon g -2 ) in a supersymmetric standard model with vectorlike generations. The infrared physics of the model is governed by strong renormalization-group effects of the gauge couplings. That leads to sizable extra Yukawa couplings of Higgs doublets between the second and vectorlike generations in both quark and lepton sectors. It is found with this property that there exist wide parameter regions where the Higgs boson mass and the muon g -2 are simultaneously explained.
The strong running coupling at $\\tau$ and $Z_0$ mass scales from lattice QCD
Blossier, B; Brinet, M; De Soto, F; Du, X; Morenas, V; Pène, O; Petrov, K; Rodríguez-Quintero, J
2012-01-01
This letter reports on the first computation, from data obtained in lattice QCD with $u,d,s$ and $c$ quarks in the sea, of the running strong coupling via the ghost-gluon coupling renormalized in the MOM Taylor scheme. We provide with estimates of $\\alpha_{\\bar{\\rm MS}}(m_\\tau^2)$ and $\\alpha_{\\bar{\\rm MS}}(m_Z^2)$ (for which the inclusion of the dynamical charm quark makes the running much safer) in very good agreement with experimental results.
Strong coupling constant from the photon structure function
Energy Technology Data Exchange (ETDEWEB)
Albino, Simon; Klasen, Michael; Soeldner-Rembold, Stefan
2003-06-01
We extract the value of the strong coupling constant a, from a single-parameter pointlike fit to the photon structure function F{sub 2}{sup {gamma}} at large {xi} and Q{sup 2} and from a first five-parameter full (pointlike and hadronic) fit to the complete F{sub 2}{sup {gamma}} data set taken at PETRA, TRISTAN, and LEP. In next-to-leading order and the MS renormalization and factorization schemes, we obtain {alpha}{sub s}(m{sub z}) = 0.1183 {+-} 0.0050(exp.){sub -0.0028}{sup +0.0029}(theor.) [pointlike] and {alpha}{sub s}(m{sub z}) = 0.1198 {+-} 0.0028(exp.){sub -0.0046}{sup +0.0034}(theor.) [pointlike and hadronic]. We demonstrate that the data taken at LEP have reduced the experimental error by about a factor of two, so that a competitive determination of {alpha}{sub s} from F{sub 2}{sup {gamma}} is now possible.
Strong coupling constant from the photon structure function
Energy Technology Data Exchange (ETDEWEB)
Albino, S.; Klasen, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Soeldner-Rembold, S. [Fermi National Accelerator Lab., Batavia, IL (United States)
2002-05-01
We extract the value of the strong coupling constant {alpha}{sub s} from a single-parameter pointlike fit to the photon structure function F{sub 2}{sup {gamma}} at large x and Q{sup 2} and from a first five-parameter full (pointlike and hadronic) fit to the complete F{sub 2}{sup {gamma}} data set taken at PETRA, TRISTAN, and LEP. In next-to-leading order and the MS renormalization and factorization schemes, we obtain {alpha}{sub s}(m{sub Z})=0.1183{+-}0.0050(exp.){sub -0.0028}{sup +0.0029}(theor.) [pointlike] and {alpha}{sub s}(m{sub Z})=0.1198{+-}0.0028(exp.){sub -0.0046}{sup +0.0034}(theor.) [pointlike and hadronic]. We demonstrate that the data taken at LEP have reduced the experimental error by about a factor of two, so that a competitive determination of {alpha}{sub s} from F{sub 2}{sup {gamma}} is now possible. (orig.)
Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts
Jakobsen, M.; Wu, R. S.
2016-08-01
An improved description of scattering and inverse scattering processes in reflection seismology may be obtained on the basis of a scattering series solution to the Helmoltz equation, which allows one to separately model primary and multiple reflections. However, the popular scattering series of Born is of limited seismic modelling value, since it is only guaranteed to converge if the global contrast is relatively small. For frequency-domain waveform modelling of realistic contrasts, some kind of renormalization may be required. The concept of renormalization is normally associated with quantum field theory, where it is absolutely essential for the treatment of infinities in connection with observable quantities. However, the renormalization program is also highly relevant for classical systems, especially when there are interaction effects that act across different length scales. In the scattering series of De Wolf, a renormalization of the Green's functions is achieved by a split of the scattering potential operator into fore- and backscattering parts; which leads to an effective reorganization and partially re-summation of the different terms in the Born series, so that their order better reflects the physics of reflection seismology. It has been demonstrated that the leading (single return) term in the De Wolf series (DWS) gives much more accurate results than the corresponding Born approximation, especially for models with high contrasts that lead to a large accumulation of phase changes in the forward direction. However, the higher order terms in the DWS that are associated with internal multiples have not been studied numerically before. In this paper, we report from a systematic numerical investigation of the convergence properties of the DWS which is based on two new operator representations of the DWS. The first operator representation is relatively similar to the original scattering potential formulation, but more global and explicit in nature. The second
Strong polarization mode coupling in microresonators
Ramelow, Sven; Clemmen, Stéphane; Levy, Jacob S; Johnson, Adrea R; Okawachi, Yoshitomo; Lamont, Michael R E; Lipson, Michal; Gaeta, Alexander L
2014-01-01
We observe strong modal coupling between the TE00 and TM00 modes in Si3N4 ring resonators revealed by avoided crossings of the corresponding resonances. Such couplings result in significant shifts of the resonance frequencies over a wide range around the crossing points. This leads to an effective dispersion that is one order of magnitude larger than the intrinsic dispersion and creates broad windows of anomalous dispersion. We also observe the changes to frequency comb spectra generated in Si3N4 microresonators due polarization mode and higher-order mode crossings and suggest approaches to avoid these effects. Alternatively, such polarization mode-crossings can be used as a novel tool for dispersion engineering in microresonators.
Strong coupling effective theory with heavy fermions
Fromm, Michael; Lottini, Stefano; Philipsen, Owe
2011-01-01
We extend the recently developed strong coupling, dimensionally reduced Polyakov-loop effective theory from finite-temperature pure Yang-Mills to include heavy fermions and nonzero chemical potential by means of a hopping parameter expansion. Numerical simulation is employed to investigate the weakening of the deconfinement transition as a function of the quark mass. The tractability of the sign problem in this model is exploited to locate the critical surface in the (M/T, mu/T, T) space over the whole range of chemical potentials from zero up to infinity.
Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2014-01-14
Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.
Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2014-01-01
Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Fisher's zeros as boundary of renormalization group flows in complex coupling spaces
Denbleyker, A; Liu, Yuzhi; Meurice, Y; Zou, Haiyuan
2010-01-01
We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.
Quantum bound on the specific entropy in strong-coupled scalar field theory
Energy Technology Data Exchange (ETDEWEB)
Alcalde, M. Aparicio; Menezes, G.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: aparicio@cbpf.br; gsm@cbpf.br; nfuxsvai@cbpf.br
2007-07-01
Using the Euclidean path integral approach with functional methods, we discuss the (g{sub 0} {psi}{sup p})d self-interacting scalar field theory, in the strong-coupling regime. We assume the presence of macroscopic boundaries confining the field in a hypercube of side L. We also consider that the system is in thermal equilibrium at temperature {beta}{sup -1}. For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality S/E < 2{pi}R, where R stands for the radius of the smallest sphere that circumscribes the system. Employing the strong coupling perturbative expansion, we obtain the renormalized mean energy E and entropy S for the system up to the order (g{sub 0}){sup -2/p}, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. Defining {epsilon}{sup (r)}{sub d} as the renormalized zero-point energy for the free theory per unit length, the dimensionless quantity {xi} = {beta}/L and h{sub 1}(d) and h{sub 2}(d) as positive analytic functions of d, for the case of high temperature, we get that the specific entropy satisfies S/E < 2{pi}R h{sub 1}(d)/ h{sub 2}(d) {xi}. When considering the low temperature behavior of the specific entropy, we have S/E < 2{pi}R h{sub 1}(d)/ {epsilon}{sup (3)} {xi}{sup 1-d}. Therefore the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Strong Coulomb Coupling in the Todorov Equation
Bawin, M.; Cugnon, J.; Sazdjian, H.
A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.
Le Tacon, M.; Forrest, T. R.; Rüegg, Ch.; Bosak, A.; Walters, A. C.; Mittal, R.; Rønnow, H. M.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Hill, J. P.; Krisch, M.; McMorrow, D. F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO0.60F0.35 single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Energy Technology Data Exchange (ETDEWEB)
Hill, J.P.; Le Tacon, M.; Forrest, T.R.; Ruegg, Ch.; Bosak, A.; Walters, A.C.; Mittal, R.; Rønnow, H.M.; Zhigadlo, N.D.; Katrych, S.; Karpinski, J.; Krisch, M.; McMorrow, D.F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO{sub 0.60}F{sub 0.35} single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Renormalized. pi. NN coupling constant and the P-italic-wave phase shifts in the cloudy bag model
Energy Technology Data Exchange (ETDEWEB)
Pearce, B.C.; Afnan, I.R.
1986-09-01
Most applications of the cloudy bag model to ..pi..N scattering involve unitarizing the bare diagrams arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However, analyses of the renormalization of the coupling constant proceed by iterating the Lagrangian to a given order in the bare coupling constant. These two different approaches means there is an inconsistency between the calculation of phase shifts and the calculation of renormalization. A remedy to this problem is presented that has the added advantage of improving the fit to the phase shifts in the P-italic/sub 11/ channel. This is achieved by using physical values of the coupling constant in the crossed diagram which reduces the repulsion rather than adds attraction. This approach can be justified by examining equations for the ..pi pi..N system that incorporate three-body unitarity.
Renormalized πNN coupling constant and the P-wave phase shifts in the cloudy bag model
Pearce, B. C.; Afnan, I. R.
1986-09-01
Most applications of the cloudy bag model to πN scattering involve unitarizing the bare diagrams arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However, analyses of the renormalization of the coupling constant proceed by iterating the Lagrangian to a given order in the bare coupling constant. These two different approaches means there is an inconsistency between the calculation of phase shifts and the calculation of renormalization. A remedy to this problem is presented that has the added advantage of improving the fit to the phase shifts in the P11 channel. This is achieved by using physical values of the coupling constant in the crossed diagram which reduces the repulsion rather than adds attraction. This approach can be justified by examining equations for the ππN system that incorporate three-body unitarity.
A state interaction spin-orbit coupling density matrix renormalization group method
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
A state interaction spin-orbit coupling density matrix renormalization group method.
Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic
2016-06-21
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Simulating strongly coupled plasmas at low temperatures
Bussmann, M.; Schramm, U.; Habs, D.
2006-10-01
Realistic molecular dynamics (MD) simulations of the particle dynamics in strongly coupled plasmas require the computation of the mutual Coulomb-force for each pair of charged particles if a correct treatment of long range correlations is required. For plasmas with N > 104 particles this requires a tremendous number of computational steps which can only be addressed using efficient parallel algorithms adopted to modern super-computers. We present a new versatile MD simulation code which can simulate the non-relativistic mutual Coulomb-interaction of a large number of charged particles in arbitrary external field configurations. A demanding application is the simulation of the complete dynamics of in-trap stopping of highly charged ions in a laser cooled plasma of N = 105 24Mg+ ions. We demonstrate that the simulation is capable of delivering results on stopping times and plasma dynamics under realistic conditions. The results suggest that this stopping scheme can compete with in-trap electron cooling and might be an alternative approach for delivering ultra cold highly charged ions for future trap-based experiments aiming for precision mass measurements of stable and radioactive nuclei.
Local Correlation Calculations Using Standard and Renormalized Coupled-Cluster Methods
Piecuch, Piotr; Li, Wei; Gour, Jeffrey
2009-03-01
Local correlation variants of the coupled-cluster (CC) theory with singles and doubles (CCSD) and CC methods with singles, doubles, and non-iterative triples, including CCSD(T) and the completely renormalized CR-CC(2,3) approach, are developed. The main idea of the resulting CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) methods is the realization of the fact that the total correlation energy of a large system can be obtained as a sum of contributions from the occupied orthonormal localized molecular orbitals and their respective occupied and unoccupied orbital domains. The CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) algorithms are characterized by the linear scaling of the total CPU time with the system size and embarrassing parallelism. By comparing the results of the canonical and CIM-CC calculations for normal alkanes and water clusters, it is demonstrated that the CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) approaches recover the corresponding canonical CC correlation energies to within 0.1 % or so, while offering savings in the computer effort by orders of magnitude. By examining the dissociation of dodecane into C11H23 and CH3 and several lowest-energy structures of the (H2O)n clusters, it is shown that the CIM-CC methods accurately reproduce the relative energetics of the corresponding canonical CC calculations.
Strongly typed rewriting for coupled software transformation
Cunha, Alcino; Visser, J
2006-01-01
Coupled transformations occur in software evolution when multiple artifacts must be modified in such a way that they remain consistent with each other. An important example involves the coupled transformation of a data type, its instances, and the programs that consume or produce it. Previously, we have provided a formal treatment of transformation of the first two: data types and instances. The treatment involved the construction of type-safe, type-changing strategic rewrite systems. In this...
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1976-01-01
The transverse correlation range ξ and the susceptibility in the critical region has been measured by neutron scattering. A special technique required to resolve the superdiverging longitudinal correlation range has been utilized. The results for ξ together with existing specific-heat data are in...... are in remarkable agreement with the renormalization group theory of systems with marginal dimensionality. The ratio between the susceptibility amplitudes above and below Tc was found to be 2 in accordance with renormalization-group and meanfield theory....
Compensating strong coupling with large charge
Alvarez-Gaume, Luis; Orlando, Domenico; Reffert, Susanne
2016-01-01
We study (conformal) field theories with global symmetries in the sector where the value of the global charge $Q$ is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone's theorem in the non-relativistic regime. We also derive the unexpected result, first presented in [Hellerman:2015], that the effective field theory describing such sector of fixed $Q$ contains effective couplings $\\lambda_{\\text{eff}}\\sim \\lambda^b /Q^{a}$, where $\\lambda$ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions in this limit.
Directory of Open Access Journals (Sweden)
M.V. Tkach
2015-09-01
Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.
Energy Technology Data Exchange (ETDEWEB)
Harris, Travis V.; Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103 (Japan); Kurashige, Yuki; Yanai, Takeshi [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)
2014-02-07
The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.
Process-independent strong running coupling
Binosi, Daniele; Mezrag, Cédric; Papavassiliou, Joannis; Roberts, Craig D.; Rodríguez-Quintero, Jose
2017-09-01
We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.
Electromagnetic modes in cold magnetized strongly coupled plasmas
Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.
1999-01-01
The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.
Gies, Holger; Jaeckel, Joerg
2004-09-01
We investigate textbook QED in the framework of the exact renormalization group. In the strong-coupling region, we study the influence of fluctuation-induced photonic and fermionic self-interactions on the nonperturbative running of the gauge coupling. Our findings confirm the triviality hypothesis of complete charge screening if the ultraviolet cutoff is sent to infinity. Though the Landau pole does not belong to the physical coupling domain owing to spontaneous chiral-symmetry-breaking (χSB), the theory predicts a scale of maximal UV extension of the same order as the Landau pole scale. In addition, we verify that the χSB phase of the theory which is characterized by a light fermion and a Goldstone boson also has a trivial Yukawa coupling.
Energy Technology Data Exchange (ETDEWEB)
Chahid, M.; Benhamou, M. E-mail: benhamou.mabrouk@caramail.com
2000-04-01
The aim of this paper is the investigation of the critical properties of two strongly coupled paramagnetic sublattices exhibiting a paramagnetic-ferrimagnetic transition, at some critical temperature T{sub c} greater than the room temperature. In order to take into account the strong fluctuations of the magnetization near the critical point, use is made of the renormalization-group (RG) techniques applied to an elaborated field model describing such a transition, which is of Landau-Ginzburg-Wilson type. The associated free energy or action is a functional of two kinds of order parameters (local magnetizations), which are scalar fields phi (cursive,open) Greek and {psi} relative to these sublattices. It involves quadratic and quartic terms in both fields, and a lowest-order coupling C{sub o}phi (cursive,open) Greek{psi}, where C{sub o}>0 stands for the coupling constant measuring the interaction between the two sublattices. We first show that the associated field theory is renormalizable at any order of the perturbation series in the coupling constants, up to a critical dimension d{sub c}=4, and that, the corresponding counterterms have the same form as those relative to the usual phi (cursive,open) Greek{sup 4}-theory (C{sub o}=0). The existence of the renormalization theory enables us to write the RG-equations satisfied by the correlation functions. We solve these using the standard characteristics method, to get all critical properties of the system under investigation. We first determine the exact shape of the critical line in the (T,C)-plane, along which the system undergoes a phase transition. Second, we determine the scaling laws of the correlation functions, with respect to relevant parameters of the problem, namely, the wave vector q, the (renormalized) coupling C and the temperature shift T-T{sub c}. We find that these scaling laws are characterized by critical exponents, which are the same as those relative to Ising-like magnetic systems.
Understanding strongly coupling magnetism from holographic duality
Cai, Rong-Gen
2016-01-01
The unusual magnetic materials are significant in both science and technology. However, because of the strongly correlated effects, it is difficult to understand their novel properties from theoretical aspects. Holographic duality offers a new approach to understanding such systems from gravity side. This paper will give a brief review of our recent works on the applications of holographic duality in understanding unusual magnetic materials. Some quantitative compare between holographic results and experimental data will be shown and some predictions from holographic duality models will be discussed.
Lectures on the functional renormalization group method
Polonyi, J
2001-01-01
These introductory notes are about functional renormalization group equations and some of their applications. It is emphasised that the applicability of this method extends well beyond critical systems, it actually provides us a general purpose algorithm to solve strongly coupled quantum field theories. The renormalization group equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another version, due to J. Polchinski, is obtained by the method of collective coordinates and can be used for the resummation of the perturbation series. The genuinely non-perturbative evolution equation is obtained in a manner reminiscent of the Schwinger-Dyson equations. Two variants of this scheme are presented where the scale which determines the order of the successive elimination of the modes is extracted from external and internal spaces. The renormalization of composite operators is discussed briefly as an alternative way to arrive at the renormalization group equation. The scaling laws and fixed poin...
Strong Couplings of Three Mesons with Charm(ing) Involvement
Lucha, Wolfgang; Sazdjian, Hagop; Simula, Silvano
2016-01-01
We determine the strong couplings of three mesons that involve, at least, one $\\eta_c$ or $J/\\psi$ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of $J/\\psi$ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.
Excited hexagon Wilson loops for strongly coupled N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Kotanski, J. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy
2010-10-15
This work is devoted to the six-gluon scattering amplitude in strongly coupled N=4 supersymmetric Yang-Mills theory. At weak coupling, an appropriate high energy limit of the so-called remainder function, i.e. of the deviation from the BDS formula, may be understood in terms of the lowest eigenvalue of the BFKL hamiltonian. According to Alday et al., amplitudes in the strongly coupled theory can be constructed through an auxiliary 1-dimensional quantum system. We argue that certain excitations of this quantum system determine the Regge limit of the remainder function at strong coupling and we compute its precise value. (orig.)
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Shear viscosities of photons in strongly coupled plasmas
Yang, Di-Lun; Müller, Berndt
2016-09-01
We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Algebraic renormalization of parity-preserving QED{sub 3} coupled to scalar matter I: unbroken case
Energy Technology Data Exchange (ETDEWEB)
Cima, O.M. del; Franco, D.H.T.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Piguet, O. [Universite de Geneve (Switzerland). Dept. de Physique Theorique
1996-11-01
In this letter the algebraic renormalization method, which is independent of any kind of regularization scheme, is presented for the parity-preserving QED{sub 3} coupled to scalar matter in the symmetric regime, where the scalar assumes vanishing vacuum expectation value,<{phi}>=0. The model shows to be stable under radiative corrections and anomaly free. (author). 17 refs.; e-mail: oswaldo at cbpfsu1.cat.cbpf.br; franco at cbpfsu1.cat.cbpf.br; piguet at sc2a.unige.ch.
Synchrotron radiation in strongly coupled conformal field theories
Athanasiou, Christiana; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna
2010-01-01
Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle $\\alpha \\sim 1/\\gamma$. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.
On the strong coupling scale in Higgs G-inflation
Directory of Open Access Journals (Sweden)
Kohei Kamada
2015-05-01
Full Text Available Higgs G-inflation is an inflation model that takes advantage of a Galileon-like derivative coupling. It is a non-renormalizable operator and is strongly coupled at high energy scales. Perturbative analysis does not have a predictive power any longer there. In general, when the Lagrangian is expanded around the vacuum, the strong coupling scale is identified as the mass scale that appears in non-renormalizable operators. In inflationary models, however, the identification of the strong coupling scale is subtle, since the structures of the kinetic term as well as the interaction itself can be modified by the background inflationary dynamics. Therefore, the strong coupling scale depends on the background. In this letter, we evaluate the strong coupling scale of the fluctuations around the background in the Higgs G-inflation including the Nambu–Goldstone modes associated with the symmetry breaking. We find that the system is sufficiently weakly coupled when the scales which we now observe exit the horizon during inflation and the observational predictions with the semiclassical treatment are valid. However, we also find that the inflaton field value at which the strong coupling scale and the Hubble scale meet is less than the Planck scale. Therefore, we cannot describe the model from the Planck scale, or the chaotic initial condition.
On the strong coupling scale in Higgs G-inflation
Energy Technology Data Exchange (ETDEWEB)
Kamada, Kohei, E-mail: kohei.kamada@epfl.ch
2015-05-11
Higgs G-inflation is an inflation model that takes advantage of a Galileon-like derivative coupling. It is a non-renormalizable operator and is strongly coupled at high energy scales. Perturbative analysis does not have a predictive power any longer there. In general, when the Lagrangian is expanded around the vacuum, the strong coupling scale is identified as the mass scale that appears in non-renormalizable operators. In inflationary models, however, the identification of the strong coupling scale is subtle, since the structures of the kinetic term as well as the interaction itself can be modified by the background inflationary dynamics. Therefore, the strong coupling scale depends on the background. In this letter, we evaluate the strong coupling scale of the fluctuations around the background in the Higgs G-inflation including the Nambu–Goldstone modes associated with the symmetry breaking. We find that the system is sufficiently weakly coupled when the scales which we now observe exit the horizon during inflation and the observational predictions with the semiclassical treatment are valid. However, we also find that the inflaton field value at which the strong coupling scale and the Hubble scale meet is less than the Planck scale. Therefore, we cannot describe the model from the Planck scale, or the chaotic initial condition.
Aristov, D. N.; Wölfle, P.
2009-07-01
We calculate the linear response conductance of electrons in a Luttinger liquid with arbitrary interaction g2 , and subject to a potential barrier of arbitrary strength, as a function of temperature. We map the Hamiltonian in the basis of scattering states into an effective low energy Hamiltonian in current algebra form. First the renormalization group (RG) equation for weak interaction is derived in the current operator language both using the operator product expansion and the equation of motion method. To access the strong coupling regime, two methods of deducing the RG equation from perturbation theory, based on the scaling hypothesis and on the Callan-Symanzik formulation, are discussed. The important role of scale-independent terms is emphasized. The latter depend on the regularization scheme used (length versus temperature cutoff). Analyzing the perturbation theory in the fermionic representation, the diagrams contributing to the renormalization group β -function are identified. A universal part of the β -function is given by a ladder series and summed to all orders in g2 . First nonuniversal corrections beyond the ladder series are discussed and are shown to differ from the exact solutions obtained within conformal field theory which use a different regularization scheme. The RG equation for the temperature-dependent conductance is solved analytically. Our result agrees with known limiting cases.
Schmitt, Sebastian; Anders, Frithjof B.
2010-04-01
The quantum transport through nanoscale junctions is governed by the charging energy U of the device. We employ the recently developed scattering-states numerical renormalization-group approach to open quantum systems to study nonequilibrium Green’s functions and current-voltage characteristics of such junctions for small and intermediate values of U . We establish the accuracy of the approach by a comparison with diagrammatic Kadanoff-Baym-Keldysh results which become exact in the weak-coupling limit U→0 . We demonstrate the limits of the diagrammatic expansions at intermediate values of the charging energy. While the numerical renormalization-group approach correctly predicts only one single, universal low-energy scale at zero bias voltage, some diagrammatic expansions yield two different low-energy scales for the magnetic and the charge fluctuations. At large voltages, however, the self-consistent second Born as well as the GW approximation reproduce the scattering-states renormalization-group spectral functions for symmetric junctions while for asymmetric junctions the voltage-dependent redistribution of spectral weight differs significantly in the different approaches. The second-order perturbation theory does not capture the correct single-particle dynamics at large bias and violates current conservation for asymmetric junctions.
Parametric strong mode-coupling in carbon nanotube mechanical resonators
Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-08-01
Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e
The strong coupling from tau decays without prejudice
Boito, Diogo; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2012-01-01
We review our recent determination of the strong coupling \\alpha_s from the OPAL data for non-strange hadronic tau decays. We find that \\alpha_s(m^2_\\tau) =0.325+-0.018 using fixed-order perturbation theory, and \\alpha_s(m^2_\\tau)=0.347+-0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
Central Charge of the Parallelogram Lattice Strong Coupling Schwinger Model
Yee, K
1993-01-01
We put forth a Fierzed hopping expansion for strong coupling Wilson fermions. As an application, we show that the strong coupling Schwinger model on parallelogram lattices with nonbacktracking Wilson fermions span, as a function of the lattice skewness angle, the $\\Delta = -1$ critical line of $6$-vertex models. This Fierzed formulation also applies to backtracking Wilson fermions, which as we describe apparently correspond to richer systems. However, we have not been able to identify them with exactly solved models.
Ultra-strong coupling of molecular materials: spectroscopy and dynamics
George, Jino; Wang, Shaojun; Chervy, Thibault; Canaquier-Durand, Antoine; Schaeffer, Gaël; Lehn, Jean-Marie; Hutchison, James A.; Genet, Cyriaque; Ebbesen, Thomas W
2015-01-01
We report here a study of light–matter strong coupling involving three molecules with very different photo-physical properties. In particular we analyze their emission properties and show that the excitation spectra are very different from the static absorption of the coupled systems. Furthermore we
Chahid, M
2000-01-01
The aim of this paper is the investigation of the critical properties of two strongly coupled paramagnetic sublattices exhibiting a paramagnetic-ferrimagnetic transition, at some critical temperature T sub c greater than the room temperature. In order to take into account the strong fluctuations of the magnetization near the critical point, use is made of the renormalization-group (RG) techniques applied to an elaborated field model describing such a transition, which is of Landau-Ginzburg-Wilson type. The associated free energy or action is a functional of two kinds of order parameters (local magnetizations), which are scalar fields phi (cursive,open) Greek and psi relative to these sublattices. It involves quadratic and quartic terms in both fields, and a lowest-order coupling C sub o phi (cursive,open) Greek psi, where C sub o >0 stands for the coupling constant measuring the interaction between the two sublattices. We first show that the associated field theory is renormalizable at any order of the pertur...
Novel phases in strongly coupled four-fermion theories
Catterall, Simon
2016-01-01
We study a lattice model comprising four flavors of reduced staggered fermion in four dimensions interacting via a specific four-fermion interaction. We present both theoretical arguments and numerical evidence that support the idea that the system develops a mass gap for sufficiently strong four-fermi coupling via the formation of a symmetric four-fermion condensate. In contrast to other lattice four-fermion models studied previously our results do {\\it not} favor the formation of a symmetry-breaking bilinear condensate for any value of the four-fermi coupling and we find evidence for one or more {\\it continuous} phase transitions separating the weak and strong coupling regimes.
QCD and strongly coupled gauge theories : challenges and perspectives
Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H. B.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Höllwieser, R.; Janik, M. A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J. W.; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; Von Hippel, G. M.; Zakharov, V. I.
2014-01-01
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex sys
QCD and strongly coupled gauge theories : challenges and perspectives
Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Nezza, P. Di; Fodor, Z.; Tormo, X. Garcia i; Höllwieser, R.; Kalwait, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, Jian-Wei; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; Hippel, G. M. von; Zakharov, V. I .
2014-01-01
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex sys
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular counterion density profile with an algebraic divergence at the surfaces. This effect drives the system towards a state of lower thermal "disorder", one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically far more stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation.
Approximations for strongly-coupled supersymmetric quantum mechanics
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
2000-01-01
We advocate a set of approximations for studying the finite temperature behavior of strongly-coupled theories in 0+1 dimensions. The approximation consists of expanding about a Gaussian action, with the width of the Gaussian determined by a set of gap equations. The approximation can be applied to supersymmetric systems, provided that the gap equations are formulated in superspace. It can be applied to large-N theories, by keeping just the planar contribution to the gap equations. We analyze several models of scalar supersymmetric quantum mechanics, and show that the Gaussian approximation correctly distinguishes between a moduli space, mass gap, and supersymmetry breaking at strong coupling. Then we apply the approximation to a bosonic large-N gauge theory, and argue that a Gross-Witten transition separates the weak-coupling and strong-coupling regimes. A similar transition should occur in a generic large-N gauge theory, in particular in 0-brane quantum mechanics.
Screening of heterogeneous surfaces: charge renormalization of Janus particles.
Boon, N; Carvajal Gallardo, E; Zheng, S; Eggen, E; Dijkstra, M; van Roij, R
2010-03-17
Nonlinear ionic screening theory for heterogeneously charged spheres is developed in terms of a mode decomposition of the surface charge. A far-field analysis of the resulting electrostatic potential leads to a natural generalization of charge renormalization from purely monopolar to dipolar, quadrupolar, etc, including 'mode couplings'. Our novel scheme is generally applicable to large classes of surface heterogeneities, and is explicitly applied here to Janus spheres with differently charged upper and lower hemispheres, revealing strong renormalization effects for all multipoles.
Renormalization and effective lagrangians
Polchinski, Joseph
1984-01-01
There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional λø 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed.
Renormalization for Philosophers
Butterfield, Jeremy
2014-01-01
We have two aims. The main one is to expound the idea of renormalization in quantum field theory, with no technical prerequisites (Sections 2 and 3). Our motivation is that renormalization is undoubtedly one of the great ideas, and great successes, of twentieth-century physics. Also it has strongly influenced in diverse ways, how physicists conceive of physical theories. So it is of considerable philosophical interest. Second, we will briefly relate renormalization to Ernest Nagel's account of inter-theoretic relations, especially reduction (Section 4). One theme will be a contrast between two approaches to renormalization. The old approach, which prevailed from ca. 1945 to 1970, treated renormalizability as a necessary condition for being an acceptable quantum field theory. On this approach, it is a piece of great good fortune that high energy physicists can formulate renormalizable quantum field theories that are so empirically successful. But the new approach to renormalization (from 1970 onwards) explains...
Integrating out resonances in strongly-coupled electroweak scenarios
Rosell, Ignasi; Santos, Joaquin; Sanz-Cillero, Juan Jose
2016-01-01
Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET) is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs) in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.
Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields
Finazzo, Stefano Ivo; Rougemont, Romulo; Noronha, Jorge
2016-01-01
We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled $\\mathcal{N} = 4$ Super-Yang-Mills (SYM) theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with $(2+1)$-flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane pe...
Investigation of renormalization effects in high temperature cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Zabolotnyy, Volodymyr B.
2008-04-16
It has been found that the self-energy of high-T{sub C} cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T{sub C} suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Protsenko, V. S.; Katanin, A. A.
2017-06-01
We explore the effects of asymmetry of hopping parameters between double parallel quantum dots and the leads on the conductance and a possibility of local magnetic moment formation in this system using functional renormalization group approach with the counterterm. We demonstrate a possibility of a quantum phase transition to a local moment regime [so-called singular Fermi liquid (SFL) state] for various types of hopping asymmetries and discuss respective gate voltage dependencies of the conductance. We show that, depending on the type of the asymmetry, the system can demonstrate either a first-order quantum phase transition to an SFL state, accompanied by a discontinuous change of the conductance, similarly to the symmetric case, or the second-order quantum phase transition, in which the conductance is continuous and exhibits Fano-type asymmetric resonance near the transition point. A semianalytical explanation of these different types of conductance behavior is presented.
Broadband room temperature strong coupling between quantum dots and metamaterials.
Indukuri, Chaitanya; Yadav, Ravindra Kumar; Basu, J K
2017-08-17
Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.
Cosmological constraints on strongly coupled moduli from cosmic strings
Sabancilar, Eray
2010-06-01
Cosmic (super)string loops emit moduli as they oscillate under the effect of their tension. Abundance of such moduli is constrained by diffuse gamma ray background, dark matter, and primordial element abundances if their lifetime is of the order of the relevant cosmic time. It is shown that the constraints on string tension Gμ and modulus mass m are significantly relaxed for moduli coupling to matter stronger than gravitational strength which appears to be quite generic in large volume and warped compactification scenarios in string theory. It is also shown that thermal production of strongly coupled moduli is not efficient, hence free from constraints. In particular, the strongly coupled moduli in warped and large volume compactification scenarios and the radial modulus in the Randall-Sundrum model are found to be free from the constraints when their coupling constant is sufficiently large.
Strong coupling theory of heavy fermion criticality II
Wölfle, Peter; Schmalian, Jörg; Abrahams, Elihu
2017-04-01
We present a theory of the scaling behavior of the thermodynamic, transport and dynamical properties of a three-dimensional metal governed by d-dimensional fluctuations at a quantum critical point, where the electron quasiparticle effective mass diverges. We determine how the critical bosonic order parameter fluctuations are affected by the effective mass divergence. The coupled system of fermions and bosons is found to be governed by two stable fixed points: the conventional weak-coupling fixed point and a new strong-coupling fixed point, provided the boson–boson interaction is irrelevant. The latter fixed point supports hyperscaling, characterized by fractional exponents. The theory is applied to the antiferromagnetic critical point in certain heavy fermion compounds, in which the strong-coupling regime is reached.
A Hybrid Strong/Weak Coupling Approach to Jet Quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We propose and explore a new hybrid approach to jet quenching in a strongly coupled medium. The basis of this phenomenological approach is to treat physics processes at different energy scales differently. The high-$Q^2$ processes associated with the QCD evolution of the jet from production as a single hard parton through its fragmentation, up to but not including hadronization, are treated perturbatively. The interactions between the partons in the shower and the deconfined matter within which they find themselves lead to energy loss. The momentum scales associated with the medium (of the order of the temperature) and with typical interactions between partons in the shower and the medium are sufficiently soft that strongly coupled physics plays an important role in energy loss. We model these interactions using qualitative insights from holographic calculations of the energy loss of energetic light quarks and gluons in a strongly coupled plasma, obtained via gauge/gravity duality. We embed this hybrid model ...
Dust acoustic waves in strongly coupled dissipative plasmas
Xie, B. S.; Yu, M. Y.
2000-12-01
The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.
Hydrodynamic transport in strongly coupled disordered quantum field theories
Lucas, Andrew
2015-01-01
We compute direct current (dc) thermoelectric transport coefficients in strongly coupled quantum field theories without long lived quasiparticles, at finite temperature and charge density, and disordered on long wavelengths compared to the length scale of local thermalization. Many previous transport computations in strongly coupled systems are interpretable hydrodynamically, despite formally going beyond the hydrodynamic regime. This includes momentum relaxation times previously derived by the memory matrix formalism, and non-perturbative holographic results; in the latter case, this is subject to some important subtleties. Our formalism may extend some memory matrix computations to higher orders in the perturbative disorder strength, as well as give valuable insight into non-perturbative regimes. Strongly coupled metals with quantum critical contributions to transport generically transition between coherent and incoherent metals as disorder strength is increased at fixed temperature, analogous to mean field...
Theoretical Properties of the Entanglement in a Strong Coupling Region
Ma, Chen-Te
2016-01-01
Entanglement entropy is expected to do a suitable order parameter to classify phase structures at zero temperature. Thus, it is interesting to understand theoretical properties of the entanglement entropy in a strong coupling region. We compute entropy in a non-relativistic model with four fermion interactions and spin imbalance in four dimensional lattice with an infinite fermion mass limit from an exact effective potential to obtain the behavior of the entropy in infinite strong coupling limit. The result is zero in infinite strong coupling and finite lattice spacing. The result supports non-trivial topology needs to be considered in the entanglement entropy. We consider two dimensions to know the lattice artifact, and quantum gravity problems. The entanglement entropy in two dimensional gravity theory is the sum of the classical Shannon entropy and usual expectation values of area term. We also use area law to do the necessary condition in quantum gravity theory to argue translational invariance should be ...
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Strong-coupling and the Stripe phase of $^3$He
Wiman, Joshua J.; Sauls, J. A.
2016-01-01
Thin films of superfluid $^3$He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid $^3$He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces th...
Raman scattering with strongly coupled vibron-polaritons
Strashko, Artem
2016-01-01
Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [A.Shalabney et al., Ang.Chem.Int.Ed. 54 7971 (2015)], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed in [J.del Pino, J.Feist and F.J.Garcia-Vidal; J.Phys.Chem.C 119 29132 (2015)] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultra-strong coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes,with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.
The strong coupling from tau decays without prejudice
Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2014-08-01
We review our recent determination of the strong coupling αs from the OPAL data for non-strange hadronic tau decays. We find that αs (mτ2)= 0.325 ± 0.018 using fixed-order perturbation theory, and αs (mτ2)= 0.347 ± 0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
The strong coupling from tau decays without prejudice
Energy Technology Data Exchange (ETDEWEB)
Boito, Diogo [Physik Department T31, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Golterman, Maarten [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Jamin, Matthias [Institució Catalana de Recerca i Estudis Avançats (ICREA), IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Maltman, Kim [Department of Mathematics and Statistics, York University, Toronto, ON Canada M3J 1P3 (Canada); CSSM, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Osborne, James [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Peris, Santiago [Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)
2014-08-15
We review our recent determination of the strong coupling α{sub s} from the OPAL data for non-strange hadronic tau decays. We find that α{sub s}(m{sub τ}{sup 2})=0.325±0.018 using fixed-order perturbation theory, and α{sub s}(m{sub τ}{sup 2})=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
Strong environmental coupling in a Josephson parametric amplifier
Energy Technology Data Exchange (ETDEWEB)
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Sundqvist, K. M. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)
2014-06-30
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
The strong coupling constant in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1997-01-01
The prediction of the strong coupling constant in grand unified theories is reviewed, first in the standard model, then in the supersymmetric version. Various corrections are considered. The predictions in both supergravity-induced and gauge-mediated supersymmetry breaking models are discussed. In the region of parameter space without large fine tuning the strong coupling is predicted to be {alpha}{sub s} (M{sub Z}) {approx}> 0.13. Imposing {alpha}{sub s} (M{sub Z}) = 0.118, the authors require a unification scale threshold correction of typically -2%, which is accommodated by some GUT models but in conflict with others.
Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.
Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M
2012-07-20
The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate.
Experimental determination of the effective strong coupling constant
Energy Technology Data Exchange (ETDEWEB)
Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)
2015-03-23
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Nikitina, M A
2016-01-01
Renormalized coupling constants g_{2k} that enter the critical equation of state and determine nonlinear susceptibilities of the system possess universal values g*_{2k} at the Curie point. They are calculated, along with the ratios R_{2k} = g_{2k}/g_4^{k-1}, for the three-dimensional scalar \\lambda\\phi^4 field theory within the pseudo-\\epsilon-expansion approach. Pseudo-\\epsilon-expansions for g*_6, g*_8, R*_6, and R*_8 are derived in the five-loop approximation, numerical estimates are presented for R*_6 and R*_8. The higher-order coefficients of the pseudo-\\epsilon-expansions for the sextic coupling are so small that simple Pade approximants turn out to be sufficient to yield very good numerical results. Their use gives R*_6 = 1.650 while the most recent lattice estimate is R*_6 = 1.649(2). For the octic coupling pseudo-\\epsilon-expansions are less favorable from the numerical point of view. Nevertheless, Pade-Borel resummation leads in this case to R*_8 = 0.890, the number differing only slightly from the ...
Raman scattering with strongly coupled vibron-polaritons
Strashko, Artem; Keeling, Jonathan
2016-08-01
Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [Shalabney et al., Angew. Chem., Int. Ed. 54, 7971 (2015), 10.1002/anie.201502979], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed by del Pino, Feist, and Garcia-Vidal [J. Phys. Chem. C 119, 29132 (2015), 10.1021/acs.jpcc.5b11654] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultrastrong-coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes, with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.
Practical thermodynamics of Yukawa systems at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Khrapak, Sergey A. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); Kryuchkov, Nikita P.; Yurchenko, Stanislav O. [Bauman Moscow State Technical University, 2-nd Baumanskaya St. 5, Moscow 105005 (Russian Federation); Thomas, Hubertus M. [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)
2015-05-21
Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.
Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering
Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J
2016-01-01
We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.
Strongly coupled partitioned FSI using proper orthogonal decomposition
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2012-12-01
Full Text Available -squares) coupling scheme. The performance of the original IBQN-LS method is strongly governed by the number of previous time step histories that are retained, where there exists a problem specific optimal choice. In this paper we will demonstrate...
Weak and strong coupling equilibration in nonabelian gauge theories
Keegan, Liam; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Density Matrix Embedding: A Strong-Coupling Quantum Embedding Theory.
Knizia, Gerald; Chan, Garnet Kin-Lic
2013-03-12
We extend our density matrix embedding theory (DMET) [Phys. Rev. Lett.2012, 109, 186404] from lattice models to the full chemical Hamiltonian. DMET allows the many-body embedding of arbitrary fragments of a quantum system, even when such fragments are open systems and strongly coupled to their environment (e.g., by covalent bonds). In DMET, empirical approaches to strong coupling, such as link atoms or boundary regions, are replaced by a small, rigorous quantum bath designed to reproduce the entanglement between a fragment and its environment. We describe the theory and demonstrate its feasibility in strongly correlated hydrogen ring and grid models; these are not only beyond the scope of traditional embeddings but even challenge conventional quantum chemistry methods themselves. We find that DMET correctly describes the notoriously difficult symmetric dissociation of a 4 × 3 hydrogen atom grid, even when the treated fragments are as small as single hydrogen atoms. We expect that DMET will open up new ways of treating complex strongly coupled, strongly correlated systems in terms of their individual fragments.
Thermodynamics of weakly coupled Falicov-Kimball chains from renormalization-group theory
Sznajd, Jozef
2015-06-01
The linear perturbation renormalization group is used to study spinless two-band fermion chains at half-filling. The model consists of two species of spinless fermions, namely localized f and extended p , and it takes into account the following: the kinetic energy of fermions p , the on-site Coulomb repulsion V between p and f fermions, chemical potentials μp and μf adjusted in such a way that the average of the site occupation + =1 , and a weak interchain hopping tx. The average occupation number, the specific heat, and the correlation functions are studied as functions of temperature. For a single chain the occupation number is a smooth function of T and the specific heat displays two maxima. The weak interchain hopping triggers a discontinuity in the occupation number of fermions as a function of temperature. A long-standing controversy on whether the Falicov-Kimball model can describe a discontinuous transition of nf is also addressed.
Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study
Sindel, M.; Borda, L.; Martinek, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.
2007-07-01
We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson’s numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi surface), (ii) a Stoner splitting in the bands (governed by the band edges), and (iii) an arbitrary shape of the lead density of states. For a generic lead density of states, the quantum dot favors being occupied by a particular spin species due to exchange interaction with ferromagnetic leads, leading to suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry, restoring the Kondo effect. We study both the gate voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in the presence of leads with an energy-dependent density of states is possible not only by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands, simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.
The strong coupling Kondo lattice model as a Fermi gas
Östlund, S
2007-01-01
The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.
A scanning transmon qubit for strong coupling circuit quantum electrodynamics.
Shanks, W E; Underwood, D L; Houck, A A
2013-01-01
Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area.
Neutron Limit on the Strongly-Coupled Chameleon Field
Li, K; Cory, D G; Haun, R; Heacock, B; Huber, M G; Nsofini, J; Pushin, D A; Saggu, P; Sarenac, D; Shahi, C B; Skavysh, V; Snow, W M; Young, A R
2016-01-01
The physical origin of the dark energy that causes the accelerated expansion rate of the universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the cham...
Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi
2016-09-01
In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.
Strong Coupling between On Chip Notched Ring Resonator and Nanoparticle
Wang, S; Smith, H; Yi, Y
2010-01-01
We have demonstrated a new photonic structure to achieve strong optical coupling between nanoparticle and photonic molecule by utilizing a notched micro ring resonators. By creating a notch in the ring resonator and putting a nanoparticle inside the notch, large spectral shifts and splittings at nm scale can be achieved, compared to only pm scale observed by fiber tip evanescently coupled to the surface of microsphere, thereby significantly lowered the quality factor requirement for single nanoparticle detection. The ability for sorting the type of nanoparticles due to very different mode shift and splitting behavior of dielectric and metallic nanoparticles is also emphasized.
Hydrodynamics of strongly coupled gauge theories from gravity
Energy Technology Data Exchange (ETDEWEB)
Benincasa, P. [Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada)
2007-09-15
In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2* supersymmetric SU(N{sub c}) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU(N{sub c}) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.
Hydrodynamics of strongly coupled gauge theories from gravity
Benincasa, P.
2007-09-01
In this talk we review some recent developments in the analysis of gauge theories from a holographic perspective. We focus on the transport properties of strongly coupled gauge theories. In particular, we discuss the results for two specific non-conformal models: the N=2 supersymmetric SU( Nc) Yang-Mills theory and the Sakai-Sugimoto model. Finally, we discuss the hydrodynamic picture for the N=4SU( Nc) SYM theory when the leading correction in the inverse 't Hooft coupling is taken into account.
On the electroweak contribution to the matching of the strong coupling constant in the SM
Directory of Open Access Journals (Sweden)
A.V. Bednyakov
2015-02-01
Full Text Available The effective renormalizable theory describing electromagnetic and strong interactions of quarks of five light flavors (nf=5 QCD×QED is considered as a low-energy limit of the full Standard Model. Two-loop relation between the running strong coupling constants αs defined in either theories is found by simultaneous decoupling of electroweak gauge and Higgs bosons in addition to the top-quark. The relation potentially allows one to confront “low-energy” determination of αs with a high-energy one with increased accuracy. Numerical impact of new O(αsα terms is studied at the MZ scale. It is shown that the corresponding contribution, although being suppressed with respect to O(αs2 terms, is an order of magnitude larger than the three-loop QCD corrections O(αs3 usually taken into account in four-loop renormalization group evolution of αs. The dependence on the matching scale is also analyzed numerically.
From strong to ultrastrong coupling in circuit QED architectures
Energy Technology Data Exchange (ETDEWEB)
Niemczyk, Thomas
2011-08-10
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Roemelt, Michael
2015-07-01
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
QCD and strongly coupled gauge theories: challenges and perspectives
Brambilla, N.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J.L.; Ketzer, B.; Lin, H.W.; Llanes-Estrada, F.J.; Meyer, H.B.; Pakhlov, P.; Pallante, E.; Polikarpov, M.I.; Sazdjian, H.; Schmitt, A.; Snow, W.M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Hollwieser, R.; Janik, M.A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J.W.; Ricciardi, G.; Salgado, C.A.; Schwenzer, K.; Stefanis, N.G.; von Hippel, G.M.; Zakharov, V.I.
2014-01-01
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
QCD and strongly coupled gauge theories: challenges and perspectives
Energy Technology Data Exchange (ETDEWEB)
Brambilla, N.; Vairo, A. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Eidelman, S. [SB RAS, Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Foka, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Gardner, S. [University of Kentucky, Department of Physics and Astronomy, Lexington, KY (United States); Kronfeld, A.S. [Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States); Alford, M.G.; Schwenzer, K. [Washington University, Department of Physics, St Louis, MO (United States); Alkofer, R. [University of Graz, Graz (Austria); Butenschoen, M. [University of Vienna, Faculty of Physics, Wien (Austria); Cohen, T.D. [University of Maryland, Maryland Center for Fundamental Physics and Department of Physics, College Park, MD (United States); Erdmenger, J. [Max-Planck-Institute for Physics, Munich (Germany); Fabbietti, L. [Technische Universitaet Muenchen, Excellence Cluster ' ' Origin and Structure of the Universe' ' , Garching (Germany); Faber, M.; Hoellwieser, R. [Technische Universitaet Wien, Atominstitut, Vienna (Austria); Goity, J.L. [Hampton University, Hampton, VA (United States); Jefferson Laboratory, Newport News, VA (United States); Ketzer, B. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Lin, H.W. [University of Washington, Department of Physics, Seattle, WA (United States); Llanes-Estrada, F.J. [Universidad Complutense de Madrid, Department Fisica Teorica I, Madrid (Spain); Meyer, H.B.; Wittig, H.; Hippel, G.M. von [Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institut Mainz, Mainz (Germany); Pakhlov, P.; Polikarpov, M.I. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Moscow Institute for Physics and Technology, Dolgoprudny (Russian Federation); Pallante, E.; Papadodimas, K. [University of Groningen, Centre for Theoretical Physics, Groningen (Netherlands); Sazdjian, H. [Universite Paris-Sud, Institut de Physique Nucleaire CNRS/IN2P3, Orsay (France); Schmitt, A. [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Snow, W.M. [Indiana University, Center for Exploration of Energy and Matter and Department of Physics, Bloomington, IN (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Vuorinen, A. [University of Helsinki, Department of Physics and Helsinki Institute of Physics, Helsinki (Finland); Arnold, P. [University of Virginia, Department of Physics, Charlottesville, VA (United States); Christakoglou, P. [NIKHEF, Amsterdam (Netherlands); Di Nezza, P. [Istituto Nazionale di Fisica Nucleare (INFN), Frascati (Italy); Fodor, Z. [Wuppertal University, Wuppertal (Germany); Eoetvoes University, Budapest (Hungary); Forschungszentrum Juelich, Juelich (Germany); Garcia i Tormo, X. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Janik, M.A. [Warsaw University of Technology, Faculty of Physics, Warsaw (Poland); Kalweit, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Keane, D. [Kent State University, Department of Physics, Kent, OH (United States); Kiritsis, E. [University of Crete, Crete Center for Theoretical Physics, Department of Physics, Heraklion (Greece); Universite Paris Diderot, Laboratoire APC, Sorbonne Paris-Cite (France); CERN, Theory Group, Physics Department, Geneva 23 (Switzerland); Mischke, A. [Utrecht University, Faculty of Science, Utrecht (Netherlands); Mizuk, R. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Moscow Physical Engineering Institute, Moscow (Russian Federation); Odyniec, G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Pich, A. [Universitat de Valencia, CSIC, IFIC, Valencia (Spain); Pittau, R. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos y CAFPE, Granada (Spain); Qiu, J.W. [Brookhaven National Laboratory, Physics Department, Upton, NY (United States); Stony Brook University, C.N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook, NY (United States); Ricciardi, G. [Universita degli Studi di Napoli Federico II, Dipartimento di Fisica, Napoli (Italy); INFN, Napoli (Italy); Salgado, C.A. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas y IGFAE, Galicia (ES); Stefanis, N.G. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (DE); Zakharov, V.I. [Max-Planck-Institute for Physics, Munich (DE); Institute of Theoretical and Experimental Physics, Moscow (RU); Moscow Institute for Physics and Technology, Dolgoprudny (RU); Far Eastern Federal University, School of Biomedicine, Vladivostok (RU)
2014-10-15
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments. (orig.)
Strong Coupling between Surface Plasmon Polaritons and Molecular Vibrations
Memmi, H.; Benson, O.; Sadofev, S.; Kalusniak, S.
2017-03-01
We report on the strong coupling of surface plasmon polaritons and molecular vibrations in an organic-inorganic plasmonic hybrid structure consisting of a ketone-based polymer deposited on top of a silver layer. Attenuated-total-reflection spectra of the hybrid reveal an anticrossing in the dispersion relation in the vicinity of the carbonyl stretch vibration of the polymer with an energy splitting of the upper and lower polariton branch up to 15 meV. The splitting is found to depend on the molecular layer thickness and saturates for micrometer-thick films. This new hybrid state holds a strong potential for application in chemistry and optoelectronics.
Dynamic Stark effect in strongly coupled microcavity exciton polaritons.
Hayat, Alex; Lange, Christoph; Rozema, Lee A; Darabi, Ardavan; van Driel, Henry M; Steinberg, Aephraim M; Nelsen, Bryan; Snoke, David W; Pfeiffer, Loren N; West, Kenneth W
2012-07-20
We present experimental observations of a nonresonant dynamic Stark shift in strongly coupled microcavity quantum well exciton polaritons--a system which provides a rich variety of solid-state collective phenomena. The Stark effect is demonstrated in a GaAs/AlGaAs system at 10 K by femtosecond pump-probe measurements, with the blueshift approaching the meV scale for a pump fluence of 2 mJ cm(-2) and 50 meV red detuning, in good agreement with theory. The energy level structure of the strongly coupled polariton Rabi doublet remains unaffected by the blueshift. The demonstrated effect should allow generation of ultrafast density-independent potentials and imprinting well-defined phase profiles on polariton condensates, providing a powerful tool for manipulation of these condensates, similar to dipole potentials in cold-atom systems.
Modified Enskog Kinetic Theory for Strongly Coupled Plasmas
Baalrud, Scott D
2015-01-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S.~D.~Baalrud and J.~Daligault, Phys.~Rev.~Lett.~{\\bf 110}, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling ($\\Gamma \\gtrsim 30$). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
Modified Enskog kinetic theory for strongly coupled plasmas.
Baalrud, Scott D; Daligault, Jérôme
2015-06-01
Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged particles that is associated with Coulomb repulsion. This is obtained by analogy with the finite size of hard spheres in Enskog's theory. Predictions for the self-diffusion and shear viscosity coefficients of the one-component plasma are tested against molecular dynamics simulations. The theory is found to accurately capture the kinetic contributions to the transport coefficients, but not the potential contributions that arise at very strong coupling (Γ≳30). Considerations related to a first-principles generalization of Enskog's kinetic equation to continuous potentials are also discussed.
Revisiting strong coupling QCD at finite baryon density and temperature
Fromm, M
2008-01-01
The strong coupling limit ($\\beta_{gauge}=0$) of lattice QCD with staggered fermions enjoys the same non-perturbative properties as continuum QCD, namely confinement and chiral symmetry breaking. In contrast to the situation at weak coupling, the sign problem which appears at finite density can be brought under control for a determination of the full (mu,T) phase diagram by Monte Carlo simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at the strongly first-order, low-T, finite-mu transition, are addressed respectively with a worm algorithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results of Karsch and Muetter. Comparison with analytic mean-field determinations of the phase diagram shows discrepancies of O(10) in the location of the QCD critical point.
Supergravity description of boost invariant conformal plasma at strong coupling
Benincasa, Paolo; Buchel, Alex; Heller, Michal P.; Janik, Romuald A.
2008-02-01
We study string theory duals of the expanding boost invariant conformal gauge theory plasmas at strong coupling. The dual supergravity background is constructed as an asymptotic late-time expansion, corresponding to equilibration of the gauge theory plasma. The absence of curvature singularities in the first few orders of the late-time expansion of the dual gravitational background unambiguously determines the equilibrium equation of state, and the shear viscosity of the gauge theory plasma. While the absence of the leading pole singularities in the gravitational curvature invariants at third order in late-time expansion determines the relaxation time of the plasma, the subleading logarithmic singularity cannot be canceled within a supergravity approximation. Thus, a supergravity approximation to a dual description of the strongly coupled boost invariant expanding plasma is inconsistent. Nevertheless we find that the relaxation time determined from the cancellation of pole singularities is quite robust.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to
Multimode Strong Coupling in Superconducting Cavity Piezo-electromechanics
Han, Xu; Tang, Hong X
2016-01-01
High frequency mechanical resonators subjected to low thermal phonon occupancy are easier to be prepared to the ground state by direct cryogenic cooling. Their extreme stiffness, however, poses a significant challenge for external interrogations. Here we demonstrate a superconducting cavity piezo-electromechanical system in which multiple modes of a bulk acoustic resonator oscillating at $10\\,\\textrm{GHz}$ are coupled to a planar microwave superconducting resonator with a cooperativity exceeding $2\\times10^{3}$, deep in the strong coupling regime. By implementation of the non-contact coupling scheme to reduce mechanical dissipation, the system exhibits excellent coherence characterized by a frequency-quality factor product of $7.5\\times10^{15}\\,\\textrm{Hz}$. Interesting dynamics of temporal oscillations of the microwave energy is observed, implying the coherent conversion between phonons and photons. The demonstrated high frequency cavity piezo-electromechanics is compatible with superconducting qubits, repre...
Probing strongly coupled anisotropic plasmas from higher curvature gravity
Energy Technology Data Exchange (ETDEWEB)
Jahnke, Viktor; Misobuchi, Anderson Seigo [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil)
2016-06-15
We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential, and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results. (orig.)
A variational sinc collocation method for strong-coupling problems
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico)
2006-06-02
We have devised a variational sinc collocation method (VSCM) which can be used to obtain accurate numerical solutions to many strong-coupling problems. Sinc functions with an optimal grid spacing are used to solve the linear and nonlinear Schroedinger equations and a lattice {phi}{sup 4} model in (1 + 1). Our results indicate that errors decrease exponentially with the number of grid points and that a limited numerical effort is needed to reach high precision. (letter to the editor)
Tuning the work-function via strong coupling.
Hutchison, James A; Liscio, Andrea; Schwartz, Tal; Canaguier-Durand, Antoine; Genet, Cyriaque; Palermo, Vincenzo; Samorì, Paolo; Ebbesen, Thomas W
2013-05-01
The tuning of the molecular material work-function via strong coupling with vacuum electromagnetic fields is demonstrated. Kelvin probe microscopy extracts the surface potential (SP) changes of a photochromic molecular film on plasmonic hole arrays and inside Fabry-Perot cavities. Modulating the optical cavity resonance or the photochromic film effectively tunes the work-function, suggesting a new tool for tailoring material properties.
Probing strongly coupled anisotropic plasmas from higher curvature gravity
Misobuchi, Anderson Seigo
2015-01-01
We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.
Probing strongly coupled anisotropic plasmas from higher curvature gravity
Jahnke, Viktor; Misobuchi, Anderson Seigo
2016-06-01
We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential, and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.
Analytic Solution of Strongly Coupling Schr(o)dinger Equations
Institute of Scientific and Technical Information of China (English)
LIAO Jin-Feng; ZHUANG Peng-Fei
2004-01-01
A recently developed expansion method for analytically solving the ground states of strongly coupling Schrodinger equations by Friedberg,Lee,and Zhao is extended to excited states and applied to power-law central forces for which scaling properties are proposed.As examples for application of the extended method,the Hydrogen atom problem is resolved and the low-lying states of Yukawa potential are approximately obtained.
Wireless power transfer via strongly coupled magnetic resonances.
Kurs, André; Karalis, Aristeidis; Moffatt, Robert; Joannopoulos, J D; Fisher, Peter; Soljacic, Marin
2007-07-06
Using self-resonant coils in a strongly coupled regime, we experimentally demonstrated efficient nonradiative power transfer over distances up to 8 times the radius of the coils. We were able to transfer 60 watts with approximately 40% efficiency over distances in excess of 2 meters. We present a quantitative model describing the power transfer, which matches the experimental results to within 5%. We discuss the practical applicability of this system and suggest directions for further study.
Axial couplings and strong decay widths of heavy hadrons.
Detmold, William; Lin, C-J David; Meinel, Stefan
2012-04-27
We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation theory and are central quantities in heavy quark physics, as they control strong decay widths and the light quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six different pion masses, 227 MeV
Axial couplings and strong decay widths of heavy hadrons
Detmold, William; Meinel, Stefan
2011-01-01
We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation theory and are central quantities in heavy quark physics, as they control strong decay widths and the light-quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six different pion masses, 227 MeV < m_\\pi < 352 MeV, two lattice spacings, a=0.085, 0.112 fm, and a volume of (2.7 fm)^3. Our results for the axial couplings are g_1=0.449(51), g_2=0.84(20), and g_3=0.71(13), where g_1 governs the interaction between heavy-light mesons and pions and g_{2,3} are similar couplings between heavy-light baryons and pions. Using our lattice result for g_3, and constraining 1/m_Q corrections in the strong decay widths with experimental data for \\Sigma_c^{(*)} decays, we obtain \\Gamma[\\Sigma_b^{(*)} \\to \\Lambda_b \\pi^\\pm] = 4.2(1.0), 4.8(1.1), 7.3(1.6), 7.8(1.8) MeV for the \\Si...
Free-Free Radiation in Strongly Coupled Plasmas
Weisheit, Jon; Daligault, Jerome; Murillo, Michael; Turner, Leaf
2004-11-01
In strongly coupled plasmas, the basic electron-ion collision events responsible for emission or absorption of free-free radiation are modified by interrelated collective effects: quasi-static ion correlations, dynamical electron correlations, and screened Coulombic interactions resulting from correlations between the positive and negative charged particle components of the plasma. We are investigating the relative importance of these different phenomena, within the context of the collision frequency formula of Boercker et al.[1] Our statistical model [2] describes the self-consistent fluctuations of a multi-component plasma, and includes quantal effects on the dynamics as well as strong coupling between species. We will present numerical results that identify plasma conditions for which strong coupling causes major changes to the electron-ion collision frequency. [1] D.B. Boercker, F.J. Rogers, H.E. DeWitt, Phys. Rev. A25, 1623 (1982). [2] J. Daligault and M.S. Murillo, Phys. Rev. E68, 015401 (2003).
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
Directory of Open Access Journals (Sweden)
David Dahmen
2016-08-01
Full Text Available Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Strongly Coupled Models with a Higgs-like Boson*
Directory of Open Access Journals (Sweden)
Pich Antonio
2013-11-01
Full Text Available Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale, the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule.
Strongly Coupled Models with a Higgs-like Boson
Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan
2013-11-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Non-Fermi-liquid and topological states with strong spin-orbit coupling.
Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon
2013-11-15
We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.
Strong-Coupling and the Stripe Phase of ^3He
Wiman, Joshua J.; Sauls, J. A.
2016-09-01
Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one-dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces the bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is diminished relative to the A phase, but the Stripe phase is stable in a large range of temperatures, pressures, confinement, and surface conditions.
Deconstructing six dimensional gauge theories with strongly coupled moose meshes
Gregoire, T; Gregoire, Thomas; Wacker, Jay G.
2002-01-01
It has recently been realized that five dimensional theories can be generated dynamically from asymptotically free, QCD-like four dimensional dynamics via ``deconstruction.'' In this paper we generalize this construction to six dimensional theories using a moose mesh with alternating weak and strong gauge groups. A new ingredient is the appearance of self couplings between the higher dimensional components of the gauge fields that appear as a potential for pseudo-Goldstone bosons in the deconstructed picture. We show that, in the limit where the weak gauge couplings are made large, such potentials are generated with appropriate size from finite one loop correction. Our construction has a number of applications, in particular to the constructions of ``little Higgs'' models of electroweak symmetry breaking.
Strong Exciton-photon Coupling in Semiconductor Microcavities
DEFF Research Database (Denmark)
Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher
1999-01-01
directionality of the spontaneous emission in the diodes.At low temperatures, a strong coupling between the excitons in the quantum well and the electromagnetic field in the cavity may be achieved. This coupling leads to new quantum mechanical states, so-called polaritons, the properties of which are still......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high...... place. Due to the steep dispersion, the amount of phase space available for polariton scattering is reduced, yielding longer dephasing times and hence narrower lines. The possibility of tailoring the polariton dispersion in order to reduce the line width is very interesting, for instance for all...
New algorithms and new results for strong coupling LQCD
Unger, Wolfgang
2012-01-01
We present and compare new types of algorithms for lattice QCD with staggered fermions in the limit of infinite gauge coupling. These algorithms are formulated on a discrete spatial lattice but with continuous Euclidean time. They make use of the exact Hamiltonian, with the inverse temperature beta as the only input parameter. This formulation turns out to be analogous to that of a quantum spin system. The sign problem is completely absent, at zero and non-zero baryon density. We compare the performance of a continuous-time worm algorithm and of a Stochastic Series Expansion algorithm (SSE), which operates on equivalence classes of time-ordered interactions. Finally, we apply the SSE algorithm to a first exploratory study of two-flavor strong coupling lattice QCD, which is manageable in the Hamiltonian formulation because the sign problem can be controlled.
Mobility in a strongly coupled dusty plasma with gas
Liu, Bin; Goree, J.
2014-04-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Mobility in a strongly coupled dusty plasma with gas
Liu, Bin
2014-01-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force $F$, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity $u_p$. The mobility $\\mu_p=u_p/F$ of the projectile's motion is obtained. Two regimes depending on $F$ are identified. In the high force regime, $\\mu_p \\propto F^{0.23}$, and the scattering cross section $\\sigma_s$ diminishes as $u_p^{-6/5}$. Results for $\\sigma_s$ are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Strongly Coupled Chameleons and the Neutronic Quantum Bouncer
Brax, Philippe; Pignol, Guillaume
2011-09-01
We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β≳108, we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β≳1011 would lead to new bound states at a distance of order 2μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β≲1011, is already 3 orders of magnitude better than the upper bound, β≲1014, from precision tests of atomic spectra.
Strongly Coupled Chameleons and the Neutronic Quantum Bouncer
Brax, Philippe
2011-01-01
We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultra cold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, $\\beta\\gtrsim 10^8$, we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of order one percent of a peV is expected. We also find that an extremely large coupling $\\beta\\gtrsim 10^{11}$ would lead to new bound states at a distance of order 2 microns, which is already ruled out by previous Grenoble experiments. The resulting bound, $\\beta\\lesssim 10^{11}$, is already three orders of magnitude better than the upper bound, $\\beta\\lesssim 10^{14}$, from precision tests of atomic spectra.
Heat conduction in 2D strongly-coupled dusty plasmas
Hou, Lu-Jing
2008-01-01
We perform non-equilibrium simulations to study heat conduction in two-dimensional strongly coupled dusty plasmas. Temperature gradients are established by heating one part of the otherwise equilibrium system to a higher temperature. Heat conductivity is measured directly from the stationary temperature profile and heat flux. Particular attention is paid to the influence of damping effect on the heat conduction. It is found that the heat conductivity increases with the decrease of the damping rate, while its magnitude confirms previous experimental measurement.
Study of the Strong Coupling Constant Using W+ Jet Processes
Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, S. G.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Gu, W. X.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tao; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lebrat, J.-F.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shao, Y. Y.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Sznajder, A.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Wang, J.; Warchol, J.; Wayne, M.; Weerts, H.; Wen, F.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, D. H.; Zhang, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zylberstejn, A.
1995-10-01
The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992-93 Tevatron Collider run. For the W-->eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065+/-0.003stat+/-0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.
Wilson loops at strong coupling for curved contours with cusps
Dorn, Harald
2015-01-01
We construct the minimal surface in AdS, relevant for the strong coupling behaviour of local supersymmetric Wilson loops in N=4 SYM for a closed contour formed out of segments of two intersecting circles. Its regularised area is calculated including all divergent parts and the finite renormalised term. Furthermore we prove, that for generic planar curved contours with cusps the cusp anomalous dimensions are functions of the respective cusp angles alone. They do not depend on other local data of the cusps.
First and Second Law of Thermodynamics at Strong Coupling.
Seifert, Udo
2016-01-15
For a small driven system coupled strongly to a heat bath, internal energy and exchanged heat are identified such that they obey the usual additive form of the first law. By identifying this exchanged heat with the entropy change of the bath, the total entropy production is shown to obey an integral fluctuation theorem on the trajectory level implying the second law in the form of a Clausius inequalilty on the ensemble level. In this Hamiltonian approach, the assumption of an initially uncorrelated state is not required. The conditions under which the proposed identification of heat is unique and experimentally accessible are clarified.
Shear Flow instability in a strongly coupled dusty plasma
Banerjee, D; Chakrabarti, N
2013-01-01
Linear stability analysis of strongly coupled incompressible dusty plasma in presence of shear flow has been carried out using Generalized Hydrodynamical(GH) model. With the proper Galilean invariant GH model, a nonlocal eigenvalue analysis has been done using different velocity profiles. It is shown that the effect of elasticity enhances the growth rate of shear flow driven Kelvin- Helmholtz (KH) instability. The interplay between viscosity and elasticity not only enhances the growth rate but the spatial domain of the instability is also widened. The growth rate in various parameter space and the corresponding eigen functions are presented.
Fano-like resonances in strongly coupled binary Coulomb systems
Silvestri, Luciano; Donko, Zoltan; Hartmann, Peter; Kaehlert, Hanno
2014-01-01
Molecular dynamics (MD) simulations of a strongly coupled binary ionic mixture have shown the presence of a sharp minimum in the dynamical density fluctuation spectrum. This phenomenon is reminiscent of the well known Fano anti-resonance, occurring in various physical processes. We give a theoretical analysis using the Quasi Localized Charge Approximation, pointing out that the observed phenomenon in the equilibrium spectrum is the consequence, induced by the Fluctuation-Dissipation Theorem, of the Fano anti-resonance, whose existence in the system is verified by further MD simulation.
Black hole thermodynamics from calculations in strongly coupled gauge theory.
Kabat, D; Lifschytz, G; Lowe, D A
2001-02-19
We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics.
Thermalization and confinement in strongly coupled gauge theories
Ishii, Takaaki; Rosen, Christopher
2016-01-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance ...
Aqua, J-N; Cornu, F
2004-11-01
The aim of the paper is to study the renormalizations of the charge and screening length that appear in the large-distance behavior of the effective pairwise interaction w(alphaalpha') between two charges e(alpha) and e(alpha') in a dilute electrolyte solution, both along a dielectric wall and in the bulk. The electrolyte is described by the so-called primitive model in the framework of classical statistical mechanics and the electrostatic response of the wall is characterized by its dielectric constant. In a previous paper [Phys. Rev. E 68, 022133 (2003)] a graphic reorganization of resummed Mayer diagrammatics has been devised in order to exhibit the general structure of the 1/y3 leading tail of w(alphaalpha') (x,x',y) for two charges located at distances x and x' from the wall and separated by a distance y along the wall. When all species have the same closest approach distance b to the wall, the coefficient of the 1/y3 tail is the product Dalpha(x)Dalpha'(x') of two effective dipoles. Here we use the same graphic reorganization in order to systematically investigate the exponential large-distance behavior of w(alphaalpha') in the bulk. (We show that the reorganization also enables one to derive the basic screening rules in both cases.) Then, in a regime of high dilution and weak coupling, the exact analytical corrections to the leading tail of w(alphaalpha'), both in the bulk or along the wall, are calculated at first order in the coupling parameter epsilon and in the limit where b becomes negligible with respect to the Debye screening length. (Epsilon is proportional to the so-called plasma parameter.) The structure of corrections to the terms of order epsilon is exhibited, and the scaling regime for the validity of the Debye limit is specified. In the vicinity of the wall, we use the density profiles calculated previously [J. Stat. Phys. 105, 211 (2001)] up to order epsilon and a method devised [J. Stat. Phys. 105, 245 (2001)] for the determination of the
Neutron limit on the strongly-coupled chameleon field
Li, K.; Arif, M.; Cory, D. G.; Haun, R.; Heacock, B.; Huber, M. G.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C. B.; Skavysh, V.; Snow, W. M.; Young, A. R.; Index Collaboration
2016-03-01
The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling β ranging from β <4.7 ×106 for a Ratra-Peebles index of n =1 in the nonlinear scalar field potential to β <2.4 ×107 for n =6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n . Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.
Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System
Dory, Constantin; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Sapra, Neil V; Vučković, Jelena
2016-01-01
We investigate the dynamics of single- and multi-photon emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of non-classical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly-dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency-filtering we are able to find a strong two-photon component of the emission in the multi-photon regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes. These models are then supported by quantum-optical simulations that fully cap...
Pair correlation functions of strongly coupled two-temperature plasma
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-09-01
Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.
The strong coupling regime of twelve flavors QCD
da Silva, Tiago Nunes
2012-01-01
We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,"The bulk transition of QCD with twelve flavors and the role of improvement"] for the SU(3) gauge theory with Nf=12 fundamental flavors, and we add some numerical evidence and theoretical discussion. In particular, we study the nature of the bulk transition that separates a chirally broken phase at strong coupling from a chirally restored phase at weak coupling. When a non-improved action is used, a rapid crossover is observed at small bare quark masses. Our results confirm a first order nature for this transition, in agreement with previous results we obtained using an improved action. As shown in Ref.[1], when improvement of the action is used, the transition is preceded by a second rapid crossover at weaker coupling and an exotic phase emerges, where chiral symmetry is not yet broken. This can be explained [1] by the non hermiticity of the improved lattice Transfer matrix, arising from the c...
Quantized Brans Dicke Theory: Phase Transition and Strong Coupling Limit
Pal, Sridip
2016-01-01
We show that Friedmann-Robertson-Walker (FRW) geometry with flat spatial section in quantized (Wheeler deWitt quantization) Brans Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor $a\\mapsto\\lambda a$ for some constant $\\lambda$. In the weak coupling ($\\omega$) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of phase boundary is an obstruction to another classical symmetry [arXiv:gr-qc/9902083] (which relates two BD theory with different coupling) admitted by BD theory with scale invariant matter content i.e $T^{\\mu}{}_{\\mu}=0$. Classically, this prohibits the BD theory to reduce to General Relativity (GR) for scale invariant matter content. We show that strong coupling limit of BD and GR both preserves the symmetry involving scale factor. We also show that with a scale invariant matter content (radiation i.e $P=\\frac{1}{3}\\rho$), the quantized BD theory does reduce to GR as $\\omega\\rightarr...
The strong coupling constant of QCD with four flavors
Energy Technology Data Exchange (ETDEWEB)
Tekin, Fatih
2010-11-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie
2013-02-13
Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.
Perspective: Coulomb fluids—Weak coupling, strong coupling, in between and beyond
Naji, Ali; Kanduč, Matej; Forsman, Jan; Podgornik, Rudolf
2013-10-01
We present a personal view on the current state of statistical mechanics of Coulomb fluids with special emphasis on the interactions between macromolecular surfaces, concentrating on the weak and the strong coupling limits. Both are introduced for a (primitive) counterion-only system in the presence of macroscopic, uniformly charged boundaries, where they can be derived systematically. Later we show how this formalism can be generalized to the cases with additional characteristic length scales that introduce new coupling parameters into the problem. These cases most notably include asymmetric ionic mixtures with mono- and multivalent ions that couple differently to charged surfaces, ions with internal charge (multipolar) structure and finite static polarizability, where weak and strong coupling limits can be constructed by analogy with the counterion-only case and lead to important new insights into their properties that cannot be derived by any other means.
Renormalization Group Flows from D=3, N=2 Matter Coupled Gauged Supergravities
Deger, N S
2002-01-01
We study holographic RG flows of N=2 matter couple AdS_3 supergravities which admit both compact and non-compact sigma manifolds. For the compact case the supersymmetric domain wall solution interpolates between a conformal IR region and flat spacetime and this corresponds to a deformation of the CFT by an irrelevant operator. When it is non-compact, the solution can be interpreted as a flow between an UV fixed point and a non-conformal(singular) IR region. This is an exact example of a deformation flow when the singularity is physical. We also find a non-supersymmetric deformation flow when the scalar potential has a second AdS vacua. The ratio of the central charges is rational for certain values of the size of the sigma model. Next, we analyze the spectrum of a massless scalar on our background by transforming the problem into Schroedinger form. The spectrum is continuous for the compact model, yet it can be both continuous (with and without mass gap) and discrete otherwise. Finally, 2-point functions are ...
Local renormalization method for random systems
Gittsovich O.; Hubener R.; Rico E.; Briegel H.J.
2010-01-01
In this paper, we introduce a real-space renormalization transformation for random spin systems on 2D lattices. The general method is formulated for random systems and results from merging two well known real space renormalization techniques, namely the strong disorder renormalization technique (SDRT) and the contractor renormalization (CORE). We analyze the performance of the method on the 2D random transverse field Ising model (RTFIM).
Heat Transport in Confined Strongly Coupled 2D Dust Clusters
Kudelis, Giedrius; Bonitz, Michael
2013-01-01
Dusty plasmas are a model system for studying strong correlation. The dust grains' size of a few micro-meters and their characteristic oscillation frequency of a few hertz allows for an investigation of many particle effects on an atomic level. In this article, we model the heat transport through an axially confined 2D dust cluster from the center to the outside. The system behaves particularly interesting since heat is not only conducted within the dust component but also transfered to the neutral gas. Fitting the analytical solution to the obtained radial temperature profiles allows to determine the heat conductivity $\\kheat$. The heat conductivity is found to be constant over a wide range of coupling strengths even including the phase transition from solid to liquid here, as it was also found in extended systems by V. Nosenko et al. in 2008 \\cite{PhysRevLett.100.025003}
Thermodynamics of the N=2^* strongly coupled plasma
Buchel, A; Kerner, P; Liu, J T; Buchel, Alex; Deakin, Stan; Kerner, Patrick; Liu, James T.
2007-01-01
Gauge/string duality is a potentially important framework for addressing the properties of the strongly coupled quark gluon plasma produced at RHIC. However, constructing an actual string theory dual to QCD has so far proven elusive. In this paper, we take a partial step towards exploring the QCD plasma by investigating the thermodynamics of a non-conformal system, namely the N=2^* theory, which is obtained as a mass deformation of the conformal N=4 gauge theory. We find that at temperatures of order the mass scale, the thermodynamics of the mass deformed plasma is surprisingly close to that of the conformal gauge theory plasma. This suggests that many properties of the quark gluon plasma at RHIC may in fact be well described by even relatively simple models such as that of the conformal N=4 plasma.
Parton energy loss at strong coupling and the universal bound
Kharzeev, D E
2008-01-01
The apparent universality of jet quenching observed in heavy ion collisions at RHIC for light and heavy quarks, as well as for quarks and gluons, is very puzzling and calls for a theoretical explanation. Recently it has been proposed that the synchrotron--like radiation at strong coupling gives rise to a universal bound on the energy of a parton escaping from the medium. Since this bound appears quite low, almost all of the observed particles at high transverse momentum have to originate from the surface of the hot fireball. Here I make a first attempt of checking this scenario against the RHIC data and formulate a "Universal Bound Model" of jet quenching that can be further tested at RHIC and LHC.
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Cordova, Clay; Popolitov, Alexandr; Shakirov, Shamil
2016-01-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarthmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
Strongly Coupled Semi-Direct Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Ibe, M.; /SLAC; Izawa, K.-I.; /Kyoto U., Yukawa Inst., Kyoto /Tokyo U., IPMU; Nakai, Y.; /Kyoto U., Yukawa Inst., Kyoto
2011-09-13
Supersymmetry (SUSY) is expected to be a crucial ingredient of basic laws in Nature. It is an attractive possibility that SUSY is broken at low energy within the experimental reach in the near future. Among others, low-energy dynamics with gauge mediation between a hidden sector of SUSY breaking and the visible sector of SUSY standard model may be phenomenologically viable. In particular, the gauge interactions are flavor blind, so that the unwanted flavor-changing processes are naturally suppressed. Strongly coupled semi-direct gauge mediation models of supersymmetry breaking through massive mediators with standard model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard model gaugino masses for a small mediator mass without breaking the standard model symmetries.
Strongly Coupled Rotational Band in {sup 33}Mg
Energy Technology Data Exchange (ETDEWEB)
Richard, A. L.; Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.
2017-07-28
The “Island of Inversion” at N ∼ 20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of 33Mg populated by a two-stage projectile fragmentation reaction and studied with GRETINA. The experimental level energies, ground state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.
$T$-Matrix Approach to Strongly Coupled QGP
Liu, Shuai Y F
2016-01-01
Based on a thermodynamic $T$-matrix approach we extract the potential $V$ between two static charges in the quark-gluon plasma (QGP) from fits to the pertinent lattice-QCD free energy. With suitable relativistic corrections we utilize this new potential to compute heavy-quark transport coefficients and compare the results to previous calculations using either $F$ or $U$ as potential. We then discuss a generalization of the $T$-matrix re-summation to a "matrix $\\log$" re-summation of $t$-channel diagrams for the grand partition function of the QGP in the Luttinger-Ward skeleton diagram formalism. With $V$ as a non-perturbative driving kernel in the light-parton sector, we obtain the QGP equation of state from fits to lattice-QCD data. The resulting light-parton spectral functions are characterized by large thermal widths at small momenta, indicating the dissolution of quasi-particles in a strongly coupled QGP.
Five-brane configurations without a strong coupling regime
Energy Technology Data Exchange (ETDEWEB)
Kiritsis, E. E-mail: kiritsis@physics.uoc.gr; Kounnas, C.; Petropoulos, P.M.; Rizos, J
2003-03-03
Five-brane distributions with no strong-coupling problems and high symmetry are studied. The simplest configuration corresponds to a spherical shell of branes with S{sup 3} geometry and symmetry. The equations of motion with {delta}-function sources are carefully solved in such backgrounds. Various other brane distributions with sixteen unbroken supercharges are described. They are associated to exact world-sheet superconformal field theories with domain-walls in space-time. We study the equations of gravitational fluctuations, find normalizable modes of bulk six-dimensional gravitons and confirm the existence of a mass gap. We also study the moduli of the configurations and derive their (normalizable) wave functions. We use our results and holography to calculate, in a controllable fashion, the two-point function of the stress tensor of little string theory in these vacua.
Strong coupling between single-electron tunneling and nanomechanical motion.
Steele, G A; Hüttel, A K; Witkamp, B; Poot, M; Meerwaldt, H B; Kouwenhoven, L P; van der Zant, H S J
2009-08-28
Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10(5) allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Mode imaging and selection in strongly coupled nanoantennas
Huang, Jer-Shing; Geisler, Peter; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Hecht, Bert
2010-01-01
The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functiona...
Mode Imaging and Selection in Strongly Coupled Nanoantennas
Huang, Jer-Shing; Kern, Johannes; Geisler, Peter; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Hecht, Bert
2010-06-01
The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.
Coupling and Strong Feller for Jump Processes on Banach Spaces
Wang, Feng-Yu
2011-01-01
By using lower bound conditions of the L\\'evy measure w.r.t. a nice reference measure, the coupling and strong Feller properties are investigated for the Markov semigroup associated with a class of linear SDEs driven by (non-cylindrical) L\\'evy processes on a Banach space. Unlike in the finite-dimensional case where these properties have also been confirmed for L\\'evy processes without drift, in the infinite-dimensional setting the appearance of a drift term is essential to ensure the quasi-invariance of the process by shifting the initial data. Gradient estimates and exponential convergence are also investigated. The main results are illustrated by specific models on the Wiener space and separable Hilbert spaces.
Novel Ion Trap Design for Strong Ion-Cavity Coupling
Directory of Open Access Journals (Sweden)
Alejandro Márquez Seco
2016-04-01
Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.
Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion
Steele, G. A.; Hüttel, A. K.; Witkamp, B.; Poot, M.; Meerwaldt, H. B.; Kouwenhoven, L. P.; van der Zant, H. S. J.
2009-08-01
Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 105 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.
Strong-coupling effects in a plasma of confining gluons
Florkowski, Wojciech; Su, Nan; Tywoniuk, Konrad
2015-01-01
The plasma consisting of confining gluons resulting from the Gribov quantization of the SU(3) Yang-Mills theory is studied using non-equilibrium fluid dynamical framework. Exploiting the Bjorken symmetry and using linear response theory a general analytic expressions for the bulk and shear viscosity coefficients are derived. It is found that the considered system exhibits a number of properties similar to the strongly-coupled theories, where the conformality is explicitly broken. In particular, it is shown that, in the large temperature limit, bulk to shear viscosity ratio, scales linearly with the difference $1/3 - c_s^2$, where $c_s$ is the speed of sound. Results obtained from the analysis are in line with the interpretation of the quark-gluon plasma as an almost perfect fluid.
On the flavor problem in strongly coupled theories
Energy Technology Data Exchange (ETDEWEB)
Bauer, Martin
2012-11-28
This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B{sub d}{yields}{mu}{sup +}{mu}{sup -}) and B(B{sub s}{yields}{mu}{sup +}{mu}{sup -}), and two vertices, viz. S{sub {psi}{phi}} and vertical stroke {epsilon}{sub K} vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale {Lambda}{sub NP} in the TeV range, except for the CP violating quantity vertical stroke {epsilon}{sub K} vertical stroke, which requires {Lambda}{sub NP}=O(10) TeV in the absence of fine-tuning. The numerous modifications of the
Strongly coupled gauge theories: What can lattice calculations teach us?
Hasenfratz, A; Rebbi, C; Weinberg, E; Witzel, O
2015-01-01
The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light $0^{++}$ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the $vev$ of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could...
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.
2015-03-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S; Penedones, Joao; Santos, Jorge
2014-01-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical $S^8$ horizon. This geometry preserves the $SO(9)$ symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the $SO(9)$ to the $SO(6)\\times SO(3)$ symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration
Directory of Open Access Journals (Sweden)
Gil Katz
2016-05-01
Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.
Mechanism for strong magnetoelectric coupling in dilute magnetic ferroelectrics
Weston, L.; Cui, X. Y.; Ringer, S. P.; Stampfl, C.
2016-11-01
The manipulation of atomic-scale magnetization is important from both a fundamental and a practical perspective. Using first-principles density-functional-theory calculations within the hybrid functional approach, we systematically study spin-lattice coupling effects for isolated 3 d4-3 d7 transition-metal dopants in a nonmagnetic, ferroelectric PbTiO3 host material. When present at the B-site, a low-spin (or intermediate-spin) to high-spin crossover induces marked ferroelectric-like distortions in the local geometry, characterized by a shift of the dopant ion with respect to the surrounding O6 octahedral cage. The origins of this microscopic multiferroic effect are discussed in terms of the pseudo-Jahn-Teller theory for ferroelectricity. The possibility to exploit this phenomenon to achieve strong magnetoelectric coupling, including controlled spin switching, is also investigated. These results provide a further understanding of ferroelectricity and multiferroicity in perovskite oxides, and they suggest a possible pathway to manipulate single atomic spins in semiconductor solid solutions.
Strong Coupling Problem with Time-Varying Sound Speed
Joyce, Austin
2011-01-01
For a single scalar field with unit sound speed, there are exactly three distinct cosmological solutions which produce a scale invariant spectrum of curvature perturbations in a dynamical attractor background, assuming vacuum initial conditions: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and an adiabatic ekpyrotic phase on a slowly expanding background. Of these three, only inflation remains weakly coupled over a wide range of modes, while the other scenarios can produce at most 12 e-folds of scale invariant and gaussian modes. In this paper, we investigate how allowing the speed of sound of fluctuations to evolve in time affects this classification. While in the presence of a variable sound speed there are many more scenarios which are scale invariant at the level of the two-point function, they generically suffer from strong coupling problems similar to those in the canonical case. There is, however, an exceptional case with superlu...
Strong Coulomb Coupling in Relativistic Quantum Constraint Dynamics
Bawin, M.; Cugnon, J.; Sazdjian, H.
We study, in the framework of relativistic quantum constraint dynamics, the bound state problem of two oppositely charged spin 1/2 particles, with masses m1 and m2, in mutual electromagnetic interaction. We search for the critical value of the coupling constant α for which the bound state energy reaches the lower continuum, thus indicating the instability of the heavier particle or of the strongly coupled QED vacuum in the equal mass case. Two different choices of the electromagnetic potential are considered, corresponding to different extensions of the substitution rule into the nonperturbative region of α: (i) the Todorov potential, already introduced in the quasipotential approach and used by Crater and Van Alstine in Constraint Dynamics; (ii) a second potential (potential II), characterized by a regular behavior at short distances. For the Todorov potential we find that for m2>m1 there is always a critical value αc of α, depending on m2/m1, for which instability occurs. In the equal mass case, instability is reached at αc=1/2 with a vanishing value of the cutoff radius, generally needed for this potential at short distances. For potential II, on the other hand, we find that instability occurs only for m2>2.16 m1.
Strongly coupled quark-gluon plasma in heavy ion collisions
Shuryak, Edward
2017-07-01
A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A collisions at high multiplicities reveal collective explosions similar to those in heavy ion A A collisions. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent equilibration.
Strongly coupled non-Abelian plasmas in a magnetic field
Critelli, Renato
2016-01-01
In this dissertation we use the gauge/gravity duality approach to study the dynamics of strongly coupled non-Abelian plasmas. Ultimately, we want to understand the properties of the quark-gluon plasma (QGP), whose scientifc interest by the scientific community escalated exponentially after its discovery in the 2000's through the collision of ultrarelativistic heavy ions. One can enrich the dynamics of the QGP by adding an external field, such as the baryon chemical potential (needed to study the QCD phase diagram), or a magnetic field. In this dissertation, we choose to investigate the magnetic effects. Indeed, there are compelling evidences that strong magnetic fields of the order $eB\\sim 10 m_\\pi^2$ are created in the early stages of ultrarelativistic heavy ion collisions. The chosen observable to scan possible effects of the magnetic field on the QGP was the viscosity, due to the famous result $\\eta/s=1/4\\pi$ obtained via holography. In a first approach we use a caricature of the QGP, the $\\mathcal{N}=4$ s...
Thermalization and confinement in strongly coupled gauge theories
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2016-11-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.
Nonlinear Debye screening in strongly-coupled plasmas
Sarmah, D; Tessarotto, M
2006-01-01
An ubiquitous property of plasmas is the so-called Debye shielding of the electrostatic potential. Important aspects of Debye screening concern, in particular, the investigation of non-linear charge screening effects taking place in strongly-coupled plasmas, that imply a reduction of the effective charge characterizing the Debye-H\\"{u}ckel potential. These effects are particularly relevant in dusty plasmas which are characterized by high-Z particles. The investigation of the effective interactions of these particles has attracted interest in recent years especially for numerical simulations. In this work we intend to analyze the consistency of the traditional mathematical model for the Debye screening. In particular, we intend to prove that the 3D Poisson equation involved in the DH model does not admit strong solutions. For this purpose a modified model is proposed which takes into account the effect of local plasma sheath (i.e., the local domain near test particles where the plasma must be considered discre...
Thermalization and confinement in strongly coupled gauge theories
Directory of Open Access Journals (Sweden)
Ishii Takaaki
2016-01-01
Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.
Emergent geometry from field theory: Wilson's renormalization group revisited
Kim, Ki-Seok; Park, Chanyong
2016-06-01
We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.
Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains
Xiong, Min; Jin, Xiulong; Ye, Jian
2016-02-01
Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide.Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible
Large mass hierarchies from strongly-coupled dynamics
Athenodorou, Andreas; Bergner, Georg; Elander, Daniel; Lin, C -J David; Lucini, Biagio; Piai, Maurizio
2016-01-01
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio $R$ between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in ...
Quark Gluon Plasma: Surprises from strongly coupled QCD matter
Jacak, Barbara
2017-01-01
Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.
T-Matrix Approach to Strongly Coupled QGP
Liu, Shuai Y. F.; Rapp, Ralf
2017-01-01
Based on a thermodynamic T-matrix approach we extract the potential V between two static charges in the quark-gluon plasma (QGP) from ts to the pertinent lattice-QCD free energy. With suitable relativistic corrections we utilize this new potential to compute heavy-quark transport coefficients and compare the results to previous calculations using either F or U as potential. We then discuss a generalization of the T-matrix re-summation to a “matrix log” re-summation of t-channel diagrams for the grand partition function of the QGP in the Luttinger-Ward skeleton diagram formalism. With V as a non-perturbative driving kernel in the light-parton sector, we obtain the QGP equation of state from ts to lattice-QCD data. The resulting light-parton spectral functions are characterized by large thermal widths at small momenta, indicating the dissolution of quasi-particles in a strongly coupled QGP.
Correlation Function of Circular Wilson Loops at Strong Coupling
Dekel, Amit
2013-01-01
We study the correlation function of two circular Wilson loops at strong coupling in N=4 super Yang-Mills theory. Using the AdS/CFT correspondence, the problem maps to finding the minimal surface between two circles defined on the boundary of AdS, and the fluctuations around the classical solution in AdS_5 x S^5. At the classical level, we derive the string solution in H_3 x S^1 explicitly, and focus on properties such as stability and phase transition. Furthermore, a computation of the associated algebraic curve is given. At the quantum level, the one-loop partition function is constructed by introducing quadratic bosonic and fermionic fluctuations around the classical solution, embedded in AdS_5 x S^5. We find an analytic, formal expression for the partition function in terms of an infinite product by employing the Gel'fand-Yaglom method and supersymmetric regularization. We regulate the expression and evaluate the partition function numerically.
The strong coupling from hadronic $\\tau$ decays: a critical appraisal
Boito, Diogo; Maltman, Kim; Peris, Santiago
2016-01-01
Several different analysis methods have been developed to determine the strong coupling via finite-energy sum-rule analyses of hadronic $\\tau$ decay data. While most methods agree on the existence of the well-known ambiguity in the choice of a resummation scheme due to the slow convergence of QCD perturbation theory at the $\\tau$ mass, there is an ongoing controversy over how to deal properly with non-perturbative effects. These are small, but not negligible, and include quark-hadron "duality violations" (i.e., resonance effects) which are not described by the operator product expansion (OPE). In one approach, an attempt is made to suppress duality violations enough that they might become negligible. The number of OPE parameters to be fit, however, then exceeds the number of available sum rules, necessitating an uncontrolled OPE truncation, in which a number of higher-dimension OPE contributions in general present in QCD are set to zero by hand. In the second approach, truncation of the OPE is avoided by cons...
Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems
Jarzynski, Christopher
2017-01-01
We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.
Dynamical Dark Matter from Strongly-Coupled Dark Sectors
Dienes, Keith R; Su, Shufang; Thomas, Brooks
2016-01-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles --- motivated primarily by KK towers in theories with extra dimensions --- in which the density of states scales roughly as a polynomial of mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadrons" associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally --- even with an ex...
Dense baryonic matter in strong coupling lattice gauge theory
Bringoltz, B
2004-01-01
We investigate the strong coupling limit of lattice QCD in the Hamiltonian formulation for systems with non-zero baryon density. In leading order the Hamiltonian looks like an antiferromagnet that is invariant under global U(N_f)xU(N_f) and local SU(N_c). Physically it describes meson dynamics with a fixed background of baryon density. We study this Hamiltonian with several baryon number distributions, and concentrate on the global symmetries of the ground state and on the properties of low lying excitations. In particular, for uniform non-zero baryon density we write the partition function as a path integral that is tractable in the limit of large N_c. We find that the ground state spontaneously breaks chiral symmetry as well as discrete lattice rotations in a way that depends on N_f and the density. The low energy excitations include type I and type II Goldstone bosons. The energies of the latter are of order 1/N_c, and are quadratic in momentum. Bosons of either type can develop anisotropic dispersion rela...
Out-of-Equilibrium Chiral Magnetic Effect at Strong Coupling
Lin, Shu
2013-01-01
We study the charge transports originating from triangle anomaly in out-of-equilibrium conditions in the framework of AdS/CFT correspondence at strong coupling, to gain useful insights on possible charge separation effects that may happen in the very early stages of heavy-ion collisions. We first construct a gravity background of a homogeneous mass shell with a finite (axial) charge density gravitationally collapsing to a charged blackhole, which serves as a dual model for out-of-equilibrium charged plasma undergoing thermalization. We find that a finite charge density in the plasma slows down the thermalization. We then study the out-of-equilibrium properties of Chiral Magnetic Effect and Chiral Magnetic Wave in this background. As the medium thermalizes, the magnitude of chiral magnetic conductivity and the response time delay grow. We find a dynamical peak in the spectral function of retarded current correlator, which we identify as an out-of-equilibrium chiral magnetic wave. The group velocity of the out-...
The Weibel instability in a strongly coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir; Khanzadeh, H. [Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar (Iran, Islamic Republic of)
2014-06-15
In this paper, the growth rate of the Weibel instability is calculated for an energetic relativistic electron beam penetrated into a strongly coupled plasma, where the collision effects of background electron-ion scattering play an important role in equations. In order to calculate the growth rate of the Weibel instability, two different models of anisotropic distribution function are used. First, the distribution of the plasma and beam electrons considered as similar forms of bi-Maxwellian distribution. Second, the distribution functions of the plasma electrons and the beam electrons follows bi-Maxwellian and delta-like distributions, respectively. The obtained results show that the collision effect decreases the growth rate in two models. When the distribution function of electrons beam is in bi-Maxwellian form, the instability growth rate is greater than where the distribution function of beam electrons is in delta-like form, because, the anisotropic temperature for bi-Maxwellian distribution function in velocity space is greater than the delta-like distribution function.
From weak to strong coupling in ABJM theory
Drukker, Nadav; Putrov, Pavel
2011-01-01
The partition function of N=6 supersymmetric Chern-Simons-matter theory (known as ABJM theory) on S^3, as well as certain Wilson loop observables, are captured by a zero dimensional super-matrix model. This super-matrix model is closely related to a matrix model describing topological Chern-Simons theory on a lens space. We explore further these recent observations and extract more exact results in ABJM theory from the matrix model. In particular we calculate the planar free energy, which matches at strong coupling the classical IIA supergravity action on AdS_4 x CP^3 and gives the correct N^{3/2} scaling for the number of degrees of freedom of the M2 brane theory. Furthermore we find contributions coming from world-sheet instanton corrections in CP^3. We also calculate non-planar corrections, both to the free energy and to the Wilson loop expectation values. This matrix model appears also in the study of topological strings on a toric Calabi-Yau manifold, and an intriguing connection arises between the space...
Wave function and CKM renormalization
Espriu, Doménec
2002-01-01
In this presentation we clarify some aspects of the LSZ formalism and wave function renormalization for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyze the renormalization of the CKM mixing matrix which is closely related to wave function renormalization. The effects due to the electroweak radiative corrections that are described in this work are small, but they will need to be considered when the precision in the measurement of the charged current sector couplings reaches the 1% level. The work presented here is done in collaboration with Julian Manzano and Pere Talavera.
Lavrov, P. M.; Shapiro, I. L.
2012-09-01
We consider the renormalization of general gauge theories on curved space-time background, with the main assumption being the existence of a gauge-invariant and diffeomorphism invariant regularization. Using the Batalin-Vilkovisky (BV) formalism one can show that the theory possesses gauge invariant and diffeomorphism invariant renormalizability at quantum level, up to an arbitrary order of the loop expansion.
The Statics Dielectric Function and Interaction Potential In Strong Coupling With AdS/CFT
Liu, Lian; Liu, Hui
2013-01-01
In this paper, we studied the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The interaction potential then presents a weaker screening characteristics in strong coupling, which indicates a smaller Debye mass compared with weak coupling.
Dynamical Dark Matter from strongly-coupled dark sectors
Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks
2017-02-01
Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally—even with an exponentially rising density of states. We also study the effective equations of state for such ensembles, and investigate some of the model-independent observational constraints on such ensembles that follow directly from these equations of state. In general, we find that such constraints tend to introduce correlations between various properties of these DDM ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread across an increasing number of different states in the ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.
Renormalized Cosmological Perturbation Theory
Crocce, M
2006-01-01
We develop a new formalism to study nonlinear evolution in the growth of large-scale structure, by following the dynamics of gravitational clustering as it builds up in time. This approach is conveniently represented by Feynman diagrams constructed in terms of three objects: the initial conditions (e.g. perturbation spectrum), the vertex (describing non-linearities) and the propagator (describing linear evolution). We show that loop corrections to the linear power spectrum organize themselves into two classes of diagrams: one corresponding to mode-coupling effects, the other to a renormalization of the propagator. Resummation of the latter gives rise to a quantity that measures the memory of perturbations to initial conditions as a function of scale. As a result of this, we show that a well-defined (renormalized) perturbation theory follows, in the sense that each term in the remaining mode-coupling series dominates at some characteristic scale and is subdominant otherwise. This is unlike standard perturbatio...
Strong and tunable mode coupling in carbon nanotube resonators
Castellanos-Gomez, Andres; Meerwaldt, Harold B.; Venstra, Warner J.; van der Zant, Herre S. J.; Steele, Gary A.
2012-07-01
The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage, allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders of magnitude larger than the mechanical-mode coupling in micromechanical resonators.
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting
Wu, Xing-Gang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin
2014-01-01
A valid prediction from quantum field theory for a physical observable should be independent of the choice of renormalization scheme -- this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since truncated perturbation series do not automatically satisfy the requirements of the renormalization group. Two distinct approaches for satisfying the RGI principle have been suggested in the literature. One is the "Principle of Maximum Conformality" (PMC) in which the terms associated with the $\\beta$-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the "Principle of Minimum Sensitivity" (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a deta...
Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P
2014-01-01
We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...
Lan, Tran Nguyen; Kurashige, Yuki; Yanai, Takeshi
2014-05-13
The density matrix renormalization group (DMRG) method is used in conjunction with the complete active space (CAS) procedure, the CAS configuration interaction (CASCI), and the CAS self-consistent field (CASSCF) to evaluate hyperfine coupling constants (HFCCs) for a series of diatomic (2)Σ radicals (BO, CO(+), CN, and AlO) and vinyl (C2H3) radical. The electron correlation effects on the computed HFCC values were systematically investigated using various levels of active space, which were increasingly extended from single valence space to large-size model space entailing double valence and at least single polarization shells. In addition, the core correlation was treated by including the core orbitals in active space. Reasonably accurate results were obtained by the DMRG-CASSCF method involving orbital optimization, while DMRG-CASCI calculations with Hartree-Fock orbitals provided poor agreement of the HFCCs with the experimental values. To achieve further insights into the accuracy of HFCC calculations, the orbital contributions to the total spin density were analyzed at a given nucleus, which is directly related to the FC term and is numerically sensitive to the level of correlation treatment and basis sets. The convergence of calculated HFCCs with an increasing number of renormalized states was also assessed. This work serves as the first study on the performance of the ab initio DMRG method for HFCC prediction.
Strong and tunable mode coupling in carbon nanotube resonators
Castellanos Gomez, A.; Meerwaldt, H.B.; Ventra, W.J.; Van der Zant, H.S.J.; Steele, G.A.
2012-01-01
The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated by single-electron-tunneling processes and that the mode-coupling parameter can be
Stimulated scattering in strongly coupled nanolasers induced by Rabi oscillations
Marconi, Mathias; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M
2016-01-01
Two coupled-cavity systems, or "photonic dimers", are efficient test-beds for both fundamental optics -the realization of quantum correlated states, Josephson physics, and so forth-, and applications such as optical flip-flop memories. In this work we report on the first observation of nonlinear mode interaction in a photonic dimer formed by two semiconductor photonic crystal coupled nanolasers. For this, we investigate energy transfer between hybrid modes, which manifests as a switching from the blue-detuned (bonding) to the red-detuned (anti-bonding) modes. An mean-field model allows us to explain this phenomenon as stimulated scattering due to carrier population oscillations in the cavities at the Rabi frequency. Such asymmetrical mode interaction is universal in semiconductor laser photonic molecules, and unveils the origin of cross-correlation dips in the statistics of mode fluctuations.
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
飛田, 和男
2004-01-01
Ground state properties of the S = 1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation
Hida, Kazuo
2004-08-01
Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.
$\\eta/s$ in a strongly coupled QFT
Mahajan, Namit
2016-01-01
We consider $O(N)$ $g\\varphi^4$ theory with the coupling $g$ being large, and calculate shear viscosity to entropy density ratio ($\\eta/s$). The final result for $\\eta/s$ has a form remarkably similar to that obtained from string theory calculations via the AdS/CFT conjecture. The method adopted can be used to compute quantities of interest in other theories as well with some modifications and reveals some very interesting features within the considered theory.
MRI surface-coil pair with strong inductive coupling.
Mett, Richard R; Sidabras, Jason W; Hyde, James S
2016-12-01
A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.
A strongly coupled anisotropic fluid from dilaton driven holography
Jain, Sachin; Kundu, Nilay; Sen, Kallol; Sinha, Aninda; Trivedi, Sandip(Department of Theoretical Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India)
2015-01-01
We consider a system consisting of $5$ dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically $AdS_5$ region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big...
Exponential Decay of Correlations for the Strongly Coupled Toom Model
de Maere, Augustin
2011-01-01
We prove that, for the two-dimensional probabilistic cellular automaton of Toom in the low-noise regime, there are two classes of initial measures, each of which converges exponentially fast toward one of the two natural invariant measures. We also show that these two invariant measures have exponential decay of correlations in space and in time and are strongly mixing.
Static and Dynamic Amplification Using Strong Mechanical Coupling
Ilyas, Saad
2016-07-28
Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100
Quasiclassical Theory and Simulations of Strongly Coupled Plasmas
Ebeling, W.; Ortner, J.
1999-01-01
A survey on the dynamical and thermodynamical properties of plasmas with strong Coulomb interactions in the quasi-classical density-temperature region is given. First the basic theoretical concepts describing nonideality are discussed. The chemical picture is introduced. It is shown that the nonideal plasma subsystem of the free charges has a rather large quasi-classical regime, where the quantum effects yield only corrections to the merely classical dynamics. The plasma of free charges may b...
Clean HMBC: Suppression of strong-coupling induced artifacts in HMBC spectra
DEFF Research Database (Denmark)
Würtz, Peter; Permi, Perttu; Nielsen, Niels Chr.;
2008-01-01
A new experiment, clean HMBC, is introduced for suppression of strong-coupling induced artifacts in HMBC spectra. The culprits of these artifacts are an inherent shortcoming of low-pass J filters in the presence of strong coupling and the 1H p pulse in the middle of the evolution period aimed...... at suppressing evolution under heteronuclear J couplings and 1H chemical shifts. A p pulse causes coherence transfer in strongly coupled spin systems and, as is well known in e.g., homonuclear J spectra, this leads to peaks that would not be there in the absence of strong coupling. Similar artifacts occur...... protons, such as carbohydrates, and the new technique is demonstrated on D-mannose. Finally, a fundamental difference between HMBC and H2BC explains why strong-coupling artifacts are much less of a problem in the latter type of spectra....
Cavity-induced modifications of molecular structure in the strong coupling regime
Galego, Javier; Feist, Johannes
2015-01-01
In most theoretical descriptions of collective strong coupling of organic molecules to a cavity mode, the molecules are modeled as simple two-level systems. This picture fails to describe the rich structure provided by their internal rovibrational (nuclear) degrees of freedom. We investigate a first-principles model that fully takes into account both electronic and nuclear degrees of freedom, allowing an exploration of the phenomenon of strong coupling from an entirely new perspective. First, we demonstrate the limitations of applicability of the Born-Oppenheimer approximation in strongly coupled molecule-cavity structures. For the case of two molecules, we also show how dark states, which within the two-level picture are effectively decoupled from the cavity, are indeed affected by the formation of collective strong coupling. Finally, we discuss ground-state modifications in the ultra-strong coupling regime and show that some molecular observables are affected by the collective coupling strength, while other...
A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography
Jain, Sachin; Sen, Kallol; Sinha, Aninda; Trivedi, Sandip P
2014-01-01
We consider a system consisting of $5$ dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically $AdS_5$ region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find t...
Gover, A Rod
2016-01-01
For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...
Vidal, G
2007-11-30
We propose a real-space renormalization group (RG) transformation for quantum systems on a D-dimensional lattice. The transformation partially disentangles a block of sites before coarse-graining it into an effective site. Numerical simulations with the ground state of a 1D lattice at criticality show that the resulting coarse-grained sites require a Hilbert space dimension that does not grow with successive RG transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each relevant length scale makes an equivalent contribution to the entanglement of a block.
Dyson-Schwinger approach to strongly coupled theories
Popovici, Carina
2013-01-01
Although nonperturbative functional methods are often associated with low energy Quantum Chromodynamics, contemporary studies indicate that they provide reliable tools to characterize a much wider spectrum of strongly interacting many-body systems. In this review, we aim to provide a modest overview on a few notable applications of Dyson-Schwinger equations to QCD and condensed matter physics. After a short introduction, we lay out some formal considerations and proceed by addressing the confinement problem. We discuss in some detail the heavy quark limit of Coulomb gauge QCD, in particular the simple connection between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential. Landau gauge results on the infrared Yang-Mills propagators are also briefly reviewed. We then focus on less common applications, in graphene and high-temperature superconductivity. We discuss recent developments, and present theoretical predictions that are supported by experimental findings.
Resummed mean-field inference for strongly coupled data
Jacquin, Hugo; Rançon, A.
2016-10-01
We present a resummed mean-field approximation for inferring the parameters of an Ising or a Potts model from empirical, noisy, one- and two-point correlation functions. Based on a resummation of a class of diagrams of the small correlation expansion of the log-likelihood, the method outperforms standard mean-field inference methods, even when they are regularized. The inference is stable with respect to sampling noise, contrarily to previous works based either on the small correlation expansion, on the Bethe free energy, or on the mean-field and Gaussian models. Because it is mostly analytic, its complexity is still very low, requiring an iterative algorithm to solve for N auxiliary variables, that resorts only to matrix inversions and multiplications. We test our algorithm on the Sherrington-Kirkpatrick model submitted to a random external field and large random couplings, and demonstrate that even without regularization, the inference is stable across the whole phase diagram. In addition, the calculation leads to a consistent estimation of the entropy of the data and allows us to sample form the inferred distribution to obtain artificial data that are consistent with the empirical distribution.
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Holographic Floquet states: (I) A strongly coupled Weyl semimetal
Hashimoto, Koji; Murata, Keiju; Oka, Takashi
2016-01-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the $\\mathcal{N}=2$ supersymmetric massless QCD in a rotating electric field in the large $N_c$ limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: In the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low...
Linear Sigma Models With Strongly Coupled Phases -- One Parameter Models
Hori, Kentaro
2013-01-01
We systematically construct a class of two-dimensional $(2,2)$ supersymmetric gauged linear sigma models with phases in which a continuous subgroup of the gauge group is totally unbroken. We study some of their properties by employing a recently developed technique. The focus of the present work is on models with one K\\"ahler parameter. The models include those corresponding to Calabi-Yau threefolds, extending three examples found earlier by a few more, as well as Calabi-Yau manifolds of other dimensions and non-Calabi-Yau manifolds. The construction leads to predictions of equivalences of D-brane categories, systematically extending earlier examples. There is another type of surprise. Two distinct superconformal field theories corresponding to Calabi-Yau threefolds with different Hodge numbers, $h^{2,1}=23$ versus $h^{2,1}=59$, have exactly the same quantum K\\"ahler moduli space. The strong-weak duality plays a crucial r\\^ole in confirming this, and also is useful in the actual computation of the metric on t...
Zanotto, Simone; Bianco, Federica; Biasiol, Giorgio; Baldacci, Lorenzo; Vitiello, Miriam Serena; Sorba, Lucia; Colombelli, Raffaele; Tredicucci, Alessandro
2016-01-01
The ability to feed energy into a system, or - equivalently - to drive that system with an external input is a fundamental aspect of light-matter interaction. The key concept in many photonic applications is the "critical coupling" condition: at criticality, all the energy fed to the system via an input channel is dissipated within the system itself. Although this idea was crucial to enhance the efficiency of many devices, it was never considered in the context of systems operating in a non-perturbative regime. In this so-called strong coupling regime, the matter and light degrees of freedom are in fact mixed into dressed states, leading to new eigenstates called polaritons. Here we demonstrate that the strong coupling regime and the critical coupling condition can indeed coexist; in this situation, which we term strong critical coupling, all the incoming energy is converted into polaritons. A semiclassical theory - equivalently applicable to acoustics or mechanics - reveals that the strong critical coupling ...
Strong coupling of in-plane plasmon modes and their control
Kasture, Sachin; Mandal, Prasanta; Gupta, S. Dutta; Achanta, Venu Gopal
2012-01-01
We show anti-crossings due to strong in-plane coupling of plasmon modes in dielectric-metal-dielectric structure with top 2D dielectric pattern. Experimentally measured anti-crossing widths are compared with those calculated by coupled mode theory. It is shown that the coupling strength of the plasmon modes can be controlled by the orientation of the sample.
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two
Strong Helioseismic Constraints on Weakly-Coupled Plasmas
Nayfonov, Alan
The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.
Coexistence of lasing and strong coupling in quantum-dot microlasers
Gericke, Fabian; Gartner, Paul; Holzinger, Steffen; Hopfmann, Caspar; Heindel, Tobias; Wolters, Janik; Schneider, Christian; Florian, Matthias; Jahnke, Frank; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan
2016-01-01
We demonstrate the coexistence of lasing and strong coupling in a quantum-dot micropillar laser. Comprehensive experimental studies including measurements of the input-output curve, second- order photon-correlation and coherence time are used to identify the transition of a strongly coupled quantum-dot microcavity system to lasing. The experimental results are evaluated on the basis of a microscopic theory that includes contributions from detuned background emitters. Furthermore, we show that both the emission spectrum and the strong coupling condition are strongly modified at the laser threshold due to the higher-order photonic states required to reach lasing. By accounting for these states that become realized under strong pumping, we provide a closed analytic expression that describes the transition from strong to weak coupling across the threshold in agreement with both experiment and a numerical approach.
Aspects of Galileon non-renormalization
Energy Technology Data Exchange (ETDEWEB)
Goon, Garrett [Department of Applied Mathematics and Theoretical Physics, Cambridge University,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Hinterbichler, Kurt [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,S. Ellis Avenue, Chicago, IL 60637 (United States); Trodden, Mark [Center for Particle Cosmology, Department of Physics and Astronomy,University of Pennsylvania,S. 33rd Street, Philadelphia, PA 19104 (United States)
2016-11-18
We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P(X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. However, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.
Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip
Zou, Chang-Ling; Jiang, Liang; Tang, Hong X
2016-01-01
Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.
Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors.
Liang, Yufeng; Yang, Li
2015-02-13
In reduced-dimensional semiconductors, doping-induced carrier plasmons can strongly couple with quasiparticle excitations, leading to a significant band gap renormalization. However, the physical origin of this generic effect remains obscure. We develop a new plasmon-pole theory that efficiently and accurately captures this coupling. Using monolayer MoS(2) and MoSe(2) as prototype two-dimensional (2D) semiconductors, we reveal a striking band gap renormalization above 400 meV and an unusual nonlinear evolution of their band gaps with doping. This prediction significantly differs from the linear behavior that is observed in one-dimensional structures. Notably, our predicted band gap renormalization for MoSe(2) is in excellent agreement with recent experimental results. Our developed approach allows for a quantitative understanding of many-body interactions in general doped 2D semiconductors and paves the way for novel band gap engineering techniques.
Full counting statistics of renormalized dynamics in open quantum transport system
Energy Technology Data Exchange (ETDEWEB)
Luo, JunYan, E-mail: jyluo@zust.edu.cn [School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023 (China); Shen, Yu; He, Xiao-Ling [School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023 (China); Li, Xin-Qi [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR (China); State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Yan, YiJing [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR (China)
2011-11-28
The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness. -- Highlights: ► We study full counting statistics of electron transport through double quantum dots. ► Essential differences due to coupling to the electrodes and heat bath are identified. ► Level detuning induced by electrodes results in strongly enhanced shot noise and skewness. ► Interdot coupling renormalization due to heat bath leads to asymmetric noise and intriguing skewness.
Optically induced strong intermodal coupling in mechanical resonators at room temperature
Energy Technology Data Exchange (ETDEWEB)
Ohta, R.; Okamoto, H.; Yamaguchi, H. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Hey, R.; Friedland, K. J. [Paul-Drude-Institut fur Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)
2015-08-31
Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperatures and provides a wide variety of applications of integrated mechanical systems.
Hansen, Jared A; Ehara, Masahiro; Piecuch, Piotr
2013-10-10
The left-eigenstate completely renormalized coupled-cluster (CC) method with singles, doubles, and noniterative triples [CR-CC(2,3)] and a few representative density functional theory (DFT) approaches have been applied to methanol oxidation to formic acid on a Au8(-) cluster, which is a model for aerobic oxidations on gold nanoparticles. It is demonstrated that CR-CC(2,3) supports the previous exothermic reaction mechanism, placing the initial rate-determining transition state, which corresponds to hydrogen transfer from the methoxy species to the molecular oxygen, at about 20 kcal/mol above the reactants, less than 40 kcal/mol above the O2 and CH3O(-) species coadsorbed on Au8(-), and considerably above the remaining two transition states along the reaction pathway. The DFT calculations using the previously exploited M06 hybrid functional show reasonable agreement with CR-CC(2,3), but B3LYP offers additional improvements in the description of the relevant activation energies. Pure functionals, including M06-L, BP86, and TPSS, do not work well, significantly underestimating the activation barriers, but dispersion corrections, as in B97-D, bring the results closer to the M06 accuracy level.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings
2015-08-24
AFRL-AFOSR-VA-TR-2015-0246 Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings Hui Deng UNIVERSITY OF MICHIGAN Final Report...TITLE AND SUBTITLE Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0256... photons was demonstrated in the designable microcavity structure for the first time, establishing a robust light-matter hybrid states with designable
Renormalization of the N = 1 Abelian super-Chern-Simons theory coupled to parity-preserving matter
Energy Technology Data Exchange (ETDEWEB)
Colatto, L.P.; Andrade, M.A. de; Franco, D.H.T.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Del Cima, O.M. [Technische Universitat Wien (Austria). Institut fuer Theoretische Physik; Piguet, O. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica
1997-12-01
We analyse the renormalizability of an Abelian N=1 super-Chern-Simons model coupled to parity-preserving matter on the light of the regularization independent algebraic method. The model shows to be stable under radiative corrections and to gauge anomaly free. (author) 7 refs.
Nonlinear quantum optics in the (ultra)strong light-matter coupling
Sánchez-Burillo, Eduardo; García-Ripoll, Juan José; Martín-Moreno, Luis; Zueco, David
2014-01-01
The propagation of $N$ photons in one dimensional waveguides coupled to $M$ qubits is discussed, both in the strong and ultrastrong qubit-waveguide coupling. Special emphasis is placed on the characterisation of the nonlinear response and its linear limit for the scattered photons as a function of $N$, $M$, qubit inter distance and light-matter coupling. The quantum evolution is numerically solved via the Matrix Product States technique. Both the time evolution for the field and qubits is com...
Controlling Strong Chaos by Adaptive Coupling Method in the Perturbed Cat Map
Institute of Scientific and Technical Information of China (English)
许海波; 王光瑞; 陈式刚
2001-01-01
The method for controlling Hamiltonian chaos by adaptive integrable mode coupling is extended to controlling strong chaos by adaptive integrable and near-integrable mode coupling. We illustrate this method with a highly chaotic system, the perturbed cat map. All orbits can be effectively controlled to the periodic or quasiperiodic orbits. The method is robust against the presence of weak external noise.
Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren
2016-04-26
Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.
Verkholyak, Taras; Strečka, Jozef
2016-10-01
The spin-1/2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach, which is developed from the exactly solved spin-1/2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg intradimer and the Ising interdimer couplings. Although the spin-1/2 Ising-Heisenberg orthogonal-dimer chain exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art numerical data obtained for the spin-1/2 Heisenberg orthogonal-dimer chain within the exact diagonalization and density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively studied within the developed perturbation theory.
Fermion field renormalization prescriptions
Zhou, Yong
2005-01-01
We discuss all possible fermion field renormalization prescriptions in conventional field renormalization meaning and mainly pay attention to the imaginary part of unstable fermion Field Renormalization Constants (FRC). We find that introducing the off-diagonal fermion FRC leads to the decay widths of physical processes $t\\to c Z$ and $b\\to s \\gamma$ gauge-parameter dependent. We also discuss the necessity of renormalizing the bare fields in conventional quantum field theory.
Electrical transport through a single-electron transistor strongly coupled to an oscillator
Doiron, C. B.; Belzig, W.; Bruder, C.
2006-11-01
We investigate electrical transport through a single-electron transistor coupled to a nanomechanical oscillator. Using a combination of a master-equation approach and a numerical Monte Carlo method, we calculate the average current and the current noise in the strong-coupling regime, studying deviations from previously derived analytic results valid in the limit of weak coupling. After generalizing the weak-coupling theory to enable the calculation of higher cumulants of the current, we use our numerical approach to study how the third cumulant is affected in the strong-coupling regime. In this case, we find an interesting crossover between a weak-coupling transport regime where the third cumulant heavily depends on the frequency of the oscillator to one where it becomes practically independent of this parameter. Finally, we study the spectrum of the transport noise and show that the two peaks found in the weak-coupling limit merge on increasing the coupling strength. Our calculation of the frequency dependence of the noise also allows one to describe how transport-induced damping of the mechanical oscillations is affected in the strong-coupling regime.
Renormalization: an advanced overview
Gurau, R.; Rivasseau, V.; Sfondrini, A.|info:eu-repo/dai/nl/330983083
2014-01-01
We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \\`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond
Renormalized action improvements
Energy Technology Data Exchange (ETDEWEB)
Zachos, C.
1984-01-01
Finite lattice spacing artifacts are suppressed on the renormalized actions. The renormalized action trajectories of SU(N) lattice gauge theories are considered from the standpoint of the Migdal-Kadanoff approximation. The minor renormalized trajectories which involve representations invariant under the center are discussed and quantified. 17 references.
Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher
2015-07-31
This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.
Strong three-meson couplings of $J/\\psi$ and $\\eta_c$
Lucha, Wolfgang; Sazdjian, Hagop; Simula, Silvano
2016-01-01
We discuss the strong couplings $g_{PPV}$ and $g_{VVP}$ for vector ($V$) and pseudoscalar ($P$) mesons, at least one of which is a charmonium state $J/\\psi$ or $\\eta_c$. The strong couplings are obtained as residues at the poles of suitable form factors, calculated in a broad range of momentum transfers by a relativistic dispersion approach relying on the constituent quark picture. The spectral representations for the couplings under discussion satisfy all constraints known for these quantities in the heavy-quark limit. Our results suggest sizeably higher values than those reported in the literature from QCD sum rules.
Strong coupling constant of negative parity nucleon with $\\pi$ meson in light cone QCD sum rules
Aliev, T M; Savcı, M
2016-01-01
We estimate strong coupling constant between the negative parity nucleons with $\\pi$ meson within the light cone QCD sum rules. A method for eliminating the unwanted contributions coming from the nucleon--nucleon and nucleon--negative parity nucleon transition is presented. It is observed that the value strong coupling constant of the negative parity nucleon $N^\\ast N^\\ast \\pi$ transition is considerably different from the one predicted by the 3--point QCD sum rules, but is quite close to the coupling constant of the positive parity $N N \\pi$ transition.
Zanotto, Simone
2015-01-01
In this article we discuss a model describing key features concerning the lineshapes and the coherent absorption conditions in Fano-resonant dissipative coupled oscillators. The model treats on the same footing the weak and strong coupling regimes, and includes the critical coupling concept, which is of great relevance in numerous applications; in addition, the role of asymmetry is thoroughly analyzed. Due to the wide generality of the model, which can be adapted to various frameworks like nanophotonics, plasmonics, and optomechanics, we envisage that the analytical formulas presented here will be crucial to effectively design devices and to interpret experimental results.
Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance
Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.
2016-04-01
We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.
Implementation of Liouville space search algorithm on strongly dipolar coupled nuclear spins
Gopinath, T
2009-01-01
Liouville space search algorithm [Bruschweiler, Phys. Rev. Lett. {\\bf 85}, 4815(2000).] utilizes mixed initial states of the ensemble, and has been successfully implemented earlier in weakly coupled spins, in which a spin can be identified as a qubit. It has recently been demonstrated that n-strongly coupled spins can be collectively treated as an n-qubit system. Application of algorithms in such systems, requires new approaches using transition selective pulses rather than qubit selective pulses. This work develops a modified version of Liouville space search algorithm, which is applicable for strongly as well as weakly coupled spins. All the steps of the algorithm, can be implemented by using transition selective pulses. Experimental implementation is carried out on a strongly dipolar coupled four qubit system.
Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Paulo C; RodrIguez, Boris A [Instituto de Fisica, Universidad de Antioquia, AA 1226 MedellIn (Colombia); Quesada, Nicolas [McLennan Physical Laboratories, University of Toronto, 60 St George Street, Toronto, ON, M5S 1A7 (Canada); Vinck-Posada, Herbert, E-mail: pcardenas@fisica.udea.edu.co [Departamento de Fisica, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia)
2011-07-06
We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.
Titratable Macroions in Multivalent Electrolyte Solutions: Strong Coupling Dressed Ion Approach
Adzic, Natasa
2016-01-01
We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macro-ions. The model system consists of two point-like macro-ions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a {\\em dressed ion strong coupling theory}, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt, and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, $pH$ of the solution, salt concentration) through a simple {\\em charge regulation} model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macro-ions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.
Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling
Xiong, Wen; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui
2016-01-01
We present experimental and numerical studies on principal modes in a multimode fiber with mode coupling. By applying external stress to the fiber and gradually adjusting the stress, we have realized a transition from weak to strong mode coupling, which corresponds to the transition from single scattering to multiple scattering in mode space. Our experiments show that principal modes have distinct spatial and spectral characteristic in the weak and strong mode coupling regimes. We also investigate the bandwidth of the principal modes, in particular, the dependence of the bandwidth on the delay time, and the effects of the mode-dependent loss. By analyzing the path-length distributions, we discover two distinct mechanisms that are responsible for the bandwidth of principal modes in weak and strong mode coupling regimes. Taking into account the mode-dependent loss in the fiber, our numerical results are in good agreement with our experimental observations. Our study paves the way for exploring potential applica...
Regge meets collinear in strongly-coupled $\\mathcal{N} = 4$ super Yang-Mills
Sprenger, Martin
2016-01-01
We revisit the calculation of the six-gluon remainder function in planar $\\mathcal{N} = 4$ super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in arXiv:1407.3766, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.
Strong-Coupling Lattice QCD on Anisotropic Lattices arXiv
de Forcrand, Philippe; Vairinhos, Helvio
Anisotropic lattice spacings are mandatory to reach the high temperatures where chiral symmetry is restored in the strong coupling limit of lattice QCD. Here, we propose a simple criterion for the nonperturbative renormalisation of the anisotropy coupling $\\gamma$ in strongly-coupled SU($N$) or U($N$) lattice QCD with massless staggered fermions. We then compute the renormalised anisotropy $\\xi(\\gamma)$, and the strong-coupling analogue of Karsch's coefficients (the running anisotropy), for $N=3$. We achieve high precision by combining diagrammatic Monte Carlo and multi-histogram reweighting techniques. We observe that the mean field prediction in the continuous time limit captures the nonperturbative scaling, but receives a large, previously neglected correction on the unit prefactor. Using our nonperturbative prescription in place of the mean field result, we observe large corrections of the same magnitude to the continuous time limit of the static baryon mass, and of the location of the phase boundary asso...
Magnetized strongly coupled plasmas and how to realize them in a dusty plasma setup
Bonitz, M; Ott, T; Löwen, H
2013-01-01
Strongly coupled plasmas in which the interaction energy exceeds the kinetic energy play an important role in many astrophysical and laboratory systems including compact stars, laser plasmas and dusty plasmas. They exhibit many unusual collective properties, such as liquid or crystalline behaviour, peculiar oscillation spectra and transport properties. Recently, strongly coupled plasmas were studied in the presence of a strong magnetic field by computer simulations, and strong modifications of their transport properties and oscillation spectra were observed. While strong magnetization is common in stellar systems it is practically impossible to achieve in complex plasmas due to the large mass of the dust particles. Here we discuss a recently demonstrated approach to achieve very strong "magnetization" by a rotation of the neutral gas, and we present new results for macroscopic two-dimensional systems.
Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
Konrad, Alexander; Kern, Andreas M; Brecht, Marc; Meixner, Alfred J
2015-07-08
A major aim in experimental nano- and quantum optics is observing and controlling the interaction between light and matter on a microscopic scale. Coupling molecules or atoms to optical microresonators is a prominent method to alter their optical properties such as luminescence spectra or lifetimes. Until today strong coupling of optical resonators to such objects has only been observed with atom-like systems in high quality resonators. We demonstrate first experiments revealing strong coupling between individual plasmonic gold nanorods (GNR) and a tunable low quality resonator by observing cavity-length-dependent nonlinear dephasing and spectral shifts indicating spectral anticrossing of the luminescent coupled system. These phenomena and experimental results can be described by a model of two coupled oscillators representing the plasmon resonance of the GNR and the optical fields of the resonator. The presented reproducible and accurately tunable resonator allows us to precisely control the optical properties of individual particles.
Schneeweiss, Philipp; Hoinkes, Thomas; Rauschenbeutel, Arno; Volz, Jürgen
2016-01-01
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical emitters. A commercial tunable fiber beam splitter provides simple and robust coupling to the resonator. Key parameters of the resonator such as its out-coupling rate, free spectral range, and birefringence can be adjusted. Thanks to the low taper- and coupling-losses, the resonator exhibits an unloaded finesse of F=75+/-1, sufficient for reaching the regime of strong coupling for emitters placed in the evanescent field. The system is ideally suited for trapping ensembles of laser-cooled atoms along the nanofiber section. Based on measured parameters, we estimate that the system can serve as a platform for optical multimode strong coupling experiments. Finally, we discuss the possibilities of using the resonator for applications based on chiral quantum optics.
Photon echo in exciton-plasmon nanomaterials: a signature of strong coupling
Blake, Adam
2016-01-01
The results of rigorous numerical simulations of photon echoes in exciton-plasmon systems are presented. Using a self-consistent model based on coupled Maxwell-Bloch equations we investigate femtosecond time dynamics of ensembles of interacting molecules and molecular aggregates optically coupled to surface-plasmon supporting materials. It is shown that observed photon echoes under two pulse pump-probe sequence are highly dependent on various material parameters such as molecular concentration and periodicity. Simulations of photon echoes in exciton-plasmon materials reveal a unique signature of the strong exciton-plasmon coupling, namely a double-peak structure in spectra of recorded echo signals. This phenomenon is shown to be related to hybrid states (upper and lower polaritons) in exciton-plasmon systems under strong coupling conditions. It is also demonstrated that the double-peak echo is highly sensitive to mild deviations of the coupling from the resonance between molecules and plasmons making it a gre...
Smallest quantum thermal machine: The effect of strong coupling and distributed thermal tasks
Man, Zhong-Xiao; Xia, Yun-Jie
2017-07-01
The functions of the smallest self-contained thermal machine consisting of a single qutrit are studied when the weak internal coupling assumption is relaxed. It is shown that in the presence of one target to be cooled the strong coupling is not beneficial to the refrigeration. The reason is explained by examining the effect of the strong coupling on the contributions of all eigenstates transitions to the heat current of the related thermal reservoir. When acting simultaneously on two targets, the machine can be manipulated to implement distributed tasks on them, such as cooling one target and meanwhile heating another one, by adjusting the coupling strengths between the machine with the two targets. In particular, we show that the machine can realize temperature reversal for the two qubits, namely, the qubit that is coupled to the high temperature reservoir is refrigerated to a temperature below that of the qubit contacting with the low temperature reservoir.
Terahertz-frequency magnon-phonon-polaritons in the strong coupling regime
Sivarajah, Prasahnt; Xiang, Maolin; Ren, Wei; Kamba, Stanislav; Cao, Shixun; Nelson, Keith A
2016-01-01
Strong coupling between light and matter occurs when the two interact strongly enough to form new hybrid modes called polaritons. Here we report on the strong coupling of both the electric and magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In our system, optical phonons in a slab of ferroelectric lithium niobate (LiNbO$_3$) are strongly coupled to a THz electric field to form phonon-polaritons, which are simultaneously strongly coupled to magnons in an adjacent slab of canted antiferromagnetic erbium orthoferrite (ErFeO$_3$) via the THz magnetic field. The strong coupling leads to the formation of new magnon-phonon-polariton modes, which we experimentally observe in the wavevector-frequency dispersion curve as an avoided crossing and in the time-domain as a normal-mode beating. Our simple yet versatile on-chip waveguide platform provides a promising avenue by which to explore both ultrafast THz spintronics applications and the quantum nature of the interaction.
Mihaila, Luminita N; Steinhauser, Matthias
2012-01-01
We compute the beta functions for the three gauge couplings of the Standard Model in the minimal subtraction scheme to three loops. We take into account contributions from all sectors of the Standard Model. The calculation is performed using both Lorenz gauge in the unbroken phase of the Standard Model and background field gauge in the spontaneously broken phase. Furthermore, we describe in detail the treatment of $\\gamma_5$ and present the automated setup which we use for the calculation of the Feynman diagrams. It starts with the generation of the Feynman rules and leads to the bare result for the Green's function of a given process.
On the strong coupling N{sup (*)}N{sup (*)}π
Energy Technology Data Exchange (ETDEWEB)
Azizi, K. [Dogus University, Department of Physics, Istanbul (Turkey); Sarac, Y. [Atilim University, Electrical and Electronics Engineering Department, Ankara (Turkey); Sundu, H. [Kocaeli University, Department of Physics, Izmit (Turkey)
2016-04-15
We study the strong vertices N*Nπ, N*N*π and NNπ in QCD, where N* denotes the negative-parity N(1535) state. We use the most general form of the interpolating currents to calculate the corresponding strong coupling constants. It is obtained that the coupling associated to N*Nπ vertex is strongly suppressed compared to those related to two other vertices. The strong coupling corresponding to N*N*π is obtained to be roughly half of that of NNπ vertex. We compare the obtained results on N*Nπ and NNπ vertices with the existing predictions of other theoretical studies as well as those extracted from the experimental data. (orig.)
Strong army couples: a case study of rekindling marriage after combat deployment.
Melvin, Kristal C; Wenzel, Jennifer; Jennings, Bonnie Mowinski
2015-02-01
Post-traumatic stress symptoms (PTSS), occurring in 15% of combat-exposed military personnel, are associated with a decrease in couples' relationship quality. The purpose of this analysis was to describe reintegration in Army couples with high couple functioning, despite PTSS in one or both partners. Reintegration refers to readjustment after deployment; returning to previous role(s). In a mixed-methods case study of Army couples with a history of combat deployment, we used existing quantitative data to define sampling boundaries, select cases, and guide interviews. Couples scoring high on couple functioning, resilience, and couple satisfaction were interviewed (N = 5 couples, 10 participants). "Rekindling marriage" required strategies to overcome challenges during couple reintegration. For participants as individuals, those strategies were allowing negative emotions, giving each other time and space to do the work of rediscovery and accepting a changed reality, and recognizing and addressing individual needs of the other. As couples, strategies were to go with the flow, open your heart, become best friends, maintain trust, and communicate effectively. As families, strategies were to normalize schedules and protect family time. Findings offer a preliminary basis for interventions to promote strong relationships for military couples with PTSS.
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Renormalizing an initial state
Collins, Hael; Vardanyan, Tereza
2014-01-01
The intricate machinery of perturbative quantum field theory has largely been devoted to the 'dynamical' side of the theory: simple states are evolved in complicated ways. This article begins to address this lopsided treatment. Although it is rarely possible to solve for the eigenstates of an interacting theory exactly, a general state and its evolution can nonetheless be constructed perturbatively in terms of the propagators and structures defined with respect to the free theory. The detailed form of the initial state in this picture is fixed by imposing suitable `renormalization conditions' on the Green's functions. This technique is illustrated with an example drawn from inflation, where the presence of nonrenormalizable operators and where an expansion that naturally couples early times with short distances make the ability to start the theory at a finite initial time especially desirable.
Fano-resonance induced strong-coupling of a hyperbolic cavity to a quantum emitter
Hasan, Mehedi; Belov, Pavel
2015-01-01
Light-matter interaction is studied for an open quantum system in the strong-coupling regime. A quantum dot and a hyperbolic cavity of spherical geometry is shown to couple light with large Rabi frequency and the role of Fano resonance is shown in the coupling mechanism. High Purcell factor and large Lamb shift are outlined. In the near-field spectrum, two distinct anti-crossings are evident, namely -- the one near the epsilon near zero (ENZ) frequency (from the effective medium description) which is detectable in the far-field, and the second anti-crossing is a pseudomode that does not appear in the far-field spectrum. This delineates the phenomenon `farfield propagating large Purcell factor'. Finally, we remark the fidelity of the strong-coupling, i.e. how prone the strong-coupling with respect to the loss mechanisms. This study on strong-coupling will have applications for spectroscopy, control over chemical reaction rate, microcavity, and in quantum information technology.
One Loop Renormalization of the Littlest Higgs Model
Grinstein, Benjamin; Uttayarat, Patipan
2011-01-01
In Little Higgs models a collective symmetry prevents the Higgs from acquiring a quadratically divergent mass at one loop. This collective symmetry is broken by weakly gauged interactions. Terms, like Yukawa couplings, that display collective symmetry in the bare Lagrangian are generically renormalized into a sum of terms that do not respect the collective symmetry except possibly at one renormalization point where the couplings are related so that the symmetry is restored. We study here the one loop renormalization of a prototypical example, the Littlest Higgs Model. Some features of the renormalization of this model are novel, unfamiliar form similar chiral Lagrangian studies.
Brenna, Marco
2014-01-01
The self-consistent mean-field (SCMF) theory describes many properties of the ground state and excited states of the atomic nucleus, such as masses, radii, deformations and giant resonance energies. SCMF models are based on the independent particle picture where nucleons are assumed to move in a self-generated average potential. In the first part of this work, we apply a state-of-the-art SCMF approach, based on the Skyrme effective interaction, to two different excitations (viz. the pygmy dipole resonance and the isovector giant quadrupole resonance), investigating their relation with the nuclear matter symmetry energy, which corresponds to the energy cost for changing protons into neutrons and is a key parameter for the nuclear equation of state. However, SCMF models present well known limitations which require the inclusion of further dynamical correlations, e.g. the ones coming from the interweaving between single-particle and collective degrees of freedom (particle-vibration coupling - PVC). In the second...
Stability and evolution of wave packets in strongly coupled degenerate plasmas
Misra, A P
2011-01-01
We study the nonlinear propagation of electrostatic wave packets in a collisional plasma composed of strongly coupled ions and relativistically degenerate electrons. The equilibrium of ions is maintained by an effective temperature associated with their strong coupling, whereas that of electrons is provided by the relativistic degeneracy pressure. Using a multiple scale technique, a (3+1)-dimensional coupled set of nonlinear Schr\\"{o}dinger-like equations with nonlocal nonlinearity is derived from a generalized viscoelastic hydrodynamic model. These coupled equations, which govern the dynamics of wave packets, are used to study the oblique modulational instability of a Stoke's wave train to a small plane wave perturbation. We show that the wave packets, though stable to the parallel modulation, becomes unstable against oblique modulations. In contrast to the long-wavelength carrier modes, the wave packets with short-wavelengths are shown to be stable in the weakly relativistic case, whereas they can be stable...
Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Palyi, Andras [University of Konstanz (Germany); Eoetvoes University, Budapest (Hungary); Struck, Philipp R.; Burkard, Guido [University of Konstanz (Germany); Rudner, Mark [Harvard University, Cambridge, Massachusetts (United States); Flensberg, Karsten [Harvard University, Cambridge, Massachusetts (United States); Niels Bohr Institute, Copenhagen (Denmark)
2012-07-01
We theoretically investigate the coupling of electron spin to vibrational motion due to curvature-induced spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup. The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
Energy Technology Data Exchange (ETDEWEB)
Roy Chowdhury, Dibakar, E-mail: dibakar.roychowdhury@anu.edu.au [Center for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra 0200 (Australia); College of Engineering, Mahindra Ecole Centrale, Jeedimetla, Hyderabad, 500043 (India); Xu, Ningning; Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
2015-07-14
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.
From the QCD vacuum to (strongly coupled) quark-gluon plasma
Shuryak, Edward
2005-04-01
I start with brief discussion of the role of topological objects in the QCD vacuum, reminding why instantons play a special role in chiral symmetry breaking and hadronic physics. Then I move to high temperature T > T c domain, describing briefly some experimental discoveries made at RHIC such as robust collective flow phenomena. They are well described by ideal hydrodynamics, with the Equation of State (EoS) in good agreement with that predicted by lattice simulations. However for hydro to work the transport properties of QGP should be quite remarkable. These and other theoretical developments, especially based on lattice simulations, indicate that matter produced at RHIC is a strongly coupled liquid, sQGP for short. Existence of "new spectroscopy" of states, most of them colored, is expected. We also briefly discuss two other "strongly coupled systems", (i) the strongly coupled supersymmetric theories studied via Maldacena duality; (ii) trapped ultra-cold atoms with very large scattering length.
Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms
Paulillo, B.; Manceau, J.-M.; Li, L. H.; Davies, A. G.; Linfield, E. H.; Colombelli, R.
2016-03-01
We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice the Rabi frequency (2ΩRabi), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperature.
Strong coupling of an Er3+-doped YAlO3 crystal to a superconducting resonator
Tkalčec, A.; Probst, S.; Rieger, D.; Rotzinger, H.; Wünsch, S.; Kukharchyk, N.; Wieck, A. D.; Siegel, M.; Ustinov, A. V.; Bushev, P.
2014-08-01
Quantum memories are integral parts of both quantum computers and quantum communication networks. Naturally, such a memory is embedded into a hybrid quantum architecture, which has to meet the requirements of fast gates, long coherence times, and long distance communication. Erbium-doped crystals are well suited as a microwave quantum memory for superconducting circuits with additional access to the optical telecom C band around 1.55 μm. Here, we report on circuit QED experiments with an Er3+:YAlO3 crystal and demonstrate strong coupling to a superconducting lumped element resonator. The low magnetic anisotropy of the host crystal allows for attaining the strong coupling regime at relatively low magnetic fields, which are compatible with superconducting circuits. In addition, Ce3+ impurities were detected in the crystal, which showed strong coupling as well.
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-10-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (devices operating at telecommunication wavelengths.
van der Waals energy under strong atom-field coupling in doped carbon nanotubes
Bondarev, Igor; Lambin, Philippe
2004-01-01
Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.
van der Waals energy under strong atom field coupling in doped carbon nanotubes
Bondarev, I. V.; Lambin, Ph.
2004-10-01
Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.
Tricritical points in a compact $U(1)$ lattice gauge theory at strong coupling
De, Asit K
2016-01-01
Pure compact $U(1)$ lattice gauge theory exhibits a phase transition at gauge coupling $g \\sim {\\cal{O}}(1)$ separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any non-trivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact $U(1)$ lattice gauge theory is studied with addition of a dimension-two mass counter-term and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase which breaks Euclidean rotational symmetry. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with $g\\ge {\\cal{O}}(1...
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
2016-08-04
Kubo relation D ¼ Z ∞ 0 ZðtÞdt; which describes the long-time mean -square displacement of a given particle through D ¼ limt→∞hjrðtÞ − rð0Þj2i=6t [25...Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma T. S. Strickler,1 T. K. Langin,1 P. McQuillen,1 J. Daligault,2 and T. C...collisional relaxation of ion velocities in a strongly coupled , ultracold neutral plasma on short time scales compared to the inverse collision rate. The
Collective strong coupling of cold potassium atoms in a ring cavity
Culver, Robert; Megyeri, Balázs; Pahwa, Komal; Mudarikwa, Lawrence; Holynski, Michael; Courteille, Philippe W; Goldwin, Jon
2016-01-01
We present experiments on ensemble cavity quantum electrodynamics with cold potassium atoms in a high-finesse ring cavity. Potassium-39 atoms are cooled in a two-dimensional magneto-optical trap, and transferred to a three-dimensional trap which intersects the cavity mode. The apparatus is described in detail and the first observations of strong coupling with potassium atoms are presented. Collective strong coupling of atoms and light is demonstrated via the splitting of the cavity transmission spectrum and the avoided crossing of the normal modes.
Bandyopadhyay, P; Sen, A; Kaw, P K
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Another mean field treatment in the strong coupling limit of lattice QCD
Ohnishi, Akira; Miura, Kohtaroh; Nakano, Takashi Z.
2011-01-01
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresp...
Lu, Xu; Xie, Yi
2016-01-01
We analyse strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity
Abdurakhimov, L. V.; Yamashiro, R.; Badrutdinov, A. O.; Konstantinov, D.
2016-07-01
The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics.
Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /SLAC
2008-03-25
I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.
Thermal conductivity of magnetic insulators with strong spin-orbit coupling
Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.
We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang
2016-09-01
Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.
Renormalization in Periodically Driven Quantum Dots.
Eissing, A K; Meden, V; Kennes, D M
2016-01-15
We report on strong renormalization encountered in periodically driven interacting quantum dots in the nonadiabatic regime. Correlations between lead and dot electrons enhance or suppress the amplitude of driving depending on the sign of the interaction. Employing a newly developed flexible renormalization-group-based approach for periodic driving to an interacting resonant level we show analytically that the magnitude of this effect follows a power law. Our setup can act as a non-Markovian, single-parameter quantum pump.
Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system
Englund, Dirk; Bajcsy, Michal; Faraon, Andrei; Petroff, Pierre; vuckovic, Jelena
2011-01-01
We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two pulsed beams (40ps pulses) at the single photon level. Our results show that the quantum dot-nanocavity system creates strong, controllable interactions at the single photon level.
Suppression of Instability in Strongly Coupled Dusty Plasmas with Ion Flow
Institute of Scientific and Technical Information of China (English)
贺凯芬; 谢柏松; 刘克富
2001-01-01
The instability of low-frequency longitudinal modes in strongly coupled dusty plasmas with an ion flow is investigated. The dust charging relaxation is taken into account. It is found that when the ion flow is strong enough,the suppression, even disappearance. of instability can occur. Similar to that of the real frequency of waves, the imaginary part of waves also exhibits a transition, which arises from the sensitive dependences on the system parameters and their competition.
Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities
Institute of Scientific and Technical Information of China (English)
XIE Bai-Song; HE Kai-Fen; M. Y. Yu
2000-01-01
A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.
Differential Renormalization, the Action Principle and Renormalization Group Calculations
Smirnov, V. A.
1994-01-01
General prescriptions of differential renormalization are presented. It is shown that renormalization group functions are straightforwardly expressed through some constants that naturally arise within this approach. The status of the action principle in the framework of differential renormalization is discussed.
Towards Holographic Renormalization of Fake Supergravity
Borodatchenkova, Natalia; Mueck, Wolfgang
2008-01-01
A step is made towards generalizing the method of holographic renormalization to backgrounds which are not asymptotically AdS, corresponding to a dual gauge theory which has logarithmically running couplings even in the ultraviolet. A prime example is the background of Klebanov-Strassler (KS). In particular, a recipe is given how to calculate renormalized two-point functions for the operators dual to the bulk scalars. The recipe makes use of gauge-invariant variables for the fluctuations around the background and works for any bulk theory of the fake supergravity type. It elegantly incorporates the renormalization scheme dependence of local terms in the correlators. Before applying the method to the KS theory, it is verified that known results in asymptotically AdS backgrounds are reproduced. Finally, some comments on the calculation of renormalized vacuum expectation values are made.
Entanglement Renormalization and Wavelets.
Evenbly, Glen; White, Steven R
2016-04-08
We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems.
Renormalization: an advanced overview
Gurau, Razvan; Sfondrini, Alessandro
2014-01-01
We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \\`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.
Single-molecule strong coupling at room temperature in plasmonic nanocavities
Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.
2016-07-01
Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
Strasberg, Philipp; Esposito, Massimiliano
2017-06-01
We consider a classical and possibly driven composite system X ⊗Y weakly coupled to a Markovian thermal reservoir R so that an unambiguous stochastic thermodynamics ensues for X ⊗Y . This setup can be equivalently seen as a system X strongly coupled to a non-Markovian reservoir Y ⊗R . We demonstrate that only in the limit where the dynamics of Y is much faster than X , our unambiguous expressions for thermodynamic quantities, such as heat, entropy, or internal energy, are equivalent to the strong coupling expressions recently obtained in the literature using the Hamiltonian of mean force. By doing so, we also significantly extend these results by formulating them at the level of instantaneous rates and by allowing for time-dependent couplings between X and its environment. Away from the limit where Y evolves much faster than X , previous approaches fail to reproduce the correct results from the original unambiguous formulation, as we illustrate numerically for an underdamped Brownian particle coupled strongly to a non-Markovian reservoir.
Wersäll, Martin; Cuadra, Jorge; Antosiewicz, Tomasz J; Balci, Sinan; Shegai, Timur
2017-01-11
Plasmon-exciton interactions are important for many prominent spectroscopic applications such as surface-enhanced Raman scattering, plasmon-mediated fluorescence, nanoscale lasing, and strong coupling. The case of strong coupling is analogous to quantum optical effects studied in solid state and atomic systems previously. In plasmonics, similar observations have been almost exclusively made in elastic scattering experiments; however, the interpretation of these experiments is often cumbersome. Here, we demonstrate mode splitting not only in scattering, but also in photoluminescence of individual hybrid nanosystems, which manifests a direct proof of strong coupling in plasmon-exciton nanoparticles. We achieved these results due to saturation of the mode volume with molecular J-aggregates, which resulted in splitting up to 400 meV, that is, ∼20% of the resonance energy. We analyzed the correlation between scattering and photoluminescence and found that splitting in photoluminescence is considerably less than that in scattering. Moreover, we found that splitting in both photoluminescence and scattering signals increased upon cooling to cryogenic temperatures. These findings improve our understanding of strong coupling phenomena in plasmonics.
A Measurement Of The Strong Coupling Constant From Jet Analysis At Babar
Ford, K E
2001-01-01
I measure the two-, three- and four-jet fractions in the four flavour continuum near s≈10.5 GeV. From this, I extracted a value for the strong coupling constant (αs) of αs(10.53GeV) = 0.1319 ± 0.0848 ± 0.0100.
Formation and evolution of vortices in a collisional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Jana, Sayanee [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, Debabrata, E-mail: debu@ustc.edu.cn [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, a/AF Bidhannagar, Kolkata 700 064 (India)
2016-07-29
Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge–Kutta–Gill time integrator. - Highlights: • A numerical study of vortex evolution in strongly coupled dusty plasma is presented. • Dust-neutral drag is first time considered with the Generalized Hydrodynamic model (GH). • Dust-neutral drag force balances the nonlinear effect of elastic stress. • Localized non-propagating monopole structure is generated for some duration. • Dipole vortices are produced after interaction between two monopole vortices.
Phonon interaction of electron in the translation-invariant strong-coupling theory
Lakhno, Victor D.
2015-01-01
A dependence of phonon interaction on the interelectronic distance is found for a translation-invariant (TI) strong-coupling bipolaron. It is shown that the charge induced by the electrons in a TI-bipolaron state is always greater than that in a bipolaron with spontaneously broken symmetry.
Fast-projectile stopping power of quantal multicomponent strongly coupled plasmas.
Ballester, D; Tkachenko, I M
2008-08-15
The Bethe-Larkin formula for the fast-projectile stopping power is extended to multicomponent plasmas. The results are to contribute to the correct interpretation of the experimental data, which could permit us to test existing and future models of thermodynamic, static, and dynamic characteristics of strongly coupled Coulomb systems.
Strong light-matter coupling in two-dimensional atomic crystals
Liu, Xiaoze; Sun, Zheng; Xia, Fengnian; Lin, Erh-chen; Lee, Yi-Hsien; Kéna-Cohen, Stéphane; Menon, Vinod M
2014-01-01
Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the ...
Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point
Fedorov, A.; Feofanov, A.K.; Macha, P.; Forn-Díaz, P.; Harmans, C.J.P.M.; Mooij, J.E.
2010-01-01
A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit of which the gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the qubit-oscilla
N=1 Super-Yang-Mills on the Lattice Weak and Strong Coupling Limits
Gabrielli, E
1999-01-01
We present a general review about the N=1 supersymmetric SU(Nc) Yang-Mills on the lattice focusing our attention on the quenched approximation in supersymmetry. Finally we analyse and discuss the recent results obtained at strong coupling and large Nc for the mesonic and fermionic propagators and spectrum.
Phase structure of (2+1)d strongly coupled lattice gauge theories
Strouthos, C G
2003-01-01
We study the chiral phase transition in (2+1)d strongly coupled U(N) lattice gauge theories with staggered fermions. We show with high precision simulations performed directly in the chiral limit that these models undergo a Berezinski-Kosterlitz-Thouless (BKT) transition. We also show that this universality class is unaffected even in the large N limit.
Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity
DEFF Research Database (Denmark)
Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang;
2010-01-01
We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...
Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices
Sheng, Jiteng; Shaffer, James P
2016-01-01
We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a Rydberg transition by engineering the piezoelectric superlattice. We describe a way to observe the Rabi splitting associated with the strong coupling regime under realistic experimental conditions. The system can be viewed as a new type of optomechanical system.
Strong light-matter coupling from atoms to solid-state systems
2014-01-01
The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...
All-optical switching in a continuously operated and strongly coupled atom-cavity system
Dutta, Sourav
2016-01-01
We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.
Energy Technology Data Exchange (ETDEWEB)
Kanduc, M; Podgornik, R [Department of Theoretical Physics, J Stefan Institute, SI-1000 Ljubljana (Slovenia); Naji, A [Department of Physics, Department of Chemistry and Biochemistry, Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Jho, Y S; Pincus, P A [Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States)
2009-10-21
We present general arguments for the importance, or lack thereof, of structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.
Dynamics of compressional Mach cones in a strongly coupled complex plasma
Bandyopadhyay, P; Kadyan, Sangeeta; Sen, Abhijit
2016-01-01
Using a Generalised-Hydrodynamic (GH) fluid model we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.
Energy Technology Data Exchange (ETDEWEB)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan, E-mail: linjingquan@cust.edu.cn [School of Science, Changchun University of Science and Technology, Changchun 130022 (China)
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.
Mode Modification of Plasmonic Gap Resonances induced by Strong Coupling with Molecular Excitons
Chen, Xingxing; Qin, Jian; Zhao, Ding; Ding, Boyang; Blaikie, Richard J; Qiu, Min
2016-01-01
Plasmonic cavities can be used to control the atom-photon coupling process at the nanoscale, since they provide ultrahigh density of optical states in an exceptionally small mode volume. Here we demonstrate strong coupling between molecular excitons and plasmonic resonances (so-called plexcitonic coupling) in a film-coupled nanocube cavity, which can induce profound and significant spectral and spatial modifications to the plasmonic gap modes. Within the spectral span of a single gap mode in the nanotube-film cavity with a 3-nm wide gap, the introduction of narrow-band J-aggregate dye molecules not only enables an anti-crossing behavior in the spectral response, but also splits the single spatial mode into two distinct modes that are easily identified by their far-field scattering profiles. Simulation results confirm the experimental findings and the sensitivity of the plexcitonic coupling is explored using digital control of the gap spacing. Our work opens up a new perspective to study the strong coupling pr...
Fortov, Vladimir
2007-06-01
The work presents new results of investigation of pressure and temperature ionization of coupled nonideal plasmas generated as a result of multiple shock compression of metals, H2, He, noble gases, S, I, fullerene C60, H2O in the megabar pressure range. The highly time-resolved diagnostics permit us to measure thermodynamical, radiative and mechanical properties of high pressure condensed matter in a broad region of the phase diagram. This data in combination with exploding wire conductivity measurements demonstrate an ionization rate increase up to ten orders of magnitude as a result of compression of degenerate plasmas at p 104-107 bars. Shock compression of H2, Ar, He, Kr, Ne, Xe in initially gaseous and cryogenic liquid state allows measuring the electrical conductivity, Hall effect parameters, equation of state, and emission spectra of strongly nonideal plasma. Thermal and pressure ionization of strongly coupled states of matter is the most prominent effects under the experimental conditions. It was shown that plasma compression strongly deforms the ionization potentials, emission spectra and scattering cross-sections of the neutrals and ions in the strongly coupled plasmas. In contrast to the plasma compression the multiple shock compression of solid Li, Na, Ca shows ``dielectrization'' of the elements. Phase transitions in strongly nonideal plasmas are discussed.
Strongly coupled slow-light polaritons in one-dimensional disordered localized states
Gao, Jie; Liang, Baolai; Schmitteckert, Peter; Lehoucq, Gaelle; Xavier, Stephane; Xu, Xinan; Busch, Kurt; Huffaker, Diana L; De Rossi, Alfredo; Wong, Chee Wei
2013-01-01
Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 {\\mu}eV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platfor...
Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons
Hu, Tao; Wu, Lin; Zhang, Long; Shan, Yuwei; Lu, Jian; Wang, Jun; Luo, Song; Zhang, Zhe; Liao, Liming; Wu, Shiwei; Shen, S C; Chen, Zhanghai
2016-01-01
Two dimensional (2D) semiconductor materials of transition-metal dichalcogenides (TMDCs) manifest many peculiar physical phenomena in the light-matter interaction. Due to their ultrathin property, strong interaction with light and the robust excitons at room temperature, they provide a perfect platform for studying the physics of strong coupling in low dimension and at room temperature. Here we report the strong coupling between 2D semiconductor excitons and Tamm plasmon polaritons (TPPs). We observe a Rabi splitting of about 54 meV at room temperature by measuring the angle resolved differential reflectivity spectra and simulate the theoretical results by using the transfer matrix method. Our results will promote the realization of the TPP based ultrathin polariton devices at room temperature.
Strong gravitational lensing for the photons coupled to Weyl tensor in a Kerr black hole spacetime
Chen, Songbai; Huang, Yang; Jing, Jiliang; Wang, Shiliang
2016-01-01
We present firstly equation of motion for the photon coupled to Weyl tensor in a Kerr black hole spacetime and then study further the corresponding strong gravitational lensing. We find that black hole rotation makes propagation of the coupled photons more complicated, which brings some new features for physical quantities including the marginally circular photon orbit, the deflection angle, the observational gravitational lensing variables and the time delay between two relativistic images. There is a critical value of the coupling parameter for existence of the marginally circular photon orbit outside the event horizon, which depends on the rotation parameter of black hole and the polarization direction of photons. As the value of coupling parameter is near the critical value, we find that the marginally circular photon orbit for the retrograde photon increases with the rotation parameter, which modifies a common feature of the marginally circular photon orbit in a rotating black hole spacetime since it alw...
Energy Technology Data Exchange (ETDEWEB)
Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes, E-mail: johannes.majer@tuwien.ac.at [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Sumiya, Hitoshi [Sumitomo Electric Industries Ltd., Itami 664-001 (Japan); Onoda, Shinobu [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Isoya, Junichi [Research Centre for Knowledge Communities, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan); Putz, Stefan [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)
2016-07-18
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
Cluster functional renormalization group
Reuther, Johannes; Thomale, Ronny
2014-01-01
Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.
Aliev, T M
2016-01-01
The strong coupling constants of the $\\pi$ and $K$ mesons with negative parity octet baryons are estimated within the light cone QCD sum rules. It is observed that all strong coupling constants, similar to the case for the positive parity baryons, can be described in terms of three invariant functions, where two of them correspond to the well known $F$ and $D$ couplings in the $SU(3)_f$ symmetry, and the third function describes the $SU(3)_f$ symmetry violating effects. We compare our predictions on the strong coupling constants of pseudoscalar mesons of negative parity baryons with those corresponding to the strong coupling constants for the positive parity baryons.
Longitudinal singular response of dusty plasma medium in weak and strong coupling limits
Energy Technology Data Exchange (ETDEWEB)
Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)
2012-01-15
The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.
Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode
Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo
2016-02-01
We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure’s plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling.
Solvable model of dissipative dynamics in the deep strong coupling regime
Bina, M; Casanova, J; Garcia-Ripoll, J J; Lulli, A; Casagrande, F; Solano, E
2011-01-01
We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution for this open system dynamics in the off-resonance case of the qubit-mode interaction. Collapses and revivals of parity chain populations and the oscillatory behavior of the mean photon number are predicted. At the same time, photon number wave packets, propagating back and forth along parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning on the validity of the analytical solution.
Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities
Li, Rui-Qi; Hernángomez-Pérez, D.; García-Vidal, F. J.; Fernández-Domínguez, A. I.
2016-09-01
We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. Inspired by transformation optics ideas, a quasianalytical approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, Paolo; Buchel, Alex; Starinets, Andrei O.
2006-01-01
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2 supersymmetric SU(N) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Strong coupling in porphyrin J-aggregate excitons and plasmons in nano-void arrays
Ferdele, Stefano; Jose, Bincy; Foster, Robert; Keyes, Tia E.; Rice, James H.
2017-10-01
Active plasmonic nano-void arrays made through colloidal lithography (a cost effective and rapid process) potentially offers opportunities for scalable device design. In this work we demonstrate strong coupling between Bragg-like quadrupole surface plasmon modes in nano-void substrate designs with Frankel excitons in a molecular J-aggregate layer though angular tuning. The enhanced exciton-plasmon coupling creates a Fano like line shape in the differential reflection spectra associated with the formation of new hybrid states, leading to anti-crossing of the upper and lower polaritons with a Rabi frequency of 120 meV.
Summation of Higher Order Effects using the Renormalization Group Equation
Elias, V; Sherry, T N
2004-01-01
The renormalization group (RG) is known to provide information about radiative corrections beyond the order in perturbation theory to which one has calculated explicitly. We first demonstrate the effect of the renormalization scheme used on these higher order effects determined by the RG. Particular attention is payed to the relationship between bare and renormalized quantities. Application of the method of characteristics to the RG equation to determine higher order effects is discussed, and is used to examine the free energy in thermal field theory, the relationship between the bare and renormalized coupling and the effective potential in massless scalar electrodynamics.
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Energy Technology Data Exchange (ETDEWEB)
Schneebeli, Lukas
2009-11-27
While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs
The Yang-Mills gradient flow and renormalization
Ramos, Alberto
2015-01-01
In this proceedings contribution we will review the main ideas behind the many recent works that apply the gradient flow to the determination of the renormalized coupling and the renormalization of composite operators. We will pay special attention to the continuum extrapolation of flow quantities.
Hilbert space renormalization for the many-electron problem
Li, Zhendong
2015-01-01
Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful density matrix renormalization group (DMRG) algorithm, and the quantum chemical graphical representation of configuration space, we introduce a new theoretical tool: Hilbert space renormalization, to describe many-electron correlations. While in DMRG, the many-body states in nested Fock subspaces are successively renormalized, in Hilbert space renormalization, many-body states in nested Hilbert subspaces undergo renormalization. This provides a new way to classify and combine configurations. The underlying wavefunction ansatz, namely the Hilbert space matrix product state (HS-MPS), has a very rich and flexible mathematical structure. It provides low-rank tensor approximations to any configuration interaction (CI) space through restricting either the 'physical indices' or the coupling rules in the HS-MPS. Alternatively, simply truncating the 'virtual dimension' of the HS-MPS leads to a family of size-extensive wav...
Higher loop renormalization of fermion bilinear operators
Skouroupathis, A
2007-01-01
We compute the two-loop renormalization functions, in the RI' scheme, of local bilinear quark operators $\\bar\\psi\\Gamma\\psi$, where $\\Gamma$ denotes the Scalar and Pseudoscalar Dirac matrices, in the lattice formulation of QCD. We consider both the flavor non-singlet and singlet operators; the latter, in the scalar case, leads directly to the two-loop fermion mass renormalization, $Z_m$. As a prerequisite for the above, we also compute the quark field renormalization, $Z_\\psi$, up to two loops. We use the clover action for fermions and the Wilson action for gluons. Our results are given as a polynomial in $c_{SW}$, in terms of both the renormalized and bare coupling constant, in the renormalized Feynman gauge. We also confirm the 1-loop renormalization functions, for generic gauge. A longer write-up of the present work, including the conversion of our results to the MSbar scheme and a generalization to arbitrary fermion representations, can be found in arXiv:0707.2906 .
Garai, S.; Janaki, M. S.; Chakrabarti, N.
2016-09-01
The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.
Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets
Li, Yao-Dong; Wang, Xiaoqun; Chen, Gang
2016-07-01
Motivated by the recent experimental progress on the strong spin-orbit-coupled rare-earth triangular antiferromagnet, we analyze the highly anisotropic spin model that describes the interaction between the spin-orbit-entangled Kramers' doublet local moments on the triangular lattice. We apply the Luttinger-Tisza method, the classical Monte Carlo simulation, and the self-consistent spin wave theory to analyze the anisotropic spin Hamiltonian. The classical phase diagram includes the 120∘ state and two distinct stripe-ordered phases. The frustration is very strong and significantly suppresses the ordering temperature in the regimes close to the phase boundary between two ordered phases. Going beyond the semiclassical analysis, we include the quantum fluctuations of the spin moments within a self-consistent Dyson-Maleev spin-wave treatment. We find that the strong quantum fluctuations melt the magnetic order in the frustrated regions. We explore the magnetic excitations in the three different ordered phases as well as in strong magnetic fields. Our results provide a guidance for the future theoretical study of the generic model and are broadly relevant for strong spin-orbit-coupled triangular antiferromagnets such as YbMgGaO4, RCd3P3 , RZn3P3 , RCd3As3 , RZn3As3 , and R2O2CO3 .
Thermal Phase Transitions of Strongly Correlated Bosons with Spin-Orbit Coupling
Hickey, Ciarán; Paramekanti, Arun
2014-12-01
Experiments on ultracold atoms have started to explore lattice effects and thermal fluctuations for two-component bosons with spin-orbit coupling (SOC). Motivated by this, we derive and study a t J model for lattice bosons with equal Rashba-Dresselhaus SOC and strong Hubbard repulsion in a uniform Zeeman magnetic field. Using the Gutzwiller ansatz, we find strongly correlated ground states with stripe superfluid (SF) order. We formulate a finite temperature generalization of the Gutzwiller method, and show that thermal fluctuations in the doped Mott insulator drive a two-step melting of the stripe SF, revealing a wide regime of a stripe normal fluid.
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
Energy Technology Data Exchange (ETDEWEB)
Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)
2007-01-15
With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.
Relaxation of a Classical Spin Coupled to a Strongly Correlated Electron System
Sayad, Mohammad; Rausch, Roman; Potthoff, Michael
2016-09-01
A classical spin which is antiferromagnetically coupled to a system of strongly correlated conduction electrons is shown to exhibit unconventional real-time dynamics which cannot be described by Gilbert damping. Depending on the strength of the local Coulomb interaction U , the two main electronic dissipation channels, namely transport of excitations via correlated hopping and via excitations of correlation-induced magnetic moments, become active on largely different time scales. We demonstrate that correlations can lead to a strongly suppressed relaxation which so far has been observed in purely electronic systems only and which is governed here by proximity to the divergent magnetic time scale in the infinite-U limit.
Field-theoretic methods in strongly-coupled models of general gauge mediation
Fortin, Jean-François; Stergiou, Andreas
2013-08-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.
Universal Scaling of Pair-Excess Entropy and Diffusion in Strongly Coupled Liquids
Joy, Ashwin
2016-01-01
Understanding diffusion in liquids from properties of static structure is a long standing problem in condensed matter theory. Here we report an atomistic study of excess entropy and diffusion coefficient in a strongly coupled Yukawa liquid. We observe that the pair excess entropy $s_2$ scales with temperature as $-3.285 \\;(T_m / T)^{0.665}$ and contributes to about $90\\%$ of the total excess entropy close to the freezing transition $T_m$. We further report that at low temperatures where the diffusive transport is mediated by cage relaxation, the diffusion coefficient when expressed in natural units of the Enskog collision frequency and the effective hard sphere diameter, obeys the scaling law $0.04\\; e^{s_2}$ and deviates from it at high enough temperatures where cages cannot form. The scaling laws reported here may also apply to strongly coupled dusty plasmas and charged colloids.
Thermal DBI action for the D3-brane at weak and strong coupling
Energy Technology Data Exchange (ETDEWEB)
Grignani, Gianluca [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Harmark, Troels [The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Marini, Andrea [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); Orselli, Marta [Dipartimento di Fisica, Università di Perugia, I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy); The Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Piazza del Viminale 1, I-00184 Rome (Italy)
2014-03-25
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T{sup 4} correction for the thermal DBI action at weak and strong coupling we find that the 3/4 factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
On jet quenching parameters in strongly coupled non-conformal gauge theories
Buchel, A
2006-01-01
Recently Liu, Rajagopal and Wiedemann (LRW) [hep-ph/0605178] proposed a first principle, nonperturbative quantum field theoretic definition of ``jet quenching parameter'' \\hat{q} used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating \\hat{q} to a short-distance behavior of a certain light-like Wilson loop, they used gauge theory-string theory correspondence to evaluate \\hat{q} for the strongly coupled N=4 SU(N_c) gauge theory plasma. We generalize analysis of LRW to strongly coupled non-conformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears it's value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases.
Equilibration Rates in a Strongly Coupled Nonconformal Quark-Gluon Plasma.
Buchel, Alex; Heller, Michal P; Myers, Robert C
2015-06-26
We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as the energy-momentum tensor. In each case, the lowest quasinormal frequency, which provides an approximate upper bound on the thermalization time, is proportional to temperature, up to a prefactor with only a mild temperature dependence. We find similar behavior in other holographic plasmas, where the model contains an additional scale beyond the temperature. Hence, our study suggests that the thermalization time is generically set by the temperature, irrespective of any other scales, in strongly coupled gauge theories.
Observation of Strong Coupling between One Atom and a Monolithic Microresonator
Aoki, T; Wilcut, E; Bowen, W P; Parkins, A S; Kimble, H J; Kippenberg, T J; Vahala, K J; Aoki, Takao
2006-01-01
Strong coupling is achieved for individual Cesium atoms falling through the evanescent field of a high-Q toroidal microresonator. From observations of transit events as a function of atom-cavity detuning, we determine g_0^m/2pi ~ (40 +/- 5) MHz for interactions near the surface of the resonator, where 2g_0^m is the single-photon Rabi frequency. Strong coupling g_0^m > (gamma,kappa) is thereby demonstrated for the interaction of single atoms and optical photons in a monolithic resonator, where (gamma,kappa)/2pi ~ (2.6,18) MHz are the dissipative rates for atom and cavity field. By advancing beyond the conventional setting of Fabry-Perot cavities, our work opens a new avenue for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.
Strong Coupling Limits and Quantum Isomorphisms of the Gauged Thirring Model
Bufalo, R.; Casana, R.; Pimentel, B. M.
We have studied the quantum equivalence in the respective strong coupling limits of the bidimensional gauged Thirring model with both Schwinger and Thirring models. It is achieved following a nonperturbative quantization of the gauged Thirring model into the path-integral approach. First, we have established the constraint structure via the Dirac's formalism for constrained systems and defined the correct vacuum-vacuum transition amplitude by using the Faddeev-Senjanovic method. Next, we have computed exactly the relevant Green's functions and shown the Ward-Takahashi identities. Afterwards, we have established the quantum isomorphisms between gauged Thirring model and both Schwinger and Thirring models by analyzing the respective Green's functions in the strong coupling limits, respectively. A special attention is necessary to establish the quantum isomorphism between the gauged Thirring model and the Thirring model.
Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser
del Pino, Javier; Feist, Johannes
2016-01-01
When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.
Field-theoretic methods in strongly-coupled models of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Fortin, Jean-François, E-mail: jean-francois.fortin@cern.ch [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Stergiou, Andreas, E-mail: stergiou@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)
2013-08-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split.
From evidence of strong light-matter coupling to polariton emission in GaN microcavities
Energy Technology Data Exchange (ETDEWEB)
Sellers, I.R.; Semond, F.; Leroux, M.; Massies, J. [CRHEA-CNRS, Rue Bernard Gregory, Parc Sophia Antipolis, 06560 Valbonne (France); Zamfirescu, M. [LENS, Dipartimento di Fisica, Universita di Firenze, 50019 Sesto Fiorentino (Italy); National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, 077125 Bucharest (Romania); Stokker-Cheregi, F.; Gurioli, M.; Vinattieri, A. [LENS, Dipartimento di Fisica, Universita di Firenze, 50019 Sesto Fiorentino (Italy); Disseix, P.; Leymarie, J.; Reveret, F.; Malpuech, G.; Vasson, A. [LASMEA, Universite Blaise Pascal, Clermont Ferrand II, Les Cezeaux, 63177 Aubiere Cedex (France)
2007-06-15
We present both experimental and theoretical results which outline our development of the molecular beam epitaxy of GaN microcavities on (111) silicon. In particular we show that although in this material system the strong-light matter coupling regime can be observed at 300 K even with relatively low quality factor structures (Q = 60) in reflectivity measurements, it is necessary to increase the Q -factor by at least a factor of two to observe strong coupling in the emission. For an optimized microcavity structure (Q = 160), polaritonic emission is observed at 300 K, with the origin of the broadened luminescence features confirmed by co-incident reflectivity measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Chiral restoration of strong coupling QCD at finite temperature and baryon density
Fromm, Michael
2009-04-01
The strong coupling limit (β=0) of lattice QCD with staggered fermions enjoys the same non-perturbative properties as continuum QCD, namely confinement and chiral symmetry breaking. In contrast to the situation at weak coupling, the sign problem which appears at finite density can be brought under control for a determination of the full (μ,T) phase diagram by Monte Carlo simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at the strongly first-order, low-T, finite-μ transition, are addressed respectively with a worm algorithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results of Karsch and Mütter. Comparison with analytic mean-field determinations of the phase diagram shows discrepancies of O(10) in the location of the QCD critical point.
Thermal DBI action for the D3-brane at weak and strong coupling
Grignani, Gianluca; Marini, Andrea; Orselli, Marta
2013-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading $T^4$ correction for the thermal DBI action at weak and strong coupling we find that the $3/4$ factor well-known from the AdS/CFT correspondence extends to the case of arbitrary electric and magnetic fields on the D3-brane. We investigate the reason for this by taking the decoupling limit in both the open and the closed string descriptions thus showing that the AdS/CFT correspondence extends to the case of arbitrary constant electric and magnetic fields on the D3-brane.
Strong coupling effects between a meta-atom and MIM nanocavity
Directory of Open Access Journals (Sweden)
San Chen
2012-09-01
Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.
Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser
del Pino, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes
2016-12-01
When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this Letter, we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the midinfrared.
Energy Technology Data Exchange (ETDEWEB)
Tzimis, A.; Savvidis, P. G. [Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Trifonov, A. V.; Ignatiev, I. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); Christmann, G.; Tsintzos, S. I. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Hatzopoulos, Z. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Kavokin, A. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)
2015-09-07
We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.
What are the Confining Field Configurations of Strong-Coupling Lattice Gauge Theory?
Faber, M; Olejník, S
2000-01-01
Starting from the strong-coupling SU(2) Wilson action in D=3 dimensions, we derive an effective, semi-local action on a lattice of spacing L times the spacing of the original lattice. It is shown that beyond the adjoint color-screening distance, i.e. for $L \\ge 5$, thin center vortices are stable saddlepoints of the corresponding effective action. Since the entropy of these stable objects exceeds their energy, center vortices percolate throughout the lattice, and confine color charge in half-integer representations of the SU(2) gauge group. This result contradicts the folklore that confinement in strong-coupling lattice gauge theory, for D>2 dimensions, is simply due to plaquette disorder, as is the case in D=2 dimensions. It also demonstrates explicitly how the emergence and stability of center vortices is related to the existence of color screening by gluon fields.
On the supergravity description of boost invariant conformal plasma at strong coupling
Benincasa, Paolo; Heller, Michal P; Janik, Romuald A
2007-01-01
We study string theory duals of the expanding boost invariant conformal gauge theory plasmas at strong coupling. The dual supergravity background is constructed as an asymptotic late-time expansion, corresponding to equilibration of the gauge theory plasma. The absence of curvature singularities in the first few orders of the late-time expansion of the dual gravitational background unambiguously determines the equilibrium equation of the state, and the shear viscosity of the gauge theory plasma. While the absence of the leading pole singularities in the gravitational curvature invariants at the third order in late-time expansion determines the relaxation time of the plasma, the subleading logarithmic singularity can not be canceled within a supergravity approximation. Thus, a supergravity approximation to a dual description of the strongly coupled boost invariant expanding plasma is inconsistent. Nevertheless we find that the relaxation time determined from cancellation of pole singularities is quite robust.
Experimental measurement of non-Markovian dynamics and self-diffusion in a strongly coupled plasma
Strickler, T S; McQuillen, P; Daligault, J; Killian, T C
2015-01-01
We present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short timescales compared to the inverse collision rate. Non-exponential decay towards equilibrium for the average velocity of a tagged population of ions heralds non-Markovian dynamics and a breakdown of assumptions underlying standard kinetic theory. We prove the equivalence of the average-velocity curve to the velocity autocorrelation function, a fundamental statistical quantity that provides access to equilibrium transport coefficients and aspects of individual particle trajectories in a regime where experimental measurements have been lacking. From our data, we calculate the ion self-diffusion constant. This demonstrates the utility of ultracold neutral plasmas for isolating the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.
Self-accelerating Massive Gravity: Superluminality, Cauchy Surfaces and Strong Coupling
Motloch, Pavel; Joyce, Austin; Motohashi, Hayato
2015-01-01
Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not inte...
Phase structure analysis of CP(N-1) model using Tensor renormalization group
Kawauchi, Hikaru
2016-01-01
The phase structure of the lattice CP($N-1$) model in two dimensions is analyzed by the tensor renormalization group (TRG) method. We focus on the case $N=2$ and compare the numerical result of the TRG method with that of the strong-coupling analysis in the presence of the $\\theta$ term and investigate the nature of the phase transition at $\\theta=\\pi$.
Non-destructive detection of ions using atom-cavity collective strong coupling
Dutta, Sourav
2016-01-01
We present a technique, based on atoms coupled to an optical cavity, for non-destructive detection of trapped ions. We demonstrate the vacuum-Rabi splitting (VRS), arising due to the collective strong coupling of ultracold Rb atoms to a cavity, to change in presence of trapped Rb+ ions. The Rb+ ions are optically dark and the Rb atoms are prepared in a dark magneto-optical trap (MOT). The VRS is measured on an optically open transition of the initially dark Rb atoms. The measurement itself is fast, non-destructive and has sufficient fidelity to permit the measurement of atomic-state selective ion-atom collision rate. This demonstration illustrates a method based on atom-cavity coupling to measure two particle interactions generically and non-destructively.
Thermo-magnetic properties of the strong coupling in the local Nambu--Jona-Lasinio model
Ayala, Alejandro; Hernandez, L A; Loewe, M; Raya, Alfredo; Rojas, J C; Villavicencio, C
2016-01-01
We study the thermo-magnetic behavior of the strong coupling constant and quark mass entering the Nambu-Jona-Lasinio model. The behavior of the quark condensate as function of magnetic field strength and temperature is also obtained and confronted with lattice QCD results. We find that for temperatures above the chiral/deconfinement phase transitions, where the condensate decreases monotonically with increasing field, the coupling also decreases monotonically. For temperatures below the transition temperature we find that the coupling initially grows and then decreases with increasing field strength. We consider this turnover behavior as a key element in the behavior of the quark condensate above the transition temperature. Hence, it allows for an understanding of the inverse magnetic catalysis phenomenon.
An a0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration
2016-05-01
We present the first calculation of coupled-channel meson-meson scattering in the isospin =1 , G -parity negative sector, with channels π η , K K ¯ and π η', in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the S -matrix, and find that the S -wave features a prominent cusplike structure in π η →π η close to the K K ¯ threshold coupled with a rapid turn-on of amplitudes leading to the K K ¯ final state. This behavior is traced to an a0(980 )-like resonance, strongly coupled to both π η and K K ¯ , which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of D -wave scattering suggests a narrow tensor resonance at higher energy.
Decay dynamics in a strongly driven atom-molecule coupled system
Rakshit, Arpita; Deb, Bimalendu
2013-01-01
Within the framework of master equation, we study decay dynamics of an atom-molecule system strongly coupled by two photoassociation lasers. Summing over the infinite number of electromagnetic vacuum modes that are coupled to the laser-dressed atom-molecule system, we obtain an integro-differential master equation for the the system's reduced density matrix. The equation is numerically solved to describe system dynamics in the presence of decay. In particular, we discuss correlated spontaneous emission from a pair of electronically excited diatomic ro-vibrational states due to their laser induced coupling to the ground continuum of atomic scattering states. This allows us to calculate time-dependence of emitted radiation intensity. It exhibits quantum beats due to coherent dynamics. The phase difference between the two driving fields is found to significantly affect the decay dynamics and the beats. Our results demonstrate the possibility to control decay from the molecular excited states and the decoherence ...
Vibrational frequency of a strong-coupling polaron in a quantum rod at finite temperatures
Institute of Scientific and Technical Information of China (English)
Ding Zhao-Hua; Xiao Jing-Lin
2011-01-01
The Hamiltonian of a quantum rod with a boundary is presented after a coordinate transformation that changes the original ellipsoidal boundary into a spherical one. We then study the effect of temperature on the vibrational frequency and the ground state binding energy of the strong-coupling polaron in the rod. The two quantities are expressed as functions of the aspect ratio of the ellipsoid,the transverse and the longitudinal effective confinement lengths,the temperature and the electron-phonon coupling strength by linear combination operator and unitary transformation methods. It is found that the vibrational frequency and the ground state binding energy will increase rapidly with decreasing transverse and longitudinal effective confinement lengths. They are increasing functions of the electronphonon coupling strength but become decreasing ones of the temperature and the aspect ratio.
Improved Lattice Renormalization Group Techniques
Petropoulos, Gregory; Hasenfratz, Anna; Schaich, David
2013-01-01
We compute the bare step-scaling function $s_b$ for SU(3) lattice gauge theory with $N_f = 12$ massless fundamental fermions, using the non-perturbative Wilson-flow-optimized Monte Carlo Renormalization Group two-lattice matching technique. We use a short Wilson flow to approach the renormalized trajectory before beginning RG blocking steps. By optimizing the length of the Wilson flow, we are able to determine an $s_b$ corresponding to a unique discrete $\\beta$ function, after a few blocking steps. We carry out this study using new ensembles of 12-flavor gauge configurations generated with exactly massless fermions, using volumes up to $32^4$. The results are consistent with the existence of an infrared fixed point (IRFP) for all investigated lattice volumes and number of blocking steps. We also compare different renormalization schemes, each of which indicates an IRFP at a slightly different value of the bare coupling, as expected for an IR-conformal theory.
A Time Varying Strong Coupling Constant as a Model of Inflationary Universe
Chamoun, N; Vucetich, H
2000-01-01
We consider a scenario where the strong coupling constant was changing in the early universe. We attribute this change to a variation in the colour charge within a Bekenstein-like model. Allowing for a large value for the vacuum gluon condensate $\\sim 10^{22}GeV^4$, we could generate inflation with the required properties to solve the fluctuation and other standard cosmology problems. A possible approach to end the inflation is suggested.
Meiling, Yu; Lianshou, Liu
2008-01-01
Pair distribution function for delocalized quarks in the strongly coupled quark gluon plasma (sQGP) as well as in the states at intermediate stages of crossover from hadronic matter to sQGP are calculated using a molecule-like aggregation model. The shapes of the obtained pair distribution functions exhibit the character of liquid. The increasing correlation length in the process of crossover indicates a diminishing viscosity of the fluid system.
Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions
Indian Academy of Sciences (India)
Hamid Reza Pakzad; Kurosh Javidan
2009-11-01
The Korteweg–de Vries–Burgers (KdV–Burgers) equation and modified Korteweg–de Vries–Burgers equation are derived in strongly coupled dusty plasmas containing nonthermal ions and Boltzmann distributed electrons. It is found that solitary waves and shock waves can be produced in this medium. The effects of important parameters such as ion nonthermal parameter, temperature, density and velocity on the properties of shock waves and solitary waves are discussed.
Dipolariton formation in quantum dot molecules strongly coupled to optical resonators
Domínguez, Marlon S; Ramírez, Hanz Y
2016-01-01
In this theoretical work, we study a double quantum dot interacting strongly with a microcavity, while undergoing resonant tunneling. Effects of interdot tunneling on the light-matter hybridized states are determined, and tunability of their brightness degrees and associated dipole moments is demonstrated. These results predict dipolariton generation in artificial molecules coupled to optical resonators, and provide a promising scenario for control of emission efficiency and coherence times of exciton polaritons.
On the four-loop strong coupling beta-function in the SM
Bednyakov, A V
2016-01-01
In the talk the leading four-loop contribution to the beta-function of the strong coupling in the SM is discussed. Some details of calculation techniques are provided. Special attention is paid to the ambiguity due to utilized $\\gamma_5$ treatment and a particular prescription with anticommuting $\\gamma_5$ is advocated. As a by-product of our computation the four-loop beta-function in QCD with "gluino" is also obtained.
Charged colloids, polyelectrolytes and biomolecules viewed as strongly coupled Coulomb systems
Löwen, H; Likos, C N; Blaak, R; Dzubiella, J; Jusufi, A; Hoffmann, N; Harreis, H M
2003-01-01
A brief review is given on recent studies of charged soft matter solutions, as modelled by the 'primitive' approach of strongly coupled Coulomb systems, where the solvent just enters as a dielectric background. These include charged colloids, biological macromolecules such as proteins and DNA, polyelectrolytes and polyelectrolyte stars. Also some original results are presented on colloid-polyelectrolyte complex formation near walls and on the anomalous fluid structure of polyelectrolyte stars as a function of increasing concentration.
Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode
Pino, Javier del; Feist, Johannes; García-Vidal, Francisco J.
2015-01-01
We develop a quantum mechanical formalism to treat the strong coupling between an electromagnetic mode and a vibrational excitation of an ensemble of organic molecules. By employing a Bloch-Redfield-Wangsness approach, we show that the influence of dephasing-type interactions, i.e., elastic collisions with a background bath of phonons, critically depends on the nature of the bath modes. In particular, for long-range phonons corresponding to a common bath, the dynamics of the "bright state" (t...
Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System
Institute of Scientific and Technical Information of China (English)
ZHANG Peng-Fei; ZHANG Yu-Chi; LI Gang; DU Jin-Jin; ZHANG Yan-Feng; GUO Yan-Qiang; WANG Jun-Min; ZHANG Tian-Cai; LI Wei-Dong
2011-01-01
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.%@@ We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime.A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5mm above the micro-cavity center.The atoms fall down freely in gravitation after shutting off the magnetooptical trap and pass through the cavity.The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually.We detect the single atom transits either in the resonance or various detunings.The single atom vacuum-Rabi splitting is directly measured to be Ω＝2π×23.9 MHz.The average duration of atom-cavity coupling of about 110μs is obtained according to the probability distribution of the atom transits.
Ytterbium-driven strong enhancement of electron-phonon coupling in graphene
Hwang, Choongyu; Kim, Duck Young; Siegel, D. A.; Chan, Kevin T.; Noffsinger, J.; Fedorov, A. V.; Cohen, Marvin L.; Johansson, Börje; Neaton, J. B.; Lanzara, A.
2014-01-01
We present high-resolution angle-resolved photoemission spectroscopy study in conjunction with first principles calculations to investigate how the interaction of electrons with phonons in graphene is modified by the presence of Yb. We find that the transferred charges from Yb to the graphene layer hybridize with the graphene $\\pi$ bands, leading to a strong enhancement of the electron-phonon interaction. Specifically, the electron-phonon coupling constant is increased by as much as a factor ...
Room temperature strong light-matter coupling in 3D THz meta-atoms (Conference Presentation)
Paulillo, Bruno; Manceau, Jean-Michel; Li, Lianhe; Linfield, Edmund; Colombelli, Raffaele
2016-04-01
We demonstrate strong light-matter coupling at room temperature in the terahertz (THz) spectral region using 3D meta-atoms with extremely sub-wavelength volumes. Using an air-bridge fabrication scheme, we have implemented sub-wavelength 3D THz micro-resonators that rely on suspended loop antennas connected to semiconductor-filled patch cavities. We have experimentally shown that they possess the functionalities of lumped LC resonators: their frequency response can be adjusted by independently tuning the inductance associated the antenna element or the capacitance provided by the metal-semiconductor-metal cavity. Moreover, the radiation coupling and efficiency can be engineered acting on the design of the loop antenna, similarly to conventional RF antennas. Here we take advantage of this rich playground in the context of cavity electrodynamics/intersubband polaritonics. In the strong light-matter coupling regime, a cavity and a two-level system exchange energy coherently at a characteristic rate called the vacuum Rabi frequency ΩR which is dominant with respect to all other loss mechanisms involved. The signature, in the frequency domain, is the appearance of a splitting between the bare cavity and material system resonances: the new states are called upper and a lower polariton branches. So far, most experimental demonstrations of strong light-matter interaction between an intersubband transition and a deeply sub-wavelength mode in the THz or mid-infrared ranges rely on wavelength-scale or larger resonators such as photonic crystals, diffractive gratings, dielectric micro-cavities or patch cavities. Lately, planar metamaterials have been used to enhance the light-matter interaction and strongly reduce the interaction volume by engineering the electric and magnetic resonances of the individual subwavelength constituents. In this contribution we provide evidence of strong coupling between a THz intersubband transition and an extremely sub-wavelength mode (≈λ/10
An experiment to measure the electron-ion thermal equilibration rate in a strongly coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Taccetti, J M; Shurter, R P; Roberts, J P; Benage, J F; Graden, B; Haberle, B; Murillo, M S; Vigil, B; Wysocki, F J [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2006-04-28
We present the most recent results from an experiment aimed at obtaining the temperature equilibration rate between ions and electrons in a strongly coupled plasma by directly measuring the temperature of each component. The plasma is formed by heating a sonic gas jet with a 10 ps laser pulse. The electrons are preferentially heated by the short pulse laser (we are aiming for T{sub e} {approx} 100 eV), while the ions, after undergoing very rapid (sub-ps timescale) disorder-induced heating, should only reach a temperature of 10-15 eV. This results in a strongly coupled ion plasma with a {gamma}{sub ii} {approx} 3-5. We plan to measure the electron and ion temperatures of the resulting plasma independently during and after heating, using collective Thomson scattering for electrons and a high-resolution x-ray spectrometer for the ions (measuring Doppler-broadened absorption lines). Theory indicates that the equilibration rate could be significantly lower than that given by the usual weakly coupled model (Landau-Spitzer) due to coupled collective modes present in the dense plasma.
An experiment to measure the electron ion thermal equilibration rate in a strongly coupled plasma
Taccetti, J. M.; Shurter, R. P.; Roberts, J. P.; Benage, J. F.; Graden, B.; Haberle, B.; Murillo, M. S.; Vigil, B.; Wysocki, F. J.
2006-04-01
We present the most recent results from an experiment aimed at obtaining the temperature equilibration rate between ions and electrons in a strongly coupled plasma by directly measuring the temperature of each component. The plasma is formed by heating a sonic gas jet with a 10 ps laser pulse. The electrons are preferentially heated by the short pulse laser (we are aiming for Te ~ 100 eV), while the ions, after undergoing very rapid (sub-ps timescale) disorder-induced heating, should only reach a temperature of 10-15 eV. This results in a strongly coupled ion plasma with a Γii ~ 3-5. We plan to measure the electron and ion temperatures of the resulting plasma independently during and after heating, using collective Thomson scattering for electrons and a high-resolution x-ray spectrometer for the ions (measuring Doppler-broadened absorption lines). Theory indicates that the equilibration rate could be significantly lower than that given by the usual weakly coupled model (Landau-Spitzer) due to coupled collective modes present in the dense plasma.
Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics
Directory of Open Access Journals (Sweden)
Gungun Lin
2015-05-01
Full Text Available We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.
Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity
Pal, Sridip
2016-10-01
We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode.
Mourokh, Lev G; Nori, Franco
2015-11-01
Using methods from condensed matter and statistical physics, we examine the transport of excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation-annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intrasystem couplings. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibrational modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the energy transfer efficiency in the steady-state regime. Using the structural parameters of the Fenna-Matthews-Olson complex, we find that, for vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of a "mixed exciton-vibrational mode" where the exciton is transferred back and forth between the two pigments with the absorption or emission of vibrational quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibrational mode strongly couples to the third pigment only, instead of coupling to the entire system.
Classical Integrability for Three-point Functions: Cognate Structure at Weak and Strong Couplings
Kazama, Y; Nishimura, T
2016-01-01
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the $\\mathcal{N}=4$ super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical...
The strong coupling from the revised ALEPH data for hadronic $\\tau$ decays
Boito, Diogo; Maltman, Kim; Osborne, James; Peris, Santiago
2014-01-01
We apply an analysis method previously developed for the extraction of the strong coupling from the OPAL data to the recently revised ALEPH data for non-strange hadronic $\\tau$ decays. Our analysis yields the values $\\alpha_s(m_\\tau^2)=0.296\\pm 0.010$ using fixed-order perturbation theory, and $\\alpha_s(m_\\tau^2)=0.310\\pm 0.014$ using contour-improved perturbation theory. Averaging these values with our previously obtained values from the OPAL data, we find $\\alpha_s(m_\\tau^2)=0.303\\pm 0.009$, respectively, $\\alpha_s(m_\\tau^2)=0.319\\pm 0.012$. We present a critique of the analysis method employed previously, for example in analyses by the ALEPH and OPAL collaborations, and compare it with our own approach. Our conclusion is that non-perturbative effects limit the accuracy with which the strong coupling, an inherently perturbative quantity, can be extracted at energies as low as the $\\tau$ mass. Our results further indicate that systematic errors on the determination of the strong coupling from analyses of had...
Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories
Santamaria, Ricardo Couso; Putrov, Pavel
2010-01-01
We study various aspects of the matrix models calculating free energies and Wilson loop observables in supersymmetric Chern-Simons-matter theories on the three-sphere. We first develop techniques to extract strong coupling results directly from the spectral curve describing the large N master field. We show that the strong coupling limit of the gauge theory corresponds to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar graph, and matrix model calculations reduce to elementary line integrals along the graph. As an important physical application of these tropical techniques, we study N=3 theories with fundamental matter, both in the quenched and in the unquenched regimes. We calculate the exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson loop observables at strong coupling by using tropical geometry. The results are in agreement with the predictions of the AdS duals involving tri-Sasakian manifolds
Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories
Couso Santamaría, Ricardo; Mariño, Marcos; Putrov, Pavel
2011-10-01
We study various aspects of the matrix models calculating free energies and Wilson loop observables in supersymmetric Chern-Simons-matter theories on the three-sphere. We first develop techniques to extract strong coupling results directly from the spectral curve describing the large N master field. We show that the strong coupling limit of the gauge theory corresponds to the so-called tropical limit of the spectral curve. In this limit, the curve degenerates to a planar graph, and matrix model calculations reduce to elementary line integrals along the graph. As an important physical application of these tropical techniques, we study mathcal{N} = 3 theories with fundamental matter, both in the quenched and in the unquenched regimes. We calculate the exact spectral curve in the Veneziano limit, and we evaluate the planar free energy and Wilson loop observables at strong coupling by using tropical geometry. The results are in agreement with the predictions of the AdS duals involving tri-Sasakian manifolds.
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-01-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths. PMID:27721454
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”.......We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning......~120μeV are observed for the highest-Q cavities with Q~10500, much larger than the linewidths of either the decoupled exciton (γ30 linewidths. The devices fabricated allow studies of cavity-QED phenomena in a system that can be tuned in-situ, at low temperatures. Furthermore, prospects for direct...
Dust-acoustic solitary waves and shocks in strongly coupled quantum plasmas
Wang, Y
2014-01-01
We investigate the propagation characteristics of electrostatic dust-acoustic (DA) solitary waves and shocks in a strongly coupled dusty plasma consisting of intertialess electrons and ions, and strongly coupled inertial charged dust particles. A generalized viscoelastic hydrodynamic model with the effects of electrostatic dust pressure associated with the strong coupling of dust particles, and a quantum hydrodynamic model with the effects of quantum forces associated with the Bohm potential and the exchange-correlation potential for electrons and ions are considered. Both the linear and weakly nonlinear theory of DA waves are studied by the derivation and analysis of dispersion relations as well as Korteweg-de Vries (KdV) and KdV-Burgers (KdVB)-like equations. It is shown that in the kinetic regime ($\\omega\\tau_m\\gg1$, where $\\omega$ is the wave frequency and $\\tau_m$ is the viscoelastic relaxtation time), the amplitude of the DA solitary waves decays slowly with time with the effect of a small amount of dus...
Energy Technology Data Exchange (ETDEWEB)
Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S. [Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur-495009 (C.G.) (India); Chhajlani, R. K. [Retired from School of Studies in Physics, Vikram University, Ujjain-456010 (M.P.) (India)
2016-05-15
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.
The renormalization; La normalisation
Energy Technology Data Exchange (ETDEWEB)
Rivasseau, V. [Paris-6 Univ., Lab. de Physique Theorique, 91 - Orsay (France); Gallavotti, G. [Universita di Roma, La Sapienza, Fisica, Roma (Italy); Zinn-Justin, J. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Serv. de Physique Theorique, 91- Gif sur Yvette (France); Connes, A. [College de France, 75 - Paris (France)]|[Institut des Hautes Etudes Scientifiques - I.H.E.S., 91 - Bures sur Yvette (France); Knecht, M. [Centre de Physique Theorique, CNRS-Luminy, 13 - Marseille (France); Mansoulie, B. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Serv. de Physique des Particules, 91- Gif sur Yvette (France)
2002-07-01
This document gathers 6 articles. In the first article the author reviews the theory of perturbative renormalization, discusses its limitations and gives a brief introduction to the powerful point of view of the renormalization group, which is necessary to go beyond perturbation theory and to define renormalization in a constructive way. The second article is dedicated to renormalization group methods by illustrating them with examples. The third article describes the implementation of renormalization ideas in quantum field theory. The mathematical aspects of renormalization are given in the fourth article where the link between renormalization and the Riemann-Hilbert problem is highlighted. The fifth article gives an overview of the main features of the theoretical calculations that have been done in order to obtain accurate predictions for the anomalous magnetic moments of the electron and of the muon within the standard model. The challenge is to make theory match the unprecedented accuracy of the last experimental measurements. The last article presents how ''physics beyond the standard model'' will be revealed at the large hadron collider (LHC) at CERN. This accelerator will be the first to explore the 1 TeV energy range directly. Supersymmetry, extra-dimensions and Higgs boson will be the different challenges. It is not surprising that all theories put forward today to subtend the electro-weak breaking mechanism, predict measurable or even spectacular signals at LHC. (A.C.)
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Non-Perturbative Renormalization
Mastropietro, Vieri
2008-01-01
The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi
Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Xing-Gang [Chongqing Univ. (China); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-08-07
In conventional treatments, predictions from fixed-order perturbative QCD calculations cannot be fixed with certainty due to ambiguities in the choice of the renormalization scale as well as the renormalization scheme. In this paper we present a general discussion of the constraints of the renormalization group (RG) invariance on the choice of the renormalization scale. We adopt the RG based equations, which incorporate the scheme parameters, for a general exposition of RG invariance, since they simultaneously express the invariance of physical observables under both the variation of the renormalization scale and the renormalization scheme parameters. We then discuss the self-consistency requirements of the RG, such as reflexivity, symmetry, and transitivity, which must be satisfied by the scale-setting method. The Principle of Minimal Sensitivity (PMS) requires the slope of the approximant of an observable to vanish at the renormalization point. This criterion provides a scheme-independent estimation, but it violates the symmetry and transitivity properties of the RG and does not reproduce the Gell-Mann-Low scale for QED observables. The Principle of Maximum Conformality (PMC) satisfies all of the deductions of the RG invariance - reflectivity, symmetry, and transitivity. Using the PMC, all non-conformal {β^{R}_{i}}-terms (R stands for an arbitrary renormalization scheme) in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC scales and the resulting finite-order PMC predictions are both to high accuracy independent of the choice of initial renormalization scale, consistent with RG invariance.
Enhancement of field renormalization in scalar theories via functional renormalization group
Zappalà, Dario
2012-01-01
The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, to determine the effective potential and the renormalization function of the field in the broken phase. The flow equations of these quantities are derived from a reduction of the full flow of the effective action onto a set of equations for the n-point vertices of the theory. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-perturbatively large value of the physical renormalization of the longitudinal component of the field is observed. The dependence of the field renormalization on the UV cut-off and on the bare coupling is also investigated.
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)
2006-12-15
In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)
Strong coupling effects in near-barrier heavy-ion elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Keeley, N. [National Centre for Nuclear Research, Otwock (Poland); Kemper, K.W. [The Florida State University, Department of Physics, Tallahassee, Florida (United States); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Rusek, K. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland)
2014-09-15
Accurate elastic scattering angular distribution data measured at bombarding energies just above the Coulomb barrier have shapes that can markedly differ from or be the same as the expected classical Fresnel scattering pattern depending on the structure of the projectile, the target or both. Examples are given such as {sup 18}O + {sup 184}W and {sup 16}O + {sup 148,} {sup 152}Sm, where the expected rise above Rutherford scattering due to Coulomb-nuclear interference is damped by coupling to the target excited states, and the extreme case of {sup 11}Li scattering, where coupling to the {sup 9}Li + n + n continuum leads to an elastic scattering shape that cannot be reproduced by any standard optical model parameter set. An early indication that the projectile structure can modify the elastic scattering angular distribution was the large vector analyzing powers observed in polarised {sup 6}Li scattering. The recent availability of high-quality {sup 6}He, {sup 11}Li and {sup 11}Be data provides further examples of the influence that coupling effects can have on elastic scattering. Conditions for strong projectile-target coupling effects are presented with special emphasis on the importance of the beam-target charge combination being large enough to bring about the strong coupling effects. Several measurements are proposed that can lead to further understanding of strong coupling effects by both inelastic excitation and nucleon transfer on near-barrier elastic scattering. A final note on the anomalous nature of {sup 8}B elastic scattering is presented as it possesses a more or less normal Fresnel scattering shape whereas one would a priori not expect this due to the very low breakup threshold of {sup 8}B. The special nature of {sup 11}Li is presented as it is predicted that no matter how far above the Coulomb barrier the elastic scattering is measured, its shape will not appear as Fresnel like whereas the elastic scattering of all other loosely bound nuclei studied to
Thermal conductivity of local moment models with strong spin-orbit coupling
Stamokostas, Georgios L.; Lapas, Panteleimon E.; Fiete, Gregory A.
2017-02-01
We study the magnetic and lattice contributions to the thermal conductivity of electrically insulating strongly spin-orbit coupled magnetically ordered phases on a two-dimensional honeycomb lattice using the Kitaev-Heisenberg model. Depending on model parameters, such as the relative strength of the spin-orbit induced anisotropic coupling, a number of magnetically ordered phases are possible. In this work, we study two distinct regimes of thermal transport depending on whether the characteristic energy of the phonons or the magnons dominates, and focus on two different relaxation mechanisms, boundary scattering and magnon-phonon scattering. For spatially anisotropic magnetic phases, the thermal conductivity tensor can be highly anisotropic when the magnetic energy scale dominates, since the magnetic degrees of freedom dominate the thermal transport for temperatures well below the magnetic transition temperature. In the opposite limit in which the phonon energy scale dominates, the thermal conductivity will be nearly isotropic, reflecting the isotropic (at low temperatures) phonon dispersion assumed for the honeycomb lattice. We further discuss the extent to which thermal transport properties are influenced by strong spin-orbit induced anisotropic coupling in the local moment regime of insulating magnetic phases. The developed methodology can be applied to any 2D magnon-phonon system, and more importantly to systems where an analytical Bogoliubov transformation cannot be found and magnon bands are not necessarily isotropic.
High-flux cold rubidium atomic beam for strongly-coupled cavity QED
Energy Technology Data Exchange (ETDEWEB)
Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)
2012-08-15
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.
Routine daily physical activity and glucose variations are strongly coupled in adults with T1DM.
Farabi, Sarah S; Carley, David W; Cinar, Ali; Quinn, Lauretta
2015-12-01
Type 1 Diabetes (T1DM) is characterized by altered glucose homeostasis resulting in wide glucose variations throughout a 24-h period. The relationship between routine daily physical activity and glucose variations has not been systematically investigated in adults with T1DM. The objectives of this study were to characterize and quantify the relationship between routine daily activity and glucose variations in a small group of adults with T1DM. Adults with T1DM treated with an insulin pump were recruited for the study. Over a 3-day period, glucose variations were monitored with a continuous glucose monitoring system (CGMS) and routine daily physical activity was assessed using an accelerometer-based physical activity-monitoring band. Simultaneous glucose and physical activity data for one 24-h period were used for analysis. Cross-correlation function and wavelet coherence analyses were employed to quantify the coupling between physical activity and glucose. Twelve subjects were included in the analysis. Cross-correlation function analysis revealed strong coupling between activity and glucose. Wavelet Coherence demonstrated that slower oscillations (120-340 min) of glucose and physical activity exhibited significantly greater coherence (F = 12.6, P < 0.0001) than faster oscillations (10 and 120 min). Physical activity and glucose demonstrate strong time and frequency-dependent coupling throughout a 24-h time period in adults with T1DM.
Application of the Kalman Filter for Faster Strong Coupling of Cardiovascular Simulations.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2016-07-01
In this paper, we propose a method for reducing the computational cost of strong coupling for multiscale cardiovascular simulation models. In such a model, individual model modules of myocardial cell, left ventricular structural dynamics, and circulatory hemodynamics are coupled. The strong coupling method enables stable and accurate calculation, but requires iterative calculations which are computationally expensive. The iterative calculations can be reduced, if accurate initial approximations are made available by predictors. The proposed method uses the Kalman filter to estimate accurate predictions by filtering out noise included in past values. The performance of the proposed method was assessed with an application to a previously published multiscale cardiovascular model. The proposed method reduced the number of iterations by 90% and 62% compared with no prediction and Lagrange extrapolation, respectively. Even when the parameters were varied and number of elements of the left ventricular finite-element model increased, the number of iterations required by the proposed method was significantly lower than that without prediction. These results indicate the robustness, scalability, and validity of the proposed method.
Flow equations and the strong-coupling expansion for the Hubbard model
Stein, Jürgen
1997-07-01
Applying the method of continuous unitary transformations to a class of Hubbard models, we reexamine the derivation of the t/U expansion for the strong-coupling case. The flow equations for the coupling parameters of the higher order effective interactions can be solved exactly, resulting in a systematic expansion of the Hamiltonian in powers of t/U, valid for any lattice in arbitrary dimension and for general band filling. The expansion ensures a correct treatment of the operator products generated by the transformation, and only involves the explicit recursive calculation of numerical coefficients. This scheme provides a unifying framework to study the strong-coupling expansion for the Hubbard model, which clarifies and circumvents several difficulties inherent to earlier approaches. Our results are compared with those of other methods, and it is shown that the freedom in the choice of the unitary transformation that eliminates interactions between different Hubbard bands can affect the effective Hamiltonian only at order t 3/U2 or higher.
Singular Renormalization Group Equations
Minoru, HIRAYAMA; Department of Physics, Toyama University
1984-01-01
The possible behaviour of the effective charge is discussed in Oehme and Zimmermann's scheme of the renormalization group equation. The effective charge in an example considered oscillates so violently in the ultraviolet limit that the bare charge becomes indefinable.
Energy Technology Data Exchange (ETDEWEB)
Martirena, Saul Gonzalez [Stanford Univ., CA (United States)
1994-04-01
In this work, a measurement of the strong coupling constant α_{s} in e^{+}e^{-} annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter Λ_{$\\bar{MS}$}, defined in the _{$\\bar{MS}$} renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(α_{s}^{2}) calculations. The value of α_{s} obtained was α_{s} (M_{Z°}) = 0.122 ± 0.004 $+0.008\\atop{-0.007}$ where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, Λ_{$\\bar{MS}$} = 0.28 $+0.16\\atop{0.10}$ GeV where the experimental and theoretical uncertainties have been combined.
Energy Technology Data Exchange (ETDEWEB)
Martirena, S.G.
1994-04-01
In this work, a measurement of the strong coupling constant {alpha}{sub s} in e{sup +}e{sup {minus}} annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter {Lambda}{sub bar MS}, defined in the {sub bar MS} renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O({alpha}{sub s}{sup 2}) calculations. The value of {alpha}{sub s} obtained was {alpha}{sub s}(M{sub z0}) = 0.122 {plus_minus} 0.004 {sub {minus}0.007} {sup +0.008} where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, {Lambda}{sub bar MS} = 0.28 {sub {minus}0.10}{sup +0.16} GeV where the experimental and theoretical uncertainties have been combined.
Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.
2015-04-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.
Solitary and shock structures in a strongly coupled cryogenic quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Hossen, M. A., E-mail: armanplasma@gmail.com; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2015-07-15
The quantum ion-acoustic (QIA) solitary and shock structures formed in a strongly coupled cryogenic quantum plasma (containing strongly coupled positively charged inertial cold ions and Fermi electrons as well as positrons) have been theoretically investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been employed to derive the Korteweg-de Vries (K-dV) and Burgers equations. The basic features of the QIA solitary and shock structures are identified by analyzing the stationary solitary and shock wave solutions of the K-dV and Burgers equations. It is found that the basic characteristics (e.g., phase speed, amplitude, and width) of the QIA solitary and shock structures are significantly modified by the effects of the Fermi pressures of electrons and positrons, the ratio of Fermi temperature of positrons to that of electrons, the ratio of effective ion temperature to electron Fermi temperature, etc. It is also observed that the effect of strong correlation among extremely cold ions acts as a source of dissipation, and is responsible for the formation of the QIA shock structures. The results of this theoretical investigation should be useful for understanding the nonlinear features of the localized electrostatic disturbances in laboratory electron-positron-ion plasmas (viz., super-intense laser-dense matter experiments)
Anisotropic shear viscosity of a strongly coupled non-Abelian plasma from magnetic branes
Critelli, R; Zaniboni, M; Noronha, J
2014-01-01
Recent estimates for the electromagnetic fields produced in the early stages of non-central ultra-relativistic heavy ion collisions indicate the presence of magnetic fields $B\\sim \\mathcal{O}(0.1-15\\,m_\\pi^2)$, where $m_\\pi$ is the pion mass. It is then of special interest to study the effects of strong (Abelian) magnetic fields on the transport coefficients of strongly coupled non-Abelian plasmas, such as the quark-gluon plasma formed in heavy ion collisions. In this work we study the anisotropy in the shear viscosity induced by an external magnetic field in a strongly coupled $\\mathcal{N} = 4$ SYM plasma. Due to the spatial anisotropy created by the magnetic field, the most general viscosity tensor has 5 shear viscosity coefficients and 2 bulk viscosities. We use the holographic correspondence to evaluate two of the shear viscosities, $\\eta_{\\perp} \\equiv \\eta_{xyxy}$ (perpendicular to the magnetic field) and $\\eta_{\\parallel} \\equiv \\eta_{xzxz}=\\eta_{yzyz}$ (parallel to the field). When $B\
Strong coupling in F-theory and geometrically non-Higgsable seven-branes
Directory of Open Access Journals (Sweden)
James Halverson
2017-06-01
Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.
Strong coupling effects in near-barrier heavy-ion elastic scattering
Keeley, N; Rusek, K
2014-01-01
Accurate elastic scattering angular distribution data measured at bombarding energies just above the Coulomb barrier have shapes that can markedly differ from or be the same as the expected classical Fresnel scattering pattern depending on the structure of the projectile, the target or both. Examples are given such as 18O + 184W and 16O + 148,152Sm where the expected rise above Rutherford scattering due to Coulomb-nuclear interference is damped by coupling to the target excited states, and the extreme case of 11Li scattering, where coupling to the 9Li + n + n continuum leads to an elastic scattering shape that cannot be reproduced by any standard optical model parameter set. The recent availability of high quality 6He, 11Li and 11Be data provides further examples of the influence that coupling effects can have on elastic scattering. Conditions for strong projectile-target coupling effects are presented with special emphasis on the importance of the beam-target charge combination being large enough to bring ab...
Photon mass new limits from strong photon-torsion coupling generation of primordial magnetic fields
de Andrade, Garcia
2011-01-01
Recently Adelberger et al [Phys Rev Lett 98: 010402, (2007)] have placed a limit to photon mass by investigating the primordial magnetic fields. Earlier Bertolami et al [Phys Lett \\textbf{B} 455, 96(1999)] showed that massive photons in a spontaneous Lorentz breaking may generate primordial magnetic fields consistent with galactic dynamo seeds. Torsion coupling constant of order $10^{-5}$, much higher than the previously obtained by de Sabbata and Sivaram of $10^{-24}$, leads to strong amplification of magnetic field able to seed galactic dynamo at recombination era contrary to what happens in general relativistic dynamos. This results in $B\\sim{10^{-5}{\\beta}G}$ where ${\\beta}$ is the massive photon-torsion coupling. Thus in order to obtain the observed galaxy field of $B_{G}\\sim{{\\mu}G}$ one should have a coupling $\\beta\\sim{10^{-1}}$, never observed in the universe. Thus we may conclude that the weaker couplings for torsion to e.m fields shall only produce magnetic fields without dynamos starting from extr...
Renormalization of supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M{sub W} and sin{sup 2}{theta}{sup eff}. He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses.
Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.
Brown, Lowell S; Dooling, David C; Preston, Dean L
2006-05-01
The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.
Anisotropic tunneling between spin-polarized tips and substrate with strong spin-orbit coupling
Xie, Yonglong; Jeon, Sangjun; Drozdov, Ilya; Li, Jian; Bernevig, Andrei; Yazdani, Ali
2015-03-01
The ability to measure spin structure on the nanometer scale has attracted substantial interest for a long time. Spin-polarized scanning tunneling microscopy (SP-STM) is an excellent tool for studying fundamental aspect of magnetism at atomic scale. We combine a low temperature STM equipped with a vector magnet and a spin-polarizable tip, to probe superconductors with strong spin-orbit coupling such as Pb, which is emerging as a platform for engineering topological superconductivity. We observe anisotropic tunneling conductance between tip and substrate as a function of the angle of applied in-plane magnetic field. This finding suggests that SP-STM may provide a tool to locally measure spin-orbit coupling, even in non-magnetic substrates.
Tune Determination of Strongly Coupled Betatron Oscillations in a Fast-Ramping Synchrotron
Energy Technology Data Exchange (ETDEWEB)
Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W; Triplett, K.; /Fermilab
2012-05-01
Tune identification -- i.e. attribution of the spectral peak to a particular normal de of oscillations -- can present a significant difficulty in the presence of strong transverse coupling when the normal mode with a lower damping rate dominates spectra of Turn-by-Turn oscillations in both planes. The introduced earlier phased sum algorithm helped to recover the weaker normal mode signal from the noise, but by itself proved to be insufficient for automatic peak identification in the case of close phase advance distribution in both planes. To resolve this difficulty we modified the algorithm by taking and analyzing Turn-by-Turn data for two different ramps with the beam oscillation excited in each plane in turn. Comparison of relative amplitudes of Fourier components allows for correct automatic tune identification. The proposed algorithm was implemented in the Fermilab Booster B38 console application and successfully used for tune, coupling and chromaticity measurements.
Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.
Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M
2013-04-26
We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.
Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature
Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I
2012-01-01
We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. In the strong coupling limit these models are equivalent to a generalized version of the vector Potts models in two dimensions, where Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.
Sound waves in strongly coupled non-conformal gauge theory plasma
Benincasa, P; Starinets, A O; Benincasa, Paolo; Buchel, Alex; Starinets, Andrei O.
2005-01-01
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2^* supersymmetric SU(N_c) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N_c and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Sound waves in strongly coupled non-conformal gauge theory plasma
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Paolo [Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7 (Canada); Buchel, Alex [Department of Applied Mathematics, University of Western Ontario, London, ON N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9 (Canada); Starinets, Andrei O. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9 (Canada)]. E-mail: starina@perimeterinstitute.ca
2006-01-16
Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2* supersymmetric SU(N{sub c}) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N{sub c} and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.
Strong plate coupling along the Nazca/South America convergent margin
Iaffaldano, G.; Bunge, H.
2007-12-01
associated with Andean growth. Specifically, the symmetric distribution of plate coupling forces along the margin provides strong torques that could have caused the bend in a feedback mechanism between mountain belt growth and plate coupling.
Perturbative renormalization of the electric field correlator
Christensen, C
2016-01-01
The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ~12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.
Perturbative renormalization of the electric field correlator
Directory of Open Access Journals (Sweden)
C. Christensen
2016-04-01
Full Text Available The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3 gauge theory, finding a ∼12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.
Perturbative renormalization of the electric field correlator
Christensen, C.; Laine, M.
2016-04-01
The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.
Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
Bennett, Steven D; Cockins, Lynda; Miyahara, Yoichi; Grütter, Peter; Clerk, Aashish A
2010-01-08
We present theoretical and experimental results on the mechanical damping of an atomic force microscope cantilever strongly coupled to a self-assembled InAs quantum dot. When the cantilever oscillation amplitude is large, its motion dominates the charge dynamics of the dot which in turn leads to nonlinear, amplitude-dependent damping of the cantilever. We observe highly asymmetric line shapes of Coulomb blockade peaks in the damping that reflect the degeneracy of energy levels on the dot. Furthermore, we predict that excited state spectroscopy is possible by studying the damping versus oscillation amplitude, in analogy with varying the amplitude of an ac gate voltage.
Bekenstein model and the time variation of the strong coupling constant
Chamoun, N; Vucetich, H
2001-01-01
We propose to generalize Bekenstein model for the time variation of the fine structure "constant" $\\alpha_{em}$ to QCD strong coupling constant $\\alpha_S$. We find that, except for a ``fine tuned'' choice of the free parameters, the extension can not be performed trivially without being in conflict with experimental constraints and this rules out $\\alpha_S$ variability. This is due largely to the huge numerical value of the QCD vacuum gluon condensate when compared to the mass density of the universe.
Black Hole Thermodynamics from Calculations in Strongly-Coupled Gauge Theory
Kabat, D; Lowe, D A; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2001-01-01
We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large-N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional non-extremal black hole with 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena, Sonnenschein and Yankielowicz. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly-coupled quantum mechanics.
Damping of hard excitations in strongly coupled $\\mathcal N\\,{=}\\,4$ plasma
Fuini, John F; Yaffe, Laurence G
2016-01-01
The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We confirm that subleading corrections to the lightlike dispersion relation $\\omega({\\bf q}) = |{\\bf q}|$ have a universal $|{\\bf q}|^{-1/3}$ form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.
Polariton Analysis of a Four-Level Atom Strongly Coupled to a Cavity Mode
Rebic, S; Tan, S M
2002-01-01
We present a complete analytical solution for a single four-level atom strongly coupled to a cavity field mode and driven by external coherent laser fields. The four-level atomic system consists of a three-level subsystem in an EIT configuration, plus an additional atomic level; this system has been predicted to exhibit a photon blockade effect. The solution is presented in terms of polaritons. An effective Hamiltonian obtained by this procedure is analyzed from the viewpoint of an effective two-level system, and the dynamic Stark splitting of dressed states is discussed. The fluorescence spectrum of light exiting the cavity mode is analyzed and relevant transitions identified.
Spatio-temporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling
Xiong, Wen; Bromberg, Yaron; Rotter, Stefan; Cao, Hui
2016-01-01
We experimentally generate and characterize the eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable a global control of the temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that the well-defined delay time of the eigenstates are formed by multi-path interference, which can be effectively manipulated by the spatial degrees of freedom of the input wavefront. This study is essential to controlling the dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.
Spatiotemporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling
Xiong, Wen; Ambichl, Philipp; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui
2016-07-01
We experimentally generate and characterize eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable global control of temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that well-defined delay times of the eigenstates are formed by multipath interference, which can be effectively manipulated by spatial degrees of freedom of input wave fronts. This study is essential to controlling dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Coupled-cluster theory of a gas of strongly-interacting electrons in the dilute limit
Energy Technology Data Exchange (ETDEWEB)
Mihaila, Bodgan [Los Alamos National Laboratory; Cardenas, Andres L [Los Alamos National Laboratory
2008-01-01
We study the ground-state properties of a dilute gas of strongly-interacting fermions in the framework of the coupled-cluster expansion (CCE). We demonstrate that properties such as universality, opening of a gap in the excitation spectrum and applicability of s-wave approximations appear naturally in the CCE approach. In the zero-density limit, we show that the ground-state energy density depends on only one parameter which in turn may depend at most on the spatial dimensionality of the system.
Spin Sum Rules and the Strong Coupling Constant at large distance.
Energy Technology Data Exchange (ETDEWEB)
Alexandre Deur
2009-07-01
We present recent results on the Bjorken and the generalized forward spin polarizability sum rules from Jefferson Lab Hall A and CLAS experiments, focusing on the low $Q^2$ part of the measurements. We then discuss the comparison of these results with Chiral Perturbation theory calculations. In the second part of this paper, we show how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.
On the strong coupling dynamics of heterotic string theory onC3/Z3
Energy Technology Data Exchange (ETDEWEB)
Ganor, O.J.; Sonnenschein, J.
2002-02-28
The authors study the strong coupling dynamics of the heterotic E{sub 8} x E{sub 8} string theory on the orbifolds T{sup 6}/Z{sub 3} and C{sup 3}/Z{sub 3} using the duality with the Horava-Witten M-theory picture. This leads us to a conjecture about the low energy description of the five dimensional E{sub 0}-theory (the CFT that describes the singularity region of M-theory on C{sup 3}/Z{sub 3}) compactified on S{sup 1}/Z{sub 2}.
Generalized Lorentz-Dirac equation for a strongly coupled gauge theory.
Chernicoff, Mariano; García, J Antonio; Güijosa, Alberto
2009-06-19
We derive a semiclassical equation of motion for a "composite" quark in strongly coupled large-N_{c} N = 4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [II. Institute for Theoretical Physics, Hamburg University,Luruper Chaussee 149, 22671 Hamburg (Germany); Schomerus, V. [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sprenger, M. [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Institute for Theoretical Physics, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2015-07-20
We describe a general algorithm for the computation of the remainder function for n-gluon scattering in multi-Regge kinematics for strongly coupled planar N=4 super Yang-Mills theory. This regime is accessible through the infrared physics of an auxiliary quantum integrable system describing strings in AdS{sub 5}×S{sup 5}. Explicit formulas are presented for n=6 and n=7 external gluons. Our results are consistent with expectations from perturbative gauge theory. This paper comprises the technical details for the results announced in http://dx.doi.org/10.1007/JHEP10(2014)067.
Dressed states of a quantum emitter strongly coupled to a metal nanoparticle
Varguet, H; Dzsotjan, D; Jauslin, H; Guerin, S; Francs, G Colas des
2016-01-01
Hybrid molecular-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing or quantum control at the nanoscale. In this work, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and dressed atom picture. Both near field emission and far field radiation are discussed, revealing the richness of such optical nanosources.
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel [Karl-Franzens Universitaet Graz, Institut fuer Physik, Graz (Austria); Pawlowski, Jan M.; Spielmann, Daniel [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Sternbeck, Andre [University of Adelaide, Centre for the Subatomic Structure of Matter, SA, Adelaide (Australia); Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Smekal, Lorenz von [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2010-07-15
We study the strong-coupling limit {beta}=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite {beta}. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
A strongly conservative finite element method for the coupling of Stokes and Darcy flow
Kanschat, G.
2010-08-01
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.
Arimoto, Yoshinori
2011-03-01
This paper discusses the operational condition for direct single-mode-fiber-coupling FSO terminals under the various adverse weather conditions, such as strong atmospheric turbulences and rain falls. A good correlation between the scintillation index of the intensities of beacon receiving power and the signal fading depth has been observed, which allows us to predict the signal link quality based on the beacon scintillation index provided by the classical scintillation theory and concludes that the scintillation index for the beacon beam should be less than 0.1. This paper also reports the effect of performance enhancements provided by the new adaptive controller for the stable and robust terminal operation.