WorldWideScience

Sample records for renormalized realistic interactions

  1. Operator representation for effective realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2013-07-01

    We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.

  2. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  3. g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits

    Science.gov (United States)

    Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.

    1983-09-01

    A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.

  4. Similarity renormalization group evolution of N N interactions within a subtractive renormalization scheme

    Directory of Open Access Journals (Sweden)

    Durães F.O.

    2010-04-01

    Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral effective field theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a fixed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoff through the SRG transformation.

  5. Renormalization group treatment of nonrenormalizable interactions

    International Nuclear Information System (INIS)

    Kazakov, D I; Vartanov, G S

    2006-01-01

    The structure of the UV divergences in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergences (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. An explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the naive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms

  6. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  7. The renormalized theory of beam-beam interaction

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1988-06-01

    A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs

  8. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    Science.gov (United States)

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  9. Effective realistic interactions for low momentum Hilbert spaces

    International Nuclear Information System (INIS)

    Weber, Dennis

    2012-01-01

    method to calculate the operator representation is applied to different effective realistic potentials. In a first application the Argonne V18 potential, transformed by means of the Unitary Correlation Operator Method (UCOM), is considered. As second application an operator representation of the Similarity Renormalization Group (SRG) transformed Argonne potential is obtained. Finally an operator representation of the JISP16 interaction, which is specifically designed for the harmonic oscillator basis, is derived by using the same ansatz as for the SRG transformed Argonne potential.Summing up, there is no general set of operators which can be used to describe all the different effective interactions by just adjusting the particular radial functions. However, it is possible to find a suitable operator representation, even for effective operators that are specifically designed for numerical feasibility and are treating each partial wave separately.

  10. Alternating chain with Hubbard-type interactions: renormalization group analysis

    International Nuclear Information System (INIS)

    Buzatu, F. D.; Jackeli, G.

    1998-01-01

    A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu

  11. Phenomenological renormalization of free nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Prakash, M.; Waghmare, Y.R.; Mehrotra, I.

    1976-01-01

    Low-lying spectra of 6 Li, 18 F, 18 O, 42 Sc, 42 Ca, 58 Ni and 92 Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the 3 S 1 relative state are made (1+α) times their bare interaction value, where α is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME. (orig.) [de

  12. Iterated interactions method. Realistic NN potential

    International Nuclear Information System (INIS)

    Gorbatov, A.M.; Skopich, V.L.; Kolganova, E.A.

    1991-01-01

    The method of iterated potential is tested in the case of realistic fermionic systems. As a base for comparison calculations of the 16 O system (using various versions of realistic NN potentials) by means of the angular potential-function method as well as operators of pairing correlation were used. The convergence of genealogical series is studied for the central Malfliet-Tjon potential. In addition the mathematical technique of microscopical calculations is improved: new equations for correlators in odd states are suggested and the technique of leading terms was applied for the first time to calculations of heavy p-shell nuclei in the basis of angular potential functions

  13. Neutral currents and electromagnetic renormalization of the vector part of neutrino weak interaction

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.

    1976-01-01

    The nature and properties of neutral currents in neutrino processes at high energies are theoretically investigated. Electronagmetic renormalization of diagonal ((νsub(e)e(νsub(e)e) and (νsub(μ)μ)(νsub(μ)μ)) and nondiagonal ((νsub(e)μ)(νsub(e)μ)) interactions is discussed in terms of the universal fourfermion interaction model. It is shown that electromagnetic renormalization of neutrino vector interaction caused an effective appearance of vector neutral currents with photon isotopic structure. The value for the interaction constant is unambigously defined by the ratio of the total cross-section for electron-positron annihilation into muonic pairs. Interaction (renormalization) constants for neutral currents are pointed out to be always smaller than interaction constants for charge currents

  14. Realistic effective interactions for nuclear systems

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, T.T.S.

    1994-09-01

    A review of perturbative many-body descriptions of several nuclear systems is presented. Symmetric and asymmetric nuclear matter and finite nuclei with few valence particles are examples of systems considered. The many-body description starts with the most recent meson-exchange potential models for the nucleon-nucleon interaction, an interaction which in turn is used in perturbative schemes to evaluate the effective interaction for finite nuclei and infinite nuclear matter. A unified perturbative approach based on time-dependent perturbation theory is elaborated. For finite nuclei new results are presented for the effective interaction and the energy spectra in the mass areas of oxygen, calcium and tin. 166 refs., 83 refs., 21 tabs

  15. Pairing properties of realistic effective interactions

    Directory of Open Access Journals (Sweden)

    Gargano A.

    2016-01-01

    Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

  16. The functional renormalization group for interacting quantum systems with spin-orbit interaction

    International Nuclear Information System (INIS)

    Grap, Stephan Michael

    2013-01-01

    We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer

  17. Functional renormalization group approach to interacting three-dimensional Weyl semimetals

    Science.gov (United States)

    Sharma, Anand; Scammell, Arthur; Krieg, Jan; Kopietz, Peter

    2018-03-01

    We investigate the effect of long-range Coulomb interaction on the quasiparticle properties and the dielectric function of clean three-dimensional Weyl semimetals at zero temperature using a functional renormalization group (FRG) approach. The Coulomb interaction is represented via a bosonic Hubbard-Stratonovich field which couples to the fermionic density. We derive truncated FRG flow equations for the fermionic and bosonic self-energies and for the three-legged vertices with two fermionic and one bosonic external legs. We consider two different cutoff schemes—cutoff in fermionic or bosonic propagators—in order to calculate the renormalized quasiparticle velocity and the dielectric function for an arbitrary number of Weyl nodes and the interaction strength. If we approximate the dielectric function by its static limit, our results for the velocity and the dielectric function are in good agreement with that of A. A. Abrikosov and S. D. Beneslavskiĭ [Sov. Phys. JETP 32, 699 (1971)] exhibiting slowly varying logarithmic momentum dependence for small momenta. We extend their result for an arbitrary number of Weyl nodes and finite frequency by evaluating the renormalized velocity in the presence of dynamic screening and calculate the wave function renormalization.

  18. Competition between direct interaction and Kondo effect: Renormalization-group approach

    International Nuclear Information System (INIS)

    Allub, R.

    1988-03-01

    Via the Wilson renormalization-group approach, the effect of the competition between direct interaction (J L ) and Kondo coupling is studied, in the magnetic susceptibility of a model with two different magnetic impurities. For the ferromagnetic interaction (J L > 0) between the localized impurities, we find a magnetic ground state and a divergent susceptibility at low temperatures. For (J L < 0), two different Kondo temperatures and a non-magnetic ground state are distinguished. (author). 12 refs, 1 fig

  19. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  20. Renormalization of the three-boson system with short-range interactions revisited

    International Nuclear Information System (INIS)

    Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang

    2017-01-01

    We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)

  1. Compact Representation for Specific Heat of Interacting Fermion Systems in Terms of Fully Renormalized Matsubara Green Function

    OpenAIRE

    Miyake, Kazumasa; Tsuruta, Atsushi

    2015-01-01

    On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function.

  2. Spectroscopy of light nuclei with realistic NN interaction JISP

    International Nuclear Information System (INIS)

    Shirokov, A. M.; Vary, J. P.; Mazur, A. I.; Weber, T. A.

    2008-01-01

    Recent results of our systematic ab initio studies of the spectroscopy of s- and p-shell nuclei in fully microscopic large-scale (up to a few hundred million basis functions) no-core shell-model calculations are presented. A new high-quality realistic nonlocal NN interaction JISP is used. This interaction is obtained in the J-matrix inverse-scattering approach (JISP stands for the J-matrix inverse-scattering potential) and is of the form of a small-rank matrix in the oscillator basis in each of the NN partial waves, providing a very fast convergence in shell-model studies. The current purely two-body JISP model of the nucleon-nucleon interaction JISP16 provides not only an excellent description of two-nucleon data (deuteron properties and np scattering) with χ 2 /datum = 1.05 but also a better description of a wide range of observables (binding energies, spectra, rms radii, quadrupole moments, electromagnetic-transition probabilities, etc.) in all s-and p-shell nuclei than the best modern interaction models combining realistic nucleon-nucleon and three-nucleon interactions.

  3. Dynamical symmetry breaking of the electroweak interactions and the renormalization group

    International Nuclear Information System (INIS)

    Hill, C.T.

    1990-08-01

    We discuss dynamical symmetry breaking with an emphasis on the renormalization group as the key tool to obtaining reliable predictions. In particular we discuss the mechanism for breaking the electroweak interactions which relies upon the formation of condensates involving the conventional quarks and leptons. Such a scheme indicates that the top quark is heavy, greater than or of order 200 GeV, and gives further predictions for the Higgs boson mass. We also briefly describe recent attempts to incorporate a 4th generation in a more natural scheme. 13 refs., 3 figs., 1 tab

  4. Renormalization group equation for interacting Thirring fields in dimensional regularization scheme

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.; Kar, S.

    1976-01-01

    The dynamics of two interacting Thirring fields has been investigated within the dimensional regularization framework. The coupling constants are renormalized in the same way as observed in the non-perturbative approach of Ansel'm et al (Sov. Phys. - JETP 36: 608 (1959)). Functionsβsub(i)(g 1 , g 2 , g 3 ) and γsub(i)(g 1 , g 2 , g 3 ), pertaining to the stability and anomalous behaviour of the problem, are computed up to a third order in the coupling parameters. With the help of these, subsidiary non-linear differential equations of the renormalization group are studied in 2-epsilon dimension. The results show up some peculiar features of the theory: a zero of βsub(i)(g 1 , g 2 , g 3 ) corresponding to g 2 approximately α√epsilon, a characteristic of phi theory. The scale invariant limit is reached when g 2 → 0 (i.e. the two Thirring fields are decoupled) and also when g 1 = xg 2 = g 3 , where x is a root of 2x 3 + 2x 2 - 1 = 0. The branch-point zero makes the transition to the epsilon tends to 0 limit non-unique. The anomalous dimensions are obtained and seen to match that of the Dashen-Frishman model (Phys. Lett.; 46B 439 (1973)). The existence of a non-trivial scale invariant limit distinguishes the model from many simple field theories. (author)

  5. Weakly interacting topological insulators: Quantum criticality and the renormalization group approach

    Science.gov (United States)

    Chen, Wei

    2018-03-01

    For D -dimensional weakly interacting topological insulators in certain symmetry classes, the topological invariant can be calculated from a D - or (D +1 ) -dimensional integration over a certain curvature function that is expressed in terms of single-particle Green's functions. Based on the divergence of curvature function at the topological phase transition, we demonstrate how a renormalization group approach circumvents these integrations and reduces the necessary calculation to that for the Green's function alone, rendering a numerically efficient tool to identify topological phase transitions in a large parameter space. The method further unveils a number of statistical aspects related to the quantum criticality in weakly interacting topological insulators, including correlation function, critical exponents, and scaling laws, that can be used to characterize the topological phase transitions driven by either interacting or noninteracting parameters. We use 1D class BDI and 2D class A Dirac models with electron-electron and electron-phonon interactions to demonstrate these principles and find that interactions may change the critical exponents of the topological insulators.

  6. Microscopic study of the α-16O interaction on the basis of the realistic effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Shinichiro; Horiuchi, Hisashi; Yabana, Kazuhiro.

    1989-01-01

    We calculate the α- 16 O complex potential by the totally microscopic method where we use the many-body theory taking into account the Pauli principle explicitly and the realistic effective interactions. The comparison of the theoretical inter-nucleus potential with the phenomenological 'unique' optical potential is performed. (author)

  7. Phenomenological renormalization of free nucleon-nucleon interaction. [Sussex matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M; Waghmare, Y R [Indian Inst. of Tech., Kanpur. Dept. of Physics; Mehrotra, I [Allahabad Univ. (India). Dept. of Physics

    1976-08-01

    Low-lying spectra of /sup 6/Li, /sup 18/F, /sup 18/O, /sup 42/Sc, /sup 42/Ca, /sup 58/Ni and /sup 92/Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the /sup 3/S/sub 1/ relative state are made (1+..cap alpha..) times their bare interaction value, where ..cap alpha.. is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME.

  8. Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction

    International Nuclear Information System (INIS)

    Song, Xue-ke; Wu, Tao; Xu, Shuai; He, Juan; Ye, Liu

    2014-01-01

    In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state

  9. A renormalization-group analysis of a spin-1 Ising ferromagnet with competing crystal-field and repulsive biquadratic interactions

    International Nuclear Information System (INIS)

    Snowman, Daniel P.

    2009-01-01

    Phase diagrams have been produced and critical exponents calculated for a Blume-Emery-Griffiths system with competing biquadratic and crystal-field interactions with uniform ferromagnetic bilinear interactions. This competition directly effects the clustering and density of nonmagnetic impurities. These results have been produced using renormalization-group methods with a hierarchical lattice. A series of planes of constant, repulsive biquadratic coupling have been probed while varying the temperature and concentration of annealed vacancies in the system. The sinks have been analyzed and interpreted, and critical exponents calculated for the higher order transitions.

  10. IMMERSE: Interactive Mentoring for Multimodal Experiences in Realistic Social Encounters

    Science.gov (United States)

    2015-08-28

    ride to the airport, asking someone to watch your kids for an hour or pet for a few days; 1000 is characteristic of a large imposition—borrowing a...Influences of Sex and Status in Group Interactions. Journal of Nonverbal Behavior, Vol.(34), pp. 137-153. 44 Dovidio, J. F., Ellyson, S. L., Keating, C...Studies 1, pp. 328–333. 65 de Waal, F. (1982). Chimpanzee politics: Sex and power among apes. Baltimore: Johns Hopkins University Press. 67

  11. Exact solution for a quantum field with δ-like interaction: effective action and UV renormalization

    International Nuclear Information System (INIS)

    Solodukhin, Sergey N.

    1999-01-01

    A quantum field described by the field operator Δ a = Δ + aδ Σ involving a δ-like potential concentrated on a subspace Σ is considered. Mathematically, the treatment of the δ-potential is based on the theory of self-adjoint extension of the unperturbed operator Δ. We give the general expressions for the resolvent and the heat kernel of the perturbed operator Δ a . The main attention is paid to d = 2 δ-potential though d = 1 and d = 3 cases are considered in some detail. We calculate exactly the heat kernel, Green's functions and the effective action for the operator Δ a in diverse dimensions and for various spaces Σ. The renormalization phenomenon for the coupling constant a of d = 2 and d = 3 δ-potentials is observed. We find the non-perturbative behavior of the effective action with respect to the renormalized coupling a ren

  12. Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group

    Science.gov (United States)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2018-05-01

    We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.

  13. A corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model

    Energy Technology Data Exchange (ETDEWEB)

    Foster, D P; Pinettes, C [Laboratoire de Physique Theorique et Modelisation (CNRS UMR 8089), Universite de Cergy-Pontoise, 5 Mail Gay-Lussac 95031, Cergy-Pontoise Cedex (France)

    2003-10-17

    A recently introduced extension of the corner transfer matrix renormalization group method useful for the study of self-avoiding walk-type models is presented in detail and applied to a class of interacting self-avoiding walks due to Bloete and Nienhuis. This model displays two different types of collapse transition depending on model parameters. One is the standard {theta}-point transition. The other is found to give rise to a first-order collapse transition despite being known to be in other respects critical.

  14. Three-loop charge renormalization effects due to quartic scalar self-interactions

    International Nuclear Information System (INIS)

    Curtright, T.

    1980-01-01

    Dimensionally regularized dispersion theory is used to compute the O (h 3 g 3 f 2 ) contribution to the charge renormalization function β/sub g/, where g is a gauge field coupling and f is a quartic (pseudo) scalar self-coupling. Some motivations for and systematics of the calculation are discussed. Special attention is given to an N=4 globally supersymmetric gauge theory

  15. Renormalization-group studies of antiferromagnetic chains. I. Nearest-neighbor interactions

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1980-01-01

    The real-space renormalization-group method introduced by workers at the Stanford Linear Accelerator Center (SLAC) is used to study one-dimensional antiferromagnetic chains at zero temperature. Calculations using three-site blocks (for the Heisenberg-Ising model) and two-site blocks (for the isotropic Heisenberg model) are compared with exact results. In connection with the two-site calculation a duality transformation is introduced under which the isotropic Heisenberg model is self-dual. Such duality transformations can be defined for models other than those considered here, and may be useful in various block-spin calculations

  16. The heterogeneous gas with singular interaction: generalized circular law and heterogeneous renormalized energy

    International Nuclear Information System (INIS)

    Molino, Luis Carlos García del; Pakdaman, Khashayar; Touboul, Jonathan

    2015-01-01

    We introduce and analyze d-dimensional Coulomb gases with random charge distribution and general external confining potential. We show that these gases satisfy a large-deviation principle. The analysis of the minima of the rate function (which is the leading term of the energy) reveals that, at equilibrium, the particle distribution is a generalized circular law (i.e. with spherical support but not necessarily uniform distribution). In the classical electrostatic external potential, there are infinitely many minimizers of the rate function. The most likely macroscopic configuration is a disordered distribution in which particles are uniformly distributed (for d = 2, the circular law), and charges are independent of the positions of the particles. General charge-dependent confining potentials unfold this degenerate situation: in contrast, the particle density is not uniform, and particles spontaneously organize according to their charge. In this picture the classical electrostatic potential appears as a transition at which order is lost. Sub-leading terms of the energy are derived: we show that these are related to an operator, generalizing the Coulomb renormalized energy, which incorporates the heterogeneous nature of the charges. This heterogeneous renormalized energy informs us about the microscopic arrangements of the particles, which are non-standard, strongly dependent on the charges, and include progressive and irregular lattices. (paper)

  17. Renormalization of fermion mixing

    International Nuclear Information System (INIS)

    Schiopu, R.

    2007-01-01

    hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)

  18. Renormalization of fermion mixing

    Energy Technology Data Exchange (ETDEWEB)

    Schiopu, R.

    2007-05-11

    hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)

  19. Renormalization and plasma physics

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields

  20. Renormalization and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  1. Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic Interactions

    International Nuclear Information System (INIS)

    Nakada, H.

    2009-01-01

    We have developed semi-realistic NN interactions [1, 2] by modifying the M3Y interaction [3] that was derived from the G-matrix. The modification has been made so that the saturation and the spin-orbit splittings could be reproduced. The new interactions contain finite-range LS and tensor channels, as well as Yukawa-form central channels having reasonable spin and spin-isospin properties. In order to handle such interactions in practical calculations, we have also developed new numerical methods [4-6], in which the Gaussian expansion method [7] is applied. It is noted that these methods have the following advantages: (i) we can efficiently describe the energy-dependent asymptotics of single-particle wave functions at large r, as is typified in arguments on the deformed neutron halo in 4 0M g [6], (ii) we can handle various effective interactions, including those having non-locality, and (iii) a single-set of bases is applicable to wide mass range of nuclei and therefore is suitable to systematic calculations. Thereby we can implement Hartree-Fock, Hartree-Fock-Bogolyubov and RPA calculations for stable and unstable nuclei with the semi-realistic interactions. It will be shown first that the new interactions have desired characters for the nuclear matter and for the single- and double-closed nuclei. We shall particularly focus on roles of specific channels of the effective interaction, by studying (a) 'shell evolution' and role of the spin-isospin and the tensor channels [8] in stable and unstable nuclei, and (b) the magnetic response in a fully self-consistent RPA calculation with the tensor force [9]. All these properties seem to be simultaneously and naturally reproduced by the semi-realistic interactions. Thus the semi-realistic interactions are promising in describing various aspects of nuclear structure from stable to drip-line nuclei, in a self-consistent and unified manner. Since they have microscopic origin with minimal modification, we can expect high

  2. Effective interactions in p-shell nuclei and the realistic interactions - I

    International Nuclear Information System (INIS)

    Upadhyaya, G.K.; Joshi, K.P.

    1984-04-01

    The effective interaction of Jain et al. derived from the Yale interaction by including the prominent core polarization diagrams is analyzed in terms of the interaction radial integrals and their spin tensor components. The interaction is also compared with some phenomenological effective interactions. The general features of the effective force in the 1 p shell region are discussed. (author)

  3. Microscopic calculations of elastic scattering between light nuclei based on a realistic nuclear interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dohet-Eraly, Jeremy [F.R.S.-FNRS (Belgium); Sparenberg, Jean-Marc; Baye, Daniel, E-mail: jdoheter@ulb.ac.be, E-mail: jmspar@ulb.ac.be, E-mail: dbaye@ulb.ac.be [Physique Nucleaire et Physique Quantique, CP229, Universite Libre de Bruxelles (ULB), B-1050 Brussels (Belgium)

    2011-09-16

    The elastic phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions are calculated in a cluster approach by the Generator Coordinate Method coupled with the Microscopic R-matrix Method. Two interactions are derived from the realistic Argonne potentials AV8' and AV18 with the Unitary Correlation Operator Method. With a specific adjustment of correlations on the {alpha} + {alpha} collision, the phase shifts for the {alpha} + {alpha} and {alpha} + {sup 3}He collisions agree rather well with experimental data.

  4. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    Science.gov (United States)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  5. Majorana zero modes and long range edge correlation in interacting Kitaev chains: analytic solutions and density-matrix-renormalization-group study.

    Science.gov (United States)

    Miao, Jian-Jian; Jin, Hui-Ke; Zhang, Fu-Chun; Zhou, Yi

    2018-01-11

    We study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.

  6. Collective multipole excitations based on correlated realistic nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Paar, N.; Papakonstantinou, P.; Hergert, H.; Roth, R.

    2006-01-01

    We investigate collective multipole excitations for closed shell nuclei from 16 O to 208 Pb using correlated realistic nucleon-nucleon interactions in the framework of the random phase approximation (RPA). The dominant short-range central and tensor correlations a re treated explicitly within the Unitary Correlation Operator Method (UCOM), which provides a phase-shift equivalent correlated interaction VUCOM adapted to simple uncorrelated Hilbert spaces. The same unitary transformation that defines the correlated interaction is used to derive correlated transition operators. Using VUCOM we solve the Hartree-Fock problem and employ the single-particle states as starting point for the RPA. By construction, the UCOM-RPA is fully self-consistent, i.e. the same correlated nucleon-nucleon interact ion is used in calculations of the HF ground state and in the residual RPA interaction. Consequently, the spurious state associated with the center-of-mass motion is properly removed and the sum-rules are exhausted within ±3%. The UCOM-RPA scheme results in a collective character of giant monopole, dipole, and quadrupole resonances in closed-shell nuclei across the nuclear chart. For the isoscalar giant monopole resonance, the resonance energies are in agreement with experiment hinting at a reasonable compressibility. However, in the 1 - and 2 + channels the resonance energies are overestimated due to missing long-range correlations and three-body contributions. (orig.)

  7. Renormalization of effective mass in self-assembled quantum dots due to electron-electron interactions

    International Nuclear Information System (INIS)

    Babinski, A; Korkusinski, M; Hawrylak, P; Wasilewski, Z R; Potemski, M

    2013-01-01

    Magnetic-field dispersion of the multiexcitons related to the p shell of a single quantum dot (QD) is analysed in this work. The reduced cyclotron effective mass of carriers is determined from the energy splitting between the p + - and p − - related multiexcitonic emission lines. The reduced mass in the occupied QD was found to be larger than the mass related to the QD's single particle structure. The apparent increase of the reduced mass with increasing excitonic occupation of the dot is related to the mass renoralization due to electron-electron interactions within a multiexcitonic droplet

  8. Renormalization in few body nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Tomio, L.; Biswas, R. [Instituto de Fisica Teorica, UNESP, 01405-900 Sao Paulo (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminenese, Niteroi (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, CTA 12228-900 Sao Jose dos Campos (Brazil)

    2001-09-01

    Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the {sup 3}S{sub l} -{sup 3} D{sub 1} states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three

  9. Renormalization in few body nuclear physics

    International Nuclear Information System (INIS)

    Tomio, L.; Biswas, R.; Delfino, A.; Frederico, T.

    2001-01-01

    Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the 3 S l - 3 D 1 states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three-body halo nuclei is also

  10. Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function.

    Science.gov (United States)

    Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi

    2013-07-28

    We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.

  11. Renormalization of the weakly-interacting spin chains in a field

    International Nuclear Information System (INIS)

    Sznajd, J.

    2002-01-01

    In quasi-one-dimensional magnets made of spin chains with the intrachain coupling J, the much weaker interchain coupling J>> J may trigger the low temperature phase transition. However, in high temperature the one-dimensional character of such systems is responsible for observed phenomena. For example the maxima of the susceptibility in some compounds can be connected rather with their low dimensionality than indicates a phase transition. In some of the quasi-1D magnets such as (C 6 H 11 NH 3 )CuBr 3 or KEr(Mo0 4 ) 2 the existence of the long range magnetic order in low temperature is good established, however, in others for example Yb 4 As 3 [1] or UX 3 (X = S, Se,Te) it is still an open question. So, it seems to be important to have a method which allows to control the influence of the weak interchain interaction on the thermodynamic behavior of quasi-one-dimensional systems especially in the presence of external magnetic field. 2J it is

  12. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  13. Renormalized action improvements

    International Nuclear Information System (INIS)

    Zachos, C.

    1984-01-01

    Finite lattice spacing artifacts are suppressed on the renormalized actions. The renormalized action trajectories of SU(N) lattice gauge theories are considered from the standpoint of the Migdal-Kadanoff approximation. The minor renormalized trajectories which involve representations invariant under the center are discussed and quantified. 17 references

  14. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    Science.gov (United States)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  15. Algebraic renormalization. Perturbative renormalization, symmetries and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.

    1995-01-01

    This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)

  16. Realistic versus Schematic Interactive Visualizations for Learning Surveying Practices: A Comparative Study

    Science.gov (United States)

    Dib, Hazar; Adamo-Villani, Nicoletta; Garver, Stephen

    2014-01-01

    Many benefits have been claimed for visualizations, a general assumption being that learning is facilitated. However, several researchers argue that little is known about the cognitive value of graphical representations, be they schematic visualizations, such as diagrams or more realistic, such as virtual reality. The study reported in the paper…

  17. Linear perturbation renormalization group for the two-dimensional Ising model with nearest- and next-nearest-neighbor interactions in a field

    Science.gov (United States)

    Sznajd, J.

    2016-12-01

    The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.

  18. Renormalization group approach to superfluid neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Hebeler, K.

    2007-06-06

    In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)

  19. Coarse-grained versus atomistic simulations : realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, Ali; Pool, René; van Dijk, Erik; Bijlard, Jochem; Abeln, Sanne; Heringa, Jaap; Feenstra, K Anton

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  20. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins

    NARCIS (Netherlands)

    May, A.; Pool, R.; van Dijk, E.; Bijlard, J.; Abeln, S.; Heringa, J.; Feenstra, K.A.

    2014-01-01

    MOTIVATION: To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full

  1. Hadamard and minimal renormalizations

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Gunzig, E.; Nardone, P.; Paz, J.P.

    1986-01-01

    A common language is introduced to study two, well-known, different methods for the renormalization of the energy-momentum tensor of a scalar neutral quantum field in curved space-time. Different features of the two renormalizations are established and compared

  2. Renormalization and effective lagrangians

    International Nuclear Information System (INIS)

    Polchinski, J.

    1984-01-01

    There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)

  3. Non-Perturbative Renormalization

    CERN Document Server

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  4. Quantum gravity and the functional renormalization group the road towards asymptotic safety

    CERN Document Server

    Reuter, Martin

    2018-01-01

    During the past two decades the gravitational asymptotic safety scenario has undergone a major transition from an exotic possibility to a serious contender for a realistic theory of quantum gravity. It aims at a mathematically consistent quantum description of the gravitational interaction and the geometry of spacetime within the realm of quantum field theory, which keeps its predictive power at the highest energies. This volume provides a self-contained pedagogical introduction to asymptotic safety, and introduces the functional renormalization group techniques used in its investigation, along with the requisite computational techniques. The foundational chapters are followed by an accessible summary of the results obtained so far. It is the first detailed exposition of asymptotic safety, providing a unique introduction to quantum gravity and it assumes no previous familiarity with the renormalization group. It serves as an important resource for both practising researchers and graduate students entering thi...

  5. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone.

    Science.gov (United States)

    Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G

    2012-12-01

    Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. © 2012 Society for

  6. Renormalization of supersymmetric theories

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1998-06-01

    The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses

  7. Renormalization Group Theory

    International Nuclear Information System (INIS)

    Stephens, C. R.

    2006-01-01

    In this article I give a brief account of the development of research in the Renormalization Group in Mexico, paying particular attention to novel conceptual and technical developments associated with the tool itself, rather than applications of standard Renormalization Group techniques. Some highlights include the development of new methods for understanding and analysing two extreme regimes of great interest in quantum field theory -- the ''high temperature'' regime and the Regge regime

  8. Quasi-realistic distribution of interaction fields leading to a variant of Ising spin glass model

    International Nuclear Information System (INIS)

    Tanasa, Radu; Enachescu, Cristian; Stancu, Alexandru; Linares, Jorge; Varret, Francois

    2004-01-01

    The distribution of interaction fields of an Ising-like system, obtained by Monte Carlo entropic sampling is used for modeling the hysteretic behavior of patterned media made of magnetic particles with a common anisotropy axis; a variant of the canonical Edwards-Anderson Ising spin glass model is introduced

  9. Renormalization: infinity in today microscopic physics

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    2000-01-01

    The expectations put in quantum electrodynamics were deceived when first calculations showed that divergencies, due to the pinpoint aspect of the electron, continued to exist. Later, as a consequence of new experimental data and theoretical progress, an empirical method called renormalization was proposed to allow the evaluation of expressions involving infinite terms. The development of this method opened the way to the theory of re-normalizing fields and gave so successful results that it was applied to all fundamental interactions except gravity. This theory allowed the standard model in weak, electromagnetic and strong interactions to be confronted successfully with experimental data during more than 25 years. This article presents the progressive evolution of ideas in the concept of renormalization. (A.C.)

  10. Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics

    International Nuclear Information System (INIS)

    Coquereaux, R.

    1979-02-01

    The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes

  11. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    International Nuclear Information System (INIS)

    Actis, S.; Passarino, G.

    2006-12-01

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  12. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  13. The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)

  14. Perturbative and constructive renormalization

    International Nuclear Information System (INIS)

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  15. Travel for the 2004 American Statistical Association Biannual Radiation Meeting: "Radiation in Realistic Environments: Interactions Between Radiation and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The 16th ASA Conference on Radiation and Health, held June 27-30, 2004 in Beaver Creek, CO, offered a unique forum for discussing research related to the effects of radiation exposures on human health in a multidisciplinary setting. The Conference furnishes investigators in health related disciplines the opportunity to learn about new quantitative approaches to their problems and furnishes statisticians the opportunity to learn about new applications for their discipline. The Conference was attended by about 60 scientists including statisticians, epidemiologists, biologists and physicists interested in radiation research. For the first time, ten recipients of Young Investigator Awards participated in the conference. The Conference began with a debate on the question: “Do radiation doses below 1 cGy increase cancer risks?” The keynote speaker was Dr. Martin Lavin, who gave a banquet presentation on the timely topic “How important is ATM?” The focus of the 2004 Conference on Radiation and Health was Radiation in Realistic Environments: Interactions Between Radiation and Other Risk Modifiers. The sessions of the conference included: Radiation, Smoking, and Lung Cancer Interactions of Radiation with Genetic Factors: ATM Radiation, Genetics, and Epigenetics Radiotherapeutic Interactions The Conference on Radiation and Health is held bi-annually, and participants are looking forward to the 17th conference to be held in 2006.

  16. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  17. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    Science.gov (United States)

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  18. Renormalization group and asymptotic freedom

    International Nuclear Information System (INIS)

    Morris, J.R.

    1978-01-01

    Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions

  19. Renormalization of Hamiltonian QCD

    International Nuclear Information System (INIS)

    Andrasi, A.; Taylor, John C.

    2009-01-01

    We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.

  20. Constructive renormalization theory

    International Nuclear Information System (INIS)

    Rivasseau, Vincent

    2000-01-01

    These notes are the second part of a common course on Renormalization Theory given with Professor P. da Veiga. I emphasize here the rigorous non-perturbative or constructive aspects of the theory. The usual formalism for the renormalization group in field theory or statistical mechanics is reviewed, together with its limits. The constructive formalism is introduced step by step. Taylor forest formulas allow to perform easily the cluster and Mayer expansions which are needed for a single step of the renormalization group in the case of Bosonic theories. The iteration of this single step leads to further difficulties whose solution is briefly sketched. The second part of the course is devoted to Fermionic models. These models are easier to treat on the constructive level so they are very well suited to beginners in constructive theory. It is shown how the Taylor forest formulas allow to reorganize perturbation theory nicely in order to construct the Gross-Neveu 2 model without any need for cluster or Mayer expansions. Finally applications of this technique to condensed matter and renormalization group around Fermi surface are briefly reviewed. (author)

  1. Renormalization group analysis of a simple hierarchical fermion model

    International Nuclear Information System (INIS)

    Dorlas, T.C.

    1991-01-01

    A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)

  2. Renormalizing Entanglement Distillation

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  3. Holographic renormalization and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)

    2017-02-27

    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.

  4. Real and imaginary part of the potential between two nuclei and the realistic nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Trefz, M.

    1985-01-01

    Starting from a realistic nucleon-nucleon interaction (Reid soft-core) in the model of two infinitely extended confusing nuclear matter complex energy densities are calculated by means of a G matrix. By means of a generalized local-density approximation the results are transferred to finite nuclei. In the framework of the frozen-density approximation in the energy-density formalism a complex potential between two nuclei is calculated. The potential calculated so contains not the contribution of 1-particle-1-hole states to the optical potential. The contribution of these states is therefore calculated in the Feshbach formalism, respectively these states are explicitely regarded in coupled-channel calculations. The model is applied to light (for instance 12 C+ 12 C), medium heavy (for instance 48 Ca+ 48 Ca), and heavy (for instance 40 Ar+ 208 Pb) systems. Potentials for incident energies of 5-84 MeV per projectile nucleon are calculated. By means of these potentials differential cross sections and reaction cross sections are determined and compared with the experimental data. The energy dependence of the reaction cross section is discussed. It is shown that at higher energies (40 MeV/N) the differential cross sections can be quantitatively reproduced. For the reaction cross section in the whole energy range good agreement with the experiment is obtained. Contrarily to current theoretical models it is proved that at low energies the excitation of collective states yields a large contribution to the reaction cross section and therefore must not be neglected. (orig.) [de

  5. Precision measurements in the weak interaction framework: development of realistic simulations for the LPCTrap device installed at GANIL

    International Nuclear Information System (INIS)

    Fabian, Xavier

    2015-01-01

    This work belongs to the effort presently deployed to measure the angular correlation parameter a_β_ν in three nuclear beta decays ("6He"+, "3"5Ar"+ and "1"9Ne"+). The V-A structure of the weak interaction implies that a_β_ν = +1 for a pure Fermi transition and a_β_ν = -1/3 for a pure Gamow-Teller transition. A thorough measurement of this parameter to check any deviation from these values may lead to the discovery of possible exotic currents. Furthermore, the measurement of a_β_ν in mirror transitions allows the extraction of V_u_d, the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The LPCTrap apparatus, installed at GANIL, is designed to ready a continuous ion beam for injection in a dedicated Paul trap. This latter device allows to have a quasi-punctual source from which the decay products are detected in coincidence. It is from the study of the recoil ion time-of-flight (TOF) distribution that a_β_ν is withdrawn and, since 2010, the associated Shake-Off (SO) probabilities. This study requires the complete simulation of the LPCTrap experiments. The major part of this work is dedicated to such simulations, especially to the modeling of the trapped ion cloud dynamic. The Clouda program, which takes advantage of graphics processing unit (GPU), was developed in this context and its full characterization is presented here. Three important aspects are addressed: the electromagnetic trapping field, the realistic collisions between the ions and the buffer gas atoms and the space charge effect. The present work shows the importance of these simulations to increase the control of the systematic errors on a_β_ν. (author) [fr

  6. IBM parameters derived from realistic shell-model Hamiltonian via Hn-cooling method

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    1997-01-01

    There is a certain influence of non-collective degrees-of-freedom even in lowest-lying states of medium-heavy nuclei. This influence seems to be significant for some of the IBM parameters. In order to take it into account, several renormalization approaches have been applied. It has been shown in the previous studies that the influence of the G-pairs is important, but does not fully account for the fitted values. The influence of the non-collective components may be more serious when we take a realistic effective nucleonic interaction. To incorporate this influence into the IBM parameters, we employ the recently developed H n -cooling method. This method is applied to renormalize the wave functions of the states consisting of the SD-pairs, for the Cr-Fe nuclei. On this ground, the IBM Hamiltonian and transition operators are derived from corresponding realistic shell-model operators, for the Cr-Fe nuclei. Together with some features of the realistic interaction, the effects of the non-SD degrees-of-freedom are presented. (author)

  7. Renormalization Group Functional Equations

    CERN Document Server

    Curtright, Thomas L

    2011-01-01

    Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.

  8. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  9. Renormalization of the g-boson effects for Os isotopes

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Liu Yong; Sang Jianping

    1996-01-01

    A modified renormalization approach based on that proposed by Druce et al. is presented. The overall agreement between the spectra calculated here and the accurate spectra is significantly improved. We also use Druce's approach to generate the renormalized spectra. It is shown that in our microscopic study, both of the approaches are very useful to the determination of several free parameters of fermion residual interactions

  10. Aspects of renormalization in finite-density field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia

    2015-05-26

    We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.

  11. Renormalization of gauge theories

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-04-01

    Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr

  12. Renormalized Lie perturbation theory

    International Nuclear Information System (INIS)

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  13. Compositeness condition in the renormalization group equation

    International Nuclear Information System (INIS)

    Bando, Masako; Kugo, Taichiro; Maekawa, Nobuhiro; Sasakura, Naoki; Watabiki, Yoshiyuki; Suehiro, Kazuhiko

    1990-01-01

    The problems in imposing compositeness conditions as boundary conditions in renormalization group equations are discussed. It is pointed out that one has to use the renormalization group equation directly in cutoff theory. In some cases, however, it can be approximated by the renormalization group equation in continuum theory if the mass dependent renormalization scheme is adopted. (orig.)

  14. Unambiguity of renormalization group calculations in QCD

    International Nuclear Information System (INIS)

    Vladimirov, A.A.

    1979-01-01

    A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated

  15. NLO renormalization in the Hamiltonian truncation

    Science.gov (United States)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  16. Differential renormalization of gauge theories

    International Nuclear Information System (INIS)

    Aguila, F. del; Perez-Victoria, M.

    1998-01-01

    The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author)

  17. Differential renormalization of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)

    1998-10-01

    The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab

  18. The analytic renormalization group

    Directory of Open Access Journals (Sweden)

    Frank Ferrari

    2016-08-01

    Full Text Available Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k∈Z, associated with the Matsubara frequencies νk=2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk|<μ (with the possible exception of the zero mode G0, together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.

  19. Practical algebraic renormalization

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias

    2001-01-01

    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

  20. Renormalization of Hamiltonians

    International Nuclear Information System (INIS)

    Glazek, S.D.; Wilson, K.G.

    1993-01-01

    This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method

  1. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  2. Wetting transitions: A functional renormalization-group approach

    International Nuclear Information System (INIS)

    Fisher, D.S.; Huse, D.A.

    1985-01-01

    A linear functional renormalization group is introduced as a framework in which to treat various wetting transitions of films on substrates. A unified treatment of the wetting transition in three dimensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their three different regimes are reproduced along with new results on the multicritical behavior connecting the various regimes. In addition, the critical behavior as the coexistence curve is approached at complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormalization group are examined briefly and it appears that they do not alter the critical behavior found using the truncated linear renormalization group

  3. Renormalization group and the superconducting susceptibility of a Fermi liquid

    International Nuclear Information System (INIS)

    Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.

    2010-01-01

    A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.

  4. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  5. Renormalization group in modern physics

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1988-01-01

    Renormalization groups used in diverse fields of theoretical physics are considered. The discussion is based upon functional formulation of group transformations. This attitude enables development of a general method by using the notion of functional self-similarity which generalizes the usual self-similarity connected with power similarity laws. From this point of view the authors present a simple derivation of the renorm-group (RG) in QFT liberated from ultra-violet divergences philosophy, discuss the RG approach in other fields of physics and compare different RG's

  6. Point transformations and renormalization in the unitary gauge. III. Renormalization effects

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-06-01

    An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ

  7. Realistic PIC modelling of laser-plasma interaction: a direct implicit method with adjustable damping and high order weight functions

    International Nuclear Information System (INIS)

    Drouin, M.

    2009-11-01

    This research thesis proposes a new formulation of the relativistic implicit direct method, based on the weak formulation of the wave equation which is solved by means of a Newton algorithm. The first part of this thesis deals with the properties of the explicit particle-in-cell (PIC) methods: properties and limitations of an explicit PIC code, linear analysis of a numerical plasma, numerical heating phenomenon, interest of a higher order interpolation function, and presentation of two applications in high density relativistic laser-plasma interaction. The second and main part of this report deals with adapting the direct implicit method to laser-plasma interaction: presentation of the state of the art, formulating of the direct implicit method, resolution of the wave equation. The third part concerns various numerical and physical validations of the ELIXIRS code: case of laser wave propagation in vacuum, demonstration of the adjustable damping which is a characteristic of the proposed algorithm, influence of space-time discretization on energy conservation, expansion of a thermal plasma in vacuum, two cases of plasma-beam unsteadiness in relativistic regime, and then a case of the overcritical laser-plasma interaction

  8. G-Boson renormalizations and mixed symmetry states

    International Nuclear Information System (INIS)

    Scholten, O.

    1986-01-01

    In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed

  9. Functional renormalization group approach to the two dimensional Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, A; Kopietz, P [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt (Germany); Hasselmann, N [International Center for Condensed Matter Physics, Universidade de BrasIlia, Caixa Postal 04667, 70910-900 BrasIlia, DF (Brazil)], E-mail: hasselma@itp.uni-frankfurt.de, E-mail: sinner@itp.uni-frankfurt.de

    2009-02-01

    We investigate the small frequency and momentum structure of the weakly interacting Bose gas in two dimensions using a functional renormalization group approach. The flow equations are derived within a derivative approximation of the effective action up to second order in spatial and temporal variables and investigated numerically. The truncation we employ is based on the perturbative structure of the theory and is well described as a renormalization group enhanced perturbation theory. It allows to calculate corrections to the Bogoliubov spectrum and to investigate the damping of quasiparticles. Our approach allows to circumvent the divergences which plague the usual perturbative approach.

  10. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  11. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  12. Renormalization group in quantum mechanics

    International Nuclear Information System (INIS)

    Polony, J.

    1996-01-01

    The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright copyright 1996 Academic Press, Inc

  13. Superfield perturbation theory and renormalization

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1975-01-01

    The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond

  14. On renormalization-invariant masses

    International Nuclear Information System (INIS)

    Fleming, H.; Furuya, K.

    1978-02-01

    It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory

  15. Effect of realistic astrophysical inputs on the phase and shape of the weakly interacting massive particles annual modulation signal

    International Nuclear Information System (INIS)

    Green, Anne M.

    2003-01-01

    The orbit of the Earth about the Sun produces an annual modulation in the weakly interacting massive particles (WIMP) direct detection rate. If the local WIMP velocity distribution is isotropic then the modulation is roughly sinusoidal with maximum in June; however, if the velocity distribution is anisotropic the phase and shape of the signal can change. Motivated by conflicting claims about the effect of uncertainties in the local velocity distribution on the interpretation of the DAMA annual modulation signal (and the possibility that the form of the modulation could be used to probe the structure of the Milky Way halo), we study the dependence of the annual modulation on various astrophysical inputs. We first examine the approximations used for the Earth's motion about the Sun and the Sun's velocity with respect to the Galactic rest frame. We find that overly simplistic assumptions lead to errors of up to ten days in the phase and up to tens of percent in the shape of the signal, even if the velocity distribution is isotropic. Crucially, if the components of the Earth's velocity perpendicular to the motion of the Sun are neglected, then the change in the phase which occurs for anisotropic velocity distributions is missed. We then examine how the annual modulation signal varies for physically and observationally well-motivated velocity distributions. We find that the phase of the signal changes by up to 20 days and the mean value and amplitude change by up to tens of percent

  16. Fixed point of the parabolic renormalization operator

    CERN Document Server

    Lanford III, Oscar E

    2014-01-01

    This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.   Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.   The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...

  17. Gauge theory and renormalization

    NARCIS (Netherlands)

    Hooft, G. 't

    1996-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in

  18. Renormalized plasma turbulence theory: A quasiparticle picture

    International Nuclear Information System (INIS)

    DuBois, D.F.

    1981-01-01

    A general renormalized statistical theory of Vlasov turbulence is given which proceeds directly from the Vlasov equation and does not assume prior knowledge of sophisticated field-theoretic techniques. Quasiparticles are the linear excitations of the turbulent system away from its instantaneous mean (ensemble-averaged) state or background; the properties of this background state ''dress'' or renormalize the quasiparticle responses. It is shown that all two-point responses (including the dielectric) and all two-point correlation functions can be completely described by the mean distribution function and three fundamental quantities. Two of these are the quasiparticle responses: the propagator and the potential source: which measure, respectively, the separate responses of the mean distribution function and the mean electrostatic potential to functional changes in an external phase-space source added to Vlasov's equation. The third quantity is the two-point correlation function of the incoherent part of the phase-space density which acts as a self-consistent source of quasiparticle and potential fluctuations. This theory explicitly takes into account the self-consistent nature of the electrostatic-field fluctuations which introduces new effects not found in the usual ''test-particle'' theories. Explicit equations for the fundamental quantities are derived in the direct interaction approximation. Special attention is paid to the two-point correlations and the relation to theories of phase-space granulation

  19. Ultracold atoms and the Functional Renormalization Group

    International Nuclear Information System (INIS)

    Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian

    2012-01-01

    We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.

  20. Running with rugby balls: bulk renormalization of codimension-2 branes

    Science.gov (United States)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  1. Renormalization group theory of earthquakes

    Directory of Open Access Journals (Sweden)

    H. Saleur

    1996-01-01

    Full Text Available We study theoretically the physical origin of the proposed discrete scale invariance of earthquake processes, at the origin of the universal log-periodic corrections to scaling, recently discovered in regional seismic activity (Sornette and Sammis (1995. The discrete scaling symmetries which may be present at smaller scales are shown to be robust on a global scale with respect to disorder. Furthermore, a single complex exponent is sufficient in practice to capture the essential properties of the leading correction to scaling, whose real part may be renormalized by disorder, and thus be specific to the system. We then propose a new mechanism for discrete scale invariance, based on the interplay between dynamics and disorder. The existence of non-linear corrections to the renormalization group flow implies that an earthquake is not an isolated 'critical point', but is accompanied by an embedded set of 'critical points', its foreshocks and any subsequent shocks for which it may be a foreshock.

  2. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  3. QCD: Renormalization for the practitioner

    International Nuclear Information System (INIS)

    Pascual, P.; Tarrach, R.

    1984-01-01

    These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)

  4. Can renormalization group flow end in a Big Mess?

    International Nuclear Information System (INIS)

    Morozov, Alexei; Niemi, Antti J.

    2003-01-01

    The field theoretical renormalization group equations have many common features with the equations of dynamical systems. In particular, the manner how Callan-Symanzik equation ensures the independence of a theory from its subtraction point is reminiscent of self-similarity in autonomous flows towards attractors. Motivated by such analogies we propose that besides isolated fixed points, the couplings in a renormalizable field theory may also flow towards more general, even fractal attractors. This could lead to Big Mess scenarios in applications to multiphase systems, from spin-glasses and neural networks to fundamental string (M?) theory. We consider various general aspects of such chaotic flows. We argue that they pose no obvious contradictions with the known properties of effective actions, the existence of dissipative Lyapunov functions, and even the strong version of the c-theorem. We also explain the difficulties encountered when constructing effective actions with chaotic renormalization group flows and observe that they have many common virtues with realistic field theory effective actions. We conclude that if chaotic renormalization group flows are to be excluded, conceptually novel no-go theorems must be developed

  5. BPHZ renormalization in configuration space for the A4-model

    Science.gov (United States)

    Pottel, Steffen

    2018-02-01

    Recent developments for BPHZ renormalization performed in configuration space are reviewed and applied to the model of a scalar quantum field with quartic self-interaction. An extension of the results regarding the short-distance expansion and the Zimmermann identity is shown for a normal product, which is quadratic in the field operator. The realization of the equation of motion is computed for the interacting field and the relation to parametric differential equations is indicated.

  6. Slowest kinetic modes revealed by metabasin renormalization

    Science.gov (United States)

    Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2018-02-01

    Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.

  7. Noncommutative QFT and renormalization

    International Nuclear Information System (INIS)

    Grosse, H.; Wulkenhaar, R.

    2006-01-01

    It was a great pleasure for me (Harald Grosse) to be invited to talk at the meeting celebrating the 70th birthday of Prof. Julius Wess. I remember various interactions with Julius during the last years: At the time of my studies at Vienna with Walter Thirring, Julius left already Vienna, I learned from his work on effective chiral Lagrangians. Next we met at various conferences and places like CERN (were I worked with Andre Martin, an old friend of Julius), and we all learned from Julius' and Bruno's creation of supersymmetry, next we realized our common interests in noncommutative quantum field theory and did have an intensive exchange. Julius influenced our perturbative approach to gauge field theories were we used the Seiberg-Witten map after his advice. And finally I lively remember the sad days when during my invitation to Vienna Julius did have the serious heart attack. So we are very happy, that you recovered so well, and we wish you all the best for the forthcoming years. Many happy recurrences. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. A renormalization group theory of cultural evolution

    Science.gov (United States)

    Fáth, Gábor; Sarvary, Miklos

    2005-03-01

    We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision-making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequate order parameter. As the importance of social interactions increases or agents become more intelligent, we observe and quantify a series of dynamic phase transitions by which cultural coherence advances in the society. A similar phase transition may explain the so-called “cultural explosion’’ in human evolution some 50,000 years ago.

  9. The Renormalization Group in Nuclear Physics

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2012-01-01

    Modern techniques of the renormalization group (RG) combined with effective field theory (EFT) methods are revolutionizing nuclear many-body physics. In these lectures we will explore the motivation for RG in low-energy nuclear systems and its implementation in systems ranging from the deuteron to neutron stars, both formally and in practice. Flow equation approaches applied to Hamiltonians both in free space and in the medium will be emphasized. This is a conceptually simple technique to transform interactions to more perturbative and universal forms. An unavoidable complication for nuclear systems from both the EFT and flow equation perspective is the need to treat many-body forces and operators, so we will consider these aspects in some detail. We'll finish with a survey of current developments and open problems in nuclear RG.

  10. Fermionic functional integrals and the renormalization group

    CERN Document Server

    Feldman, Joel; Trubowitz, Eugene

    2002-01-01

    This book, written by well-known experts in the field, offers a concise summary of one of the latest and most significant developments in the theoretical analysis of quantum field theory. The renormalization group is the name given to a technique for analyzing the qualitative behavior of a class of physical systems by iterating a map on the vector space of interactions for the class. In a typical nonrigorous application of this technique, one assumes, based on one's physical intuition, that only a certain finite dimensional subspace (usually of dimension three or less) is important. The material in this book concerns a technique for justifying this approximation in a broad class of fermionic models used in condensed matter and high energy physics. This volume is based on the Aisenstadt Lectures given by Joel Feldman at the Centre de Recherches Mathematiques (Montreal, Canada). It is suitable for graduate students and research mathematicians interested in mathematical physics. Included are many problems and so...

  11. Renormalization group theory impact on experimental magnetism

    CERN Document Server

    Köbler, Ulrich

    2010-01-01

    Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...

  12. Renormalization of NN scattering: Contact potential

    International Nuclear Information System (INIS)

    Yang Jifeng; Huang Jianhua

    2005-01-01

    The renormalization of the T matrix for NN scattering with a contact potential is re-examined in a nonperturbative regime through rigorous nonperturbative solutions. Based on the underlying theory, it is shown that the ultraviolet divergences in the nonperturbative solutions of the T matrix should be subtracted through 'endogenous' counterterms, which in turn leads to a nontrivial prescription dependence. Moreover, employing the effective range expansion, the importance of imposing physical boundary conditions to remove the nontrivial prescription dependence, especially before making any physical claims, is discussed and highlighted. As by-products, some relations between the effective range expansion parameters are derived. We also discuss the power counting of the couplings for the nucleon-nucleon interactions and other subtle points related to the EFT framework beyond perturbative treatment

  13. Renormalized semiclassical quantization for rescalable Hamiltonians

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Takatsuka, Kazuo

    2004-01-01

    A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum

  14. Multiscale unfolding of real networks by geometric renormalization

    Science.gov (United States)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  15. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  16. The renormalization of the electroweak standard model

    International Nuclear Information System (INIS)

    Boehm, M.; Spiesberger, H.; Hollik, W.

    1984-03-01

    A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)

  17. Introduction to the functional renormalization group

    International Nuclear Information System (INIS)

    Kopietz, Peter; Bartosch, Lorenz; Schuetz, Florian

    2010-01-01

    This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics. (orig.)

  18. Renormalization of Extended QCD2

    International Nuclear Information System (INIS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-01-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region

  19. Renormalization of gauge fields models

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1974-01-01

    A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr

  20. Non-perturbative renormalization on the lattice

    International Nuclear Information System (INIS)

    Koerner, Daniel

    2014-01-01

    Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.

  1. Renormalization of the δ expansion in curved space-time

    International Nuclear Information System (INIS)

    Cho, H.T.

    1991-01-01

    Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered

  2. Renormalization analysis of catalytic Wright-Fisher diffusions

    Czech Academy of Sciences Publication Activity Database

    Swart, Jan M.; Fleischmann, K.

    2006-01-01

    Roč. 2006, č. 11 (2006), s. 585-654 ISSN 1083-6489 R&D Projects: GA ČR GA201/06/1323 Institutional research plan: CEZ:AV0Z10750506 Keywords : renormalization * catalytic Wright-Fisher diffusion * embedded particle system * extinction * unbounded growth * interacting diffusions * universality Subject RIV: BA - General Mathematics Impact factor: 0.676, year: 2006

  3. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  4. Renormalization methods in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-01-01

    Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).

  5. Renormalization of gauge theories of weak interactions

    International Nuclear Information System (INIS)

    Lee, B.W.

    1973-01-01

    The renormalizability of spontaneously broken gauge theories is discussed. A brief outline of the motivation for such an investigation is given, and the manner in which the renormalizability of such theories is proven is described. The renormalizability question of the unbroken gauge theory is considered, and the formulation of a renormalizable perturbation theory of Higgs phenomena (spontaneously broken gauge theories) is considered. (U.S.)

  6. Renormalization Group and Phase Transitions in Spin, Gauge, and QCD Like Theories

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhi [Univ. of Iowa, Iowa City, IA (United States)

    2013-08-01

    In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG).

  7. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.

    Science.gov (United States)

    Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-07-01

    We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

  8. Gauge invariance and holographic renormalization

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2015-10-01

    Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.

  9. Class renormalization: islands around islands

    International Nuclear Information System (INIS)

    Meiss, J.D.

    1986-01-01

    An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)

  10. Renormalization-group study of the four-body problem

    International Nuclear Information System (INIS)

    Schmidt, Richard; Moroz, Sergej

    2010-01-01

    We perform a renormalization-group analysis of the nonrelativistic four-boson problem by means of a simple model with pointlike three- and four-body interactions. We investigate in particular the region where the scattering length is infinite and all energies are close to the atom threshold. We find that the four-body problem behaves truly universally, independent of any four-body parameter. Our findings confirm the recent conjectures of others that the four-body problem is universal, now also from a renormalization-group perspective. We calculate the corresponding relations between the four- and three-body bound states, as well as the full bound-state spectrum and comment on the influence of effective range corrections.

  11. Two-loop renormalization of quantum gravity simplified

    Science.gov (United States)

    Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex

    2017-02-01

    The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. We explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.

  12. Block generators for the similarity renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Huether, Thomas; Roth, Robert [TU Darmstadt (Germany)

    2016-07-01

    The Similarity Renormalization Group (SRG) is a powerful tool to improve convergence behavior of many-body calculations using NN and 3N interactions from chiral effective field theory. The SRG method decouples high and low-energy physics, through a continuous unitary transformation implemented via a flow equation approach. The flow is determined by a generator of choice. This generator governs the decoupling pattern and, thus, the improvement of convergence, but it also induces many-body interactions. Through the design of the generator we can optimize the balance between convergence and induced forces. We explore a new class of block generators that restrict the decoupling to the high-energy sector and leave the diagonalization in the low-energy sector to the many-body method. In this way one expects a suppression of induced forces. We analyze the induced many-body forces and the convergence behavior in light and medium-mass nuclei in No-Core Shell Model and In-Medium SRG calculations.

  13. Golden mean Siegel disk universality and renormalization

    OpenAIRE

    Gaidashev, Denis; Yampolsky, Michael

    2016-01-01

    We provide a computer-assisted proof of one of the central open questions in one-dimensional renormalization theory -- universality of the golden-mean Siegel disks. We further show that for every function in the stable manifold of the golden-mean renormalization fixed point the boundary of the Siegel disk is a quasicircle which coincides with the closure of the critical orbit, and that the dynamics on the boundary of the Siegel disk is rigid. Furthermore, we extend the renormalization from on...

  14. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  15. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  16. The renormalization group and lattice QCD

    International Nuclear Information System (INIS)

    Gupta, R.

    1989-01-01

    This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory

  17. Realistic non-local potentials from inverse scattering theory for the3S1−3D1nucleon-nucleon interaction

    Directory of Open Access Journals (Sweden)

    P.H.L. Groenenboom

    1978-03-01

    Full Text Available Rank-three and -four separable3S1−3D1potentials have been constructed which reproduce the experimental phase shifts and a realistic deuteron wave function. The off-shell behaviour has been investigated and triton binding energies were calculated.

  18. A simple method for one-loop renormalization in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@uis.no [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2013-08-01

    We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.

  19. A renormalized -group attempt to obtain the exact transition line of the square - lattice bond - dilute Ising model

    International Nuclear Information System (INIS)

    Tsallis, C.; Levy, S.V.F.

    1979-05-01

    Two different renormalization-group approaches are used to determine approximate solutions for the paramagnetic-ferromagnetic transition line of the square-lattice bond-dilute first-neighbour-interaction Ising model. (Author) [pt

  20. Higher derivatives and renormalization in quantum cosmology

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.

    1991-10-01

    In the framework of the canonical quantization of general relativity, quantum field theory on a fixed background formally arises in an expansion in powers of the Planck length. In order to renormalize the theory, quadratic terms in the curvature must be included in the gravitational action from the beginning. These terms contain higher derivatives which change the Hamiltonian structure of the theory completely, making the relation between the renormalized-theory and the original one not clear. We show that it is possible to avoid this problem. We replace the higher derivative theory by a second order one. The classical solutions of the latter are also solutions of the former. We quantize the theory, renormalize the infinities and show that there is a smooth limit between the classical and the renormalized theories. We work in a Robertson Walker minisuperspace with a quantum scalar field. (author). 32 refs

  1. Renormalization scheme-invariant perturbation theory

    International Nuclear Information System (INIS)

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  2. New renormalization group approach to multiscale problems

    Energy Technology Data Exchange (ETDEWEB)

    Einhorn, M B; Jones, D R.T.

    1984-02-27

    A new renormalization group is presented which exploits invariance with respect to more than one scale. The method is illustrated by a simple model, and future applications to fields such as critical phenomena and supersymmetry are speculated upon.

  3. Real space renormalization techniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1985-01-01

    Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt

  4. Renormalization of the inflationary perturbations revisited

    Science.gov (United States)

    Markkanen, Tommi

    2018-05-01

    In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.

  5. Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence

    Science.gov (United States)

    Rubinstein, Robert

    1994-01-01

    Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.

  6. Physical renormalization schemes and asymptotic safety in quantum gravity

    Science.gov (United States)

    Falls, Kevin

    2017-12-01

    The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.

  7. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  8. Effective AdS/renormalized CFT

    OpenAIRE

    Fan, JiJi

    2011-01-01

    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a dou...

  9. Noncommutative quantum field theory: attempts on renormalization

    International Nuclear Information System (INIS)

    Popp, L.

    2002-05-01

    Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be

  10. Renormalizations and operator expansion in sigma model

    International Nuclear Information System (INIS)

    Terentyev, M.V.

    1988-01-01

    The operator expansion (OPE) is studied for the Green function at x 2 → 0 (n(x) is the dynamical field ofσ-model) in the framework of the two-dimensional σ-model with the O(N) symmetry group at large N. As a preliminary step we formulate the renormalization scheme which permits introduction of an arbitrary intermediate scale μ 2 in the framework of 1/N expansion and discuss factorization (separation) of small (p μ) momentum region. It is shown that definition of composite local operators and coefficient functions figuring in OPE is unambiguous only in the leading order in 1/N expansion when dominant are the solutions with extremum of action. Corrections of order f(μ 2 )/N (here f(μ 2 ) is the effective interaction constant at the point μ 2 ) in composite operators and coefficient functions essentially depend on factorization method of high and low momentum regions. It is shown also that contributions to the power corrections of order m 2 x 2 f(μ 2 )/N in the Green function (here m is the dynamical mass-scale factor in σ-model) arise simultaneously from two sources: from the mean vacuum value of the composite operator n ∂ 2 n and from the hard particle contributions in the coefficient function of unite operator. Due to the analogy between σ-model and QCD the obtained result indicates theoretical limitations to the sum rule method in QCD. (author)

  11. Finite cluster renormalization and new two step renormalization group for Ising model

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.

    1989-09-01

    New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs

  12. Problems with the definition of renormalized Hamiltonians for momentum-space renormalization transformations

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Fernández, Roberto

    For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the

  13. Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling

    Science.gov (United States)

    Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun

    2018-05-01

    Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.

  14. Renormalization-group analysis of the Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Babu, K.S.

    1987-01-01

    The one-loop renormalization-group equations for the quark mixing (Kobayashi-Maskawa) matrix V are derived, independent of one's weak interaction basis, in the standard model as well as in its two Higgs and supersymmetric extensions, and their numerical solutions are presented. While the mixing angles vertical strokeV ub vertical stroke, vertical strokeV cb vertical stroke, vertical strokeV td vertical stroke and the phase-invariant measure of CP nonconservation J all vary slowly with momentum, in the standard model they are predicted to increase in clear contrast to the two Higgs and supersymmetric extensions where they decrease with momentum. (orig.)

  15. Renormalization ambiguities and conformal anomaly in metric-scalar backgrounds

    International Nuclear Information System (INIS)

    Asorey, M.; Berredo-Peixoto, G. de; Shapiro, I. L.

    2006-01-01

    We analyze the problem of the existing ambiguities in the conformal anomaly in theories with an external scalar field in curved backgrounds. In particular, we consider the anomaly of a self-interacting massive scalar field theory and of a Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of local nonminimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise

  16. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  17. Perturbatively improving RI-MOM renormalization constants

    Energy Technology Data Exchange (ETDEWEB)

    Constantinou, M.; Costa, M.; Panagopoulos, H. [Cyprus Univ. (Cyprus). Dept. of Physics; Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schhierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.

  18. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  19. Renormalization group approach in the turbulence theory

    International Nuclear Information System (INIS)

    Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.

    1983-01-01

    In the framework of the renormalization groUp approach in the turbulence theory sUggested in another paper, the problem of renormalization and evaluation of critical dimensions of composite operators is discussed. Renormalization of a system of operators of canonical dimension equal to 4, including the operator F=phiΔphi (where phi is the velocity field), is considered. It is shown that the critical dimension Δsub(F)=0. The appendice includes the brief proofs of two theorems: 1) the theorem on the equivalence between the arbitrary stochastic problem and quantum field theory; 2) the theorem which determines the reduction of Green functions of the stochastic problem to the hypersurface of coinciding times

  20. Renormalization transformation of periodic and aperiodic lattices

    International Nuclear Information System (INIS)

    Macia, Enrique; Rodriguez-Oliveros, Rogelio

    2006-01-01

    In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process

  1. Exact renormalization group equations: an introductory review

    Science.gov (United States)

    Bagnuls, C.; Bervillier, C.

    2001-07-01

    We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.

  2. Renormalization using the background-field method

    International Nuclear Information System (INIS)

    Ichinose, S.; Omote, M.

    1982-01-01

    Renormalization using the background-field method is examined in detail. The subtraction mechanism of subdivergences is described with reference to multi-loop diagrams and one- and two-loop counter-term formulae are explicitly given. The original one-loop counter-term formula of 't Hooft is thereby improved. The present method of renormalization is far easier to manage than the usual one owing to the fact only gauge-invariant quantities are to be considered when worked in an appropriate gauge. Gravity and Yang-Mills theories are studied as examples. (orig.)

  3. Hypercuboidal renormalization in spin foam quantum gravity

    Science.gov (United States)

    Bahr, Benjamin; Steinhaus, Sebastian

    2017-06-01

    In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.

  4. Renormalization of a distorted gauge: invariant theory

    International Nuclear Information System (INIS)

    Hsu, J.P.; Underwood, J.A.

    1976-02-01

    A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities

  5. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre

    2015-01-01

    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... orders of magnitude larger than in bulk material. We show that it takes into account in a simple and efficient way the specificity of the nonlinearity in nanostructures that is determined by geometrical parameters like the effective mode area and the group index. The renormalization of the nonlinear...

  6. Physical renormalization condition for de Sitter QED

    Science.gov (United States)

    Hayashinaka, Takahiro; Xue, She-Sheng

    2018-05-01

    We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.

  7. Kuhn: Realist or Antirealist?

    Directory of Open Access Journals (Sweden)

    Michel Ghins

    1998-06-01

    Full Text Available Although Kuhn is much more an antirealist than a realist, the earlier and later articulations of realist and antirealist ingredients in his views merit close scrutiny. What are the constituents of the real invariant World posited by Kuhn and its relation to the mutable paradigm-related worlds? Various proposed solutions to this problem (dubbed the "new-world problem" by Ian Hacking are examined and shown to be unsatisfactory. In The Structure of Scientific Revolutions, the stable World can reasonably be taken to be made up of ordinary perceived objects, whereas in Kuhn's later works the transparadigmatic World is identified with something akin to the Kantian world-in-itself. It is argued that both proposals are beset with insuperable difficulties which render Kuhn's earlier and later versions of antirealism implausible.

  8. Realistic Material Appearance Modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Hatka, Martin

    2010-01-01

    Roč. 2010, č. 81 (2010), s. 13-14 ISSN 0926-4981 R&D Projects: GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : bidirectional texture function * texture modelling Subject RIV: BD - Theory of Information http:// library .utia.cas.cz/separaty/2010/RO/haindl-realistic material appearance modelling.pdf

  9. On the nucleon renormalization in many nucleon problems due to pionic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.; Sawicki, M.; Furui, Sadataka.

    1985-01-01

    Conceptual problems of unified two-nucleon force models are discussed. The force models are based on the pion-nucleon vertex and attempt a description of the nucleon-nucleon interaction below and above pion threshold. The conceptual problems arise from the nucleon renormalization due to pionic degrees of freedom. Keeping channels with a single pion only no renormalization procedure can be given which is consistent in the one-nucleon and in the many-nucleon systems. The medium dependence of the one-pion exchange potential is illustrated. (author)

  10. Renormalization of non-abelian gauge theories in curved space-time

    International Nuclear Information System (INIS)

    Freeman, M.D.

    1984-01-01

    We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe

  11. Optimization of renormalization group transformations in lattice gauge theory

    International Nuclear Information System (INIS)

    Lang, C.B.; Salmhofer, M.

    1988-01-01

    We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)

  12. Renormalization group in statistical physics - momentum and real spaces

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1988-01-01

    Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs

  13. Conditions for the absence of infinite renormalization in masses and coupling constants

    International Nuclear Information System (INIS)

    Terrab, E.S.C.

    1985-01-01

    A model of scalar, pseudo-scalar and spin 1/2 particle interaction is studied. After reformulation of the problem in function of auxiliary fields, perturbative calculations up to one loop are developed, finding out certain relations among characteristics constants of system, which assure (until the considered order) the absence of infinite renormalization in masses and coupling constants. (M.C.K.) [pt

  14. Perturbative renormalization of QED via flow equations

    International Nuclear Information System (INIS)

    Keller, G.; Kopper, C.

    1991-01-01

    We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)

  15. Perturbative renormalization of QED via flow equations

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))

    1991-12-19

    We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).

  16. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  17. Renormalization of Magnetic Excitations in Praseodymium

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1975-01-01

    The magnetic exciton renormalization and soft-mode behaviour as the temperature approaches zero of the singlet-doublet magnet (dhcp)pr are accounted for by a selfconsistent rpa theory with no adjustable parameters. The crystal-field splitting between the ground state and the doublet is d=3.74 mev...

  18. Mass renormalization in sine-Gordon model

    International Nuclear Information System (INIS)

    Xu Bowei; Zhang Yumei

    1991-09-01

    With a general gaussian wave functional, we investigate the mass renormalization in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to a system of massless free bosons which possesses conformal symmetry. (author). 8 refs, 1 fig

  19. Renormalization of Supersymmetric QCD on the Lattice

    Science.gov (United States)

    Costa, Marios; Panagopoulos, Haralambos

    2018-03-01

    We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.

  20. Finite size scaling and phenomenological renormalization

    International Nuclear Information System (INIS)

    Derrida, B.; Seze, L. de; Vannimenus, J.

    1981-05-01

    The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems

  1. Two-loop renormalization in the standard model, part II. Renormalization procedures and computational techniques

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of 't Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, are discussed in part III where numerical results, e.g. for the complex poles of the unstable gauge bosons, are shown. An attempt is made to define the running of the electromagnetic coupling constant at the two-loop level. (orig.)

  2. Renormalization and effective actions for general relativity

    International Nuclear Information System (INIS)

    Neugebohrn, F.

    2007-05-01

    Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)

  3. Renormalization and effective actions for general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Neugebohrn, F.

    2007-05-15

    Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)

  4. Getting realistic; Endstation Demut

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.P.

    2004-01-28

    The fuel cell hype of the turn of the millenium has reached its end. The industry is getting realistic. If at all, fuel cell systems for private single-family and multiple dwellings will not be available until the next decade. With a Europe-wide field test, Vaillant intends to advance the PEM technology. [German] Der Brennstoffzellen-Hype der Jahrtausendwende ist verfolgen. Die Branche uebt sich in Bescheidenheit. Die Marktreife der Systeme fuer Ein- und Mehrfamilienhaeuser wird - wenn ueberhaupt - wohl erst im naechsten Jahrzehnt erreicht sein. Vaillant will durch einen europaweiten Feldtest die Entwicklung der PEM-Technologie vorantreiben. (orig.)

  5. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? An evaluation of the linear interaction energy (LIE) method

    NARCIS (Netherlands)

    Stjernschantz, E.M.; Marelius, J.; Medina, C.; Jacobsson, M.; Vermeulen, N.P.E.; Oostenbrink, C.

    2006-01-01

    An extensive evaluation of the linear interaction energy (LIE) method for the prediction of binding affinity of docked compounds has been performed, with an emphasis on its applicability in lead optimization. An automated setup is presented, which allows for the use of the method in an industrial

  6. Realistic Basis and Revolutionary Implication of Marx's Theory of Social Interaction%马克思社会交往理论的现实基础与革命意蕴

    Institute of Scientific and Technical Information of China (English)

    辛勤

    2014-01-01

    传统思想家对社会交往的探讨,遵循“抽象的人”的解释路径;马克思探讨“现实的人”及其进行的物质生产活动,彻底颠覆了以往解释传统并开创了社会交往理论,为研究人们的社会交往找到了现实基础。生产力的发展推动社会交往逐渐走向普遍化,社会交往的世界历史意义与革命意蕴随之呈现出来。%Discussion of the social interaction for the traditional thinkers followed the"abstract man"explanation path. Marx explored the"real concerning man"and his material production activities.He overturned the traditional interpreta-tion of the past and created a social interaction theory,which found a realistic foundation for the study of people's social interactions.The development of the productive forces gradually promoted the universalization of social interaction,the historical significance and revolutionary implication in social interaction presented.

  7. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    International Nuclear Information System (INIS)

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  8. Functional renormalization group study of fluctuation effects in fermionic superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Andreas

    2013-03-22

    This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature

  9. Coexistence of Velocity Renormalization and Ferrimagnetic Fluctuation in the Organic Dirac Electron System α-(BEDT-TTF)2I3

    Science.gov (United States)

    Matsuno, Genki; Kobayashi, Akito

    2018-05-01

    We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.

  10. Amount of gauge transformations in neutral-vector field theory. [Renormalization, free Lagrangian density

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Yokoyama, K

    1974-11-01

    The purpose of this work is to study the structure of c-number gauge transformation in connection with renormalization problem. In the wide theory of neutral vector fields, there is the gauge structure described essentially by free Lagrangian density. The c-number gauge transformation makes the Lagrangian invariant correspondingly to the usual case of quantum electrodynamics. The c-number transformation can be used to derive relationships among all relevant renormalization constants in the case of interacting fields. In the presence of interaction, total Lagrangian density L is written as L=L/sub 0/+L/sub 1/+L/sub 2/, where L/sub 1/ is given from matter-field Lagrangian density, and L/sub 2/ denotes necessary additional counter terms. In order to conserve the gauge structure, the form of L is invariant under the gauge transformation. Since L matter is self-adjoining, L/sub 1/ remains invariant by itself under the transformation. The form of L/sub 2/ is finally given from the observation that L/sub 3/ cannot contain wave-function renormalization constants. Since L/sub 2/ is invariant under q-number gauge transformation, this transformation in unrenormalized form makes the present L form-invariant. Therefore, together with the above results, auxiliary fields produce the q-number gauge transformation for renormalized fields.

  11. Probing renormalization group flows using entanglement entropy

    International Nuclear Information System (INIS)

    Liu, Hong; Mezei, Márk

    2014-01-01

    In this paper we continue the study of renormalized entanglement entropy introduced in http://dx.doi.org/10.1007/JHEP04(2013)162. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen

  12. Poissonian renormalizations, exponentials, and power laws

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  13. Poissonian renormalizations, exponentials, and power laws.

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  14. Renormalization group flow of the Higgs potential.

    Science.gov (United States)

    Gies, Holger; Sondenheimer, René

    2018-03-06

    We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  15. On the renormalization of string functionals

    International Nuclear Information System (INIS)

    Dietz, K.; Filk, T.

    1982-09-01

    We investigate analytic renormalization procedures for functional integrals, corresponding to field theories defined on compact manifolds, which arise e.g. from string functionals of the Nambu-Schild-Eguchi type. Although these models belong to the nonrenormalizable class of quantum field theories, we prove finiteness for a rectangular string shape up to three loop level, for circular boundary up to two loop order, and for a variety of graphs in higher order, thus indicating that the result might hold in general. From the explicit calculation of the two loop approximation we extract the first model dependent corrections to the qanti q - potential or the Casimir effect. The importance of dilation transformations for the properties of the renormalization procedure are investigated. We prove that under certain conditions, forced by symmetry properties, the association of finite values to divergent series is unique, independent of the regularization procedure. (orig.)

  16. Renormalization group evolution of Dirac neutrino masses

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas

    2005-01-01

    There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments

  17. Temperature dependent quasiparticle renormalization in nickel metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II

    2009-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.

  18. Renormalization Methods - A Guide For Beginners

    International Nuclear Information System (INIS)

    Cardy, J

    2004-01-01

    The stated goal of this book is to fill a perceived gap between undergraduate texts on critical phenomena and advanced texts on quantum field theory, in the general area of renormalization methods. It is debatable whether this gap really exists nowadays, as a number of books have appeared in which it is made clear that field-theoretic renormalization group methods are not the preserve of particle theory, and indeed are far more easily appreciated in the contexts of statistical and condensed matter physics. Nevertheless, this volume does have a fresh aspect to it, perhaps because of the author's background in fluid dynamics and turbulence theory, rather than through the more traditional migration from particle physics. The book begins at a very elementary level, in an effort to motivate the use of renormalization methods. This is a worthy effort, but it is likely that most of this section will be thought too elementary by readers wanting to get their teeth into the subject, while those for whom this section is apparently written are likely to find the later chapters rather challenging. The author's particular approach then leads him to emphasise the role of renormalized perturbation theory (rather than the renormalization group) in a number of problems, including non-linear systems and turbulence. Some of these ideas will be novel and perhaps even surprising to traditionally trained field theorists. Most of the rest of the book is on far more familiar territory: the momentum-space renormalization group, epsilon-expansion, and so on. This is standard stuff, and, like many other textbooks, it takes a considerable chunk of the book to explain all the formalism. As a result, there is only space to discuss the standard φ 4 field theory as applied to the Ising model (even the N-vector model is not covered) so that no impression is conveyed of the power and extent of all the applications and generalizations of the techniques. It is regrettable that so much space is spent

  19. Renormalization of gauge theories without cohomology

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2013-01-01

    We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)

  20. Loop optimization for tensor network renormalization

    Science.gov (United States)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  1. Covariant Derivatives and the Renormalization Group Equation

    Science.gov (United States)

    Dolan, Brian P.

    The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.

  2. Renormalized powers of quantum white noise

    International Nuclear Information System (INIS)

    Accardi, L.; Boukas, A.

    2009-01-01

    Giving meaning to the powers of the creation and annihilation densities (quantum white noise) is an old and important problem in quantum field theory. In this paper we present an account of some new ideas that have recently emerged in the attempt to solve this problem. We emphasize the connection between the Lie algebra of the renormalized higher powers of quantum white noise (RHPWN), which can be interpreted as a suitably deformed (due to renormalization) current algebra over the 1-mode full oscillator algebra, and the current algebra over the centerless Virasoro (or Witt)-Zamolodchikov-ω ∞ Lie algebras of conformal field theory. Through a suitable definition of the action on the vacuum vector we describe how to obtain a Fock representation of all these algebras. We prove that the restriction of the vacuum to the abelian subalgebra generated by the field operators gives an infinitely divisible process whose marginal distribution is the beta (or continuous binomial). (authors)

  3. A renormalization group theory of cultural evolution

    OpenAIRE

    Fath, Gabor; Sarvary, Miklos

    2003-01-01

    We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequa...

  4. The Bogolyubov renormalization group. Second English printing

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1996-01-01

    We begin with personal notes describing the atmosphere of 'Bogolyubov renormalization group' birth. Then we expose the history of RG discovery in the QFT and of the RG method devising in the mid-fifties. The third part is devoted to proliferation of RG ideas into diverse parts of theoretical physics. We conclude with discussing the perspective of RG method further development and its application in mathematical physics. 58 refs

  5. Zero Point Energy of Renormalized Wilson Loops

    OpenAIRE

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...

  6. Generalized Hubbard Hamiltonian: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, S.A.; Tamarit, F.A.; Tsallis, C.

    1991-01-01

    We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs

  7. Quarkonia from charmonium and renormalization group equations

    International Nuclear Information System (INIS)

    Ditsas, P.; McDougall, N.A.; Moorhouse, R.G.

    1978-01-01

    A prediction of the upsilon and strangeonium spectra is made from the charmonium spectrum by solving the Salpeter equation using an identical potential to that used in charmonium. Effective quark masses and coupling parameters αsub(s) are functions of the inter-quark distance according to the renormalization group equations. The use of the Fermi-Breit Hamiltonian for obtaining the charmonium hyperfine splitting is criticized. (Auth.)

  8. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  9. Chaotic renormalization group approach to disordered systems

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Continentino, M.A.; Makler, S.S.; Anda, E.V.

    1984-01-01

    We study the eletronic properties of the disordered linear chain using a technique previously developed by some of the authors for an ordered chain. The equations of motion for the one electron Green function are obtained and the configuration average is done according to the GK scheme. The dynamical problem is transformed, using a renormalization group procedure, into a bidimensional map. The properties of this map are investigated and related to the localization properties of the eletronic system. (Author) [pt

  10. Quantum Einstein gravity. Advancements of heat kernel-based renormalization group studies

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Kai

    2012-10-15

    The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory. As its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained. The constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point. Finally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement

  11. Quantum Einstein gravity. Advancements of heat kernel-based renormalization group studies

    International Nuclear Information System (INIS)

    Groh, Kai

    2012-10-01

    The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory. As its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained. The constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point. Finally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of

  12. A shape dynamical approach to holographic renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)

  13. Introduction to the nonequilibrium functional renormalization group

    International Nuclear Information System (INIS)

    Berges, J.; Mesterházy, D.

    2012-01-01

    In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.

  14. Exact renormalization group for gauge theories

    International Nuclear Information System (INIS)

    Balaban, T.; Imbrie, J.; Jaffe, A.

    1984-01-01

    Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study

  15. The Physical Renormalization of Quantum Field Theories

    International Nuclear Information System (INIS)

    Binger, Michael William.; Stanford U., Phys. Dept.; SLAC

    2007-01-01

    The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, α(k 1 2 , k 2 2 , k 3 2 ), depends on three momentum scales and gives rise to an effective scale Q eff 2 (k 1 2 , k 2 2 , k 3 2 ) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi-scale analytic renormalization scheme based on gauge-invariant Green

  16. Low-wave number analysis of observations and ensemble forecasts to develop metrics for the selection of most realistic members to study multi-scale interactions between the environment and the convective organization of hurricanes: Focus on Rapid Intensification

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.

    2017-12-01

    Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and

  17. Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.

    Science.gov (United States)

    Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S

    2012-01-01

    In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.

  18. Perturbative renormalization and effective Langrangians in Φ44

    International Nuclear Information System (INIS)

    Keller, G.; Salmhofer, M.; Kopper, C.

    1992-01-01

    Polchinski's proof of the perturbative renormalizability of massive Euclidean Φ 4 4 is considerably simplified, in some respects clarified and extended to general renormalization conditions and Green's functions with arbitrary external momenta. Φ 3 4 and Φ 2 4 are also dealt with. Moreover we show that adding e.g. Φ≥ 5 type interactions to the bare Lagrangian, with coupling constants vanishing at least as some inverse power of the UV-cutoff, does not alter the Green's functions in the limit where the UV-cutoff is removed. Establishing the validity of the action principle in this formalism has not yet been possible, but some partial results are obtained. (orig.)

  19. Momentum-subtraction renormalization techniques in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-10-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.

  20. Momentum-subtraction renormalization techniques in curved space-time

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should

  1. Resummation and renormalization in effective theories of particle physics

    CERN Document Server

    Jakovac, Antal

    2015-01-01

    Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...

  2. Functional renormalization group study of the Anderson–Holstein model

    International Nuclear Information System (INIS)

    Laakso, M A; Kennes, D M; Jakobs, S G; Meden, V

    2014-01-01

    We present a comprehensive study of the spectral and transport properties in the Anderson–Holstein model both in and out of equilibrium using the functional renormalization group (fRG). We show how the previously established machinery of Matsubara and Keldysh fRG can be extended to include the local phonon mode. Based on the analysis of spectral properties in equilibrium we identify different regimes depending on the strength of the electron–phonon interaction and the frequency of the phonon mode. We supplement these considerations with analytical results from the Kondo model. We also calculate the nonlinear differential conductance through the Anderson–Holstein quantum dot and find clear signatures of the presence of the phonon mode. (paper)

  3. Renormalization of g-boson effects under weak coupling condition

    International Nuclear Information System (INIS)

    Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping

    1998-01-01

    An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed

  4. Renormalization group and fixed points in quantum field theory

    International Nuclear Information System (INIS)

    Hollowood, Timothy J.

    2013-01-01

    This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.

  5. Renormalization in general theories with inter-generation mixing

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Sirlin, Alberto

    2011-11-01

    We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)

  6. Zeta Functions, Renormalization Group Equations, and the Effective Action

    International Nuclear Information System (INIS)

    Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M.

    1998-01-01

    We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society

  7. On the renormalization group equations of quantum electrodynamics

    International Nuclear Information System (INIS)

    Hirayama, Minoru

    1980-01-01

    The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)

  8. The Background-Field Method and Noninvariant Renormalization

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Kazakov, D.I.; Kalmykov, M.Yu.

    1994-01-01

    We investigate the consistency of the background-field formalism when applying various regularizations and renormalization schemes. By an example of a two-dimensional σ model it is demonstrated that the background-field method gives incorrect results when the regularization (and/or renormalization) is noninvariant. In particular, it is found that the cut-off regularization and the differential renormalization belong to this class and are incompatible with the background-field method in theories with nonlinear symmetries. 17 refs

  9. Renormalization in the complete Mellin representation of Feynman amplitudes

    International Nuclear Information System (INIS)

    Calan, C. de; David, F.; Rivasseau, V.

    1981-01-01

    The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)

  10. Separable expansion for realistic multichannel scattering problems

    International Nuclear Information System (INIS)

    Canton, L.; Cattapan, G.; Pisent, G.

    1987-01-01

    A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions

  11. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  12. The two-loop renormalization of general quantum field theories

    International Nuclear Information System (INIS)

    Damme, R.M.J. van.

    1984-01-01

    This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)

  13. Renormalization group flows and continual Lie algebras

    International Nuclear Information System (INIS)

    Bakas, Ioannis

    2003-01-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  14. The evolution of Bogolyubov's renormalization group

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2000-01-01

    We review the evolution of the concept of Renormalization Group (RG). This notion, as was first introduced in quantum field theory (QFT) in the mid-fifties in N.N.Bogolyubov's formulation, is based upon a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of a boundary condition) specifying some particular solution. To illustrate this approach's effectiveness, we end with its application to the analysis of the laser beam self-focusing in a non-linear medium

  15. Indefinite metric fields and the renormalization group

    International Nuclear Information System (INIS)

    Sherry, T.N.

    1976-11-01

    The renormalization group equations are derived for the Green functions of an indefinite metric field theory. In these equations one retains the mass dependence of the coefficient functions, since in the indefinite metric theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and infrared limits is analyzed. The analysis is illustrated by means of a simple model incorporating indefinite metric fields. The model scales at first order, and at this order also the effective coupling constant has both ultra-violet and infra-red fixed points, the former being the bare coupling constant

  16. Zero point energy of renormalized Wilson loops

    International Nuclear Information System (INIS)

    Hidaka, Yoshimasa; Pisarski, Robert D.

    2009-01-01

    The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.

  17. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  18. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2014-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating

  19. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  20. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    Science.gov (United States)

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  1. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  2. Relativistic Model of Hamiltonian Renormalization for Bound States and Scattering Amplitudes

    International Nuclear Information System (INIS)

    Serafin, Kamil

    2017-01-01

    We test the renormalization group procedure for effective particles on a model of fermion–scalar interaction based on the Yukawa theory. The model is obtained by truncating the Yukawa theory to just two Fock sectors in the Dirac front form of Hamiltonian dynamics, a fermion, and a fermion and a boson, for the purpose of simple analytic calculation that exhibits steps of the procedure. (author)

  3. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  4. One-loop Renormalization of Resonance Chiral Theory with Scalar and Pseudoscalar Resonances

    International Nuclear Information System (INIS)

    Rosell, I.

    2007-01-01

    The divergent part of the generating functional of the Resonance Chiral Theory is evaluated up to one loop when one multiplet of scalar and pseudoscalar resonances are included and interaction terms which couple up to two resonances are considered. Hence we obtain the renormalization of the couplings of the initial Lagrangian and, moreover, the complete list of operators that make this theory finite, at this order

  5. Optimal renormalization scales and commensurate scale relations

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lu, H.J.

    1996-01-01

    Commensurate scale relations relate observables to observables and thus are independent of theoretical conventions, such as the choice of intermediate renormalization scheme. The physical quantities are related at commensurate scales which satisfy a transitivity rule which ensures that predictions are independent of the choice of an intermediate renormalization scheme. QCD can thus be tested in a new and precise way by checking that the observables track both in their relative normalization and in their commensurate scale dependence. For example, the radiative corrections to the Bjorken sum rule at a given momentum transfer Q can be predicted from measurements of the e+e - annihilation cross section at a corresponding commensurate energy scale √s ∝ Q, thus generalizing Crewther's relation to non-conformal QCD. The coefficients that appear in this perturbative expansion take the form of a simple geometric series and thus have no renormalon divergent behavior. The authors also discuss scale-fixed relations between the threshold corrections to the heavy quark production cross section in e+e - annihilation and the heavy quark coupling α V which is measurable in lattice gauge theory

  6. The large-Nc renormalization group

    International Nuclear Information System (INIS)

    Dorey, N.

    1995-01-01

    In this talk, we review how effective theories of mesons and baryons become exactly soluble in the large-N c , limit. We start with a generic hadron Lagrangian constrained only by certain well-known large-N c , selection rules. The bare vertices of the theory are dressed by an infinite class of UV divergent Feynman diagrams at leading order in 1/N c . We show how all these leading-order dia, grams can be summed exactly using semiclassical techniques. The saddle-point field configuration is reminiscent of the chiral bag: hedgehog pions outside a sphere of radius Λ -1 (Λ being the UV cutoff of the effective theory) matched onto nucleon degrees of freedom for r ≤ Λ -1 . The effect of this pion cloud is to renormalize the bare nucleon mass, nucleon-Δ hyperfine mass splitting, and Yukawa couplings of the theory. The corresponding large-N c , renormalization group equations for these parameters are presented, and solved explicitly in a series of simple models. We explain under what conditions the Skyrmion emerges as a UV fixed-point of the RG flow as Λ → ∞

  7. Some applications of renormalized RPA in bosonic field theories

    International Nuclear Information System (INIS)

    Hansen, H.; Chanfray, G.

    2003-01-01

    We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Φ 4 theory and discuss its phase structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA. (authors)

  8. Renormalization (and power counting) of effective field theories for the nuclear force

    International Nuclear Information System (INIS)

    Timoteo, Varese S.; Szpigel, Sergio; Duraes, Francisco O.

    2011-01-01

    The most common scheme used to regularize the Lippman-Schwinger (LS) equation is to introduce a sharp or smooth regularizing function that suppresses the contributions from the potential matrix elements for momenta larger than a given cutoff scale, which separates high-energy/short-distance scales and low-energy/long-distance scales, thus eliminating the ultraviolet divergences in the momentum integrals. Then, one needs determine the strengths of the contact interactions, the so called low-energy constants (LEC), by fitting a set of low-energy scattering data. Once the LECs are fixed for a given cutoff, the LS equation can be solved to evaluate other observables. Such a procedure, motivated by Wilsons renormalization group, relies on the fundamental premise of EFT that physics at low-energy/long-distance scales is insensitive with respect to the details of the dynamics at high-energy/short-distance scales, i.e. the relevant high-energy/short- distance effects for describing the low-energy observables can be captured in the cutoff-dependent LECs. The NN interaction can be considered properly renormalized when the calculated observables are independent of the cutoff scale within the range of validity of the ChEFT or involves a small residual cutoff dependence due to the truncation of the chiral expansion. In the language of Wilsons renormalization group, this means that the LECs must run with the cutoff scale in such a way that the scattering amplitude becomes renormalization group invariant (RGI). Here we consider pionless EFT up to NNLO and chiral EFT up to NNLO and use a subtractive renormalization scheme to describe the NN scattering channels with. We fix the strength of the contact interactions at a reference scale, chosen to be the one the provides the best fit, and then evolve the driving terms with a non-relativistic Callan-Symanzik equation to slide the renormalization scale. By computing phase shift relative differences, we show that the method is RGI. We

  9. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, Simon

    2010-12-08

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  10. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Friederich, Simon

    2010-01-01

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  11. Fermionic renormalization group methods for transport through inhomogeneous Luttinger liquids

    International Nuclear Information System (INIS)

    Meden, V; Schoeller, H; Andergassen, S; Enss, T; Schoenhammer, K

    2008-01-01

    We compare two fermionic renormalization group (RG) methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a poor man's method set-up to resum 'leading-log' divergences of the effective transmission at the Fermi momentum. Generically the resulting equations can be solved analytically. The second approach is based on the functional RG (fRG) method and leads to a set of differential equations which can only for certain set-ups and in limiting cases be solved analytically, while in general it must be integrated numerically. Both methods are claimed to be applicable for inhomogeneities of arbitrary strength and to capture effects of the two-particle interaction, such as interaction dependent exponents, up to leading order. We critically review this for the simplest case of a single impurity. While on first glance the poor man's approach seems to describe the crossover from the 'perfect' to the 'open chain fixed point' we collect evidence that difficulties may arise close to the 'perfect chain fixed point'. Due to a subtle relation between the scaling dimensions of the two fixed points this becomes apparent only in a detailed analysis. In the fRG method the coupling of the different scattering channels is kept which leads to a better description of the underlying physics

  12. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  13. Generating realistic images using Kray

    Science.gov (United States)

    Tanski, Grzegorz

    2004-07-01

    Kray is an application for creating realistic images. It is written in C++ programming language, has a text-based interface, solves global illumination problem using techniques such as radiosity, path tracing and photon mapping.

  14. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  15. On renormalization group flow in matrix model

    International Nuclear Information System (INIS)

    Gao, H.B.

    1992-10-01

    The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs

  16. Renormalization group approach to soft gluon resummation

    International Nuclear Information System (INIS)

    Forte, Stefano; Ridolfi, Giovanni

    2003-01-01

    We present a simple proof of the all-order exponentiation of soft logarithmic corrections to hard processes in perturbative QCD. Our argument is based on proving that all large logs in the soft limit can be expressed in terms of a single dimensionful variable, and then using the renormalization group to resum them. Beyond the next-to-leading log level, our result is somewhat less predictive than previous all-order resummation formulae, but it does not rely on non-standard factorization, and it is thus possibly more general. We use our result to settle issues of convergence of the resummed series, we discuss scheme dependence at the resummed level, and we provide explicit resummed expressions in various factorization schemes

  17. Nonlinear relativistic plasma resonance: Renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  18. Functional renormalization and ultracold quantum gases

    International Nuclear Information System (INIS)

    Floerchinger, Stefan

    2010-01-01

    Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)

  19. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  20. Semihard processes with BLM renormalization scale setting

    Energy Technology Data Exchange (ETDEWEB)

    Caporale, Francesco [Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15 and U. Autónoma de Madrid, E-28049 Madrid (Spain); Ivanov, Dmitry Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Murdaca, Beatrice; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)

    2015-04-10

    We apply the BLM scale setting procedure directly to amplitudes (cross sections) of several semihard processes. It is shown that, due to the presence of β{sub 0}-terms in the NLA results for the impact factors, the obtained optimal renormalization scale is not universal, but depends both on the energy and on the process in question. We illustrate this general conclusion considering the following semihard processes: (i) inclusive production of two forward high-p{sub T} jets separated by large interval in rapidity (Mueller-Navelet jets); (ii) high-energy behavior of the total cross section for highly virtual photons; (iii) forward amplitude of the production of two light vector mesons in the collision of two virtual photons.

  1. Large neutrino mixing from renormalization group evolution

    International Nuclear Information System (INIS)

    Balaji, K.R.S.; Mohapatra, R.N.; Parida, M.K.; Paschos, E.A.

    2000-10-01

    The renormalization group evolution equation for two neutrino mixing is known to exhibit nontrivial fixed point structure corresponding to maximal mixing at the weak scale. The presence of the fixed point provides a natural explanation of the observed maximal mixing of ν μ - ν τ , if the ν μ and ν τ are assumed to be quasi-degenerate at the seesaw scale without constraining the mixing angles at that scale. In particular, it allows them to be similar to the quark mixings as in generic grand unified theories. We discuss implementation of this program in the case of MSSM and find that the predicted mixing remains stable and close to its maximal value, for all energies below the O(TeV) SUSY scale. We also discuss how a particular realization of this idea can be tested in neutrinoless double beta decay experiments. (author)

  2. Renormalization and the breakup of magnetic surfaces

    International Nuclear Information System (INIS)

    Greene, J.M.

    1983-02-01

    There has been very considerable progress in the last few years on problems that are equivalent to finding the global structure of magnetic field lines in toroidal systems. A general problem of this class has a solution that is so complicated that it is impossible to find equations for the location of a field line which are valid everywhere along an infinitely long line. However, recent results are making it possible to find the asymptotic behavior of such systems in the limit of long lengths. This is just the information that is desired in many situations, since it includes the determination of the existence, or nonexistence, of magnetic surfaces. The key to our present understanding is renormalization. The present state-of-the-art has been described in Robert MacKay's thesis, for which this is an advertisement

  3. Gauge field theories. Part three. Renormalization

    International Nuclear Information System (INIS)

    Frampon, P.H.

    1978-01-01

    The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references

  4. Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1)

    Science.gov (United States)

    Lahoche, Vincent; Oriti, Daniele

    2017-01-01

    We study the renormalization of a general field theory on the homogeneous space (SU(2)/ ≤ft. U(1)\\right){{}× d} with tensorial interaction and gauge invariance under the diagonal action of SU(2). We derive the power counting for arbitrary d. For the case d  =  4, we prove perturbative renormalizability to all orders via multi-scale analysis, study both the renormalized and effective perturbation series, and establish the asymptotic freedom of the model. We also outline a general power counting for the homogeneous space {{≤ft(SO(D)/SO(D-1)\\right)}× d} , of direct interest for quantum gravity models in arbitrary dimension, and point out the obstructions to the direct generalization of our results to these cases.

  5. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    Science.gov (United States)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  6. Any realistic theory must be computationally realistic: a response to N. Gisin's definition of a Realistic Physics Theory

    OpenAIRE

    Bolotin, Arkady

    2014-01-01

    It is argued that the recent definition of a realistic physics theory by N. Gisin cannot be considered comprehensive unless it is supplemented with requirement that any realistic theory must be computationally realistic as well.

  7. Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review

    Science.gov (United States)

    Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-12-01

    A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on

  8. Anatomy of the magnetic catalysis by renormalization-group method

    Science.gov (United States)

    Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho

    2017-12-01

    We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.

  9. Anatomy of the magnetic catalysis by renormalization-group method

    Directory of Open Access Journals (Sweden)

    Koichi Hattori

    2017-12-01

    Full Text Available We first examine the scaling argument for a renormalization-group (RG analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger–Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu–Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.

  10. Renormalization method and singularities in the theory of Langmuir turbulence

    International Nuclear Information System (INIS)

    Pelletier, G.

    1977-01-01

    The method of renormalization, using propagators and diagrams, is recalled with enough mathematical details to be read and used by a non-specialist. The Markovian models are discussed and applied to plasma turbulence. The physical meaning of the diagrams is exhibited. In addition to the usual resonance broadening, an improved renormalization is set out, including broadening of the nonlinear resonance with a beat wave by induced scattering. This improved renormalization is emphasized. In the case of Langmuir turbulence, it removes difficulties arising at the group velocity, and enhances large-scale induced-scattering diffusion. (author)

  11. Renormalization group theory of phase transitions in square Ising systems

    International Nuclear Information System (INIS)

    Nienhuis, B.

    1978-01-01

    Some renormalization group calculations are presented on a number of phase transitions in a square Ising model, both second and first order. Of these transitions critical exponents are calculated, the amplitudes of the power law divergences and the locus of the transition. In some cases attention is paid to the thermodynamic functions also far from the critical point. Universality and scaling are discussed and the renormalization group theory is reviewed. It is shown how a renormalization transformation, which relates two similar systems with different macroscopic dimensions, can be constructed, and how some critical properties of the system follow from this transformation. Several numerical and analytical applications are presented. (Auth.)

  12. Phases of renormalized lattice gauge theories with fermions

    International Nuclear Information System (INIS)

    Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)

    1979-01-01

    Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory

  13. Cohomology and renormalization of BFYM theory in three dimensions

    International Nuclear Information System (INIS)

    Accardi, A.; Belli, A.; Zeni, M.

    1997-01-01

    The first-order formalism for the 3D Yang-Mills theory is considered and two different formulations are introduced, in which the gauge theory appears to be a deformation of the topological BF theory. We perform the quantization and the algebraic analysis of the renormalization of both the models, which are found to be anomaly free. We discuss also their stability against radiative corrections, giving the full structure of possible counterterms, requiring an involved matricial renormalization of fields and sources. Both models are then proved to be equivalent to the Yang-Mills theory at the renormalized level. (orig.)

  14. PyR@TE. Renormalization group equations for general gauge theories

    Science.gov (United States)

    Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.

    2014-03-01

    Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer

  15. Renormalization group study of the multi-layer sine-gordon model

    International Nuclear Information System (INIS)

    Nandori, I.

    2005-01-01

    Complete text of publication follows. We analyze the phase structure of the system of coupled sine-Gordon (SG) type field theoric models. The 'pure,' SG model is periodic in the internal space spanned by the field variable. The central subjects of investigation is the multi-layer sine-Gordon (LSG) model, where the periodicity is broken partially by the coupling terms between the layers each of which is described by a scalar field, where the second term on the r.h.s. describes the interaction of the layers. Here, we dis- cuss the generalization of the results obtained for the two-layer sine-Gordon model found in the previous study. Besides the obvious field theoretical interest, the LSG model has been used to describe the vortex properties of high transition temperature superconductors, and the extension of the previous analysis to a general N-layer model is necessary for a description of the critical behaviour of vortices in realistic multi-layer systems. The couplings between the layers can be considered as mass terms. Since the periodicity of the LSG model has been broken only partially, the N-layer model has always a single zero mass eigenvalue. The presence of this single zero mass eigenvalue is found to be decisive with respect to the phase structure of the N-layer models. By a suitable rotation of the field variables, we identify the periodic mode (which corresponds to the zero mass eigenvalue) and N - 1 non-periodic modes (with explicit mass terms). The N - 1 non-periodic modes have a trivial IR scaling which holds independently of β which has been proven consistently using (i) the non-perturbative renormalization group study of the rotated model, (ii) the Gaussian integration about the vanishing-field saddle point. Due to the presence of the periodic mode the model undergoes a Kosterlitz-Thouless type phase transition which occurs at a coupling parameter β c 2 = 8Nπ, where N is the number of layers. The critical value β c 2 corresponds to the critical

  16. Translationally invariant and non-translationally invariant empirical effective interactions

    International Nuclear Information System (INIS)

    Golin, M.; Zamick, L.

    1975-01-01

    In this work empirical deficiencies of the core-renormalized realistic effective interactions are examined and simple corrective potentials are sought. The inability of the current realistic interactions to account for the energies of isobaric analog states is noted, likewise they are unable to reproduce the changes in the single-particle energies, as one goes from one closed shell to another. It is noted that the Schiffer interaction gives better results for these gross properties and this is attributed to a combination of several facts. First, to the inclusion of long range terms in the Schiffer potential, then to the presence of relative p-state terms (l=1), in addition to the usual relative s-state terms (l=0). The strange shape of the above interaction is further attributed to the fact that it is translationally invariant whereas the theory of core-polarization yields non-translationally invariant potentials. Consequently, as a correction to the monopole deficiencies of the realistic interactions the term Vsub(mon)=ar 2 (1)r 2 (2)+r 2 (1)+β[r 4 (1)r 2 (2)r 4 (2) ] is proposed. (Auth.)

  17. Vacuum polarization and renormalized charge in ν-dimensions

    International Nuclear Information System (INIS)

    Marinho Junior, R.M.; Lucinda, J.

    1984-01-01

    The expression for the vacuum polarization is obtained for any momentum transfer in ν dimensions. Using the Wilson loop for QED, the renormalized electric charge in ν dimensions is calculated. (Author) [pt

  18. Exact renormalization group as a scheme for calculations

    International Nuclear Information System (INIS)

    Mack, G.

    1985-10-01

    In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)

  19. Propagators and renormalization transformations for lattice gauge theories. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1984-01-01

    We continue the studies of the Paper I and extend the results of this paper to operators defined by restrictions on different scales, or by renormalization transformations of different orders. (orig.)

  20. Renormalization and operator product expansion in theories with massless particles

    International Nuclear Information System (INIS)

    Anikin, S.A.; Smirnov, V.A.

    1985-01-01

    Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)

  1. Generalized Callan-Symanzik equations and the Renormalization Group

    International Nuclear Information System (INIS)

    MacDowell, S.W.

    1975-01-01

    A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg

  2. Golden mean renormalization for a generalized Harper equation: The Ketoja-Satija orchid

    International Nuclear Information System (INIS)

    Mestel, B.D.; Osbaldestin, A.H.

    2004-01-01

    We provide a rigorous analysis of the fluctuations of localized eigenstates in a generalized Harper equation with golden mean flux and with next-nearest-neighbor interactions. For next-nearest-neighbor interaction above a critical threshold, these self-similar fluctuations are characterized by orbits of a renormalization operator on a universal strange attractor, whose projection was dubbed the ''orchid'' by Ketoja and Satija [Phys. Rev. Lett. 75, 2762 (1995)]. We show that the attractor is given essentially by an embedding of a subshift of finite type, and give a description of its periodic orbits

  3. Physics Implications of Flat Directions in Free Fermionic Superstring Models; 2, Renormalization Group Analysis

    CERN Document Server

    Cleaver, G.; Espinosa, J.R.; Everett, L.L.; Langacker, P.; Wang, J.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of the previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional $U(1)'$ as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable $Z-Z'$ hierarchy, $M_{Z^{'}} \\sim {\\cal O}(1~{\\rm TeV})$ and $ 10^{12}~{\\rm GeV}$ for electroweak and intermediate scale $U(1)^{'}$ symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, i...

  4. Applications of the renormalization group approach to problems in quantum field theory

    International Nuclear Information System (INIS)

    Renken, R.L.

    1985-01-01

    The presence of fluctuations at many scales of length complicates theories of quantum fields. However, interest is often focused on the low-energy consequences of a theory rather than the short distance fluctuations. In the renormalization-group approach, one takes advantage of this by constructing an effective theory with identical low-energy behavior, but without short distance fluctuations. Three problems of this type are studied here. In chapter 1, an effective lagrangian is used to compute the low-energy consequences of theories of technicolor. Corrections to weak-interaction parameters are found to be small, but conceivably measurable. In chapter 2, the renormalization group approach is applied to second order phase transitions in lattice gauge theories such as the deconfining transition in the U(1) theory. A practical procedure for studying the critical behavior based on Monte Carlo renormalization group methods is described in detail; no numerical results are presented. Chapter 3 addresses the problem of computing the low-energy behavior of atoms directly from Schrodinger's equation. A straightforward approach is described, but is found to be impractical

  5. Renormalization of the QEMD of a dyon field

    International Nuclear Information System (INIS)

    Panagiotakopoulos, C.

    1983-01-01

    A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n-independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (orig.)

  6. Renormalization of the QEMD of a dyon field

    International Nuclear Information System (INIS)

    Panagiotakopoulos, C.

    1982-05-01

    A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (author)

  7. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  8. The renormalization group: scale transformations and changes of scheme

    International Nuclear Information System (INIS)

    Roditi, I.

    1983-01-01

    Starting from a study of perturbation theory, the renormalization group is expressed, not only for changes of scale but also within the original view of Stueckelberg and Peterman, for changes of renormalization scheme. The consequences that follow from using that group are investigated. Following a more general point of view a method to obtain an improvement of the perturbative results for physical quantities is proposed. The results obtained with this method are compared with those of other existing methods. (L.C.) [pt

  9. Anisotropic square lattice Potts ferromagnet: renormalization group treatment

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de; Tsallis, C.

    1981-01-01

    The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt

  10. Renormalization in p-adic quantum field theory

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    1990-01-01

    A version of p-adic perturbative Euclidean quantum field theory is presented. It is based on the new type of propagator which happens to be rather natural for p-adic space-time. Low-order Feynamn diagrams are explicity calculated and typical renormalization schemes are introduced: analytic, dimensional and BPHZ renormalizations. The calculations show that in p-adic Feynman integrals only logarithmic divergences appear. 14 refs.; 1 fig

  11. Products of composite operators in the exact renormalization group formalism

    Science.gov (United States)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  12. Non-perturbative renormalization of HQET and QCD

    International Nuclear Information System (INIS)

    Sommer, Rainer

    2003-01-01

    We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)

  13. A note on nonperturbative renormalization of effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China)

    2009-08-28

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  14. A note on nonperturbative renormalization of effective field theory

    International Nuclear Information System (INIS)

    Yang Jifeng

    2009-01-01

    Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.

  15. Renormalization of an abelian gauge theory in stochastic quantization

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.

    1987-01-01

    The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)

  16. Investigation of renormalization effects in high temperature cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zabolotnyy, Volodymyr B.

    2008-04-16

    It has been found that the self-energy of high-T{sub C} cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T{sub C} suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)

  17. Investigation of renormalization effects in high temperature cuprate superconductors

    International Nuclear Information System (INIS)

    Zabolotnyy, Volodymyr B.

    2008-01-01

    It has been found that the self-energy of high-T C cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7-δ were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T C suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)

  18. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  19. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  20. Quantum field theory and phase transitions: universality and renormalization group

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    2003-08-01

    In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)

  1. Nonperturbative Renormalization of Composite Operators with Overlap Fermions

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams

    2005-12-01

    We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.

  2. Progress in realistic LOCA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Young, M Y; Bajorek, S M; Ohkawa, K [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    1994-12-31

    While LOCA is a complex transient to simulate, the state of art in thermal hydraulics has advanced sufficiently to allow its realistic prediction and application of advanced methods to actual reactor design as demonstrated by methodology described in this paper 6 refs, 5 figs, 3 tabs

  3. Time management: a realistic approach.

    Science.gov (United States)

    Jackson, Valerie P

    2009-06-01

    Realistic time management and organization plans can improve productivity and the quality of life. However, these skills can be difficult to develop and maintain. The key elements of time management are goals, organization, delegation, and relaxation. The author addresses each of these components and provides suggestions for successful time management.

  4. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2008-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes

  5. Should scientific realists be platonists?

    DEFF Research Database (Denmark)

    Busch, Jacob; Morrison, Joe

    2015-01-01

    an appropriate use of the resources of Scientific Realism (in particular, IBE) to achieve platonism? (§2) We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should be Scientific...

  6. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  7. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  8. Temperature dependent quasiparticle renormalization in nickel and iron

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Thirupathaiah, Setti; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann [Helmholtz Zentrum Berlin, BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)

    2010-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed' with an excitation cloud resulting in quasiparticles. Such a quasiparticle will carry the same spin and charge as the original particle, but will have a renormalized mass and a finite lifetime. The properties of many-body interactions are described with a complex function called self energy which is directly accessible to modern high-resolution angle resolved photoemission spectroscopy (ARPES). Ferromagnetic metals like nickel or iron offers the exciting possibility to study the spin dependence of quasiparticle coupling to bosonic modes. Utilizing the exchange split band structure as an intrinsic 'spin detector' it is possible to distinguish between electron-phonon and electron-magnon coupling phenomena. In this contribution we will report a systematic investigation of the k- and temperature dependence of the electron-boson coupling in nickel and iron metals as well as discuss origin of earlier observed anomalous lifetime broadening of majority spin states of nickel at Fermi level.

  9. Functional renormalization group methods in quantum chromodynamics

    International Nuclear Information System (INIS)

    Braun, J.

    2006-01-01

    We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)

  10. Renormalization-group theory of spinodal decomposition

    International Nuclear Information System (INIS)

    Mazenko, G.F.; Valls, O.T.; Zhang, F.C.

    1985-01-01

    Renormalization-group (RG) methods developed previously for the study of the growth of order in unstable systems are extended to treat the spinodal decomposition of the two-dimensional spin-exchange kinetic Ising model. The conservation of the order parameter and fixed-length sum rule are properly preserved in the theory. Various correlation functions in both coordinate and momentum space are calculated as functions of time. The scaling function for the structure factor is extracted. We compare our results with direct Monte Carlo (MC) simulations and find them in good agreement. The time rescaling parameter entering the RG analysis is temperature dependent, as was determined in previous work through a RG analysis of MC simulations. The results exhibit a long-time logarithmic growth law for the typical domain size, both analytically and numerically. In the time region where MC simulations have previously been performed, the logarithmic growth law can be fitted to a power law with an effective exponent. This exponent is found to be in excellent agreement with the result of MC simulations. The logarithmic growth law agrees with a physical model of interfacial motion which involves an interplay between the local curvature and an activated jump across the interface

  11. Functional renormalization group methods in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.

    2006-12-18

    We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)

  12. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  13. Realistic rhetoric and legal decision

    Directory of Open Access Journals (Sweden)

    João Maurício Adeodato

    2017-06-01

    Full Text Available The text aims to lay the foundations of a realistic rhetoric, from the descriptive perspective of how the legal decision actually takes place, without normative considerations. Aristotle's rhetorical idealism and its later prestige reduced rhetoric to the art of persuasion, eliminating important elements of sophistry, especially with regard to legal decision. It concludes with a rhetorical perspective of judicial activism in complex societies.

  14. Simple and Realistic Data Generation

    DEFF Research Database (Denmark)

    Pedersen, Kenneth Houkjær; Torp, Kristian; Wind, Rico

    2006-01-01

    This paper presents a generic, DBMS independent, and highly extensible relational data generation tool. The tool can efficiently generate realistic test data for OLTP, OLAP, and data streaming applications. The tool uses a graph model to direct the data generation. This model makes it very simple...... to generate data even for large database schemas with complex inter- and intra table relationships. The model also makes it possible to generate data with very accurate characteristics....

  15. Realist cinema as world cinema

    OpenAIRE

    Nagib, Lucia

    2017-01-01

    The idea that “realism” is the common denominator across the vast range of productions normally labelled as “world cinema” is widespread and seemly uncontroversial. Leaving aside oppositional binaries that define world cinema as the other of Hollywood or of classical cinema, this chapter will test the realist premise by locating it in the mode of production. It will define this mode as an ethics that engages filmmakers, at cinema’s creative peaks, with the physical and historical environment,...

  16. Tensor hypercontraction. II. Least-squares renormalization

    Science.gov (United States)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2012-12-01

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  17. Analysis of coined quantum walks with renormalization

    Science.gov (United States)

    Boettcher, Stefan; Li, Shanshan

    2018-01-01

    We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.

  18. The applications of the renormalization group

    International Nuclear Information System (INIS)

    Hughes, J.L.

    1988-01-01

    Three applications of the exact renormalization group (RG) to field theory and string theory are developed. (1) First, β-functions are related to the flow of the relevant couplings in the exact RG. The specific case of a cutoff λφ 4 theory in four dimensions is discussed in detail. The underlying idea of convergence of the flow of effective lagrangians is developed to identify the β-functions. A perturbative calculations of the β-functions using the exact flow equations is then sketched. (2) Next, the operator product expansion (OPE) is motivated and developed within the context of effective lagrangians. The exact RG may be used to establish the asymptotic properties of the expansion. Again, the example field theory focused upon is a cutoff λφ 4 in four dimensions. A detailed proof of the asymptotics for the special case of the expansion of φ(χ)φ(0) is given. The ideas of the proof are sufficient to prove the general case of any two local operators. Although both of the above applications are developed for a cutoff λφ 4 , the analysis may be extended to any theory with a physical cutoff. (3) Finally, some consequences of the proposal by Banks and Martinec that the classical string field equation can be written as as exact RG equation are examined. Cutoff conformal field theories on the sphere are identified as possible string field configurations. The Wilson fixed-point equation is generalized to conformal invariance and then taken to be the equation of motion for the string field. The equation's solutions for a restricted set of configurations are examined - namely, closed bosonic strings in 26 dimensions. Tree-level Virasoro-Shapiro (VS) S-matrix elements emerge in what is interpreted as a weak component-field expansion of the solution

  19. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  20. Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD

    CERN Document Server

    Guagnelli, M; Peña, C; Sint, S; Vladikas, A

    2006-01-01

    We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.

  1. Gauge-independent renormalization of the N2HDM

    Science.gov (United States)

    Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui

    2017-12-01

    The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.

  2. Exploring excited eigenstates of many-body systems using the functional renormalization group

    Science.gov (United States)

    Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph

    2018-05-01

    We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.

  3. Renormalization group improved computation of correlation functions in theories with nontrivial phase diagram

    DEFF Research Database (Denmark)

    Codello, Alessandro; Tonero, Alberto

    2016-01-01

    We present a simple and consistent way to compute correlation functions in interacting theories with nontrivial phase diagram. As an example we show how to consistently compute the four-point function in three dimensional Z2-scalar theories. The idea is to perform the path integral by weighting...... the momentum modes that contribute to it according to their renormalization group (RG) relevance, i.e. we weight each mode according to the value of the running couplings at that scale. In this way, we are able to encode in a loop computation the information regarding the RG trajectory along which we...

  4. The renormalization group study of the effective theory of lattice QED

    International Nuclear Information System (INIS)

    Sugiyama, Y.

    1988-01-01

    The compact U(1) lattice gauge theory with massless fermions (Lattice QED) is studied through the effective model analytically, using the renormalization group method. The obtained effective model is the local boson field system with non-local interactions. The authors study the existence of non-trivial fixed point and its scaling behavior. This fixed point seems to be tri-critical. Such fixed point is interpreted in terms of the original Lattice QED model, and the results are consistent with the Monte Calro study

  5. Interacting boson model: Microscopic calculations for the mercury isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, C.H.; Pittel, S.; Barrett, B.R.; Duval, P.D.

    1987-05-15

    Microscopic calculations of the parameters of the proton--neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka--Arima--Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l = 4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels. copyright 1987 Academic Press, Inc.

  6. The interacting boson model: Microscopic calculations for the mercury isotopes

    Science.gov (United States)

    Druce, C. H.; Pittel, S.; Barrett, B. R.; Duval, P. D.

    1987-05-01

    Microscopic calculations of the parameters of the proton-neutron interacting boson model (IBM-2) appropriate to the even Hg isotopes are reported. The calculations are based on the Otsuka-Armia-Iachello boson mapping procedure, which is briefly reviewed. Renormalization of the parameters due to exclusion of the l=4 g boson is treated perturbatively. The calculations employ a semi-realistic shell-model Hamiltonian with no adjustable parameters. The calculated parameters of the IBM-2 Hamiltonian are used to generate energy spectra and electromagnetic transition probabilities, which are compared with experimental data and with the result of phenomenological fits. The overall agreement is reasonable with some notable exceptions, which are discussed. Particular attention is focused on the parameters of the Majorana interaction and on the F-spin character of low-lying levels.

  7. Singular interactions supported by embedded curves

    International Nuclear Information System (INIS)

    Kaynak, Burak Tevfik; Turgut, O Teoman

    2012-01-01

    In this work, singular interactions supported by embedded curves on Riemannian manifolds are discussed from a more direct and physical perspective, via the heat kernel approach. We show that the renormalized problem is well defined, the ground state is finite and the corresponding wavefunction is positive. The renormalization group invariance of the model is also discussed. (paper)

  8. Realistic nuclear shell theory and the doubly-magic 132Sn region

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    After an introduction discussing the motivation and interest in results obtained with isotope separators, the fundamental problem in realistic nuclear shell theory is posed in the context of renormalization theory. Then some of the important developments that have occurred over the last fifteen years in the derivation of the effective Hamiltonian and application of realistic nuclear shell theory are briefly reviewed. Doubly magic regions of the periodic table and the unique advantages of the 132 Sn region are described. Then results are shown for the ground-state properties of 132 Sn as calculated from the density-dependent Hartree-Fock approach with the Skyrme Hamiltonian. A single theoretical Hamiltonian for all nuclei from doubly magic 132 Sn to doubly magic 208 Pb is presented; single-particle energies are graphed. Finally, predictions of shell-model level-density distributions obtained with spectral distribution methods are discussed; calculated level densities are shown for 136 Xe. 10 figures

  9. Off-shell renormalization in Higgs effective field theories

    Science.gov (United States)

    Binosi, Daniele; Quadri, Andrea

    2018-04-01

    The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.

  10. Non-perturbative renormalization of three-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-10-15

    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)

  11. The ab-initio density matrix renormalization group in practice.

    Science.gov (United States)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  12. The ab-initio density matrix renormalization group in practice

    Energy Technology Data Exchange (ETDEWEB)

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  13. Extended BPH renormalization of cutoff scalar field theories

    International Nuclear Information System (INIS)

    Chalmers, G.

    1996-01-01

    We show through the use of diagrammatic techniques and a newly adapted BPH renormalization method that general momentum cutoff scalar field theories in four dimensions are perturbatively renormalizable. Weinberg close-quote s convergence theorem is used to show that operators in the Lagrangian with dimension greater than four, which are divided by powers of the cutoff, produce perturbatively only local divergences in the two-, three-, and four-point correlation functions. The naive use of the convergence theorem together with the BPH method is not appropriate for understanding the local divergences and renormalizability of these theories. We also show that the renormalized Green close-quote s functions are the same as in ordinary Φ 4 theory up to corrections suppressed by inverse powers of the cutoff. These conclusions are consistent with those of existing proofs based on the renormalization group. copyright 1996 The American Physical Society

  14. Renormalization Group in different fields of theoretical physics

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1992-02-01

    A very simple and general approach to the symmetry that is widely known as a Renormalization Group symmetry is presented. It essentially uses a functional formulation of group transformations that can be considered as a generalization of self-similarity transformations well known in mathematical physics since last century. This generalized Functional Self-Similarity symmetry and corresponding group transformations are discussed first for a number of simple physical problems taken from diverse fields of classical physics as well as for QED. Then we formulate the Renorm-Group Method as a regular procedure that essentially improves the approximate solutions near the singularity. After that we discuss relations between different formulations of Renormalization Group as they appear in various parts of a modern theoretical physics. Finally we present several topics of RGM application in modern QFT. (author)

  15. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    Science.gov (United States)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  16. Renormalization of the axial-vector current in QCD

    International Nuclear Information System (INIS)

    Chiu, C.B.; Pasupathy, J.; Wilson, S.L.

    1985-01-01

    Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant G/sub A/, as well as the Cabibbo coupling constants in the SU 3 -symmetric limit (m/sub s/ = 0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU 3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be roughly-equal0, or D/(F+D)roughly-equal(7/12). .AE

  17. Renormalization of three-quark operators for baryon distribution amplitudes

    International Nuclear Information System (INIS)

    Gruber, Michael

    2017-01-01

    In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI ' /SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.

  18. Perturbative renormalization of composite operators via flow equations. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik); Kopper, C. (Goettingen Univ. (Germany). Inst. fuer Theoretische Physik)

    1992-09-01

    We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive {Phi}{sub 4}{sup 4} theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.).

  19. Perturbative renormalization of composite operators via flow equations. Pt. 1

    International Nuclear Information System (INIS)

    Keller, G.; Kopper, C.

    1992-01-01

    We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive Φ 4 4 theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.)

  20. Renormalization in Large Momentum Effective Theory of Parton Physics.

    Science.gov (United States)

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2018-03-16

    In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.

  1. Quantum renormalization group approach to geometric phases in spin chains

    International Nuclear Information System (INIS)

    Jafari, R.

    2013-01-01

    A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size

  2. Renormalization Group Reduction of Non Integrable Hamiltonian Systems

    International Nuclear Information System (INIS)

    Tzenov, Stephan I.

    2002-01-01

    Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail

  3. Renormalization Scale-Fixing for Complex Scattering Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.

    2005-12-21

    We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.

  4. Fine-grained entanglement loss along renormalization-group flows

    International Nuclear Information System (INIS)

    Latorre, J.I.; Rico, E.; Luetken, C.A.; Vidal, G.

    2005-01-01

    We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along renormalization group trajectories from the properties of the vacuum only, without need to study the whole Hamiltonian

  5. Renormalization of three-quark operators for baryon distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Michael

    2017-07-01

    In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI{sup '}/SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.

  6. The renormalization scale-setting problem in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Gang [Chongqing Univ. (China); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mojaza, Matin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Southern Denmark, Odense (Denmark)

    2013-09-01

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scale ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending

  7. Effective-field renormalization-group method for Ising systems

    Science.gov (United States)

    Fittipaldi, I. P.; De Albuquerque, D. F.

    1992-02-01

    A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.

  8. Renormalization in the stochastic quantization of field theories

    International Nuclear Information System (INIS)

    Brunelli, J.C.

    1991-01-01

    In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)

  9. Tuukka Kaidesoja on Critical Realist Transcendental Realism

    Directory of Open Access Journals (Sweden)

    Groff Ruth

    2015-09-01

    Full Text Available I argue that critical realists think pretty much what Tukka Kaidesoja says that he himself thinks, but also that Kaidesoja’s objections to the views that he attributes to critical realists are not persuasive.

  10. Gravitational interaction to one loop in effective quantum gravity

    International Nuclear Information System (INIS)

    Akhundov, A.

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature

  11. Gravitational interaction to one loop in effective quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Akhundov, A. [Universitaet-gesamthochschule Siegen (Germany)]|[Azerbaijan Academy of Sciences, Baku (Azerbaijan). Institute of Physics; Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1996-10-01

    The authors carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and coupling, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence the results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. The authors consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective Lagrangian. The authors calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature.

  12. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  13. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  14. Margin improvement initiatives: realistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.K.; Paquette, S. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Cunning, T.A. [Department of National Defence, Ottawa, ON (Canada); French, C.; Bonin, H.W. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Pandey, M. [Univ. of Waterloo, Waterloo, ON (Canada); Murchie, M. [Cameco Fuel Manufacturing, Port Hope, ON (Canada)

    2014-07-01

    With reactor core aging, safety margins are particularly tight. Two realistic and practical approaches are proposed here to recover margins. The first project is related to the use of a small amount of neutron absorbers in CANDU Natural Uranium (NU) fuel bundles. Preliminary results indicate that the fuelling transient and subsequent reactivity peak can be lowered to improve the reactor's operating margins, with minimal impact on burnup when less than 1000 mg of absorbers is added to a fuel bundle. The second project involves the statistical analysis of fuel manufacturing data to demonstrate safety margins. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to generate input for ELESTRES and ELOCA. It is found that the fuel response distributions are far below industrial failure limits, implying that margin exists in the current fuel design. (author)

  15. International Management: Creating a More Realistic Global Planning Environment.

    Science.gov (United States)

    Waldron, Darryl G.

    2000-01-01

    Discusses the need for realistic global planning environments in international business education, introducing a strategic planning model that has teams interacting with teams to strategically analyze a selected multinational company. This dynamic process must result in a single integrated written analysis that specifies an optimal strategy for…

  16. On Newton-Cartan local renormalization group and anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano; Filippini, Francesco [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-11-28

    Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.

  17. Systematic renormalization of the effective theory of Large Scale Structure

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-01-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  18. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    International Nuclear Information System (INIS)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-01-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  19. Renormalization group coupling flow of SU(3) gauge theory

    OpenAIRE

    QCDTARO Collaboration

    1998-01-01

    We present our new results on the renormalization group coupling flow obtained i n 3 dimensional coupling space $(\\beta_{11},\\beta_{12},\\beta_{twist})$. The value of $\\beta_{twist}$ turns out to be small and the coupling flow projected on $(\\beta_{11},\\beta_{12})$ plane is very similar with the previous result obtained in the 2 dimensional coupling space.

  20. Simple perturbative renormalization scheme for supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-06-30

    We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.

  1. A simple perturbative renormalization scheme for supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ] - delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)

  2. Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)

    1975-01-04

    Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.

  3. Finite cluster renormalization group for disordered two-dimensional systems

    International Nuclear Information System (INIS)

    El Kenz, A.

    1987-09-01

    A new type of renormalization group theory using the generalized Callen identities is exploited in the study of the disordered systems. Bond diluted and frustrated Ising systems on a square lattice are analyzed with this new scheme. (author). 9 refs, 2 figs, 2 tabs

  4. RENORMALIZATION FACTOR AND ODD-OMEGA GAP SINGLET SUPERCONDUCTIVITY

    NARCIS (Netherlands)

    DOLGOV, OV; LOSYAKOV, VV

    1994-01-01

    Abrahams et al. [Phys. Rev. B 47 (1993) 513] have considered the possibility of a nonzero critical temperature of the superconductor transition to the state with odd-omega pp function and shown that the condition for it is the following inequality for the renormalization factor. Z (k, omega(n)) <1.

  5. Renormalization group decimation technique for disordered binary harmonic chains

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1983-10-01

    The density of states of disordered binary harmonic chains is calculated using the Renormalization Group Decimation technique on the displacements of the masses from their equilibrium positions. The results are compared with numerical simulation data and with those obtained with the current method of Goncalves da Silva and Koiller. The advantage of our procedure over other methods is discussed. (author)

  6. General renormalized statistical approach with finite cross-field correlations

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    The renormalized statistical approach is proposed, accounting for finite correlations of potential and magnetic fluctuations. It may be used for analysis of a wide class of nonlinear model equations describing the cross-correlated plasma states. The influence of a cross spectrum on stationary potential and magnetic ones is investigated. 10 refs. (author)

  7. Pairing renormalization and regularization within the local density approximation

    International Nuclear Information System (INIS)

    Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.

    2006-01-01

    We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications

  8. Rota-Baxter algebras and the Hopf algebra of renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, K.

    2006-06-15

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  9. Updated RENORM/MBR Predictions for Diffraction at the LHC

    CERN Document Server

    Goulianos, K

    2015-01-01

    Updated RENORM/MBR-model predictions of diffractive, total, and total-inelastic cross sections at the LHC are presented and compared with experimental results and predictions from other models. In addition, expectations for diffraction at the upcoming LHC run at √s = 13 TeV are discussed.

  10. Renormalization constants for 2-twist operators in twisted mass QCD

    International Nuclear Information System (INIS)

    Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.

    2011-01-01

    Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.

  11. Renormalization group invariance in the presence of an instanton

    International Nuclear Information System (INIS)

    Ross, D.A.

    1987-01-01

    A pure Yang-Mills theory which admits an instanton is under discussion. n=1 supersymmetric (SU-2) Yang-Mills theory, both in the Wess-zumino gauge and in manifestly supersymmetric supergauge is considered. Two-loop vacuum graphs are calculated. The way a renormalization group invariance works under conditions of fermionic zero mode elimination is shown

  12. Dynamic mass generation and renormalizations in quantum field theories

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1979-01-01

    It is shown that the dynamic mass generation can destroy the multiplicative renormalization relations and lead to new type divergences in the massive phase. To remove these divergences the values of the bare coupling constants must be fixed. The phase diagrams of gauge theories are discussed

  13. Rota-Baxter algebras and the Hopf algebra of renormalization

    International Nuclear Information System (INIS)

    Ebrahimi-Fard, K.

    2006-06-01

    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  14. On Newton-Cartan local renormalization group and anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Filippini, Francesco; Nardelli, Giuseppe

    2016-01-01

    Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.

  15. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  16. Equation-free dynamic renormalization in a glassy compaction model

    International Nuclear Information System (INIS)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-01-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena

  17. Equation-free dynamic renormalization in a glassy compaction model

    Science.gov (United States)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-07-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.

  18. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  19. Pade expansion and the renormalization of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Yang Jifeng; Huang Jianhua; Liu Dan

    2006-01-01

    The importance of imposing physical boundary conditions on the T-matrix to remove to nonperturbative renormalization prescription dependence is stressed and demonstrated in two diagonal channels 1 P 1 and 1 D 2 , with the help of Pade expansion. (authors)

  20. Migdal-Kadanoff renormalization group for the Z(5) model

    International Nuclear Information System (INIS)

    Baltar, V.L.V.; Carneiro, G.M.; Pol, M.E.; Zagury, N.

    1984-01-01

    The Migdal-Kadanoff renormalization group methods is used to calculate the phase diagram of the AF Z(5) model. It is found that this scheme simulates a fixed line which it is interpreted as the locus of attraction of a critical phase. This result is in reasonable agreement with the predictions of Monte Carlo simulations. (Author) [pt

  1. Regularization and renormalization of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Bernard, C.; Duncan, A.

    1977-01-01

    It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed

  2. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a disordered porous medium

    International Nuclear Information System (INIS)

    Lopatnikova, A.; Berker, A.N.

    1997-01-01

    Superfluidity and phase separation in 3 He- 4 He mixtures immersed in aerogel are studied by renormalization-group theory. The quenched disorder imposed by aerogel, both at the atomic level and at the geometric level, is included. The calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of the quenched probability distributions of random interactions. Random-bond effects on the onset of superfluidity and random-field effects on superfluid-superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general predictions and experiments. The effects of the atomic and geometric randomness of aerogel are investigated separately and jointly. copyright 1997 The American Physical Society

  3. A comprehensive coordinate space renormalization of quantum electrodynamics to two-loop order

    International Nuclear Information System (INIS)

    Haagensen, P.E.; Latorre, J.I.

    1993-01-01

    We develop a coordinate space renormalization of massless quantum electrodynamics using the powerful method of differential renormalization. Bare one-loop amplitudes are finite at non-coincident external points, but do not accept a Fourier transform into momentum space. The method provides a systematic procedure to obtain one-loop renormalized amplitudes with finite Fourier transforms in strictly four dimensions without the appearance of integrals or the use of a regulator. Higher loops are solved similarly by renormalizing from the inner singularities outwards to the global one. We compute all one- and two-loop 1PI diagrams, run renormalization group equations on them. and check Ward identities. The method furthermore allows us to discern a particular pattern of renormalization under which certain amplitudes are seen not to contain higher-loop leading logarithms. We finally present the computation of the chiral triangle showing that differential renormalization emerges as a natural scheme to tackle γ 5 problems

  4. Realistic Simulation of Rice Plant

    Directory of Open Access Journals (Sweden)

    Wei-long DING

    2011-09-01

    Full Text Available The existing research results of virtual modeling of rice plant, however, is far from perfect compared to that of other crops due to its complex structure and growth process. Techniques to visually simulate the architecture of rice plant and its growth process are presented based on the analysis of the morphological characteristics at different stages. Firstly, the simulations of geometrical shape, the bending status and the structural distortion of rice leaves are conducted. Then, by using an improved model for bending deformation, the curved patterns of panicle axis and various types of panicle branches are generated, and the spatial shape of rice panicle is therefore created. Parametric L-system is employed to generate its topological structures, and finite-state automaton is adopted to describe the development of geometrical structures. Finally, the computer visualization of three-dimensional morphologies of rice plant at both organ and individual levels is achieved. The experimental results showed that the proposed methods of modeling the three-dimensional shapes of organs and simulating the growth of rice plant are feasible and effective, and the generated three-dimensional images are realistic.

  5. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  6. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  7. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany); Tong, Ning-Hua [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, 76128 Karlsruhe (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg, 86135 Augsburg (Germany)

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  8. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    Science.gov (United States)

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  9. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  10. Renormalization, conformal ward identities and the origin of a conformal anomaly pole

    Science.gov (United States)

    Corianò, Claudio; Maglio, Matteo Maria

    2018-06-01

    We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.

  11. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    Science.gov (United States)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  12. Implementation of rigorous renormalization group method for ground space and low-energy states of local Hamiltonians

    Science.gov (United States)

    Roberts, Brenden; Vidick, Thomas; Motrunich, Olexei I.

    2017-12-01

    The success of polynomial-time tensor network methods for computing ground states of certain quantum local Hamiltonians has recently been given a sound theoretical basis by Arad et al. [Math. Phys. 356, 65 (2017), 10.1007/s00220-017-2973-z]. The convergence proof, however, relies on "rigorous renormalization group" (RRG) techniques which differ fundamentally from existing algorithms. We introduce a practical adaptation of the RRG procedure which, while no longer theoretically guaranteed to converge, finds matrix product state ansatz approximations to the ground spaces and low-lying excited spectra of local Hamiltonians in realistic situations. In contrast to other schemes, RRG does not utilize variational methods on tensor networks. Rather, it operates on subsets of the system Hilbert space by constructing approximations to the global ground space in a treelike manner. We evaluate the algorithm numerically, finding similar performance to density matrix renormalization group (DMRG) in the case of a gapped nondegenerate Hamiltonian. Even in challenging situations of criticality, large ground-state degeneracy, or long-range entanglement, RRG remains able to identify candidate states having large overlap with ground and low-energy eigenstates, outperforming DMRG in some cases.

  13. c-function and central charge of the sine-Gordon model from the non-perturbative renormalization group flow

    Directory of Open Access Journals (Sweden)

    V. Bacsó

    2015-12-01

    Full Text Available In this paper we study the c-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative renormalization group flow gives access to the central charges of the model in the fixed points. The results at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2<8π to the infra-red limit is in good quantitative agreement with the expected Δc=1 result. The behavior of the c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i.e. going beyond local potential approximation is crucial to get sensible results even when a single frequency is used.

  14. Renormalization Group scale-setting in astrophysical systems

    Science.gov (United States)

    Domazet, Silvije; Štefančić, Hrvoje

    2011-09-01

    A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.

  15. Renormalization Group scale-setting in astrophysical systems

    International Nuclear Information System (INIS)

    Domazet, Silvije; Stefancic, Hrvoje

    2011-01-01

    A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.

  16. Matrix product density operators: Renormalization fixed points and boundary theories

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)

    2017-03-15

    We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).

  17. E-cigarette marketing and older smokers: road to renormalization.

    Science.gov (United States)

    Cataldo, Janine K; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas

    2015-05-01

    To describe older smokers' perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking.

  18. Renormalization group procedure for potential −g/r2

    Directory of Open Access Journals (Sweden)

    S.M. Dawid

    2018-02-01

    Full Text Available Schrödinger equation with potential −g/r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r=0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.

  19. Renormalization group approach to causal bulk viscous cosmological models

    International Nuclear Information System (INIS)

    Belinchon, J A; Harko, T; Mak, M K

    2002-01-01

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor

  20. Computing the effective action with the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Codello, Alessandro [CP3-Origins and the Danish IAS University of Southern Denmark, Odense (Denmark); Percacci, Roberto [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Rachwal, Leslaw [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Tonero, Alberto [ICTP-SAIFR and IFT, Sao Paulo (Brazil)

    2016-04-15

    The ''exact'' or ''functional'' renormalization group equation describes the renormalization group flow of the effective average action Γ{sub k}. The ordinary effective action Γ{sub 0} can be obtained by integrating the flow equation from an ultraviolet scale k = Λ down to k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. (orig.)

  1. Strong-Weak CP Hierarchy from Non-Renormalization Theorems

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, Gudrun

    2002-01-28

    We point out that the hierarchy between the measured values of the CKM phase and the strong CP phase has a natural origin in supersymmetry with spontaneous CP violation and low energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the strong CP phase is protected by an exact non-renormalization theorem while the CKM phase is not. We present explicit examples of models which exploit this fact and discuss corrections to the non-renormalization theorem in the presence of supersymmetry breaking. This framework for solving the strong CP problem has generic predictions for the superpartner spectrum, for CP and flavor violation, and predicts a preferred range of values for electric dipole moments.

  2. Scaling algebras and renormalization group in algebraic quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Verch, R.

    1995-01-01

    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)

  3. The density-matrix renormalization group: a short introduction.

    Science.gov (United States)

    Schollwöck, Ulrich

    2011-07-13

    The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.

  4. E-cigarette Marketing and Older Smokers: Road to Renormalization

    Science.gov (United States)

    Cataldo, Janine K.; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas

    2015-01-01

    Objectives To describe older smokers’ perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Methods Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Results Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. Conclusions To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking. PMID:25741681

  5. One-loop renormalization of Lee-Wick gauge theory

    International Nuclear Information System (INIS)

    Grinstein, Benjamin; O'Connell, Donal

    2008-01-01

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theory than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.

  6. On the renormalization of operator products: the scalar gluonic case

    International Nuclear Information System (INIS)

    Zoller, Max F.

    2016-01-01

    In this paper we study the renormalization of the product of two operators O 1 =−(1/4)G μν G μν in QCD. An insertion of two such operators O 1 (x)O 1 (0) into a Greens function produces divergent contact terms for x→0. In the course of the computation of the operator product expansion (OPE) of the correlator of two such operators i∫ d 4 x e iqx T{ O 1 (x)O 1 (0)} to three-loop order http://dx.doi.org/10.1007/JHEP12(2012)119; http://dx.doi.org/10.1007/JHEP10(2014)169 we discovered that divergent contact terms remain not only in the leading Wilson coefficient C 0 , which is just the VEV of the correlator, but also in the Wilson coefficient C 1 in front of O 1 . As this correlator plays an important role for example in QCD sum rules a full understanding of its renormalization is desireable. This work explains how the divergences encountered in higher orders of an OPE of this correlator should be absorbed in counterterms and derives an additive renormalization constant for C 1 from first principles and to all orders in perturnbation theory. The method to derive the renormalization of this operator product is an extension of the ideas of V. Spiridonov, Anomalous dimension of g μν 2 and β-function, Preprint IYAI-P-0378 (1984). and can be generalized to other cases.

  7. Quasi-renormalization of the axial vector model

    International Nuclear Information System (INIS)

    Schweda, M.

    1979-01-01

    Using the regulator-free BPHZL renormalization scheme the problem of anomalies in a massive axial vector meson model is reinvestigated. The Adler-Bardeen-Bell-Jackiw anomaly introduces some impressive modifications: the nontrivial self-energy and the counterterm of the longitudinal part of the axial vector field depend on the anomaly via the anomalous Ward identity. The investigations are based on a Fermi-type gauge. (author)

  8. Fierz transformations and renormalization schemes for fourquark operators

    Directory of Open Access Journals (Sweden)

    Garron Nicolas

    2018-01-01

    Full Text Available It has been shown that the choice of renormalization scheme is crucial for four-quark operators, in particular for neutral kaon mixing beyond the Standard Model. In the context of SMOM schemes, the choice of projector is not unique and is part of the definition of the renormalisation scheme. I present the non-diagonal Fierz relations which relate some of these projectors.

  9. Evaluation of spectral zeta-functions with the renormalization group

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Li, Shanshan

    2017-01-01

    We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)

  10. Disordered systems and the functional renormalization group, a pedagogical introduction

    International Nuclear Information System (INIS)

    Wiese, K.J.

    2002-01-01

    In this article, we review basic facts about disordered systems, especially the existence of many metastable states and and the resulting failure of dimensional reduction. Besides techniques based on the Gaussian variational method and replica-symmetry breaking (RSB), the functional renormalization group (FRG) is the only general method capable of attacking strongly disordered systems. We explain the basic ideas of the latter method and why it is difficult to implement. We finally review current progress for elastic manifolds in disorder (Author)

  11. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  12. Renormalization group, principle of invariance and functional automodelity

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1981-01-01

    There exists a remarkable identity of functional equations describing the property of functional automodelity in diverse branches of physics: renormalization group equations in quantum field theory, functional equations of the invariance principle of the one-dimensional transport theory and some others. The origin of this identity is investigated. It is shown that the structure of these equations reflects the simple and general property of transitivity with respect to the way of fixatio of initial on effective degrees of freedom [ru

  13. Tadpole renormalization and relativistic corrections in lattice NRQCD

    Science.gov (United States)

    Shakespeare, Norman H.; Trottier, Howard D.

    1998-08-01

    We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.

  14. The Bogolyubov renormalization group in theoretical and mathematical physics

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1999-01-01

    This text follows the line of a talk on Ringberg symposium dedicated to Wolfhart Zimmermann 70th birthday. The historical overview (Part I) partially overlaps with corresponding text of my previous commemorative paper - see Ref. [6] in the list. At the same time the second part includes some fresh results in QFT (Sect. 2.1.) and summarizes (Sect. 2.4) an impressive recent progress of the 'QFT renormalization group' application in mathematical physics

  15. Renormalization-group flows and charge transmutation in string theory

    International Nuclear Information System (INIS)

    Orlando, D.; Petropoulos, P.M.; Sfetsos, K.

    2006-01-01

    We analyze the behaviour of heterotic squashed-Wess-Zumino-Witten backgrounds under renormalization-group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also address the question of instabilities created by the presence of closed time-like curves in string backgrounds. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Renormalization, unstable manifolds, and the fractal structure of mode locking

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.

    1985-01-01

    The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed

  17. Temperature renormalization group approach to spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Manesis, E.; Sakakibara, S.

    1985-01-01

    We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)

  18. Nucleotide insertion initiated by van der Waals interaction during ...

    Indian Academy of Sciences (India)

    renormalized van der Waals (vdW) interaction of a stronger type, the ..... can be used to determine the electrostatic dipole–dipole, .... water molecule and a surface oxygen atom. ..... understand proteins electronic interaction.54 Here, we.

  19. Renormalization group study of scalar field theories

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Hasenfratz, P.

    1986-01-01

    An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)

  20. Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    Science.gov (United States)

    Panagopoulos, Haralambos; Spanoudes, Gregoris

    2018-03-01

    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].

  1. One-loop renormalization of a gravity-scalar system

    Energy Technology Data Exchange (ETDEWEB)

    Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)

    2017-05-15

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  2. Renormalization group fixed points of foliated gravity-matter systems

    Energy Technology Data Exchange (ETDEWEB)

    Biemans, Jorn [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Platania, Alessia [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Department of Physics and Astronomy, University of Catania,Via S. Sofia 63, 95123 Catania (Italy); INFN, Catania section,Via S. Sofia 64, 95123, Catania (Italy); INAF, Catania Astrophysical Observatory,Via S. Sofia 78, 95123, Catania (Italy); Saueressig, Frank [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2017-05-17

    We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) “time”-direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton’s constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d{sub g}, d{sub λ}. We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.

  3. One-loop renormalization of a gravity-scalar system

    International Nuclear Information System (INIS)

    Park, I.Y.

    2017-01-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)

  4. One-loop renormalization of a gravity-scalar system

    Science.gov (United States)

    Park, I. Y.

    2017-05-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.

  5. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter

    Science.gov (United States)

    Xing, Zhi-zhong; Zhou, Shun; Zhou, Ye-Ling

    2018-05-01

    We borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation experiments. Taking the matter parameter a≡ 2√{2}{G}F{N}_eE to be an arbitrary scale-like variable with N e being the net electron number density and E being the neutrino beam energy, we derive a complete set of differential equations for the effective neutrino mixing matrix V and the effective neutrino masses {\\tilde{m}}_i (for i = 1 , 2 , 3). Given the standard parametrization of V , the RGEs for {{\\tilde{θ}}_{12}, {\\tilde{θ}}_{13}, {\\tilde{θ}}_{23}, \\tilde{δ}} in matter are formulated for the first time. We demonstrate some useful differential invariants which retain the same form from vacuum to matter, including the well-known Naumov and Toshev relations. The RGEs of the partial μ- τ asymmetries, the off-diagonal asymmetries and the sides of unitarity triangles of V are also obtained as a by-product.

  6. Physics implications of flat directions in free fermionic superstring models. II. Renormalization group analysis

    International Nuclear Information System (INIS)

    Cleaver, G.; Cvetic, M.; Everett, L.; Langacker, P.; Wang, J.; Espinosa, J.R.; Everett, L.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of a previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional U(1) ' as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable Z-Z ' hierarchy, M Z ' ∼O(1 TeV) and 10 12 GeV for electroweak and intermediate scale U(1) ' symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, including massless exotic fermions, but has an interesting d-quark hierarchy and associated CKM matrix in one case. There are (some) non-canonical effective μ terms, which lead to a non-minimal Higgs sector with more than two Higgs doublets involved in the symmetry breaking, and a rich structure of Higgs particles, charginos, and neutralinos, some of which, however, are massless or ultralight. In the electroweak scale cases the scale of supersymmetry breaking is set by the Z ' mass, with the sparticle masses in the several TeV range. copyright 1999 The American Physical Society

  7. Renormalization-group improved fully differential cross sections for top pair production

    International Nuclear Information System (INIS)

    Broggio, A.; Papanastasiou, A.S.; Signer, A.; Zuerich Univ.

    2014-07-01

    We extend approximate next-to-next-to-leading order results for top-pair production to include the semi-leptonic decays of top quarks in the narrow-width approximation. The new hard-scattering kernels are implemented in a fully differential parton-level Monte Carlo that allows for the study of any IR-safe observable constructed from the momenta of the decay products of the top. Our best predictions are given by approximate NNLO corrections in the production matched to a fixed order calculation with NLO corrections in both the production and decay subprocesses. Being fully differential enables us to make comparisons between approximate results derived via different (PIM and 1PI) kinematics for arbitrary distributions. These comparisons reveal that the renormalization-group framework, from which the approximate results are derived, is rather robust in the sense that applying a realistic error estimate allows us to obtain a reliable prediction with a reduced theoretical error for generic observables and analysis cuts.

  8. Progress in realistic LOCA analysis

    International Nuclear Information System (INIS)

    Young, M.Y.; Bajorek, S.M.; Ohkawa, K.

    2004-01-01

    In 1988 the USNRC revised the ECCS rule contained in Appendix K and Section 50.46 of 10 CFR Part 50, which governs the analysis of the Loss Of Coolant Accident (LOCA). The revised regulation allows the use of realistic computer models to calculate the loss of coolant accident. In addition, the new regulation allows the use of high probability estimates of peak cladding temperature (PCT), rather than upper bound estimates. Prior to this modification, the regulations were a prescriptive set of rules which defined what assumptions must be made about the plant initial conditions and how various physical processes should be modeled. The resulting analyses were highly conservative in their prediction of the performance of the ECCS, and placed tight constraints on core power distributions, ECCS set points and functional requirements, and surveillance and testing. These restrictions, if relaxed, will allow for additional economy, flexibility, and in some cases, improved reliability and safety as well. For example, additional economy and operating flexibility can be achieved by implementing several available core and fuel rod designs to increase fuel discharge burnup and reduce neutron flux on the reactor vessel. The benefits of application of best estimate methods to LOCA analyses have typically been associated with reductions in fuel costs, resulting from optimized fuel designs, or increased revenue from power upratings. Fuel cost savings are relatively easy to quantify, and have been estimated at several millions of dollars per cycle for an individual plant. Best estimate methods are also likely to contribute significantly to reductions in O and M costs, although these reductions are more difficult to quantify. Examples of O and M cost reductions are: 1) Delaying equipment replacement. With best estimate methods, LOCA is no longer a factor in limiting power levels for plants with high tube plugging levels or degraded safety injection systems. If other requirements for

  9. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  10. Ground states of linear rotor chains via the density matrix renormalization group

    Science.gov (United States)

    Iouchtchenko, Dmitri; Roy, Pierre-Nicholas

    2018-04-01

    In recent years, experimental techniques have enabled the creation of ultracold optical lattices of molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low temperature has a transition between ordered and disordered phases. We use the density matrix renormalization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further evidence of the phase transition in the form of a diverging entanglement entropy. We also propose two methods and present some first steps toward rotational spectra of such molecular assemblies using DMRG. The present work showcases the power of DMRG in this new context of interacting molecular rotors and opens the door to the study of fundamental questions regarding criticality in systems with continuous degrees of freedom.

  11. In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem

    Science.gov (United States)

    Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei

    We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.

  12. Negative norm states in de Sitter space and QFT without renormalization procedure

    International Nuclear Information System (INIS)

    Takook, M.V.

    2002-01-01

    In recent papers, 1,2 it has been shown that the presence of negative norm states or negative frequency solutions are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers the advantage of eliminating any ultraviolet divergence in the vacuum energy 2 and infrared divergence in the two point function. 3 We attempt here to extend this method to the interacting quantum field in Minkowski space-time. As an illustration of the procedure, we consider the λϕ 4 theory in Minkowski space-time. The mathematical consequences of this method is the disappearance of the ultraviolet divergence to the one-loop approximation. This means, the effect of these auxiliary negative norm states is to allow an automatic renormalization of the theory in this approximation. (author)

  13. Singular solutions of renormalization group equations and the symmetry of the lagrangian

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Shirokov, D.V.

    1975-01-01

    On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields

  14. Renormalized trajectory for non-linear sigma model and improved scaling behaviour

    International Nuclear Information System (INIS)

    Guha, A.; Okawa, M.; Zuber, J.B.

    1984-01-01

    We apply the block-spin renormalization group method to the O(N) Heisenberg spin model. Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(infinite) in two dimensions. Four finite N models, we choose a four-parameter action near the large-N renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum limit by performing Monte Carlo simulation of O(3) and O(4) models. (orig.)

  15. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  16. Renormalization group-theoretic approach to electron localization in disordered systems

    International Nuclear Information System (INIS)

    Kumar, N.; Heinrichs, J.

    1977-06-01

    The localization problem for the Anderson tight-binding model with site-diagonal (gaussian) disorder is studied, using a previously established analogy between this problem and the statistical mechanics of a zero-component classical field. The equivalent free-energy functional turns out to have complex coefficients in the bilinear terms but involves a real repulsive quartic interaction. The averaged one-electron propagator corresponds to the two-point correlation function for the equivalent statistical problem and the critical point gives the mobility edge, which is identified with the (real) fixed point energy of the associated renormalization group. Since for convergence reasons the conventional perturbative treatment of Wilson's formula is invalid, it is resorted to a non-perturbative approach which leads to a physical fixed point corresponding to a repulsive quartic interaction. The results for the mobility edge in three dimensions and for the critical disorder for an Anderson transition in two dimensions agree well with previous detailed predictions. The critical indices describing the approach of the transition at the mobility edge of various physical quantities, within the epsilon-expansion are also discussed. The more general problem where both diagonal and off-diagonal disorder is present in the Anderson hamiltonian is considered. In this case it is shown that the Hamilton function for the equivalent zero-component classical field model involves an additional biquadratic exchange term. From a simple generalization of Wilson's recursion relation and its non-perturbative solution explicit expressions for the mobility edges for weak diagonal and off-diagonal disorder in two and three dimensions are obtained. Our treatment casts doubts on the validity of recent conclusions about electron localization based on the renormalization group study of the nm-component spin model

  17. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  18. Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-04-28

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  19. The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)

  20. Renormalization of the new trajectory in the unitarized conventional dual model

    International Nuclear Information System (INIS)

    Quiros, M.

    1978-08-01

    The contribution of one-loop planar diagrams to the two-reggeon two-particle amplitude is derived. Its regge limit splits into two separate contributions which must be interpreted as renormalization effects, to order g 2 , of the α and β trajectories. It is shown that the Neveu-Scherk renormalization prescription is able to render finite both contributions. The intercept of the β trajectory is shifted from its bare value by the renormalization procedure, whereas that of the α trajectrory is not renormalized as it was required by the gauge invariance of dual theories

  1. Unique determination of the effective potential in terms of renormalization group functions

    International Nuclear Information System (INIS)

    Chishtie, F. A.; Hanif, T.; McKeon, D. G. C.; Steele, T. G.

    2008-01-01

    The perturbative effective potential V in the massless λφ 4 model with a global O(N) symmetry is uniquely determined to all orders by the renormalization group functions alone when the Coleman-Weinberg renormalization condition (d 4 V/dφ 4 )| φ=μ =λ is used, where μ represents the renormalization scale. Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions. Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions to V. An essential element of this analysis is a conversion of the renormalization group functions in the Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the explicit five-loop effective potential is obtained from the known five-loop MS renormalization group functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-logarithm contributions to V. Extensions of these results to massless scalar QED are also presented. Because massless scalar QED has two couplings, conversion of the renormalization group functions from the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group methods.

  2. Transformation of renormalization groups in 2N-component fermion hierarchical model

    International Nuclear Information System (INIS)

    Stepanov, R.G.

    2006-01-01

    The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru

  3. Renormalization of the γ-ray strength functions of light nuclei

    International Nuclear Information System (INIS)

    Canbula, B.; Ersan, S.; Babacan, H.

    2015-01-01

    γ-ray strength function is the key input for the photonuclear reactions, which have a special astrophysical importance, and should be renormalized by using the nuclear level density for calculating the theoretical average radiative capture width, but performing such renormalization is challenging for light nuclei. With this motivation, recently introduced level density parameter formula including collective effects is used to calculate the average radiative capture width of light nuclei, and therefore to renormalize their γ-ray strength functions. Obtained normalization factors are tested in (n, γ) reactions for the necessity of renormalization for light nuclei. (author)

  4. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  5. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  6. Sotsialistlik realist Keskküla

    Index Scriptorium Estoniae

    1998-01-01

    Londonis 1998. a. ilmunud inglise kunstikriitiku Matthew Cullerne Bowni monograafias "Socialist Realist Painting" on eesti kunstnikest Enn Põldroos, Nikolai Kormashov, Ando Keskküla, Kormashovi ja Keskküla maalide reproduktsioonid

  7. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  8. Renormalization group flow of scalar models in gravity

    International Nuclear Information System (INIS)

    Guarnieri, Filippo

    2014-01-01

    In this Ph.D. thesis we study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Horava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson's renormalization group. In particular we quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω=0 in the local potential approximation. Finally, we investigate, using a perturbative RG scheme, the asymptotic freedom of the Horava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton's constant to a marginal coupling and explicitly preserves unitarity. In particular we evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.

  9. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Fuh Chuo, Evaristus

    2013-04-15

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}>{Delta}{sub 0})=k{sub B} ln 3, and the 2CK ground state value, S(0)=k{sub B} ln {radical}(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-{Delta}{sub 0} plane. The Kondo temperature T{sub K} shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet

  10. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    International Nuclear Information System (INIS)

    Fuh Chuo, Evaristus

    2013-04-01

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy Δ 0 . When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T K 0 )=k B ln 2 between the high-T value, S(T>>Δ 0 )=k B ln 3, and the 2CK ground state value, S(0)=k B ln √(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-Δ 0 plane. The Kondo temperature T K shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet. In a wide range of parameter values this stabilizes the single

  11. Non-renormalization theorems andN=2 supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  12. Studies in the renormalization-prescription dependence of perturbative calculations

    International Nuclear Information System (INIS)

    Celmaster, W.; Sivers, D.

    1981-01-01

    Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion parameter which reduces the magnitude of high-order corrections. We give explicit arguments suggesting that a choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD and QED are used to illustrate these arguments, and we also discuss possibilities for refining them

  13. On the renormalization group flow in two dimensional superconformal models

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian

    2014-01-01

    We extend the results on the RG flow in the next to leading order to the case of the supersymmetric minimal models SM p for p≫1. We explain how to compute the NS and Ramond fields conformal blocks in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination expressing the infrared limit of these fields in term of the IR theory SM p−2 is exactly the same as those of the nonsupersymmetric minimal theory

  14. Renormalization group approach to Sudakov resummation in prompt photon production

    International Nuclear Information System (INIS)

    Bolzoni, Paolo; Forte, Stefano; Ridolfi, Giovanni

    2005-01-01

    We prove the all-order exponentiation of soft logarithmic corrections to prompt photon production in hadronic collisions, by generalizing an approach previously developed in the context of Drell-Yan production and deep-inelastic scattering. We show that all large logs in the soft limit can be expressed in terms of two dimensionful variables, and we use the renormalization group to resum them. The resummed results that we obtain are more general though less predictive than those proposed by other groups, in that they can accommodate for violations of Sudakov factorization

  15. Renormalization and applications of baryon distribution amplitudes QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)

  16. Renormalization and applications of baryon distribution amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)

  17. Renormalizing the kinetic energy operator in elementary quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br

    2009-09-15

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  18. Exact renormalization group equation for the Lifshitz critical point

    Science.gov (United States)

    Bervillier, C.

    2004-10-01

    An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.

  19. Invariant renormalization method for nonlinear realizations of dynamical symmetries

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.

    1977-01-01

    The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported

  20. Renormalization and applications of baryon distribution amplitudes in QCD

    International Nuclear Information System (INIS)

    Rohrwild, Juergen Holger

    2009-01-01

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)

  1. Renormalization and applications of baryon distribution amplitudes QCD

    International Nuclear Information System (INIS)

    Rohrwild, Juergen Holger

    2009-01-01

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)

  2. Potts ferromagnet correlation length in hypercubic lattices: Renormalization - group approach

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Hauser, P.R.

    1984-01-01

    Through a real space renormalization group approach, the q-state Potts ferromagnet correlation length on hierarchical lattices is calculated. These hierarchical lattices are build in order to simulate hypercubic lattices. The high-and-low temperature correlation length asymptotic behaviours tend (in the Ising case) to the Bravais lattice correlation length ones when the size of the hierarchical lattice cells tends to infinity. It is conjectured that the asymptotic behaviours several values of q and d (dimensionality) so obtained are correct. Numerical results are obtained for the full temperature range of the correlation length. (Author) [pt

  3. Renormalization group equations in the stochastic quantization scheme

    International Nuclear Information System (INIS)

    Pugnetti, S.

    1987-01-01

    We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)

  4. Renormalizing the kinetic energy operator in elementary quantum mechanics

    International Nuclear Information System (INIS)

    Coutinho, F A B; Amaku, M

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form ψ(r) = u(r)/r, where u(0) ≠ 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  5. Entanglement renormalization, quantum error correction, and bulk causality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-04-07

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  6. Renormalized thermodynamic entropy of black holes in higher dimensions

    International Nuclear Information System (INIS)

    Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.

    1997-01-01

    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society

  7. Tensor renormalization group with randomized singular value decomposition

    Science.gov (United States)

    Morita, Satoshi; Igarashi, Ryo; Zhao, Hui-Hai; Kawashima, Naoki

    2018-03-01

    An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.

  8. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Zalavári, László [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)

    2017-04-19

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  9. Communication: Random phase approximation renormalized many-body perturbation theory

    International Nuclear Information System (INIS)

    Bates, Jefferson E.; Furche, Filipp

    2013-01-01

    We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations

  10. Source Localization by Entropic Inference and Backward Renormalization Group Priors

    Directory of Open Access Journals (Sweden)

    Nestor Caticha

    2015-04-01

    Full Text Available A systematic method of transferring information from coarser to finer resolution based on renormalization group (RG transformations is introduced. It permits building informative priors in finer scales from posteriors in coarser scales since, under some conditions, RG transformations in the space of hyperparameters can be inverted. These priors are updated using renormalized data into posteriors by Maximum Entropy. The resulting inference method, backward RG (BRG priors, is tested by doing simulations of a functional magnetic resonance imaging (fMRI experiment. Its results are compared with a Bayesian approach working in the finest available resolution. Using BRG priors sources can be partially identified even when signal to noise ratio levels are up to ~ -25dB improving vastly on the single step Bayesian approach. For low levels of noise the BRG prior is not an improvement over the single scale Bayesian method. Analysis of the histograms of hyperparameters can show how to distinguish if the method is failing, due to very high levels of noise, or if the identification of the sources is, at least partially possible.

  11. Dynamical renormalization group resummation of finite temperature infrared divergences

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Boyanovsky, D.; Simionato, M.; Holman, R.; Simionato, M.

    1999-01-01

    We introduce the method of dynamical renormalization group to study relaxation and damping out of equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse photons and leads to anomalous logarithmic relaxation of the form e -αampersandhthinsp;Tampersandhthinsp;tampersandhthinsp;ln[t/t 0 ] for hard momentum charged excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorporated consistently into the dynamical renormalization group yielding a picture of relaxation and damping phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and other types of resummation schemes. copyright 1999 The American Physical Society

  12. Renormalization group flow of entanglement entropy on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ami, Omer; Carmi, Dean [Raymond and Beverly Sackler Faculty of Exact Sciences School of Physics and Astronomy,Tel-Aviv University, Ramat-Aviv 69978 (Israel); Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)

    2015-08-12

    We explore entanglement entropy of a cap-like region for a generic quantum field theory residing in the Bunch-Davies vacuum on de Sitter space. Entanglement entropy in our setup is identical with the thermal entropy in the static patch of de Sitter, and we derive a simple relation between the vacuum expectation value of the energy-momentum tensor trace and the RG flow of entanglement entropy. In particular, renormalization of the bare couplings and logarithmic divergence of the entanglement entropy are interrelated in our setup. We confirm our findings by recovering known universal contributions for a free field theory deformed by a mass operator as well as obtain correct universal behaviour at the fixed points. Simple examples of entanglement entropy flows are elaborated in d=2,3,4. In three dimensions we find that while the renormalized entanglement entropy is stationary at the fixed points, it is not monotonic. We provide a computational evidence that the universal ‘area law’ for a conformally coupled scalar is different from the known result in the literature, and argue that this difference survives in the limit of flat space. Finally, we carry out the spectral decomposition of entanglement entropy flow and discuss its application to the F-theorem.

  13. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-01-01

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations

  14. The renormalized action principle in quantum field theory

    International Nuclear Information System (INIS)

    Balasin, H.

    1990-03-01

    The renormalized action principle holds a central position in field theory, since it offers a variety of applications. The main concern of this work is the proof of the action principle within the so-called BPHZ-scheme of renormalization. Following the classical proof given by Lam and Lowenstein, some loopholes are detected and closed. The second part of the work deals with the application of the action principle to pure Yang-Mills-theories within the axial gauge (n 2 ≠ 0). With the help of the action principle we investigate the decoupling of the Faddeev-Popov-ghost-fields from the gauge field. The consistency of this procedure, suggested by three-graph approximation, is proven to survive quantization. Finally we deal with the breaking of Lorentz-symmetry caused by the presence of the gauge-direction n. Using BRST-like techniques and the semi-simplicity of the Lorentz-group, it is shown that no new breakings arise from quantization. Again the main step of the proof is provided by the action principle. (Author, shortened by G.Q.)

  15. Effective field renormalization group approach for Ising lattice spin systems

    Science.gov (United States)

    Fittipaldi, Ivon P.

    1994-03-01

    A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.

  16. Renormalized sum rules for structure functions of heavy meson decays

    International Nuclear Information System (INIS)

    Grozin, A.G.; Korchemsky, G.P.

    1996-01-01

    We consider the properties of the structure functions of inclusive heavy meson decays B→X c and treat the c quark mass as a free parameter. We show that in two extreme cases of heavy and light c quarks the structure functions of heavy-heavy and heavy-light transitions are given by a Fourier transform of the matrix elements of Wilson lines containing a timelike and a lightlike segment, correspondingly. Using the renormalization properties of Wilson lines we find the dependence of the structure functions on the factorization scale, the structure function of the heavy-heavy transition is renormalized multiplicatively, while that of the heavy-light transition obeys the GLAP-type evolution equation. We propose a generalization of the sum rules for the moments of the structure functions (Bjorken, Voloshin, and the open-quote open-quote third close-quote close-quote sum rules) with a soft exponential factorization cutoff, which correctly incorporates both perturbative and nonperturbative effects. We analyze nonperturbative corrections by first considering infrared renormalon contributions to the Wilson lines. Uncertainties induced by the leading renormalon pole at u=1/2 are exactly canceled by a similar uncertainty in the heavy quark pole mass. The leading nonperturbative corrections associated with the next renormalon at u=1 are parametrized by the matrix element μ π 2 which is proportional to the heavy quark kinetic energy. copyright 1996 The American Physical Society

  17. Dynamical renormalization group approach to relaxation in quantum field theory

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de

    2003-01-01

    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths

  18. A non-renormalization theorem for conformal anomalies

    International Nuclear Information System (INIS)

    Petkou, Anastasios; Skenderis, Kostas

    1999-01-01

    We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields

  19. Phase structure of NJL model with weak renormalization group

    Science.gov (United States)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  20. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    Science.gov (United States)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.