Renormalization-group flows and fixed points in Yukawa theories
DEFF Research Database (Denmark)
Mølgaard, Esben; Shrock, R.
2014-01-01
We study renormalization-group flows in Yukawa theories with massless fermions, including determination of fixed points and curves that separate regions of different flow behavior. We assess the reliability of perturbative calculations for various values of Yukawa coupling y and quartic scalar....... In the regime of weak couplings where the perturbative calculations are most reliable, we find that the theories have no nontrivial fixed points, and the flow is toward a free theory in the infrared....
On a new fixed point of the renormalization group operator for area-preserving maps
Energy Technology Data Exchange (ETDEWEB)
Fuchss, K. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Wurm, A. [Department of Physical and Biological Sciences, Western New England College, Springfield, MA 01119 (United States); Morrison, P.J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: morrison@physics.utexas.edu
2007-07-02
The breakup of the shearless invariant torus with winding number {omega}=2-1 is studied numerically using Greene's residue criterion in the standard nontwist map. The residue behavior and parameter scaling at the breakup suggests the existence of a new fixed point of the renormalization group operator (RGO) for area-preserving maps. The unstable eigenvalues of the RGO at this fixed point and the critical scaling exponents of the torus at breakup are computed.
Non-perturbative fixed points and renormalization group improved effective potential
Directory of Open Access Journals (Sweden)
A.G. Dias
2014-12-01
Full Text Available The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated with a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun-Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Vojta, Matthias [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128 Karlsruhe (Germany)
2005-11-02
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.
Lee, Hyun-Jung; Bulla, Ralf; Vojta, Matthias
2005-11-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the particle-hole symmetric soft-gap Anderson model. The model displays two stable phases whose fixed points can be built up of non-interacting single-particle states. In contrast, the quantum phase transitions turn out to be described by interacting fixed points, and their excitations cannot be described in terms of free particles. We show that the structure of the many-body spectrum of these critical fixed points can be understood using renormalized perturbation theory close to certain values of the bath exponents which play the role of critical dimensions. Contact is made with perturbative renormalization group calculations for the soft-gap Anderson and Kondo models. A complete description of the quantum critical many-particle spectra is achieved using suitable marginal operators; technically this can be understood as epsilon-expansion for full many-body spectra.
Many-body localization in one dimension as a dynamical renormalization group fixed point.
Vosk, Ronen; Altman, Ehud
2013-02-08
We formulate a dynamical real space renormalization group (RG) approach to describe the time evolution of a random spin-1/2 chain, or interacting fermions, initialized in a state with fixed particle positions. Within this approach we identify a many-body localized state of the chain as a dynamical infinite randomness fixed point. Near this fixed point our method becomes asymptotically exact, allowing analytic calculation of time dependent quantities. In particular, we explain the striking universal features in the growth of the entanglement seen in recent numerical simulations: unbounded logarithmic growth delayed by a time inversely proportional to the interaction strength. This is in striking contrast to the much slower entropy growth as loglogt found for noninteracting fermions with bond disorder. Nonetheless, even the interacting system does not thermalize in the long time limit. We attribute this to an infinite set of approximate integrals of motion revealed in the course of the RG flow, which become asymptotically exact conservation laws at the fixed point. Hence we identify the many-body localized state with an emergent generalized Gibbs ensemble.
Nishiyama, Yoshihiro
2006-07-01
Extending the parameter space of the three-dimensional (d=3) Ising model, we search for a regime of eliminated corrections to finite-size scaling. For that purpose, we consider a real-space renormalization group (RSRG) with respect to a couple of clusters simulated with the transfer-matrix (TM) method. Imposing a criterion of "scale invariance," we determine a location of the nontrivial RSRG fixed point. Subsequent large-scale TM simulation around the fixed point reveals eliminated corrections to finite-size scaling. As anticipated, such an elimination of corrections admits systematic finite-size-scaling analysis. We obtained the estimates for the critical indices as nu=0.6245(28) and y(h)=2.4709(73). As demonstrated, with the aid of the preliminary RSRG survey, the transfer-matrix simulation provides rather reliable information on criticality even for d=3, where the tractable system size is restricted severely.
Arnold, Michael; Langenbruch, Tobias; Kroha, Johann
2007-11-02
We propose a physical realization of the two-channel Kondo (2CK) effect, where a dynamical defect in a metal has a unique ground state and twofold degenerate excited states. In a wide range of parameters the interactions with the electrons renormalize the excited doublet downward below the bare defect ground state, thus stabilizing the 2CK fixed point. In addition to the Kondo temperature T(K) the three-state defect exhibits another low-energy scale, associated with ground-to-excited-state transitions, which can be exponentially smaller than T(K). Using the perturbative nonequilibrium renormalization group we demonstrate that this can provide the long-sought explanation of the sharp conductance spikes observed by Ralph and Buhrman in ultrasmall metallic point contacts.
Chaotic renormalization-group trajectories
DEFF Research Database (Denmark)
Damgaard, Poul H.; Thorleifsson, G.
1991-01-01
, or in regions where the renormalization-group flow becomes chaotic. We present some explicit examples of these phenomena for the case of a Lie group valued spin-model analyzed by means of a variational real-space renormalization group. By directly computing the free energy of these models around the parameter......Under certain conditions, the renormalization-group flow of models in statistical mechanics can change dramatically under just very small changes of given external parameters. This can typically occur close to bifurcations of fixed points, close to the complete disappearance of fixed points...... regions in which such nontrivial modifications of the renormalization-group flow occur, we can extract the physical consequences of these phenomena....
Functional renormalization group analysis of the soft mode at the QCD critical point
Yokota, Takeru; Morita, Kenji
2016-01-01
We make an intensive investigation of the soft mode at the QCD critical point on the basis of the the functional renormalization group (FRG) method in the local potential approximation. We calculate the the spectral functions $\\rho_{\\sigma, \\pi}(\\omega, p)$ in the scalar ($\\sigma$) and pseudoscalar ($\\pi$) channels beyond the random phase approximation in the quark-meson model. At finite baryon chemical potential $\\mu$ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the $\\sigma$ channel has a support not only in the time-like ($\\omega > p$) and but also in the space-like ($\\omega < p$) regions, which correspond to the mesonic and the particle-hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the s...
Functional renormalization group analysis of the soft mode at the QCD critical point
Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji
2016-07-01
We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions ρ_{σ, π}(ω, p) in the scalar (σ) and pseudoscalar (π) channels beyond the random phase approximation in the quark-meson model. At finite baryon chemical potential μ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the σ channel has a support not only in the time-like (ω > p) but also in the space-like (ω position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the (ω, p) plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations ω_{σ.ph}(p), and it turns out that ω_{σ}(p) crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.
Magnetic Fixed Points and Emergent Supersymmetry
DEFF Research Database (Denmark)
Antipin, Oleg; Mojaza, Matin; Pica, Claudio;
2013-01-01
We establish in perturbation theory the existence of fixed points along the renormalization group flow for QCD with an adjoint Weyl fermion and scalar matter reminiscent of magnetic duals of QCD [1-3]. We classify the fixed points by analyzing their basin of attraction. We discover that among the...
On the renormalization group transformation for scalar hierarchical models
Energy Technology Data Exchange (ETDEWEB)
Koch, H. (Texas Univ., Austin (USA). Dept. of Mathematics); Wittwer, P. (Geneva Univ. (Switzerland). Dept. de Physique Theorique)
1991-06-01
We give a new proof for the existence of a non-Gaussian hierarchical renormalization group fixed point, using what could be called a beta-function for this problem. We also discuss the asymptotic behavior of this fixed point, and the connection between the hierarchical models of Dyson and Gallavotti. (orig.).
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.
Yokota, Takeru; Morita, Kenji
2016-01-01
We first review the method to calculate the spectral functions in the functional renormalization group (FRG) approach, which has been recently developed. We also provide the numerical stability conditions given by the present authors for a generic nonlinear evolution equation that are necessary for obtaining the accurate effective potential from the flow equation in the FRG. As an interesting example, we report the recent calculation of the spectral functions of the mesonic and particle-hole excitations using a chiral effective model of Quantum Chromodynamics (QCD); we extract the dispersion relations from them and try to reveal the nature of the soft modes at the QCD critical point (CP) where the phase transition is second order. Our result shows that a clear development and the softening of the phonon mode in the space-like region as the system approaches the CP; furthermore it turns out that the sigma mesonic mode once in the time-like region gets to merge with the phonon mode in the close vicinity of the ...
Renormalization group flows for the second Z{sub 5} parafermionic field theory
Energy Technology Data Exchange (ETDEWEB)
Dotsenko, Vladimir S. [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589. Universite Pierre et Marie Curie, Paris VI (France) and CNRS, Universite Denis Diderot, Paris VII, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: dotsenko@lpthe.jussieu.fr; Estienne, Benoit [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589. Universite Pierre et Marie Curie, Paris VI (France) and CNRS, Universite Denis Diderot, Paris VII, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: estienne@lpthe.jussieu.fr
2006-12-28
Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry Z{sub 5}. New fixed points are found and classified.
Singular Renormalization Group Equations
Minoru, HIRAYAMA; Department of Physics, Toyama University
1984-01-01
The possible behaviour of the effective charge is discussed in Oehme and Zimmermann's scheme of the renormalization group equation. The effective charge in an example considered oscillates so violently in the ultraviolet limit that the bare charge becomes indefinable.
Imaginary fixed points can be physical.
Zhong, Fan
2012-08-01
It has been proposed that a first-order phase transition driven to happen in the metastable region exhibits scaling and universality near an instability point controlled by an instability fixed point of a φ(3) theory. However, this fixed point has an imaginary value and the renormalization-group flow of the φ(3) coupling diverges at a finite scale. Here combining a momentum-space RG analysis and a nucleation theory near the spinodal point, we show that imaginary rather than real values are physical counterintuitively and thus the imaginary fixed point does control the scaling.
Cluster functional renormalization group
Reuther, Johannes; Thomale, Ronny
2014-01-01
Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a free expansion point of the action, the flow of the RG parameter Λ allows us to trace the evolution of the effective one- and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the noninteracting building blocks (i.e., decoupled spin clusters) are treated exactly, and the intercluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual two-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, the spin-triplet excitation energy, and quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.
Renormalization group circuits for gapless states
Swingle, Brian; McGreevy, John; Xu, Shenglong
2016-05-01
We show that a large class of gapless states are renormalization group fixed points in the sense that they can be grown scale by scale using local unitaries. This class of examples includes some theories with a dynamical exponent different from one, but does not include conformal field theories. The key property of the states we consider is that the ground-state wave function is related to the statistical weight of a local statistical model. We give several examples of our construction in the context of Ising magnetism.
The analytic renormalization group
Ferrari, Frank
2016-08-01
Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2 πk / β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct "Analytic Renormalization Group" linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk | < μ (with the possible exception of the zero mode G0), together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk | ≥ μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.
Fixed points and infrared completion of quantum gravity
Christiansen, Nicolai; Pawlowski, Jan M; Rodigast, Andreas
2012-01-01
The phase diagram of four-dimensional Einstein-Hilbert gravity is studied using Wilson's renormalization group. Smooth trajectories connecting the ultraviolet fixed point at short distances with attractive infrared fixed points at long distances are derived from the non-perturbative graviton propagator. Implications for the asymptotic safety conjecture and further results are discussed.
Improved Lattice Renormalization Group Techniques
Petropoulos, Gregory; Hasenfratz, Anna; Schaich, David
2013-01-01
We compute the bare step-scaling function $s_b$ for SU(3) lattice gauge theory with $N_f = 12$ massless fundamental fermions, using the non-perturbative Wilson-flow-optimized Monte Carlo Renormalization Group two-lattice matching technique. We use a short Wilson flow to approach the renormalized trajectory before beginning RG blocking steps. By optimizing the length of the Wilson flow, we are able to determine an $s_b$ corresponding to a unique discrete $\\beta$ function, after a few blocking steps. We carry out this study using new ensembles of 12-flavor gauge configurations generated with exactly massless fermions, using volumes up to $32^4$. The results are consistent with the existence of an infrared fixed point (IRFP) for all investigated lattice volumes and number of blocking steps. We also compare different renormalization schemes, each of which indicates an IRFP at a slightly different value of the bare coupling, as expected for an IR-conformal theory.
Renormalization group flows and anomalies
Komargodski, Zohar
2015-01-01
This chapter reviews various aspects of renormalization group flows and anomalies. The chapter considers specific Euclidean two-dimensional theories. Namely, the theories are invariant under translations and rotations in the two space directions. Here the chapter studies theories where, if possible, certain equations hold in fact also at coincident points. In other words, the chapter looks at theories where there is no local gravitational anomaly.
Fixed Point Actions for Lattice Fermions
Bietenholz, W
1994-01-01
The fixed point actions for Wilson and staggered lattice fermions are determined by iterating renormalization group transformations. In both cases a line of fixed points is found. Some points have very local fixed point actions. They can be used to construct perfect lattice actions for asymptotically free fermionic theories like QCD or the Gross-Neveu model. The local fixed point actions for Wilson fermions break chiral symmetry, while in the staggered case the remnant $U(1)_e \\otimes U(1)_o$ symmetry is preserved. In addition, for Wilson fermions a nonlocal fixed point is found that corresponds to free chiral fermions. The vicinity of this fixed point is studied in the Gross-Neveu model using perturbation theory.
Topologically twisted renormalization group flow and its holographic dual
Nakayama, Yu
2017-03-01
Euclidean field theories admit more general deformations than usually discussed in quantum field theories because of mixing between rotational symmetry and internal symmetry (also known as topological twist). Such deformations may be relevant, and if the subsequent renormalization group flow leads to a nontrivial fixed point, it generically gives rise to a scale invariant Euclidean field theory without conformal invariance. Motivated by an ansatz studied in cosmological models some time ago, we develop a holographic dual description of such renormalization group flows in the context of AdS /CFT . We argue that the nontrivial fixed points require fine-tuning of the bulk theory, in general, but remarkably we find that the O (3 ) Yang-Mills theory coupled with the four-dimensional Einstein gravity in the minimal manner supports such a background with the Euclidean anti-de Sitter metric.
Real space renormalization group theory of disordered models of glasses.
Angelini, Maria Chiara; Biroli, Giulio
2017-03-28
We develop a real space renormalization group analysis of disordered models of glasses, in particular of the spin models at the origin of the random first-order transition theory. We find three fixed points, respectively, associated with the liquid state, with the critical behavior, and with the glass state. The latter two are zero-temperature ones; this provides a natural explanation of the growth of effective activation energy scale and the concomitant huge increase of relaxation time approaching the glass transition. The lower critical dimension depends on the nature of the interacting degrees of freedom and is higher than three for all models. This does not prevent 3D systems from being glassy. Indeed, we find that their renormalization group flow is affected by the fixed points existing in higher dimension and in consequence is nontrivial. Within our theoretical framework, the glass transition results in an avoided phase transition.
Topologically twisted renormalization group flow and its holographic dual
Nakayama, Yu
2016-01-01
Euclidean field theories admit more general deformations than usually discussed in quantum field theories because of mixing between rotational symmetry and internal symmetry (a.k.a topological twist). Such deformations may be relevant, and if the subsequent renormalization group flow leads to a non-trivial fixed point, it generically gives rise to a scale invariant Euclidean field theory without conformal invariance. Motivated by an ansatz studied in cosmological models some time ago, we develop a holographic dual description of such renormalization group flows in the context of AdS/CFT. We argue that the non-trivial fixed points require fine-tuning of the bulk theory in general, but remarkably we find that the $O(3)$ Yang-Mills theory coupled with the four-dimensional Einstein gravity in the minimal manner supports such a background with the Euclidean AdS metric.
Magnetic Fixed Points and Emergent Supersymmetry
Antipin, Oleg; Pica, Claudio; Sannino, Francesco
2011-01-01
We establish the existence of fixed points for certain gauge theories candidate to be magnetic duals of QCD with one adjoint Weyl fermion. In the perturbative regime of the magnetic theory the existence of a very large number of fixed points is unveiled. We classify them by analyzing their basin of attraction. The existence of several nonsupersymmetric fixed points for the magnetic gauge theory lends further support towards the existence of gauge-gauge duality beyond supersymmetry. We also discover that among these very many fixed points there are supersymmetric ones emerging from a generic nonsupersymmetric renormalization group flow. We therefore conclude that supersymmetry naturally emerges as a fixed point theory from a nonsupersymmetric Lagrangian without the need for fine-tuning of the bare couplings. Our results suggest that supersymmetry can be viewed as an emergent phenomenon in field theory. In particular there should be no need for fine-tuning the bare couplings when performing Lattice simulations ...
Renormalization Scheme Dependence and the Renormalization Group Beta Function
Chishtie, F. A.; McKeon, D. G. C.
2016-01-01
The renormalization that relates a coupling "a" associated with a distinct renormalization group beta function in a given theory is considered. Dimensional regularization and mass independent renormalization schemes are used in this discussion. It is shown how the renormalization $a^*=a+x_2a^2$ is related to a change in the mass scale $\\mu$ that is induced by renormalization. It is argued that the infrared fixed point is to be a determined in a renormalization scheme in which the series expan...
Wavelet view on renormalization group
Altaisky, M V
2016-01-01
It is shown that the renormalization group turns to be a symmetry group in a theory initially formulated in a space of scale-dependent functions, i.e, those depending on both the position $x$ and the resolution $a$. Such theory, earlier described in {\\em Phys.Rev.D} 81(2010)125003, 88(2013)025015, is finite by construction. The space of scale-dependent functions $\\{ \\phi_a(x) \\}$ is more relevant to physical reality than the space of square-integrable functions $\\mathrm{L}^2(R^d)$, because, due to the Heisenberg uncertainty principle, what is really measured in any experiment is always defined in a region rather than point. The effective action $\\Gamma_{(A)}$ of our theory turns to be complementary to the exact renormalization group effective action. The role of the regulator is played by the basic wavelet -- an "aperture function" of a measuring device used to produce the snapshot of a field $\\phi$ at the point $x$ with the resolution $a$. The standard RG results for $\\phi^4$ model are reproduced.
Gutzwiller renormalization group
Lanatà, Nicola; Yao, Yong-Xin; Deng, Xiaoyu; Wang, Cai-Zhuang; Ho, Kai-Ming; Kotliar, Gabriel
2016-01-01
We develop a variational scheme called the "Gutzwiller renormalization group" (GRG), which enables us to calculate the ground state of Anderson impurity models (AIM) with arbitrary numerical precision. Our method exploits the low-entanglement property of the ground state of local Hamiltonians in combination with the framework of the Gutzwiller wave function and indicates that the ground state of the AIM has a very simple structure, which can be represented very accurately in terms of a surprisingly small number of variational parameters. We perform benchmark calculations of the single-band AIM that validate our theory and suggest that the GRG might enable us to study complex systems beyond the reach of the other methods presently available and pave the way to interesting generalizations, e.g., to nonequilibrium transport in nanostructures.
Renormalization Group Tutorial
Bell, Thomas L.
2004-01-01
Complex physical systems sometimes have statistical behavior characterized by power- law dependence on the parameters of the system and spatial variability with no particular characteristic scale as the parameters approach critical values. The renormalization group (RG) approach was developed in the fields of statistical mechanics and quantum field theory to derive quantitative predictions of such behavior in cases where conventional methods of analysis fail. Techniques based on these ideas have since been extended to treat problems in many different fields, and in particular, the behavior of turbulent fluids. This lecture will describe a relatively simple but nontrivial example of the RG approach applied to the diffusion of photons out of a stellar medium when the photons have wavelengths near that of an emission line of atoms in the medium.
Renormalization group approach to causal bulk viscous cosmological models
Energy Technology Data Exchange (ETDEWEB)
Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2002-06-07
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.
Lectures on the functional renormalization group method
Polonyi, J
2001-01-01
These introductory notes are about functional renormalization group equations and some of their applications. It is emphasised that the applicability of this method extends well beyond critical systems, it actually provides us a general purpose algorithm to solve strongly coupled quantum field theories. The renormalization group equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another version, due to J. Polchinski, is obtained by the method of collective coordinates and can be used for the resummation of the perturbation series. The genuinely non-perturbative evolution equation is obtained in a manner reminiscent of the Schwinger-Dyson equations. Two variants of this scheme are presented where the scale which determines the order of the successive elimination of the modes is extracted from external and internal spaces. The renormalization of composite operators is discussed briefly as an alternative way to arrive at the renormalization group equation. The scaling laws and fixed poin...
Contractor renormalization group and the Haldane conjecture
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin
2001-05-01
The contractor renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper [Phys. Rev. D 61, 034505 (2000)] I showed that the CORE method could be used to map a theory of free quarks and quarks interacting with gluons into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple CORE computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first-principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.
Renormalization group for evolving networks.
Dorogovtsev, S N
2003-04-01
We propose a renormalization group treatment of stochastically growing networks. As an example, we study percolation on growing scale-free networks in the framework of a real-space renormalization group approach. As a result, we find that the critical behavior of percolation on the growing networks differs from that in uncorrelated networks.
Information geometry and the renormalization group.
Maity, Reevu; Mahapatra, Subhash; Sarkar, Tapobrata
2015-11-01
Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here, we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality for both classical and quantum systems in a universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.
Rose, F.; Dupuis, N.
2017-01-01
Using a nonperturbative functional renormalization-group approach to the two-dimensional quantum O (N ) model, we compute the low-frequency limit ω →0 of the zero-temperature conductivity in the vicinity of the quantum critical point. Our results are obtained from a derivative expansion to second order of a scale-dependent effective action in the presence of an external (i.e., nondynamical) non-Abelian gauge field. While in the disordered phase the conductivity tensor σ (ω ) is diagonal, in the ordered phase it is defined, when N ≥3 , by two independent elements, σA(ω ) and σB(ω ) , respectively associated to SO (N ) rotations which do and do not change the direction of the order parameter. For N =2 , the conductivity in the ordered phase reduces to a single component σA(ω ) . We show that limω→0σ (ω ,δ ) σA(ω ,-δ ) /σq2 is a universal number, which we compute as a function of N (δ measures the distance to the quantum critical point, q is the charge, and σq=q2/h the quantum of conductance). On the other hand we argue that the ratio σB(ω →0 ) /σq is universal in the whole ordered phase, independent of N and, when N →∞ , equal to the universal conductivity σ*/σq at the quantum critical point.
Renormalization group flows for the second $Z_{N}$ parafermionic field theory for N odd
Dotsenko, V S; Dotsenko, Vladimir S.; Estienne, Benoit
2007-01-01
Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry $Z_{N}$, for N odd. New fixed points are found and classified.
Renormalization group flows for the second Z{sub N} parafermionic field theory for N odd
Energy Technology Data Exchange (ETDEWEB)
Dotsenko, Vladimir S. [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589, Universite Pierre et Marie Curie, Paris-6 (France) and CNRS, Universite Denis Diderot, Paris-7, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: dotsenko@lpthe.jussieu.fr; Estienne, Benoit [Laboratoire de Physique Theorique et Hautes Energies, Unite Mixte de Recherche UMR 7589, Universite Pierre et Marie Curie, Paris-6 (France) and CNRS, Universite Denis Diderot, Paris-7, Boite 126, Tour 25, 5eme etage, 4 place Jussieu, F-75252 Paris Cedex 05 (France)]. E-mail: estienne@lpthe.jussieu.fr
2007-07-23
Using the renormalization group approach, the Coulomb gas and the coset techniques, the effect of slightly relevant perturbations is studied for the second parafermionic field theory with the symmetry Z{sub N}, for N odd. New fixed points are found and classified.
Rose, Félix
2016-01-01
Using a nonperturbative functional renormalization-group approach to the two-dimensional quantum O($N$) model, we compute the low-frequency limit $\\omega\\to 0$ of the zero-temperature conductivity in the vicinity of the quantum critical point. Our results are obtained from a derivative expansion to second order of a scale-dependent effective action in the presence of an external (i.e., non-dynamical) non-Abelian gauge field. While in the disordered phase the conductivity tensor $\\sigma(\\omega)$ is diagonal, in the ordered phase it is defined, when $N\\geq 3$, by two independent elements, $\\sigma_{\\rm A}(\\omega)$ and $\\sigma_{\\rm B}(\\omega)$, respectively associated to SO($N$) rotations which do and do not change the direction of the order parameter. For $N=2$, the conductivity in the ordered phase reduces to a single component $\\sigma_{\\rm A}(\\omega)$. We show that $\\lim_{\\omega\\to 0}\\sigma(\\omega,\\delta)\\sigma_{\\rm A}(\\omega,-\\delta)/\\sigma_q^2$ is a universal number which we compute as a function of $N$ ($\\d...
Renormalization group flow of scalar models in gravity
Energy Technology Data Exchange (ETDEWEB)
Guarnieri, Filippo
2014-04-08
In this Ph.D. thesis we study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Horava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson's renormalization group. In particular we quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω=0 in the local potential approximation. Finally, we investigate, using a perturbative RG scheme, the asymptotic freedom of the Horava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton's constant to a marginal coupling and explicitly preserves unitarity. In particular we evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
Is Renormalized Entanglement Entropy Stationary at RG Fixed Points?
Klebanov, Igor R; Pufu, Silviu S; Safdi, Benjamin R
2012-01-01
The renormalized entanglement entropy (REE) across a circle of radius R has been proposed as a c-function in Poincar\\'e invariant (2+1)-dimensional field theory. A proof has been presented of its monotonic behavior as a function of R, based on the strong subadditivity of entanglement entropy. However, this proof does not directly establish stationarity of REE at conformal fixed points of the renormalization group. In this note we study the REE for the free massive scalar field theory near the UV fixed point described by a massless scalar. Our numerical calculation indicates that the REE is not stationary at the UV fixed point.
Renormalization group flows for the second Z{sub N} parafermionic field theory for N even
Energy Technology Data Exchange (ETDEWEB)
Estienne, B., E-mail: b.d.a.estienne@uva.n [LPTHE, CNRS, UPMC Universite Paris 6 (France); Instituut voor Theoretische Fysica, Universiteit van Amsterdam (Netherlands)
2010-07-26
Extending the results obtained in the case N odd, the effect of slightly relevant perturbations of the second parafermionic field theory with the symmetry Z{sub N} are studied for N even. The renormalization group equations, and their infra red fixed points, exhibit the same structure in both cases. In addition to the standard flow from the pth to the (p-2)th model, another fixed point corresponding to the (p-1)th model is found.
Renormalization group flows for the second $\\mathbb{Z}_{N}$ parafermionic field theory for $N$ even
Estienne, Benoit
2008-01-01
Extending the results obtained in the case $N$ odd, the effect of slightly relevant perturbations of the second parafermionic field theory with the symmetry $\\mathbb{Z}_{N}$, for $N$ even, are studied. The renormalization group equations, and their infra red fixed points exhibit the same structure in both cases. In addition to the standard flow from the $p$-th to the $(p-2)$-th model, another fixed point corresponding to the $(p-1)$-th model is found.
Renormalization group independence of Cosmological Attractors
Fumagalli, Jacopo
2017-06-01
The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
The Analytic Renormalization Group
Ferrari, Frank
2016-01-01
Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients $G_{k}$, $k\\in\\mathbb Z$, associated with the Matsubara frequencies $\
Tomboulis, E T
2007-01-01
We point out a general problem with the procedures commonly used to obtain improved actions from MCRG decimated configurations. Straightforward measurement of the couplings from the decimated configurations, by one of the known methods, can result into actions that do not correctly reproduce the physics on the undecimated lattice. This is because the decimated configurations are generally not representative of the equilibrium configurations of the assumed form of the effective action at the measured couplings. Curing this involves fine-tuning of the chosen MCRG decimation procedure, which is also dependent on the form assumed for the effective action. We illustrate this in decimation studies of the SU(2) LGT using Swendsen and Double Smeared Blocking decimation procedures. A single-plaquette improved action involving five group representations and free of this pathology is given.
The analytic renormalization group
Directory of Open Access Journals (Sweden)
Frank Ferrari
2016-08-01
Full Text Available Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k∈Z, associated with the Matsubara frequencies νk=2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk|<μ (with the possible exception of the zero mode G0, together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.
Generalized similarity, renormalization groups, and nonlinear clocks for multiscaling.
Park, M; O'Malley, D; Cushman, J H
2014-04-01
Fixed points of the renormalization group operator Rp,rX(t)≡X(rt)/rp are said to be p-self-similar. Here X(t) is an arbitrary stochastic process. The concept of a p-self-similar process is generalized via the renormalization group operator RF,GX(t)=F[X(G(t))], where F and G are bijections on (-∞,∞) and [0,∞), respectively. If X(t) is a fixed point of RF,G, then X(t) is said to be (F,G)-self-similar. We say Y(t) is (F,G)-X(t)-similar if RF,GX(t)=Y(t) in distribution. Exit time distributions and finite-size Lyapunov exponents were obtained for these latter processes. A power law multiscaling process is defined with a multipower-law clock. This process is employed to statistically represent diffusion in a nanopore, a monolayer fluid confined between atomically structured surfaces. The tools presented provide a straightforward method to statistically represent any multiscaling process in time.
High-precision thermodynamic and critical properties from tensor renormalization-group flows.
Hinczewski, Michael; Berker, A Nihat
2008-01-01
The recently developed tensor renormalization-group (TRG) method provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10(-5) along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D=24, corresponding to 4624-dimensional renormalization-group flows.
High-Precision Thermodynamic and Critical Properties from Tensor Renormalization-Group Flows
Hinczewski, Michael; Berker, A. Nihat
2008-03-01
The recently developed tensor renormalization-group (TRG) method [1] provides a highly precise technique for deriving thermodynamic and critical properties of lattice Hamiltonians. The TRG is a local coarse-graining transformation, with the elements of the tensor at each lattice site playing the part of the interactions that undergo the renormalization-group flows. These tensor flows are directly related [2] to the phase diagram structure of the infinite system, with each phase flowing to a distinct surface of fixed points. Fixed-point analysis and summation along the flows give the critical exponents, as well as thermodynamic functions along the entire temperature range. Thus, for the ferromagnetic triangular lattice Ising model, the free energy is calculated to better than 10-5 along the entire temperature range. Unlike previous position-space renormalization-group methods, the truncation (of the tensor index range D) in this general method converges under straightforward and systematic improvements. Our best results are easily obtained with D=24, corresponding to 4624-dimensional renormalization-group flows. [1] M. Levin and C.P. Nave, Phys. Rev. Lett. 99, 120601 (2007). [2] M. Hinczewski and A.N. Berker, arXiv:0709.2803v1 [cond-mat.stat-mech], Phys. Rev. E, in press.
Renormalization group and critical behaviour in gravitational collapse
Hara, T; Adachi, S; Hara, Takashi; Koike, Tatsuhiko; Adachi, Satoshi
1996-01-01
We present a general framework for understanding and analyzing critical behaviour in gravitational collapse. We adopt the method of renormalization group, which has the following advantages. (1) It provides a natural explanation for various types of universality and scaling observed in numerical studies. In particular, universality in initial data space and universality for different models are understood in a unified way. (2) It enables us to perform a detailed analysis of time evolution beyond linear perturbation, by providing rigorous controls on nonlinear terms. Under physically reasonable assumptions we prove: (1) Uniqueness of the relevant mode around a fixed point implies universality in initial data space. (2) The critical exponent \\beta_{\\rm BH} and the unique positive eigenvalue \\kappa of the relevant mode is exactly related by \\beta_{\\rm BH} = \\beta /\\kappa, where \\beta is a scaling exponent. (3) The above (1) and (2) hold also for discretely self-similar case (replacing ``fixed point'' with ``limi...
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Renormalization Group independence of Cosmological Attractors
Fumagalli, Jacopo
2016-01-01
The large class of inflationary models known as $\\alpha$- and $\\xi$-attractors give identical predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
Hasenfratz, Anna
2010-01-01
Strongly coupled gauge systems with many fermions are important in many phenomenological models. I use the 2-lattice matching Monte Carlo renormalization group method to study the fixed point structure and critical indexes of SU(3) gauge models with 8 and 12 flavors of fundamental fermions. With an improved renormalization group block transformation I am able to connect the perturbative and confining regimes of the N_f=8 flavor system, thus verifying its QCD-like nature. With N_f=12 flavors the data favor the existence of an infrared fixed point and conformal phase, though the results are also consistent with very slow walking. I measure the anomalous mass dimension in both systems at several gauge couplings and find that they are barely different from the free field value.
Renormalization group analysis of the random first-order transition.
Cammarota, Chiara; Biroli, Giulio; Tarzia, Marco; Tarjus, Gilles
2011-03-18
We consider the approach describing glass formation in liquids as a progressive trapping in an exponentially large number of metastable states. To go beyond the mean-field setting, we provide a real-space renormalization group (RG) analysis of the associated replica free-energy functional. The present approximation yields in finite dimensions an ideal glass transition similar to that found in the mean field. However, we find that along the RG flow the properties associated with metastable glassy states, such as the configurational entropy, are only defined up to a characteristic length scale that diverges as one approaches the ideal glass transition. The critical exponents characterizing the vicinity of the transition are the usual ones associated with a first-order discontinuity fixed point.
Renormalization Group for Critical Phenomena in Complex Networks
Boettcher, S.; Brunson, C. T.
2011-01-01
We discuss the behavior of statistical models on a novel class of complex “Hanoi” networks. Such modeling is often the cornerstone for the understanding of many dynamical processes in complex networks. Hanoi networks are special because they integrate small-world hierarchies common to many social and economical structures with the inevitable geometry of the real world these structures exist in. In addition, their design allows exact results to be obtained with the venerable renormalization group (RG). Our treatment will provide a detailed, pedagogical introduction to RG. In particular, we will study the Ising model with RG, for which the fixed points are determined and the RG flow is analyzed. We show that the small-world bonds result in non-universal behavior. It is shown that a diversity of different behaviors can be observed with seemingly small changes in the structure of hierarchical networks generally, and we provide a general theory to describe our findings. PMID:22194725
Quantum Einstein gravity. Advancements of heat kernel-based renormalization group studies
Energy Technology Data Exchange (ETDEWEB)
Groh, Kai
2012-10-15
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory. As its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained. The constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point. Finally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement
Vibrational Density Matrix Renormalization Group.
Baiardi, Alberto; Stein, Christopher J; Barone, Vincenzo; Reiher, Markus
2017-08-08
Variational approaches for the calculation of vibrational wave functions and energies are a natural route to obtain highly accurate results with controllable errors. Here, we demonstrate how the density matrix renormalization group (DMRG) can be exploited to optimize vibrational wave functions (vDMRG) expressed as matrix product states. We study the convergence of these calculations with respect to the size of the local basis of each mode, the number of renormalized block states, and the number of DMRG sweeps required. We demonstrate the high accuracy achieved by vDMRG for small molecules that were intensively studied in the literature. We then proceed to show that the complete fingerprint region of the sarcosyn-glycin dipeptide can be calculated with vDMRG.
Renormalization group analysis of turbulence
Smith, Leslie M.
1989-01-01
The objective is to understand and extend a recent theory of turbulence based on dynamic renormalization group (RNG) techniques. The application of RNG methods to hydrodynamic turbulence was explored most extensively by Yakhot and Orszag (1986). An eddy viscosity was calculated which was consistent with the Kolmogorov inertial range by systematic elimination of the small scales in the flow. Further, assumed smallness of the nonlinear terms in the redefined equations for the large scales results in predictions for important flow constants such as the Kolmogorov constant. It is emphasized that no adjustable parameters are needed. The parameterization of the small scales in a self-consistent manner has important implications for sub-grid modeling.
Infra-red fixed points in supersymmetry
Indian Academy of Sciences (India)
B Ananthanarayan
2000-07-01
Model independent constraints on supersymmetric models emerge when certain couplings are drawn towards their infra-red (quasi) ﬁxed points in the course of their renormalization group evolution. The general principles are ﬁrst reviewed and the conclusions for some recent studies of theories with -parity and baryon and lepton number violations are summarized.
Ward identities and Wilson renormalization group for QED
Bonini, M; Marchesini, G
1994-01-01
We analyze a formulation of QED based on the Wilson renormalization group. Although the ``effective Lagrangian'' used at any given scale does not have simple gauge symmetry, we show that the resulting renormalized Green's functions correctly satisfies Ward identities to all orders in perturbation theory. The loop expansion is obtained by solving iteratively the Polchinski's renormalization group equation. We also give a new simple proof of perturbative renormalizability. The subtractions in the Feynman graphs and the corresponding counterterms are generated in the process of fixing the physical conditions.
Ward identities and Wilson renormalization group for QED
Bonini, M.; D'Attanasio, M.; Marchesini, G.
1994-04-01
We analyze a formulation of QED based on the Wilson renormalization group. Although the "effective lagrangian" used at any given scale does not have simple gauge symmetry, we show that the resulting renormalized Green's function correctly satisfies Ward identities to all orders in perturbation theory. The loop expansion is obtained by solving iteratively the Polchinski renormalization group equation. We also give a new simple proof of perturbative renormalizability. The subtractions in the Feynman graphs and the corresponing counter-terms are generated in the process of fixing the physical conditions.
Quark Confinement and the Renormalization Group
Ogilvie, Michael C
2010-01-01
Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, center symmetry breaking, and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on $R^3\\times S^1$, the real-space renormalization group, the functional renormalization group, and the Schwinger-Dyson equation approach to confinement.
Infrared Fixed Points in the minimal MOM Scheme
DEFF Research Database (Denmark)
Ryttov, Thomas
2014-01-01
We analyze the behavior of several renormalization group functions at infrared fixed points for $SU(N)$ gauge theories with fermions in the fundamental and two-indexed representations. This includes the beta function of the gauge coupling, the anomalous dimension of the gauge parameter...... and the anomalous dimension of the mass. The scheme in which the analysis is performed is the minimal momentum subtraction scheme through third loop order. Due to the fact that scheme dependence is inevitable once the perturbation theory is truncated we compare to previous identical studies done in the minimal...
Kastening, Boris; Dohm, Volker
2010-06-01
Finite-size effects are investigated in the Gaussian model with isotropic and anisotropic short-range interactions in film geometry with nonperiodic boundary conditions (bc) above, at, and below the bulk critical temperature Tc. We have obtained exact results for the free energy and the Casimir force for antiperiodic, Neumann, Dirichlet, and Neumann-Dirichlet mixed bc in 1film critical temperature Tc,film(L)film thickness L . Our results include an exact description of the dimensional crossover between the d -dimensional finite-size critical behavior near bulk Tc and the (d-1) -dimensional critical behavior near Tc,film(L). This dimensional crossover is illustrated for the critical behavior of the specific heat. Particular attention is paid to an appropriate representation of the free energy in the region Tc,film(L)≤T≤Tc. For 2theory at fixed dimension d and are then compared with the ε=4-d expansion results at ε=1 as well as with d=3 Monte Carlo data. For d=2 , the Gaussian results for the Casimir force scaling function are compared with those for the Ising model with periodic, antiperiodic, and free bc; unexpected exact relations are found between the Gaussian and Ising scaling functions. For both the d -dimensional Gaussian model and the two-dimensional Ising model it is shown that anisotropic couplings imply nonuniversal scaling functions of the Casimir force that depend explicitly on microscopic couplings. Our Gaussian results provide the basis for the investigation of finite-size effects of the mean spherical model in film geometry with nonperiodic bc above, at, and below the bulk critical temperature.
Holographic Renormalization Group Structure in Higher-Derivative Gravity
Fukuma, M; Fukuma, Masafumi; Matsuura, So
2002-01-01
Classical higher-derivative gravity is investigated in the context of the holographic renormalization group (RG). We parametrize the Euclidean time such that one step of time evolution in (d+1)-dimensional bulk gravity can be directly interpreted as that of block spin transformation of the d-dimensional boundary field theory. This parametrization simplifies the analysis of the holographic RG structure in gravity systems, and conformal fixed points are always described by AdS geometry. We find that higher-derivative gravity generically induces extra degrees of freedom which acquire huge mass around stable fixed points and thus are coupled to highly irrelevant operators at the boundary. In the particular case of pure R^2-gravity, we show that some region of the coefficients of curvature-squared terms allows us to have two fixed points (one is multicritical) which are connected by a kink solution. We further extend our analysis to Minkowskian time to investigate a model of expanding universe described by the act...
Scaling theory of Anderson localization: A renormalization-group approach
Sarker, Sanjoy; Domany, Eytan
1981-06-01
A position-space renormalization-group method, suitable for studying the localization properties of electrons in a disordered system, was developed. Two different approximations to a well-defined exact procedure were used. The first method is a perturbative treatment to lowest order in the intercell couplings. This yields a localization edge in three dimensions, with a fixed point at the band center (E=0) at a critical disorder σc~=7.0. In the neighborhood of the fixed point the localization length L is predicted to diverge as L~(σ-σc+βE2)-ν. In two dimensions no fixed point is found, indicating localization even for small randomness, in agreement with Abrahams, Anderson, Licciardello, and Ramakrishnan. The second method is an application of the finite-lattice approximation, in which the intercell hopping between two (or more) cells is treated to infinite order in perturbation theory. To our knowledge, this method has not been previously used for quantum systems. Calculations based on this approximation were carried out in two dimensions only, yielding results that are in agreement with those of the lowest-order approximation.
Discovering and quantifying nontrivial fixed points in multi-field models
Energy Technology Data Exchange (ETDEWEB)
Eichhorn, A. [Imperial College, Blackett Laboratory, London (United Kingdom); Helfer, T. [Imperial College, Blackett Laboratory, London (United Kingdom); King' s College, London (United Kingdom); Mesterhazy, D. [Institute for Theoretical Physics, University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Scherer, M.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)
2016-02-15
We use the functional renormalization group and the -expansion concertedly to explore multicritical universality classes for coupled +{sub i} O(N{sub i}) vector-field models in three Euclidean dimensions. Exploiting the complementary strengths of these two methods we show how to make progress in theories with large numbers of interactions, and a large number of possible symmetry-breaking patterns. For the three- and four-field models we find a new fixed point that arises from the mutual interaction between different field sectors, and we establish the absence of infrared-stable fixed-point solutions for the regime of small N{sub i}. Moreover, we explore these systems as toy models for theories that are both asymptotically safe and infrared complete. In particular, we show that these models exhibit complete renormalization group trajectories that begin and end at nontrivial fixed points. (orig.)
Cosmology of the Planck Era from a Renormalization Group for Quantum Gravity
Bonanno, A
2002-01-01
Homogeneous and isotropic cosmologies of the Planck era before the classical Einstein equations become valid are studied taking quantum gravitational effects into account. The cosmological evolution equations are renormalization group improved by including the scale dependence of Newton's constant and of the cosmological constant as it is given by the flow equation of the effective average action for gravity. It is argued that the Planck regime can be treated reliably in this framework because gravity is found to become asymptotically free at short distances. The epoch immediately after the initial singularity of the Universe is described by an attractor solution of the improved equations which is a direct manifestation of an ultraviolet attractive renormalization group fixed point. It is shown that quantum gravity effects in the very early Universe might provide a resolution to the horizon and flatness problem of standard cosmology, and could generate a scale-free spectrum of primordial density fluctuations.
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
Bonini, M; Marchesini, G
1993-01-01
A new proof of perturbative renormalizability and infrared finiteness for a scalar massless theory is obtained from a formulation of renormalized field theory based on the Wilson renormalization group. The loop expansion of the renormalized Green functions is deduced from the Polchinski equation of renormalization group. The resulting Feynman graphs are organized in such a way that the loop momenta are ordered. It is then possible to analyse their ultraviolet and infrared behaviours by iterative methods. The necessary subtractions and the corresponding counterterms are automatically generated in the process of fixing the physical conditions for the ``relevant'' vertices at the normalization point. The proof of perturbative renormalizability and infrared finiteness is simply based on dimensional arguments and does not require the usual analysis of topological properties of Feynman graphs.
Bonini, M.; D'Attanasio, M.; Marchesini, G.
1993-11-01
A new proof of perturbative renormalizability and infrared finiteness for a scalar massless theory is obtained from a formulation of renormalized field theory based on the Wilson renormalization group. The loop expansion of the renormalized Green functions is deduced from the Polchinski equation of renormalization group. The resulting Feynman graphs are organized in such a way that the loop momenta are ordered. It is then possible to analyse their ultraviolet and infrared behaviours by iterative methods. The necessary subtractions and the corresponding counterterms are automatically generated in the process of fixing the physical conditions for the "relevant" vertices at the normalization point. The proof of perturbative renormalizability and infrared finiteness is simply based on dimensional arguments and does not require the usual analysis of topological properties of Feynman graphs.
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Fifty years of the renormalization group
Shirkov, D V
2001-01-01
Renormalization was the breakthrough that made quantum field theory respectable in the late 1940s. Since then, renormalization procedures, particularly the renormalization group method, have remained a touchstone for new theoretical developments. This work relates the history of the renormalization group. (17 refs).
Improved system identification with Renormalization Group.
Wang, Qing-Guo; Yu, Chao; Zhang, Yong
2014-09-01
This paper proposes an improved system identification method with Renormalization Group. Renormalization Group is applied to a fine data set to obtain a coarse data set. The least squares algorithm is performed on the coarse data set. The theoretical analysis under certain conditions shows that the parameter estimation error could be reduced. The proposed method is illustrated with examples.
Renormalization group approach to the interacting bose fluid
Wiegel, F.W.
1978-01-01
It is pointed out that the method of functional integration provides a very convenient starting point for the renormalization group approach to the interacting Bose gas. Using such methods we show in a general and non-perturbative way that the critical exponents of the Bose gas are identical to
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Background field functional renormalization group for absorbing state phase transitions.
Buchhold, Michael; Diehl, Sebastian
2016-07-01
We present a functional renormalization group approach for the active to inactive phase transition in directed percolation-type systems, in which the transition is approached from the active, finite density phase. By expanding the effective potential for the density field around its minimum, we obtain a background field action functional, which serves as a starting point for the functional renormalization group approach. Due to the presence of the background field, the corresponding nonperturbative flow equations yield remarkably good estimates for the critical exponents of the directed percolation universality class, even in low dimensions.
Brown, G E; Lee, Chang-Hwan; Park, Hong-Jo; Rho, Mannque
2006-02-17
Building on, and extending, the result of a higher-order in-medium chiral perturbation theory combined with renormalization group arguments and a variety of observations of the vector manifestation of Harada-Yamawaki hidden local symmetry theory, we obtain a surprisingly simple description of kaon condensation by fluctuating around the "vector manifestation" fixed point identified to be the chiral restoration point. Our development establishes that strangeness condensation takes place at approximately 3n0 where n0 is nuclear matter density. This result depends only on the renormalization-group (RG) behavior of the vector interactions, other effects involved in fluctuating about the bare vacuum in so many previous calculations being irrelevant in the RG about the fixed point. Our results have major effects on the collapse of neutron stars into black holes.
Renormalization Group Flows of Hamiltonians Using Tensor Networks
Bal, M.; Mariën, M.; Haegeman, J.; Verstraete, F.
2017-06-01
A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015), 10.1103/PhysRevLett.115.180405; S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017), 10.1103/PhysRevLett.118.110504], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of the local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.
Renormalization Group Flows of Hamiltonians Using Tensor Networks.
Bal, M; Mariën, M; Haegeman, J; Verstraete, F
2017-06-23
A renormalization group flow of Hamiltonians for two-dimensional classical partition functions is constructed using tensor networks. Similar to tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.180405; S. Yang, Z.-C. Gu, and X.-G. Wen, Phys. Rev. Lett. 118, 110504 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.110504], we obtain approximate fixed point tensor networks at criticality. Our formalism, however, preserves positivity of the tensors at every step and hence yields an interpretation in terms of Hamiltonian flows. We emphasize that the key difference between tensor network approaches and Kadanoff's spin blocking method can be understood in terms of a change of the local basis at every decimation step, a property which is crucial to overcome the area law of mutual information. We derive algebraic relations for fixed point tensors, calculate critical exponents, and benchmark our method on the Ising model and the six-vertex model.
Gravity Duals of Lifshitz-like Fixed Points
Kachru, Shamit; Mulligan, Michael
2008-01-01
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent $z$, which governs the anisotropy between spatial and temporal scaling $t \\to \\lambda^z t$, $x \\to \\lambda x$; we focus on the case with $z=2$. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.
Replicon modes and fixed-point marginal stability for systems with extended impurities
de Cesare, Luigi; Mercaldo, Maria Teresa
1999-08-01
The fixed-point marginal stability, found for systems with extended quenched impurities within a one-step replica symmetry breaking (RSB) renormalization-group treatment, is further explored in terms of replicon eigenvalues, recently introduced as a simple way to investigate the fixed-point stability properties with respect to the continuous RSB modes. We find that the marginal stability occurs again when these modes are taken into account, in contrast with the short-range correlated impurity case where the continuous RSB fluctuations drastically change the one-step RSB fixed-point stability scenario.
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
Real-space renormalization group method for quantum 1/2 spins on the pyrochlore lattice.
Garcia-Adeva, Angel J
2014-04-02
A simple phenomenological real-space renormalization group method for quantum Heisenberg spins with nearest and next nearest neighbour interactions on a pyrochlore lattice is presented. Assuming a scaling law for the order parameter of two clusters of different sizes, a set of coupled equations that gives the fixed points of the renormalization group transformation and, thus, the critical temperatures and ordered phases of the system is found. The particular case of spins 1/2 is studied in detail. Furthermore, to simplify the mathematical details, from all the possible phases arising from the renormalization group transformation, only those phases in which the magnetic lattice is commensurate with a subdivision of the crystal lattice into four interlocked face-centred cubic sublattices are considered. These correspond to a quantum spin liquid, ferromagnetic order, or non-collinear order in which the total magnetic moment of a tetrahedral unit is zero. The corresponding phase diagram is constructed and the differences with respect to the classical model are analysed. It is found that this method reproduces fairly well the phase diagram of the pyrochlore lattice under the aforementioned constraints.
Efimov physics from a renormalization group perspective
Hammer, Hans-Werner; Platter, Lucas
2011-01-01
We discuss the physics of the Efimov effect from a renormalization group viewpoint using the concept of limit cycles. Furthermore, we discuss recent experiments providing evidence for the Efimov effect in ultracold gases and its relevance for nuclear systems.
Efimov physics from a renormalization group perspective.
Hammer, Hans-Werner; Platter, Lucas
2011-07-13
We discuss the physics of the Efimov effect from a renormalization group viewpoint using the concept of limit cycles. Furthermore, we discuss recent experiments providing evidence for the Efimov effect in ultracold gases and its relevance for nuclear systems.
Improved Monte Carlo Renormalization Group Method
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Renormalization-group improved inflationary scenarios
Pozdeeva, E O
2016-01-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.
Renormalization-group improved inflationary scenarios
Pozdeeva, E. O.; Vernov, S. Yu.
2017-03-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.
Computing the effective action with the functional renormalization group
DEFF Research Database (Denmark)
Codello, Alessandro; Percacci, Roberto; Rachwał, Lesław
2016-01-01
The “exact” or “functional” renormalization group equation describes the renormalization group flow of the effective average action Γ k. The ordinary effective action Γ 0 can be obtained by integrating the flow equation from an ultraviolet scale k= Λ down to k= 0. We give several examples of such...... of QED and of Yang–Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity.......The “exact” or “functional” renormalization group equation describes the renormalization group flow of the effective average action Γ k. The ordinary effective action Γ 0 can be obtained by integrating the flow equation from an ultraviolet scale k= Λ down to k= 0. We give several examples...... of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization...
General Covariance from the Quantum Renormalization Group
Shyam, Vasudev
2016-01-01
The Quantum renormalization group (QRG) is a realisation of holography through a coarse graining prescription that maps the beta functions of a quantum field theory thought to live on the `boundary' of some space to holographic actions in the `bulk' of this space. A consistency condition will be proposed that translates into general covariance of the gravitational theory in the $D + 1$ dimensional bulk. This emerges from the application of the QRG on a planar matrix field theory living on the $D$ dimensional boundary. This will be a particular form of the Wess--Zumino consistency condition that the generating functional of the boundary theory needs to satisfy. In the bulk, this condition forces the Poisson bracket algebra of the scalar and vector constraints of the dual gravitational theory to close in a very specific manner, namely, the manner in which the corresponding constraints of general relativity do. A number of features of the gravitational theory will be fixed as a consequence of this form of the Po...
Infrared fixed point of the 12-fermion SU(3) gauge model based on 2-lattice MCRG matching
Hasenfratz, Anna
2011-01-01
I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group $\\beta$ function and infrared conformality.
Stochastic Navier-Stokes Equation with Colored Noise: Renormalization Group Analysis
Antonov, N. V.; Gulitskiy, N. M.; Malyshev, A. V.
2016-11-01
In this work we study the fully developed turbulence described by the stochastic Navier-Stokes equation with finite correlation time of random force. Inertial-range asymptotic behavior is studied in one-loop approximation and by means of the field theoretic renormalization group. The inertial-range behavior of the model is described by limiting case of vanishing correlation time that corresponds to the nontrivial fixed point of the RG equation. Another fixed point is a saddle type point, i.e., it is infrared attractive only in one of two possible directions. The existence and stability of fixed points depends on the relation between the exponents in the energy spectrum ɛ ∝ k1-y and the dispersion law ω ∝ k2-η.
Barber, Michael N.
1980-03-01
An algorithm for determining the sequence of variational parameters in a variational approximation to a real-space renormalization group is developed. Using this procedure, the Kadanoff one-hypercube approximation for the two-dimensional Ising model is investigated in some detail. We conclude that the apparent success of this method is somewhat fortuitous; a consistent and completely optimized treatment yielding considerably poorer estimates of the specific heat exponents. In addition, the variational parameter is found to be non-analytic at the fixed point. The nature of singularity agrees with the predictions of van Saarloos, van Leeuwen, and Pruisken.
Antonov, N. V.; Kakin, P. I.
2017-02-01
Applying the standard field theory renormalization group to the model of landscape erosion introduced by Pastor-Satorras and Rothman yields unexpected results: the model is multiplicatively renormalizable only if it involves infinitely many coupling constants (i.e., the corresponding renormalization group equations involve infinitely many β-functions). We show that the one-loop counterterm can nevertheless be expressed in terms of a known function V (h) in the original stochastic equation and its derivatives with respect to the height field h. Its Taylor expansion yields the full infinite set of the one-loop renormalization constants, β-functions, and anomalous dimensions. Instead of a set of fixed points, there arises a two-dimensional surface of fixed points that quite probably contains infrared attractive regions. If that is the case, then the model exhibits scaling behavior in the infrared range. The corresponding critical exponents turn out to be nonuniversal because they depend on the coordinates of the fixed point on the surface, but they satisfy certain universal exact relations.
Hasenfratz, Anna
2009-01-01
Monte Carlo Renormalization Group (MCRG) methods were designed to study the non-perturbative phase structure and critical behavior of statistical systems and quantum field theories. I adopt the 2-lattice matching method used extensively in the 1980's and show how it can be used to predict the existence of non-perturbative fixed points and their related critical exponents in many flavor SU(3) gauge theories. This work serves to test the method and I study relatively well understood systems: the $N_f=0$, 4 and 16 flavor models. The pure gauge and $N_f=4$ systems are confining and chirally broken and the MCRG method can predict their bare step scaling functions. Results for the $N_f=16$ model indicate the existence of an infrared fixed point with nearly marginal gauge coupling. I present preliminary results for the scaling dimension of the mass at this new fixed point.
Renormalization-group theory for finite-size scaling in extreme statistics.
Györgyi, G; Moloney, N R; Ozogány, K; Rácz, Z; Droz, M
2010-04-01
We present a renormalization-group (RG) approach to explain universal features of extreme statistics applied here to independent identically distributed variables. The outlines of the theory have been described in a previous paper, the main result being that finite-size shape corrections to the limit distribution can be obtained from a linearization of the RG transformation near a fixed point, leading to the computation of stable perturbations as eigenfunctions. Here we show details of the RG theory which exhibit remarkable similarities to the RG known in statistical physics. Besides the fixed points explaining universality, and the least stable eigendirections accounting for convergence rates and shape corrections, the similarities include marginally stable perturbations which turn out to be generic for the Fisher-Tippett-Gumbel class. Distribution functions containing unstable perturbations are also considered. We find that, after a transitory divergence, they return to the universal fixed line at the same or at a different point depending on the type of perturbation.
Three-dimensional SCFTs, supersymmetric domain wall and renormalization group flow
Ahn, Changhyun; Paeng, Jinsub
2001-02-01
By analyzing SU(3)×U(1) invariant stationary point, studied earlier by Nicolai and Warner, of gauged N=8 supergravity, we find that the deformation of S7 gives rise to nontrivial renormalization group flow in a three-dimensional boundary super conformal field theory from N=8 , SO(8) invariant UV fixed point to N=2 , SU(3)×U(1) invariant IR fixed point. By explicitly constructing 28-beins u,v fields, that are an element of fundamental 56-dimensional representation of E 7, in terms of scalar and pseudo-scalar fields of gauged N=8 supergravity, we get A 1,A 2 tensors. Then we identify one of the eigenvalues of A 1 tensor with "superpotential" of de Wit-Nicolai scalar potential and discuss four-dimensional supergravity description of renormalization group flow, i.e., the BPS domain wall solutions which are equivalent to vanishing of variation of spin 1/2, 3/2 fields in the supersymmetry preserving bosonic background of gauged N=8 supergravity. A numerical analysis of the steepest descent equations interpolating two critical points is given.
Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.
Dančo, Michal; Hnatič, Michal; Komarova, Marina V; Lučivjanský, Tomáš; Nalimov, Mikhail Yu
2016-01-01
A quantum field model that incorporates Bose-condensed systems near their phase transition into a superfluid phase and velocity fluctuations is proposed. The stochastic Navier-Stokes equation is used for a generation of the velocity fluctuations. As such this model generalizes model F of critical dynamics. The field-theoretic action is derived using the Martin-Siggia-Rose formalism and path integral approach. The regime of equilibrium fluctuations is analyzed within the perturbative renormalization group method. The double (ε,δ)-expansion scheme is employed, where ε is a deviation from space dimension 4 and δ describes scaling of velocity fluctuations. The renormalization procedure is performed to the leading order. The main corollary gained from the analysis of the thermal equilibrium regime suggests that one-loop calculations of the presented models are not sufficient to make a definite conclusion about the stability of fixed points. We also show that critical exponents are drastically changed as a result of the turbulent background and critical fluctuations are in fact destroyed by the developed turbulence fluctuations. The scaling exponent of effective viscosity is calculated and agrees with expected value 4/3.
Renormalization group approach to a p-wave superconducting model
Energy Technology Data Exchange (ETDEWEB)
Continentino, Mucio A.; Deus, Fernanda [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil); Caldas, Heron [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, 36301-000, São João Del Rei, MG (Brazil)
2014-04-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Harada, Koji; Yahiro, Masanobu
2016-01-01
We formulate the next-to-leading order nuclear effective field theory without pions in the two-nucleon sector on a spatial lattice, and investigate nonperturbative renormalization group flows in the strong coupling region by diagonalizing the Hamiltonian numerically. The cutoff (proportional to the inverse of the lattice constant) dependence of the coupling constants is obtained by changing the lattice constant with the binding energy and the asymptotic normalization constant for the groundstate being fixed. We argue that the critical line can be obtained by looking at the finite-size dependence of the groundstate energy. We determine the relevant operator and locate the nontrivial fixed point, as well as the physical flow line corresponding to the deuteron in the two-dimensional plane of dimensionless coupling constants. It turns out that the location of the nontrivial fixed point is very close to the one obtained by the corresponding analytic calculation, but the relevant operator is quite different.
Energy Technology Data Exchange (ETDEWEB)
Zinn-Justin, J
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
Exact Renormalization Group for Point Interactions
Eröncel, Cem
2014-01-01
Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble non-abelian gauge theories, yet it can be treated exactly in this nontrivial geometry.
EXACT RENORMALIZATION GROUP FOR POINT INTERACTIONS
Directory of Open Access Journals (Sweden)
Osman Teoman Turgut Teoman Turgut
2014-04-01
Full Text Available Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble nonabelian gauge theories, yet it can be treated exactly in this nontrivial geometry.
Computing the effective action with the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro [CP3-Origins and the Danish IAS University of Southern Denmark, Odense (Denmark); Percacci, Roberto [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Rachwal, Leslaw [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Tonero, Alberto [ICTP-SAIFR and IFT, Sao Paulo (Brazil)
2016-04-15
The ''exact'' or ''functional'' renormalization group equation describes the renormalization group flow of the effective average action Γ{sub k}. The ordinary effective action Γ{sub 0} can be obtained by integrating the flow equation from an ultraviolet scale k = Λ down to k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. (orig.)
Directory of Open Access Journals (Sweden)
Antonov A.V.
2016-01-01
Full Text Available We study scaling properties of the model of fully developed turbulence for a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field theoretic renormalization group (RG. The scaling properties in this approach are related to fixed points of the RG equation. Here we study a possible existence of other scaling regimes and an opportunity of a crossover between them. This may take place in some other space dimensions, particularly at d = 4. A new regime may there arise and then by continuity moves into d = 3. Our calculations have shown that there really exists an additional fixed point, that may govern scaling behaviour.
Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group
Ueda, K.; Otani, R.; Nishio, Y; Gendiar, A.; Nishino, T
2004-01-01
We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by ea...
Renormalization Group Equations for the CKM matrix
Kielanowski, P; Montes de Oca Y, J H
2008-01-01
We derive the one loop renormalization group equations for the Cabibbo-Kobayashi-Maskawa matrix for the Standard Model, its two Higgs extension and the minimal supersymmetric extension in a novel way. The derived equations depend only on a subset of the model parameters of the renormalization group equations for the quark Yukawa couplings so the CKM matrix evolution cannot fully test the renormalization group evolution of the quark Yukawa couplings. From the derived equations we obtain the invariant of the renormalization group evolution for three models which is the angle $\\alpha$ of the unitarity triangle. For the special case of the Standard Model and its extensions with $v_{1}\\approx v_{2}$ we demonstrate that also the shape of the unitarity triangle and the Buras-Wolfenstein parameters $\\bar{\\rho}=(1-{1/2}\\lambda^{2})\\rho$ and $\\bar{\\eta}=(1-{1/2}\\lambda^{2})\\eta$ are conserved. The invariance of the angles of the unitarity triangle means that it is not possible to find a model in which the CKM matrix mi...
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.
Antonov, N V; Gulitskiy, N M; Kostenko, M M; Lučivjanský, T
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997)TMPHAH0040-577910.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ=4-d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ. All calculations are performed in the leading one-loop approximation.
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
The field theoretic renormalization group (RG) and the operator product expansion (OPE) are applied to the model of a density field advected by a random turbulent velocity field. The latter is governed by the stochastic Navier-Stokes equation for a compressible fluid. The model is considered near the special space dimension d = 4. It is shown that various correlation functions of the scalar field exhibit anomalous scaling behaviour in the inertial-convective range. The scaling properties in the RG+OPE approach are related to fixed points of the renormalization group equations. In comparison with physically interesting case d = 3, at d = 4 additional Green function has divergences which affect the existence and stability of fixed points. From calculations it follows that a new regime arises there and then by continuity moves into d = 3. The corresponding anomalous exponents are identified with scaling dimensions of certain composite fields and can be systematically calculated as series in y (the exponent, connected with random force) and ɛ = 4 - d. All calculations are performed in the leading one-loop approximation.
More on the renormalization group limit cycle in QCD
Energy Technology Data Exchange (ETDEWEB)
Evgeny Epelbaum; Hans-Werner Hammer; Ulf-G. Meissner; Andreas Nogga
2006-02-26
We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. We show that small increases in the up and down quark masses, corresponding to a pion mass around 200 MeV, can move QCD to the critical renormalization group trajectory for an infrared limit cycle in the three-nucleon system. At the critical values of the quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. At next-to-leading order in the chiral counting, we find three parameter sets where this effect occurs. For one of them, we study the structure of the three-nucleon system using both chiral and contact effective field theories in detail. Furthermore, we calculate the influence of the limit cycle on scattering observables.
Renormalization-group studies of three model systems far from equilibrium
Georgiev, Ivan Tsvetanov
This thesis describes the development of analytical and computational techniques for systems far from equilibrium and their application to three model systems. Each of the model systems reaches a non-equilibrium steady state and exhibits one or more phase transitions. We first introduce a new position-space renormalization-group approach and illustrate its application using the one-dimensional fully asymmetric exclusion process. We have constructed a recursion relation for the relevant dynamic parameters for this model and have reproduced all of the important critical features of the model, including the exact positions of the critical point and the first and second order phase boundaries. The method yields an approximate value for the critical exponent nu which is very close to the known value. The second major part of this thesis combines information theoretic techniques for calculating the entropy and a Monte Carlo renormalization-group approach. We have used this method to study and compare infinitely driven lattice gases. This approach enables us to calculate the critical exponents associated with the correlation length nu and the order parameter beta. These results are compared to the values predicted from different field theoretic treatments of the models. In the final set of calculations, we build position-space renormalization-group recursion relations from the master equations of small clusters. By obtaining the probability distributions for these clusters numerically, we develop a mapping connecting the parameters specifying the dynamics on different length scales. The resulting flow topology in some ways mimics equilibrium features, with sinks for each phase and fixed points associated with each phase boundary. In addition, though, there are added complexities in the flows, suggesting multiple regions within the ordered phase for some values of parameters, and the presence of an extra "source" fixed point within the ordered phase. Thus, this study
Unifying renormalization group and the continuous wavelet transform
Altaisky, M. V.
2016-05-01
It is shown that the renormalization group turns to be a symmetry group in a theory initially formulated in a space of scale-dependent functions, i.e., those depending on both the position x and the resolution a . Such a theory, earlier described in [1,2], is finite by construction. The space of scale-dependent functions {ϕa(x )} is more relevant to a physical reality than the space of square-integrable functions L2(Rd); because of the Heisenberg uncertainty principle, what is really measured in any experiment is always defined in a region rather than a point. The effective action Γ(A ) of our theory turns out to be complementary to the exact renormalization group effective action. The role of the regulator is played by the basic wavelet—an "aperture function" of a measuring device used to produce the snapshot of a field ϕ at the point x with the resolution a . The standard renormalization group results for ϕ4 model are reproduced.
Dreiner, H; Dreiner, Herbi; Pois, Heath
1995-01-01
We present the complete 2-loop renormalization group equations of the supersymmetric standard model. We thus explicitly include the full set of R -parity violating couplings, including \\kappa_iL_iH_2. We use these equations to do a first study of (a) gauge coupling unification, (b) bottom-tau unification, (c) the fixed point structure of the top quark Yukawa coupling, and (d) two-loop bounds from perturbative unification. We find significant shifts which can be larger than the effect from the top quark Yukawa coupling. The value of \\alpha_3(M_Z) can change by \\pm5\\%. The \\tan\\beta region for bottom-tau unification and for the top quark IR quasi fixed point structure is significantly increased. For heavy scalar fermion masses {\\cal{O}}(1\\tev) the limits on the \\Delta L\
Fisher's zeros as boundary of renormalization group flows in complex coupling spaces
Denbleyker, A; Liu, Yuzhi; Meurice, Y; Zou, Haiyuan
2010-01-01
We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.
Renormalization Group and Phase Transitions in Spin, Gauge, and QCD Like Theories
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuzhi [Univ. of Iowa, Iowa City, IA (United States)
2013-08-01
In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG).
Accurate renormalization group analyses in neutrino sector
Energy Technology Data Exchange (ETDEWEB)
Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Yamaguchi, Yuya [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)
2014-08-15
We investigate accurate renormalization group analyses in neutrino sector between ν-oscillation and seesaw energy scales. We consider decoupling effects of top quark and Higgs boson on the renormalization group equations of light neutrino mass matrix. Since the decoupling effects are given in the standard model scale and independent of high energy physics, our method can basically apply to any models beyond the standard model. We find that the decoupling effects of Higgs boson are negligible, while those of top quark are not. Particularly, the decoupling effects of top quark affect neutrino mass eigenvalues, which are important for analyzing predictions such as mass squared differences and neutrinoless double beta decay in an underlying theory existing at high energy scale.
Dense nucleonic matter and the renormalization group
Drews, Matthias; Klein, Bertram; Weise, Wolfram
2013-01-01
Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
Dense nucleonic matter and the renormalization group
Directory of Open Access Journals (Sweden)
Drews Matthias
2014-03-01
Full Text Available Fluctuations are included in a chiral nucleon-meson model within the framework of the functional renormalization group. The model, with parameters fitted to reproduce the nuclear liquid-gas phase transition, is used to study the phase diagram of QCD. We find good agreement with results from chiral effective field theory. Moreover, the results show a separation of the chemical freeze-out line and chiral symmetry restoration at large baryon chemical potentials.
Renormalization Scheme Dependence and Renormalization Group Summation
McKeon, D G C
2016-01-01
We consider logarithmic contributions to the free energy, instanton effective action and Laplace sum rules in QCD that are a consequence of radiative corrections. Upon summing these contributions by using the renormalization group, all dependence on the renormalization scale parameter mu cancels. The renormalization scheme dependence in these processes is examined, and a renormalization scheme is found in which the effect of higher order radiative corrections is absorbed by the behaviour of the running coupling.
Quark confinement and the renormalization group.
Ogilvie, Michael C
2011-07-13
Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group (RG) methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, centre symmetry breaking and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on R(3)×S(1), the real-space RG, the functional RG and the Schwinger-Dyson equation approach to confinement.
Renormalization group and linear integral equations
Klein, W.
1983-04-01
We develop a position-space renormalization-group transformation which can be employed to study general linear integral equations. In this Brief Report we employ our method to study one class of such equations pertinent to the equilibrium properties of fluids. The results of applying our method are in excellent agreement with known numerical calculations where they can be compared. We also obtain information about the singular behavior of this type of equation which could not be obtained numerically.
Renormalization group flows and continual Lie algebras
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches...
Padgett, Wayne T
2009-01-01
This book is intended to fill the gap between the ""ideal precision"" digital signal processing (DSP) that is widely taught, and the limited precision implementation skills that are commonly required in fixed-point processors and field programmable gate arrays (FPGAs). These skills are often neglected at the university level, particularly for undergraduates. We have attempted to create a resource both for a DSP elective course and for the practicing engineer with a need to understand fixed-point implementation. Although we assume a background in DSP, Chapter 2 contains a review of basic theory
Small-world to fractal transition in complex networks: a renormalization group approach.
Rozenfeld, Hernán D; Song, Chaoming; Makse, Hernán A
2010-01-15
We show that renormalization group (RG) theory applied to complex networks is useful to classify network topologies into universality classes in the space of configurations. The RG flow readily identifies a small-world-fractal transition by finding (i) a trivial stable fixed point of a complete graph, (ii) a nontrivial point of a pure fractal topology that is stable or unstable according to the amount of long-range links in the network, and (iii) another stable point of a fractal with shortcuts that exist exactly at the small-world-fractal transition. As a collateral, the RG technique explains the coexistence of the seemingly contradicting fractal and small-world phases and allows us to extract information on the distribution of shortcuts in real-world networks, a problem of importance for information flow in the system.
Flat coalgebraic fixed point logics
Schröder, Lutz
2010-01-01
Fixed point logics have a wide range of applications in computer science, in particular in artificial intelligence and concurrency. The most expressive logics of this type are the mu-calculus and its relatives. However, popular fixed point logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixed point logics includes, e.g., CTL, the *-nesting-free fragment of PDL, and the logic of common knowledge. Here, we extend this notion to the generic semantic framework of coalgebraic logic, thus covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as ATL), as well as probabilistic and monotone fixed point logics. Our main results are completeness of the Kozen-Park axiomatization and a timed-out tableaux method that matches EXPTIME upper bounds inherited from the coalgebraic mu-calculus but avo...
Schrempp, Barbara
1994-01-01
The two-loop ``top-down'' renormalization group flow for the top, bottom and tau Yukawa couplings is explored in the framework of supersymmetric grand unification; reproduction of the physical bottom and tau masses is required. Instead of following the recent trend of implementing exact Yukawa coupling unification i) a search for infrared (IR) fixed lines and fixed points in the m(top)-tan(beta) plane is performed and ii) the extent to which these imply approximate Yukawa unification is determined. Two IR fixed lines, intersecting in an IR fixed point, are located. The more attractive fixed line has a branch of almost constant top mass, 168-180 GeV, close to the experimental value, for the large interval 2.5
Hasenfratz, Anna
2012-02-10
I investigate an SU(3) gauge model with 12 fundamental fermions. The physically interesting region of this strongly coupled system can be influenced by an ultraviolet fixed point due to lattice artifacts. I suggest to use a gauge action with an additional negative adjoint plaquette term that lessens this problem. I also introduce a new analysis method for the 2-lattice matching Monte Carlo renormalization group technique that significantly reduces finite volume effects. The combination of these two improvements allows me to measure the bare step scaling function in a region of the gauge coupling where it is clearly negative, indicating a positive renormalization group β function and infrared conformality.
Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective
Zhou, Ye; McComb, W. David; Vahala, George
1997-01-01
The term renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.
Capillary-wave models and the effective-average-action scheme of functional renormalization group.
Jakubczyk, P
2011-08-01
We reexamine the functional renormalization-group theory of wetting transitions. As a starting point of the analysis we apply an exact equation describing renormalization group flow of the generating functional for irreducible vertex functions. We show how the standard nonlinear renormalization group theory of wetting transitions can be recovered by a very simple truncation of the exact flow equation. The derivation makes all the involved approximations transparent and demonstrates the applicability of the approach in any spatial dimension d≥2. Exploiting the nonuniqueness of the renormalization-group cutoff scheme, we find, however, that the capillary parameter ω is a scheme-dependent quantity below d=3. For d=3 the parameter ω is perfectly robust against scheme variation.
Branco, N S; de Sousa, J Ricardo; Ghosh, Angsula
2008-03-01
Using a real-space renormalization-group approximation, we study the anisotropic quantum Heisenberg model on hierarchical lattices, with interactions following aperiodic sequences. Three different sequences are considered, with relevant and irrelevant fluctuations, according to the Luck-Harris criterion. The phase diagram is discussed as a function of the anisotropy parameter Delta (such that Delta=0 and 1 correspond to the isotropic Heisenberg and Ising models, respectively). We find three different types of phase diagrams, with general characteristics: the isotropic Heisenberg plane is always an invariant one (as expected by symmetry arguments) and the critical behavior of the anisotropic Heisenberg model is governed by fixed points on the Ising-model plane. Our results for the isotropic Heisenberg model show that the relevance or irrelevance of aperiodic models, when compared to their uniform counterpart, is as predicted by the Harris-Luck criterion. A low-temperature renormalization-group procedure was applied to the classical isotropic Heisenberg model in two-dimensional hierarchical lattices: the relevance criterion is obtained, again in accordance with the Harris-Luck criterion.
Functional renormalization group approach to neutron matter
Directory of Open Access Journals (Sweden)
Matthias Drews
2014-11-01
Full Text Available The chiral nucleon-meson model, previously applied to systems with equal number of neutrons and protons, is extended to asymmetric nuclear matter. Fluctuations are included in the framework of the functional renormalization group. The equation of state for pure neutron matter is studied and compared to recent advanced many-body calculations. The chiral condensate in neutron matter is computed as a function of baryon density. It is found that, once fluctuations are incorporated, the chiral restoration transition for pure neutron matter is shifted to high densities, much beyond three times the density of normal nuclear matter.
Random vibrational networks and the renormalization group.
Hastings, M B
2003-04-11
We consider the properties of vibrational dynamics on random networks, with random masses and spring constants. The localization properties of the eigenstates contrast greatly with the Laplacian case on these networks. We introduce several real-space renormalization techniques which can be used to describe this dynamics on general networks, drawing on strong disorder techniques developed for regular lattices. The renormalization group is capable of elucidating the localization properties, and provides, even for specific network instances, a fast approximation technique for determining the spectra which compares well with exact results.
Analytic continuation of functional renormalization group equations
Floerchinger, Stefan
2012-01-01
Functional renormalization group equations are analytically continued from imaginary Matsubara frequencies to the real frequency axis. On the example of a scalar field with O(N) symmetry we discuss the analytic structure of the flowing action and show how it is possible to derive and solve flow equations for real-time properties such as propagator residues and particle decay widths. The formalism conserves space-time symmetries such as Lorentz or Galilei invariance and allows for improved, self-consistent approximations in terms of derivative expansions in Minkowski space.
Renormalization group formulation of large eddy simulation
Yakhot, V.; Orszag, S. A.
1985-01-01
Renormalization group (RNG) methods are applied to eliminate small scales and construct a subgrid scale (SSM) transport eddy model for transition phenomena. The RNG and SSM procedures are shown to provide a more accurate description of viscosity near the wall than does the Smagorinski approach and also generate farfield turbulence viscosity values which agree well with those of previous researchers. The elimination of small scales causes the simultaneous appearance of a random force and eddy viscosity. The RNG method permits taking these into account, along with other phenomena (such as rotation) for large-eddy simulations.
Renormalization group and scaling within the microcanonical fermionic average approach
Azcoiti, V; Di Carlo, G; Galante, A; Grillo, A F; Azcoiti, V; Laliena, V; Di Carlo, G; Galante, A; Grillo, A F
1994-01-01
The MFA approach for simulations with dynamical fermions in lattice gauge theories allows in principle to explore the parameters space of the theory (e.g. the \\beta, m plane for the study of chiral condensate in QED) without the need of computing the fermionic determinant at each point. We exploit this possibility for extracting both the renormalization group trajectories ("constant physics lines") and the scaling function, and we test it in the Schwinger Model. We discuss the applicability of this method to realistic theories.
Angular structure of lacunarity, and the renormalization group
Ball; Caldarelli; Flammini
2000-12-11
We formulate the angular structure of lacunarity in fractals, in terms of a symmetry reduction of the three point correlation function. This provides a rich probe of universality, and first measurements yield new evidence in support of the equivalence between self-avoiding walks (SAW's) and percolation perimeters in two dimensions. We argue that the lacunarity reveals much of the renormalization group in real space. This is supported by exact calculations for random walks and measured data for percolation clusters and SAW's. Relationships follow between exponents governing inward and outward propagating perturbations, and we also find a very general test for the contribution of long-range interactions.
Shapiro, Joel H
2016-01-01
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests ...
The renormalization group and two dimensional multicritical effective scalar field theory
Morris, T R
1995-01-01
Direct verification of the existence of an infinite set of multicritical non-perturbative FPs (Fixed Points) for a single scalar field in two dimensions, is in practice well outside the capabilities of the present standard approximate non-perturbative methods. We apply a derivative expansion of the exact RG (Renormalization Group) equations in a form which allows the corresponding FP equations to appear as non-linear eigenvalue equations for the anomalous scaling dimension \\eta. At zeroth order, only continuum limits based on critical sine-Gordon models, are accessible. At second order in derivatives, we perform a general search over all \\eta\\ge.02, finding the expected first ten FPs, and {\\sl only} these. For each of these we verify the correct relevant qualitative behaviour, and compute critical exponents, and the dimensions of up to the first ten lowest dimension operators. Depending on the quantity, our lowest order approximate description agrees with CFT (Conformal Field Theory) with an accuracy between ...
Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.
2016-06-01
We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.
Functional renormalization group approach to the Yang-Lee edge singularity
Energy Technology Data Exchange (ETDEWEB)
An, X. [Department of Physics, University of Illinois at Chicago,845 W. Taylor St., Chicago, IL 60607 (United States); Mesterházy, D. [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Stephanov, M.A. [Department of Physics, University of Illinois at Chicago,845 W. Taylor St., Chicago, IL 60607 (United States)
2016-07-08
We determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3≤d≤6 Euclidean dimensions. We find very good agreement with high-temperature series data in d=3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ=6−d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂{sup 4}) truncations of the scale-dependent effective action.
Localization properties of random-mass Dirac fermions from real-space renormalization group.
Mkhitaryan, V V; Raikh, M E
2011-06-24
Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.
New real-space renormalization-group calculation for the critical properties of lattice spin systems
Hecht, Charles E.; Kikuchi, Ryoichi
1982-05-01
In evaluating the critical properties of lattice spin systems in the real-space renormalization-group theory we use the cluster variation method. A configuration in the transformed system is constrained and the probability of occurrence of this configuration is calculated both in the transformed system and in the original system. By equating the two probabilities and forming ratios of two such equalities (for two or more constrained configurations) the fixed point of the renormalization transformation is evaluated. The method can avoid the trouble due to different singularities in the original and transformed systems, and hence can obviate the possible development of spurious singularities in the transformation at low temperatures. The two-dimensional triangular Ising model is treated with numerical results comparable with those obtained by the cluster treatment of Niemeijer and van Leeuwen who used more and larger cluster types than those we introduce.
Renormalization group theory impact on experimental magnetism
Köbler, Ulrich
2010-01-01
Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...
Fermionic functional integrals and the renormalization group
Feldman, Joel; Trubowitz, Eugene
2002-01-01
This book, written by well-known experts in the field, offers a concise summary of one of the latest and most significant developments in the theoretical analysis of quantum field theory. The renormalization group is the name given to a technique for analyzing the qualitative behavior of a class of physical systems by iterating a map on the vector space of interactions for the class. In a typical nonrigorous application of this technique, one assumes, based on one's physical intuition, that only a certain finite dimensional subspace (usually of dimension three or less) is important. The material in this book concerns a technique for justifying this approximation in a broad class of fermionic models used in condensed matter and high energy physics. This volume is based on the Aisenstadt Lectures given by Joel Feldman at the Centre de Recherches Mathematiques (Montreal, Canada). It is suitable for graduate students and research mathematicians interested in mathematical physics. Included are many problems and so...
Linear integral equations and renormalization group
Klein, W.; Haymet, A. D. J.
1984-08-01
A formulation of the position-space renormalization-group (RG) technique is used to analyze the singular behavior of solutions to a number of integral equations used in the theory of the liquid state. In particular, we examine the truncated Kirkwood-Salsburg equation, the Ornstein-Zernike equation, and a simple nonlinear equation used in the mean-field theory of liquids. We discuss the differences in applying the position-space RG to lattice systems and to fluids, and the need for an explicit free-energy rescaling assumption in our formulation of the RG for integral equations. Our analysis provides one natural way to define a "fractal" dimension at a phase transition.
Development of renormalization group analysis of turbulence
Smith, L. M.
1990-01-01
The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.
VLES Modelling with the Renormalization Group
Institute of Scientific and Technical Information of China (English)
Chris De Langhe; Bart Merci; Koen Lodefier; Erik Dick
2003-01-01
In a Very-Large-Eddy Simulation (VLES), the filterwidth-wavenumber can be outside the inertial range, and simple subgrid models have to be replaced by more complicated ('RANS-like') models which can describe the transport of the biggest eddies. One could approach this by using a RANS model in these regions, and modify the lengthscale in the model for the LES-regions[1～3]. The problem with these approaches is that these models are specifically calibrated for RANS computations, and therefore not suitable to describe inertial range quantities. We investigated the construction of subgrid viscosity and transport equations without any calibrated constants, but these are calculated directly form the Navier-Stokes equation by means of a Renormalization Group (RG)procedure. This leads to filterwidth dependent transport equations and effective viscosity with the right limiting behaviour (DNS and RANS limits).
Development of renormalization group analysis of turbulence
Smith, L. M.
1990-01-01
The renormalization group (RG) procedure for nonlinear, dissipative systems is now quite standard, and its applications to the problem of hydrodynamic turbulence are becoming well known. In summary, the RG method isolates self similar behavior and provides a systematic procedure to describe scale invariant dynamics in terms of large scale variables only. The parameterization of the small scales in a self consistent manner has important implications for sub-grid modeling. This paper develops the homogeneous, isotropic turbulence and addresses the meaning and consequence of epsilon-expansion. The theory is then extended to include a weak mean flow and application of the RG method to a sequence of models is shown to converge to the Navier-Stokes equations.
Renormalization group and the deep structure of the proton
Petermann, Andreas
1979-01-01
The spirit of the renormalization group approach lies entirely in the observation that in a specific theory the renormalized constants such as the couplings, the masses, are arbitrary mathematical parameters which can be varied by changing arbitrarily the renormalization prescription. Given a scale of mass mu , prescriptions can be chosen by doing subtractions of the relevant amplitudes at the continuously varying points mu e/sup t/, t being an arbitrary real parameter. A representation of such a renormalization group transformation mu to mu + mu e/sup t/ is the transformation g to g(t) of the renormalized coupling into a continuously varying coupling constant, the so-called 'running coupling constant'. If, for the theory under investigation there exists a domain of the t space where g(t) is small, then because it is not known how to handle field theory beyond the perturbative approach attention must be focused on the experimental range in which the g(t) 'runs' with small values. The introduction of couplings...
Directory of Open Access Journals (Sweden)
V. Bacsó
2015-12-01
Full Text Available In this paper we study the c-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative renormalization group flow gives access to the central charges of the model in the fixed points. The results at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2<8π to the infra-red limit is in good quantitative agreement with the expected Δc=1 result. The behavior of the c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i.e. going beyond local potential approximation is crucial to get sensible results even when a single frequency is used.
Pižorn, Iztok; Verstraete, Frank
2012-02-10
The numerical renormalization group (NRG) is rephrased as a variational method with the cost function given by the sum of all the energies of the effective low-energy Hamiltonian. This allows us to systematically improve the spectrum obtained by NRG through sweeping. The ensuing algorithm has a lot of similarities to the density matrix renormalization group (DMRG) when targeting many states, and this synergy of NRG and DMRG combines the best of both worlds and extends their applicability. We illustrate this approach with simulations of a quantum spin chain and a single impurity Anderson model where the accuracy of the effective eigenstates is greatly enhanced as compared to the NRG, especially in the transition to the continuum limit.
Fixed Point and Aperiodic Tilings
Durand, Bruno; Shen, Alexander
2008-01-01
An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a ``robust'' aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.
Kloss, Thomas; Canet, Léonie; Delamotte, Bertrand; Wschebor, Nicolás
2014-02-01
We investigate the scaling regimes of the Kardar-Parisi-Zhang (KPZ) equation in the presence of spatially correlated noise with power-law decay D(p) ∼ p(-2ρ) in Fourier space, using a nonperturbative renormalization group approach. We determine the full phase diagram of the system as a function of ρ and the dimension d. In addition to the weak-coupling part of the diagram, which agrees with the results from Europhys. Lett. 47, 14 (1999) and Eur. Phys. J. B 9, 491 (1999), we find the two fixed points describing the short-range- (SR) and long-range- (LR) dominated strong-coupling phases. In contrast with a suggestion in the references cited above, we show that, for all values of ρ, there exists a unique strong-coupling SR fixed point that can be continuously followed as a function of d. We show in particular that the existence and the behavior of the LR fixed point do not provide any hint for 4 being the upper critical dimension of the KPZ equation with SR noise.
Renormalization group for viscous fingering with chemical dissolution
Nagatani, Takashi; Lee, Jysoo; Stanley, H. Eugene
1991-02-01
We study the evolution of patterns formed by injecting a reactive fluid with viscosity μ into a two-dimensional porous medium filled with a nonreactive fluid of unit viscosity. We treat the ``mass-transfer limit,'' in which the time scale of the chemical reaction between the injected fluid and the porous media is much faster than the time scale of reactant transport. We formulate a three-parameter position-space renormalization group and find two crossovers: (1) from the first diffusion-limited-aggregation (DLA) to the Eden point-due to finite viscosity, and (2) from the Eden to the second DLA point-due to chemical dissolution. We also calculate the crossover exponent and the crossover radius.
Homotopies and the Universal Fixed Point Property
DEFF Research Database (Denmark)
Szymik, Markus
2015-01-01
A topological space has the fixed point property if every continuous self-map of that space has at least one fixed point. We demonstrate that there are serious restraints imposed by the requirement that there be a choice of fixed points that is continuous whenever the self-map varies continuously...
Exact renormalization group and Sine Gordon theory
Oak, Prafulla; Sathiapalan, B.
2017-07-01
The exact renormalization group is used to study the RG flow of quantities in field theories. The basic idea is to write an evolution operator for the flow and evaluate it in perturbation theory. This is easier than directly solving the differential equation. This is illustrated by reproducing known results in four dimensional ϕ 4 field theory and the two dimensional Sine-Gordon theory. It is shown that the calculation of beta function is somewhat simplified. The technique is also used to calculate the c-function in two dimensional Sine-Gordon theory. This agrees with other prescriptions for calculating c-functions in the literature. If one extrapolates the connection between central charge of a CFT and entanglement entropy in two dimensions, to the c-function of the perturbed CFT, then one gets a value for the entanglement entropy in Sine-Gordon theory that is in exact agreement with earlier calculations (including one using holography) in arXiv:1610.04233.
Polarizable Embedding Density Matrix Renormalization Group.
Hedegård, Erik D; Reiher, Markus
2016-09-13
The polarizable embedding (PE) approach is a flexible embedding model where a preselected region out of a larger system is described quantum mechanically, while the interaction with the surrounding environment is modeled through an effective operator. This effective operator represents the environment by atom-centered multipoles and polarizabilities derived from quantum mechanical calculations on (fragments of) the environment. Thereby, the polarization of the environment is explicitly accounted for. Here, we present the coupling of the PE approach with the density matrix renormalization group (DMRG). This PE-DMRG method is particularly suitable for embedded subsystems that feature a dense manifold of frontier orbitals which requires large active spaces. Recovering such static electron-correlation effects in multiconfigurational electronic structure problems, while accounting for both electrostatics and polarization of a surrounding environment, allows us to describe strongly correlated electronic structures in complex molecular environments. We investigate various embedding potentials for the well-studied first excited state of water with active spaces that correspond to a full configuration-interaction treatment. Moreover, we study the environment effect on the first excited state of a retinylidene Schiff base within a channelrhodopsin protein. For this system, we also investigate the effect of dynamical correlation included through short-range density functional theory.
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Renormalization group approach to power-law modeling of complex metabolic networks.
Hernández-Bermejo, Benito
2010-08-07
In the modeling of complex biological systems, and especially in the framework of the description of metabolic pathways, the use of power-law models (such as S-systems and GMA systems) often provides a remarkable accuracy over several orders of magnitude in concentrations, an unusually broad range not fully understood at present. In order to provide additional insight in this sense, this article is devoted to the renormalization group analysis of reactions in fractal or self-similar media. In particular, the renormalization group methodology is applied to the investigation of how rate-laws describing such reactions are transformed when the geometric scale is changed. The precise purpose of such analysis is to investigate whether or not power-law rate-laws present some remarkable features accounting for the successes of power-law modeling. As we shall see, according to the renormalization group point of view the answer is positive, as far as power-laws are the critical solutions of the renormalization group transformation, namely power-law rate-laws are the renormalization group invariant solutions. Moreover, it is shown that these results also imply invariance under the group of concentration scalings, thus accounting for the reported power-law model accuracy over several orders of magnitude in metabolite concentrations. Copyright 2010 Elsevier Ltd. All rights reserved.
Renormalization group theory of the three dimensional dilute Bose gas
Bijlsma, M.; Stoof, H.T.C.
1996-01-01
We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowledge of the microscopic details of the interatomic interaction, we determine the correct initial values of our renormalization group equations and thus obtain also information on nonuniversal
An improved renormalization group theory for real fluids.
Mi, Jianguo; Zhong, Chongli; Li, Yi-Gui; Tang, Yiping
2004-09-15
On the basis of White's theory, an improved renormalization group (RG) theory is developed for chain bonding fluids inside the critical region. Outside the critical region, the statistical associating fluid theory based on the first-order mean sphere approximation [Fluid Phase Equilibria 171, 27 (2000)] is adopted and all the microscopic parameters are taken directly from its earlier application of real fluids. Inside the critical region, the RG transformation for long-range density fluctuation is derived in the k space, which illustrates explicitly the contributions from the mean-field term, the local density fluctuation, and the nonlocal density fluctuation. The RG theory is applied to describe physical behavior of ten n alkanes (C1-C10) both near to and far from the critical point. With no additional parameters for chain bonding fluids, good results are obtained for critical specific heat and phase coexistence curves and the resulting critical exponents are in good agreement with the reported nonclassic values.
A nontrivial critical fixed point for replica-symmetry-breaking transitions
Charbonneau, Patrick
2016-01-01
The transformation of the free-energy landscape from smooth to fractal is the richest feature of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon--the Gardner transition--has recently been predicted for structural glasses. However, the existence of these phase transitions has been called into question below the upper critical dimension d_u=6. Here, we obtain evidence for these transitions in dimensions d
Fixed point structure of the conformal factor field in quantum gravity
Dietz, Juergen A.; Morris, Tim R.; Slade, Zoë H.
2016-12-01
The O (∂2) background-independent flow equations for conformally reduced gravity are shown to be equivalent to flow equations naturally adapted to scalar field theory with a wrong-sign kinetic term. This sign change is shown to have a profound effect on the renormalization group properties, broadly resulting in a continuum of fixed points supporting both a discrete and a continuous eigenoperator spectrum, the latter always including relevant directions. The properties at the Gaussian fixed point are understood in particular depth, but also detailed studies of the local potential approximation, and the full O (∂2) approximation are given. These results are related to evidence for asymptotic safety found by other authors.
Directory of Open Access Journals (Sweden)
Durães F.O.
2010-04-01
Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral eﬀective ﬁeld theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a ﬁxed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoﬀ through the SRG transformation.
Comparison of renormalization group schemes for sine-Gordon type models
Nandori, I; Sailer, K; Trombettoni, A
2009-01-01
We consider the scheme-dependence of the renormalization group (RG) flow obtained in the local potential approximation for two-dimensional periodic, sine-Gordon type field-theoric models with possible inclusion of explicit mass terms. For sine-Gordon type models showing up a Kosterlitz-Thouless-Berezinskii type phase transition the Wegner-Houghton, the Polchinski, the functional Callan-Symanzik and the effective average action RG methods give qualitatively the same result and the critical frequency (temperature) can be obtained scheme-independently from the RG equations linearized around the Gaussian fixed point. For the massive sine-Gordon model which undergoes an Ising type phase transition, the Wegner-Houghton, the functional Callan-Symanzik and the effective average action RG methods provide the same scheme-independent phase structure and value for the critical ratio, in agreement with the results of lattice methods. It is also shown that RG equations linearized around the Gaussian fixed point produce sch...
Renormalization-group theory for cooling first-order phase transitions in Potts models.
Liang, Ning; Zhong, Fan
2017-03-01
We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q-state Potts model for q>10/3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.
Renormalization-group theory for cooling first-order phase transitions in Potts models
Liang, Ning; Zhong, Fan
2017-03-01
We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q -state Potts model for q >10 /3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.
Renormalization group improved Higgs inflation with a running kinetic term
Takahashi, Fuminobu; Takahashi, Ryo
2016-09-01
We study a Higgs inflation model with a running kinetic term, taking account of the renormalization group evolution of relevant coupling constants. Specifically we study two types of the running kinetic Higgs inflation, where the inflaton potential is given by the quadratic or linear term potential in a frame where the Higgs field is canonically normalized. We solve the renormalization group equations at two-loop level and calculate the scalar spectral index and the tensor-to-scalar ratio. We find that, even if the renormalization group effects are included, the quadratic inflation is ruled out by the CMB observations, while the linear one is still allowed.
Fixed-point-like theorems on subspaces
Directory of Open Access Journals (Sweden)
Bernard Cornet
2004-08-01
Full Text Available We prove a fixed-point-like theorem for multivalued mappings defined on the finite Cartesian product of Grassmannian manifolds and convex sets. Our result generalizes two different kinds of theorems: the fixed-point-like theorem by Hirsch et al. (1990 or Husseini et al. (1990 and the fixed-point theorem by Gale and Mas-Colell (1975 (which generalizes Kakutani's theorem (1941.
Bakchich, A.; El Bouziani, M.
2001-01-01
Phase transitions of a four-component lattice gas or spin-3/2 Blume-Emery-Griffiths model, with a single-ion uniaxial anisotropy and nearest-neighbour pair interactions, both bilinear and biquadratic, are investigated for two-dimensional lattices using an approximate renormalization-group approach of the Migdal-Kadanoff type. The set of fixed points and flows provide the characteristic phase diagrams, in the case of repulsive biquadratic interaction, featuring four ordered phases including high-entropy ferrimagnetic and staggered quadrupolar phases. Successive phase transitions and multicritical points are also found.
The Role of Renormalization Group in Fundamental Theoretical Physics
Shirkov, Dmitri V.
1997-01-01
General aspects of fundamental physics are considered. We comment the Wigner's logical scheme and modify it to adjust to modern theoretical physics. Then, we discuss the role and indicate the place of renormalization group in the logic of fundamental physics.
Differential Renormalization, the Action Principle and Renormalization Group Calculations
Smirnov, V. A.
1994-01-01
General prescriptions of differential renormalization are presented. It is shown that renormalization group functions are straightforwardly expressed through some constants that naturally arise within this approach. The status of the action principle in the framework of differential renormalization is discussed.
Fixed points of occasionally weakly biased mappings
Directory of Open Access Journals (Sweden)
Y. Mahendra Singh, M. R. Singh
2012-09-01
Full Text Available Common fixed point results due to Pant et al. [Pant et al., Weak reciprocal continuity and fixed point theorems, Ann Univ Ferrara, 57(1, 181-190 (2011] are extended to a class of non commuting operators called occasionally weakly biased pair[ N. Hussain, M. A. Khamsi A. Latif, Commonfixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions, Nonlinear Analysis, 74, 2133-2140 (2011]. We also provideillustrative examples to justify the improvements. Abstract. Common fixed point results due to Pant et al. [Pant et al., Weakreciprocal continuity and fixed point theorems, Ann Univ Ferrara, 57(1, 181-190 (2011] are extended to a class of non commuting operators called occasionally weakly biased pair[ N. Hussain, M. A. Khamsi A. Latif, Common fixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions, Nonlinear Analysis, 74, 2133-2140 (2011]. We also provide illustrative examples to justify the improvements.
Directory of Open Access Journals (Sweden)
Antonov N.V.
2016-01-01
Full Text Available We study effects of the random fluid motion on a system in a self-organized critical state. The latter is described by the continuous stochastic model proposed by Hwa and Kardar [Phys. Rev. Lett. 62: 1813 (1989]. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝ δ(t − t′/k⊥d-1+ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to a certain preferred direction – the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131: 381 (1990]. Using the field theoretic renormalization group we show that, depending on the relation between the exponent ξ and the spatial dimension d, the system reveals different types of large-scale, long-time scaling behaviour, associated with the three possible fixed points of the renormalization group equations. They correspond to ordinary diffusion, to passively advected scalar field (the nonlinearity of the Hwa–Kardar model is irrelevant and to the “pure” Hwa–Kardar model (the advection is irrelevant. For the special case ξ = 2(4 − d/3 both the nonlinearity and the advection are important. The corresponding critical exponents are found exactly for all these cases.
Fixed point theorems in spaces and -trees
Directory of Open Access Journals (Sweden)
Kirk WA
2004-01-01
Full Text Available We show that if is a bounded open set in a complete space , and if is nonexpansive, then always has a fixed point if there exists such that for all . It is also shown that if is a geodesically bounded closed convex subset of a complete -tree with , and if is a continuous mapping for which for some and all , then has a fixed point. It is also noted that a geodesically bounded complete -tree has the fixed point property for continuous mappings. These latter results are used to obtain variants of the classical fixed edge theorem in graph theory.
Approximate Equilibrium Problems and Fixed Points
Directory of Open Access Journals (Sweden)
H. Mazaheri
2013-01-01
Full Text Available We find a common element of the set of fixed points of a map and the set of solutions of an approximate equilibrium problem in a Hilbert space. Then, we show that one of the sequences weakly converges. Also we obtain some theorems about equilibrium problems and fixed points.
On computing fixed points for generalized sandpiles
Formenti, Enrico; Masson, Benoît
2004-01-01
Presented at DMCS 2004 (Turku, FINLAND). Long version with proofs published in International Journal of Unconventional Computing, 2006; International audience; We prove fixed points results for sandpiles starting with arbitrary initial conditions. We give an effective algorithm for computing such fixed points, and we refine it in the particular case of SPM.
Hefner, B. Todd; Walker, James S.
1999-12-01
Position-space renormalization-group methods are used to derive exact results for an Ising model on a fractal lattice. The model incorporates both nearest-neighbor and long-range interactions. The long-range interactions, which span all length scales on the lattice, can be thought of as resulting from fractal periodic boundary conditions. We present exact phase diagrams and specific heats in terms of these two interactions, and show that a “hall of mirrors” fixed-point imaging mechanism leads to an infinite number of phase transitions.
Yunus, Çağın; Renklioğlu, Başak; Keskin, Mustafa; Berker, A Nihat
2016-06-01
The spin-3/2 Ising model, with nearest-neighbor interactions only, is the prototypical system with two different ordering species, with concentrations regulated by a chemical potential. Its global phase diagram, obtained in d=3 by renormalization-group theory in the Migdal-Kadanoff approximation or equivalently as an exact solution of a d=3 hierarchical lattice, with flows subtended by 40 different fixed points, presents a very rich structure containing eight different ordered and disordered phases, with more than 14 different types of phase diagrams in temperature and chemical potential. It exhibits phases with orientational and/or positional order. It also exhibits quintuple phase transition reentrances. Universality of critical exponents is conserved across different renormalization-group flow basins via redundant fixed points. One of the phase diagrams contains a plastic crystal sequence, with positional and orientational ordering encountered consecutively as temperature is lowered. The global phase diagram also contains double critical points, first-order and critical lines between two ordered phases, critical end points, usual and unusual (inverted) bicritical points, tricritical points, multiple tetracritical points, and zero-temperature criticality and bicriticality. The four-state Potts permutation-symmetric subspace is contained in this model.
Fixed Point Curve for Weakly Inward Contractions and Approximate Fixed Point Property
Institute of Scientific and Technical Information of China (English)
P. Riyas; K. T. Ravindran
2013-01-01
In this paper, we discuss the concept of fixed point curve for linear interpo-lations of weakly inward contractions and establish necessary condition for a nonex-pansive mapping to have approximate fixed point property.
Cornfeld, Eyal; Sela, Eran
2017-08-01
The entanglement entropy in one-dimensional critical systems with boundaries has been associated with the noninteger ground-state degeneracy. This quantity, being a characteristic of boundary fixed points, decreases under renormalization group flow, as predicted by the g theorem. Here, using conformal field theory methods, we exactly calculate the entanglement entropy in the boundary Ising universality class. Our expression can be separated into the well-known bulk term and a boundary entanglement term, displaying a universal flow between two boundary conditions, in accordance with the g theorem. These results are obtained within the replica trick approach, where we show that the associated twist field, a central object generating the geometry of an n -sheeted Riemann surface, can be bosonized, giving simple analytic access to multiple quantities of interest. We argue that our result applies to other models falling into the same universality class. This includes the vicinity of the quantum critical point of the two-channel Kondo model, allowing one to track in real space the presence of a region containing one-half of a qubit with entropy 1/2 log(2 ) , associated with a free local Majorana fermion.
Gauge invariant composite operators of QED in the exact renormalization group formalism
Sonoda, Hidenori
2013-01-01
Using the exact renormalization group (ERG) formalism, we study the gauge invariant composite operators in QED. Gauge invariant composite operators are introduced as infinitesimal changes of the gauge invariant Wilson action. We examine the dependence on the gauge fixing parameter of both the Wilson action and gauge invariant composite operators. After defining ``gauge fixing parameter independence,'' we show that any gauge independent composite operators can be made ``gauge fixing parameter independent'' by appropriate normalization. As an application, we give a concise but careful proof of the Adler-Bardeen non-renormalization theorem for the axial anomaly in an arbitrary covariant gauge by extending the original proof by A. Zee.
Fixed-point adiabatic quantum search
Dalzell, Alexander M.; Yoder, Theodore J.; Chuang, Isaac L.
2017-01-01
Fixed-point quantum search algorithms succeed at finding one of M target items among N total items even when the run time of the algorithm is longer than necessary. While the famous Grover's algorithm can search quadratically faster than a classical computer, it lacks the fixed-point property—the fraction of target items must be known precisely to know when to terminate the algorithm. Recently, Yoder, Low, and Chuang [Phys. Rev. Lett. 113, 210501 (2014), 10.1103/PhysRevLett.113.210501] gave an optimal gate-model search algorithm with the fixed-point property. Previously, it had been discovered by Roland and Cerf [Phys. Rev. A 65, 042308 (2002), 10.1103/PhysRevA.65.042308] that an adiabatic quantum algorithm, operating by continuously varying a Hamiltonian, can reproduce the quadratic speedup of gate-model Grover search. We ask, can an adiabatic algorithm also reproduce the fixed-point property? We show that the answer depends on what interpolation schedule is used, so as in the gate model, there are both fixed-point and non-fixed-point versions of adiabatic search, only some of which attain the quadratic quantum speedup. Guided by geometric intuition on the Bloch sphere, we rigorously justify our claims with an explicit upper bound on the error in the adiabatic approximation. We also show that the fixed-point adiabatic search algorithm can be simulated in the gate model with neither loss of the quadratic Grover speedup nor of the fixed-point property. Finally, we discuss natural uses of fixed-point algorithms such as preparation of a relatively prime state and oblivious amplitude amplification.
About Applications of the Fixed Point Theory
Directory of Open Access Journals (Sweden)
Bucur Amelia
2017-06-01
Full Text Available The fixed point theory is essential to various theoretical and applied fields, such as variational and linear inequalities, the approximation theory, nonlinear analysis, integral and differential equations and inclusions, the dynamic systems theory, mathematics of fractals, mathematical economics (game theory, equilibrium problems, and optimisation problems and mathematical modelling. This paper presents a few benchmarks regarding the applications of the fixed point theory. This paper also debates if the results of the fixed point theory can be applied to the mathematical modelling of quality.
Vojta, Matthias; Mitchell, Andrew K; Zschocke, Fabian
2016-07-15
Kitaev's honeycomb-lattice compass model describes a spin liquid with emergent fractionalized excitations. Here, we study the physics of isolated magnetic impurities coupled to the Kitaev spin-liquid host. We reformulate this Kondo-type problem in terms of a many-state quantum impurity coupled to a multichannel bath of Majorana fermions and present the numerically exact solution using Wilson's numerical renormalization group technique. Quantum phase transitions occur as a function of Kondo coupling and locally applied field. At zero field, the impurity moment is partially screened only when it binds an emergent gauge flux, while otherwise it becomes free at low temperatures. We show how Majorana degrees of freedom determine the fixed-point properties, make contact with Kondo screening in pseudogap Fermi systems, and discuss effects away from the dilute limit.
Energy Technology Data Exchange (ETDEWEB)
Weyer, Holger
2010-12-17
We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent nonperturbative renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG ow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity (QEG) in the ''conformally reduced'' theory which discards all degrees of freedom contained in the metric except the conformal one. The conformally reduced Einstein-Hilbert approximation has exactly the same qualitative properties as in the full Einstein-Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety. Without the extra field dependence the resulting RG flow is that of a simple {phi}{sup 4}-theory. We employ the Local Potential Approximation for the conformal factor to generalize the RG flow on an infinite dimensional theory space. Again we find a Gaussian as well as a non-Gaussian fixed point which provides further evidence for the viability of the asymptotic safety scenario. The analog of the invariant cubic in the curvature which spoils perturbative renormalizability is seen to be unproblematic for the asymptotic safety of the conformally reduced theory. The scaling fields and dimensions of both fixed points are obtained explicitly and possible implications for the predictivity of the theory are discussed. Since the RG flow depends on the topology of the
Spin glass in a field: a new zero-temperature fixed point in finite dimensions.
Angelini, Maria Chiara; Biroli, Giulio
2015-03-06
By using real-space renormalization group (RG) methods, we show that spin glasses in a field display a new kind of transition in high dimensions. The corresponding critical properties and the spin-glass phase are governed by two nonperturbative zero-temperature fixed points of the RG flow. We compute the critical exponents and discuss the RG flow and its relevance for three-dimensional systems. The new spin-glass phase we discovered has unusual properties, which are intermediate between the ones conjectured by droplet and full replica symmetry-breaking theories. These results provide a new perspective on the long-standing debate about the behavior of spin glasses in a field.
Probability distribution of the entanglement across a cut at an infinite-randomness fixed point
Devakul, Trithep; Majumdar, Satya N.; Huse, David A.
2017-03-01
We calculate the probability distribution of entanglement entropy S across a cut of a finite one-dimensional spin chain of length L at an infinite-randomness fixed point using Fisher's strong randomness renormalization group (RG). Using the random transverse-field Ising model as an example, the distribution is shown to take the form p (S |L ) ˜L-ψ (k ) , where k ≡S /ln[L /L0] , the large deviation function ψ (k ) is found explicitly, and L0 is a nonuniversal microscopic length. We discuss the implications of such a distribution on numerical techniques that rely on entanglement, such as matrix-product-state-based techniques. Our results are verified with numerical RG simulations, as well as the actual entanglement entropy distribution for the random transverse-field Ising model which we calculate for large L via a mapping to Majorana fermions.
Improved renormalization group theory for critical asymmetry of fluids.
Wang, Long; Zhao, Wei; Wu, Liang; Li, Liyan; Cai, Jun
2013-09-28
We develop an improved renormalization group (RG) approach incorporating the critical vapor-liquid equilibrium asymmetry. In order to treat the critical asymmetry of vapor-liquid equilibrium, the integral measure is introduced in the Landau-Ginzbug partition function to achieve a crossover between the local order parameter in Ising model and the density of fluid systems. In the implementation of the improved RG approach, we relate the integral measure with the inhomogeneous density distribution of a fluid system and combine the developed method with SAFT-VR (statistical associating fluid theory of variable range) equation of state. The method is applied to various fluid systems including square-well fluid, square-well dimer fluid and real fluids such as methane (CH4), ethane (C2H6), trifluorotrichloroethane (C2F3Cl3), and sulfur hexafluoride (SF6). The descriptions of vapor-liquid equilibria provided by the developed method are in excellent agreement with simulation and experimental data. Furthermore, the improved method predicts accurate and qualitatively correct behavior of coexistence diameter near the critical point and produces the non-classical 3D Ising criticality.
On position-space renormalization group approach to percolation
Sahimi, Muhammad; Rassamdana, Hossein
1995-02-01
In a position-space renormalization group (PSRG) approach to percolation one calculates the probability R(p,b) that a finite lattice of linear size b percolates, where p is the occupation probability of a site or bond. A sequence of percolation thresholds p c (b) is then estimated from R(p c , b)=p c (b) and extrapolated to the limit b→∞ to obtain p c = p c (∞). Recently, it was shown that for a certain spanning rule and boundary condition, R(p c , ∞)=R c is universal, and since p c is not universal, the validity of PSRG approaches was questioned. We suggest that the equation R(p c , b)=α, where α is any number in (0,1), provides a sequence of p c (b)'s that always converges to p c as b→∞. Thus, there is an envelope from any point inside of which one can converge to p c . However, the convergence is optimal if α= R c . By calculating the fractal dimension of the sample-spanning cluster at p c , we show that the same is true about any critical exponent of percolation that is calculated by a PSRG method. Thus PSRG methods are still a useful tool for investigating percolation properties of disordered systems.
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N(6)) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F2, H2O2, C2H6, and N2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (ΔST=ET-ES) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic ΔST is 3.9 kcal mol(-1), a value that is within 0.1 kcal mol(-1) from multireference coupled cluster results.
Approximate fixed point of Reich operator
Directory of Open Access Journals (Sweden)
M. Saha
2013-01-01
Full Text Available In the present paper, we study the existence of approximate fixed pointfor Reich operator together with the property that the ε-fixed points are concentrated in a set with the diameter tends to zero if ε $to$ > 0.
Topological fixed point theory of multivalued mappings
Górniewicz, Lech
1999-01-01
This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework. Topics covered include the basic theory of set-valued mappings with both convex and nonconvex values, approximation and homological methods in the fixed point theory together with a thorough discussion of various index theories for mappings with a topologically complex structure of values, applications to many fields of mathematics, mathematical economics and related subjects, and the fixed point approach to the theory of ordinary differential inclusions. The work emphasises the topological aspect of the theory, and gives special attention to the Lefschetz and Nielsen fixed point theory for acyclic valued mappings with diverse compactness assumptions via graph approximation and the homological approach. Audience: This work will be of interest to researchers an...
Anderson Acceleration for Fixed-Point Iterations
Energy Technology Data Exchange (ETDEWEB)
Walker, Homer F. [Worcester Polytechnic Institute, MA (United States)
2015-08-31
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
Global Wilson-Fisher fixed points
Jüttner, Andreas; Litim, Daniel F.; Marchais, Edouard
2017-08-01
The Wilson-Fisher fixed point with O (N) universality in three dimensions is studied using the renormalisation group. It is shown how a combination of analytical and numerical techniques determine global fixed points to leading order in the derivative expansion for real or purely imaginary fields with moderate numerical effort. Universal and non-universal quantities such as scaling exponents and mass ratios are computed, for all N, together with local fixed point coordinates, radii of convergence, and parameters which control the asymptotic behaviour of the effective action. We also explain when and why finite-N results do not converge pointwise towards the exact infinite-N limit. In the regime of purely imaginary fields, a new link between singularities of fixed point effective actions and singularities of their counterparts by Polchinski are established. Implications for other theories are indicated.
Fixed-Point Configurable Hardware Components
Directory of Open Access Journals (Sweden)
Rocher Romuald
2006-01-01
Full Text Available To reduce the gap between the VLSI technology capability and the designer productivity, design reuse based on IP (intellectual properties is commonly used. In terms of arithmetic accuracy, the generated architecture can generally only be configured through the input and output word lengths. In this paper, a new kind of method to optimize fixed-point arithmetic IP has been proposed. The architecture cost is minimized under accuracy constraints defined by the user. Our approach allows exploring the fixed-point search space and the algorithm-level search space to select the optimized structure and fixed-point specification. To significantly reduce the optimization and design times, analytical models are used for the fixed-point optimization process.
On hyperbolic fixed points in ultrametric dynamics
Lindahl, Karl-Olof; 10.1134/S2070046610030052
2011-01-01
Let K be a complete ultrametric field. We give lower and upper bounds for the size of linearization discs for power series over K near hyperbolic fixed points. These estimates are maximal in the sense that there exist examples where these estimates give the exact size of the corresponding linearization disc. In particular, at repelling fixed points, the linearization disc is equal to the maximal disc on which the power series is injective.
Random fixed points and random differential inclusions
Directory of Open Access Journals (Sweden)
Nikolaos S. Papageorgiou
1988-01-01
Full Text Available In this paper, first, we study random best approximations to random sets, using fixed point techniques, obtaining this way stochastic analogues of earlier deterministic results by Browder-Petryshyn, KyFan and Reich. Then we prove two fixed point theorems for random multifunctions with stochastic domain that satisfy certain tangential conditions. Finally we consider a random differential inclusion with upper semicontinuous orientor field and establish the existence of random solutions.
Renormalization Group Equation for Low Momentum Effective Nuclear Interactions
Bogner, S K; Kuo, T T S; Brown, G E
2001-01-01
We consider two nonperturbative methods originally used to derive shell model effective interactions in nuclei. These methods have been applied to the two nucleon sector to obtain an energy independent effective interaction V_{low k}, which preserves the low momentum half-on-shell T matrix and the deuteron pole, with a sharp cutoff imposed on all intermediate state momenta. We show that V_{low k} scales with the cutoff precisely as one expects from renormalization group arguments. This result is a step towards reformulating traditional model space many-body calculations in the language of effective field theories and the renormalization group. The numerical scaling properties of V_{low k} are observed to be in excellent agreement with our exact renormalization group equation.
Emergent geometry from field theory: Wilson's renormalization group revisited
Kim, Ki-Seok; Park, Chanyong
2016-06-01
We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.
Gravitational fixed points from perturbation theory.
Niedermaier, Max R
2009-09-04
The fixed point structure of the renormalization flow in higher derivative gravity is investigated in terms of the background covariant effective action using an operator cutoff that keeps track of powerlike divergences. Spectral positivity of the gauge fixed Hessian can be satisfied upon expansion in the asymptotically free higher derivative coupling. At one-loop order in this coupling strictly positive fixed points are found for the dimensionless Newton constant g(N) and the cosmological constant lambda, which are determined solely by the coefficients of the powerlike divergences. The renormalization flow is asymptotically safe with respect to this fixed point and settles on a lambda(g(N)) trajectory after O(10) units of the renormalization mass scale to accuracy 10(-7).
Dynamical real space renormalization group applied to sandpile models.
Ivashkevich, E V; Povolotsky, A M; Vespignani, A; Zapperi, S
1999-08-01
A general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.
Nonlinear Reynolds stress models and the renormalization group
Rubinstein, Robert; Barton, J. Michael
1990-01-01
The renormalization group is applied to derive a nonlinear algebraic Reynolds stress model of anisotropic turbulence in which the Reynolds stresses are quadratic functions of the mean velocity gradients. The model results from a perturbation expansion that is truncated systematically at second order with subsequent terms contributing no further information. The resulting turbulence model applied to both low and high Reynolds number flows without requiring wall functions or ad hoc modifications of the equations. All constants are derived from the renormalization group procedure; no adjustable constants arise. The model permits inequality of the Reynolds normal stresses, a necessary condition for calculating turbulence-driven secondary flows in noncircular ducts.
From infinite to two dimensions through the functional renormalization group.
Taranto, C; Andergassen, S; Bauer, J; Held, K; Katanin, A; Metzner, W; Rohringer, G; Toschi, A
2014-05-16
We present a novel scheme for an unbiased, nonperturbative treatment of strongly correlated fermions. The proposed approach combines two of the most successful many-body methods, the dynamical mean field theory and the functional renormalization group. Physically, this allows for a systematic inclusion of nonlocal correlations via the functional renormalization group flow equations, after the local correlations are taken into account nonperturbatively by the dynamical mean field theory. To demonstrate the feasibility of the approach, we present numerical results for the two-dimensional Hubbard model at half filling.
Self-Consistency Requirements of the Renormalization Group for Setting the Renormalization Scale
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Xing-Gang [Chongqing Univ. (China); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-08-07
In conventional treatments, predictions from fixed-order perturbative QCD calculations cannot be fixed with certainty due to ambiguities in the choice of the renormalization scale as well as the renormalization scheme. In this paper we present a general discussion of the constraints of the renormalization group (RG) invariance on the choice of the renormalization scale. We adopt the RG based equations, which incorporate the scheme parameters, for a general exposition of RG invariance, since they simultaneously express the invariance of physical observables under both the variation of the renormalization scale and the renormalization scheme parameters. We then discuss the self-consistency requirements of the RG, such as reflexivity, symmetry, and transitivity, which must be satisfied by the scale-setting method. The Principle of Minimal Sensitivity (PMS) requires the slope of the approximant of an observable to vanish at the renormalization point. This criterion provides a scheme-independent estimation, but it violates the symmetry and transitivity properties of the RG and does not reproduce the Gell-Mann-Low scale for QED observables. The Principle of Maximum Conformality (PMC) satisfies all of the deductions of the RG invariance - reflectivity, symmetry, and transitivity. Using the PMC, all non-conformal {β^{R}_{i}}-terms (R stands for an arbitrary renormalization scheme) in the perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC scales and the resulting finite-order PMC predictions are both to high accuracy independent of the choice of initial renormalization scale, consistent with RG invariance.
Defenu, Nicoló; Trombettoni, Andrea; Codello, Alessandro
2015-11-01
We study, by renormalization group methods, O (N ) models with interactions decaying as power law with exponent d +σ . When only the long-range momentum term pσ is considered in the propagator, the critical exponents can be computed from those of the corresponding short-range O (N ) models at an effective fractional dimension Deff. Neglecting wave function renormalization effects the result for the effective dimension is Deff=2/d σ , which turns to be exact in the spherical model limit (N →∞ ) . Introducing a running wave function renormalization term the effective dimension becomes instead Deff=(2/-ηSR)d σ . The latter result coincides with the one found using standard scaling arguments. Explicit results in two and three dimensions are given for the exponent ν . We propose an improved method to describe the full theory space of the models where both short- and long-range propagator terms are present and no a priori choice among the two in the renormalization group flow is done. The eigenvalue spectrum of the full theory for all possible fixed points is drawn and a full description of the fixed-point structure is given, including multicritical long-range universality classes. The effective dimension is shown to be only approximate, and the resulting error is estimated.
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2017-01-30
We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.
Fixed points of symplectic periodic flows
Pelayo, Alvaro
2010-01-01
The study of fixed points is a classical subject in geometry and dynamics. If the circle acts in a Hamiltonian fashion on a compact symplectic manifold M, then it is classically known that there are at least 1 + dim(M)/2 fixed points; this follows from Morse theory for the momentum map of the action. In this paper we use Atiyah-Bott-Berline-Vergne (ABBV) localization in equivariant cohomology to prove that this conclusion also holds for symplectic circle actions with non-empty fixed sets, as long as the Chern class map is somewhere injective -- the Chern class map assigns to a fixed point the sum of the action weights at the point. We complement this result with less sharp lower bounds on the number of fixed points, under no assumptions; from a dynamical systems viewpoint, our results imply that there is no symplectic periodic flow with exactly one or two equilibrium points on a compact manifold of dimension at least eight.
Au Fixed Point Development at NRC
Dedyulin, S. N.; Gotoh, M.; Todd, A. D. W.
2017-04-01
Two Au fixed points filled using metal of different nominal purities in carbon crucibles have been developed at the National Research Council Canada (NRC). The primary motivation behind this project was to provide the means for direct thermocouple calibrations at the Au freezing point (1064.18°C). Using a Au fixed point filled with the metal of maximum available purity [99.9997 % pure according to glow discharge mass spectroscopy (GDMS)], multiple freezing plateaus were measured in a commercial high-temperature furnace. Four Pt/Pd thermocouples constructed and calibrated in-house were used to measure the freezing plateaus. From the calibration at Sn, Zn, Al and Ag fixed points, the linear deviation function from the NIST-IMGC reference function (IEC 62460:2008 Standard) was determined and extrapolated to the freezing temperature of Au. For all the Pt/Pd thermocouples used in this study, the measured EMF values agree with the extrapolated values within expanded uncertainty, thus substantiating the use of 99.9997 % pure Au fixed point cell for thermocouple calibrations at NRC. Using the Au fixed point filled with metal of lower purity (99.99 % pure according to GDMS), the effect of impurities on the Au freezing temperature measured with Pt/Pd thermocouple was further investigated.
Universal critical behavior of noisy coupled oscillators: a renormalization group study.
Risler, Thomas; Prost, Jacques; Jülicher, Frank
2005-07-01
We show that the synchronization transition of a large number of noisy coupled oscillators is an example for a dynamic critical point far from thermodynamic equilibrium. The universal behaviors of such critical oscillators, arranged on a lattice in a d -dimensional space and coupled by nearest-neighbors interactions, can be studied using field-theoretical methods. The field theory associated with the critical point of a homogeneous oscillatory instability (or Hopf bifurcation of coupled oscillators) is the complex Ginzburg-Landau equation with additive noise. We perform a perturbative renormalization group (RG) study in a (4-epsilon)-dimensional space. We develop an RG scheme that eliminates the phase and frequency of the oscillations using a scale-dependent oscillating reference frame. Within Callan-Symanzik's RG scheme to two-loop order in perturbation theory, we find that the RG fixed point is formally related to the one of the model A dynamics of the real Ginzburg-Landau theory with an O2 symmetry of the order parameter. Therefore, the dominant critical exponents for coupled oscillators are the same as for this equilibrium field theory. This formal connection with an equilibrium critical point imposes a relation between the correlation and response functions of coupled oscillators in the critical regime. Since the system operates far from thermodynamic equilibrium, a strong violation of the fluctuation-dissipation relation occurs and is characterized by a universal divergence of an effective temperature. The formal relation between critical oscillators and equilibrium critical points suggests that long-range phase order exists in critical oscillators above two dimensions.
Fixed Point Theorems for Asymptotically Contractive Multimappings
Directory of Open Access Journals (Sweden)
M. Djedidi
2012-01-01
Full Text Available We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex subset of a reflexive Banach space into itself under some asymptotic contraction assumptions. Some existence results of coincidence points and eigenvalues for multimappings are given.
Fixed point theory of parametrized equivariant maps
Ulrich, Hanno
1988-01-01
The first part of this research monograph discusses general properties of G-ENRBs - Euclidean Neighbourhood Retracts over B with action of a compact Lie group G - and their relations with fibrations, continuous submersions, and fibre bundles. It thus addresses equivariant point set topology as well as equivariant homotopy theory. Notable tools are vertical Jaworowski criterion and an equivariant transversality theorem. The second part presents equivariant cohomology theory showing that equivariant fixed point theory is isomorphic to equivariant stable cohomotopy theory. A crucial result is the sum decomposition of the equivariant fixed point index which provides an insight into the structure of the theory's coefficient group. Among the consequences of the sum formula are some Borsuk-Ulam theorems as well as some folklore results on compact Lie-groups. The final section investigates the fixed point index in equivariant K-theory. The book is intended to be a thorough and comprehensive presentation of its subjec...
Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations
Huber, Markus Q
2011-01-01
We present the Mathematica application DoFun which allows to derive Dyson-Schwinger equations and renormalization group flow equations for n-point functions in a simple manner. DoFun offers several tools which considerably simplify the derivation of these equations from a given physical action. We discuss the application of DoFun by means of two different types of quantum field theories, namely a bosonic O(N) theory and the Gross-Neveu model.
The computation of fixed points and applications
Todd, Michael J
1976-01-01
Fixed-point algorithms have diverse applications in economics, optimization, game theory and the numerical solution of boundary-value problems. Since Scarf's pioneering work [56,57] on obtaining approximate fixed points of continuous mappings, a great deal of research has been done in extending the applicability and improving the efficiency of fixed-point methods. Much of this work is available only in research papers, although Scarf's book [58] gives a remarkably clear exposition of the power of fixed-point methods. However, the algorithms described by Scarf have been super~eded by the more sophisticated restart and homotopy techniques of Merrill [~8,~9] and Eaves and Saigal [1~,16]. To understand the more efficient algorithms one must become familiar with the notions of triangulation and simplicial approxi- tion, whereas Scarf stresses the concept of primitive set. These notes are intended to introduce to a wider audience the most recent fixed-point methods and their applications. Our approach is therefore ...
Fixed point theory in metric type spaces
Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco
2015-01-01
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...
Quasi-fixed point scenarios and the Higgs mass in the E6 inspired SUSY models
Nevzorov, R
2013-01-01
We analyse the renormalization group (RG) flow of the gauge and Yukawa couplings within the E6 inspired supersymmetric (SUSY) models with extra U(1)_{N} gauge symmetry under which right-handed neutrinos have zero charge. In these models single discrete \\tilde{Z}^{H}_2 symmetry forbids the tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We argue that the measured values of the SU(2)_W and U(1)_Y gauge couplings lie near the quasi-fixed points of the RG equations in these models. The solutions for the Yukawa couplings also approach the quasi-fixed points with increasing their values at the Grand Unification scale. We calculate the two-loop upper bounds on the lightest Higgs boson mass in the vicinity of these quasi-fixed points and compare the results of our analysis with the corresponding ones in the NMSSM. In all these cases the theoretical restrictions on the SM-like Higgs boson mass are rather close to 125 GeV.
Fixed points of the SRG evolution and the on-shell limit of the nuclear force
Arriola, E Ruiz; Timoteo, V S
2016-01-01
We study the infrared limit of the similarity renormalization group (SRG) using a simple toy model for the nuclear force aiming to investigate the fixed points of the SRG evolution with both the Wilson and the Wegner generators. We show how a fully diagonal interaction at the similarity cutoff $\\lambda \\rightarrow 0$ may be obtained from the eigenvalues of the hamiltonian and quantify the diagonalness by means of operator norms. While the fixed points for both generators are equivalent when no bound-states are allowed by the interaction, the differences arising from the presence of the Deuteron bound-state can be disentangled very clearly by analyzing the evolved interactions in the infrared limit $\\lambda \\to 0$ on a finite momentum grid. Another issue we investigate is the location on the diagonal of the hamiltonian in momentum-space where the SRG evolution places the Deuteron bound-state eigenvalue once it reaches the fixed point. This finite momentum grid setup provides an alternative derivation of the ce...
Feynman graph solution to Wilson's exact renormalization group
Sonoda, H
2003-01-01
We introduce a new prescription for renormalizing Feynman diagrams. The prescription is similar to BPHZ, but it is mass independent, and works in the massless limit as the MS scheme with dimensional regularization. The prescription gives a diagrammatic solution to Wilson's exact renormalization group differential equation.
Inverse Symmetry Breaking and the Exact Renormalization Group
Pietroni, M; Tetradis, N
1997-01-01
We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.
On Newton-Cartan local renormalization group and anomalies
Energy Technology Data Exchange (ETDEWEB)
Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano; Filippini, Francesco [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)
2016-11-28
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
On Newton-Cartan local renormalization group and anomalies
Auzzi, Roberto; Filippini, Francesco; Nardelli, Giuseppe
2016-01-01
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Anisotropic bond percolation by position-space renormalization group
de Oliveira, Paulo Murilo
1982-02-01
We present a position-space renormalization-group procedure for the anisotropic bond-percolation problem in a square lattice. We use a kind of cell which preserves the geometrical features of the whole lattice, including duality. In this manner, the whole phase diagram and the dimensionality crossover exponent (both are exactly known) are reproduced for any scaling factor.
Functional renormalization group approach to the Kraichnan model.
Pagani, Carlo
2015-09-01
We study the anomalous scaling of the structure functions of a scalar field advected by a random Gaussian velocity field, the Kraichnan model, by means of functional renormalization group techniques. We analyze the symmetries of the model and derive the leading correction to the structure functions considering the renormalization of composite operators and applying the operator product expansion.
Renormalization group flows in gauge-gravity duality
Murugan, Arvind
2016-01-01
This is a copy of the 2009 Princeton University thesis which examined various aspects of gauge/gravity duality, including renormalization group flows, phase transitions of the holographic entanglement entropy, and instabilities associated with the breaking of supersymmetry. Chapter 5 contains new unpublished material on various instabilities of the weakly curved non-supersymmetric $AdS_4$ backgrounds of M-theory.
Renormalization Group Flows, Cycles, and c-Theorem Folklore
Curtright, Thomas L.; Jin, Xiang; Zachos, Cosmas K.
2012-03-01
Monotonic renormalization group flows of the “c” and “a” functions are often cited as reasons why cyclic or chaotic coupling trajectories cannot occur. It is argued here, based on simple examples, that this is not necessarily true. Simultaneous monotonic and cyclic flows can be compatible if the flow function is multivalued in the couplings.
Georgiev, Ivan T.; McKay, Susan R.
2005-12-01
We present a general position-space renormalization-group approach for systems in steady states far from equilibrium and illustrate its application to the three-state driven lattice gas. The method is based upon the possibility of a closed form representation of the parameters controlling transition rates of the system in terms of the steady state probability distribution of small clusters, arising from the application of the master equations to small clusters. This probability distribution on various length scales is obtained through a Monte Carlo algorithm on small lattices, which then yields a mapping between parameters on different length scales. The renormalization-group flows indicate the phase diagram, analogous to equilibrium treatments. For the three-state driven lattice gas, we have implemented this procedure and compared the resulting phase diagrams with those obtained directly from simulations. Results in general show the expected topology with one exception. For high densities, an unexpected additional fixed point emerges, which can be understood qualitatively by comparing it with the fixed point of the fully asymmetric exclusion process.
Duan's fixed point theorem: Proof and generalization
Directory of Open Access Journals (Sweden)
Arkowitz Martin
2006-01-01
Full Text Available Let be an H-space of the homotopy type of a connected, finite CW-complex, any map and the th power map. Duan proved that has a fixed point if . We give a new, short and elementary proof of this. We then use rational homotopy to generalize to spaces whose rational cohomology is the tensor product of an exterior algebra on odd dimensional generators with the tensor product of truncated polynomial algebras on even dimensional generators. The role of the power map is played by a -structure as defined by Hemmi-Morisugi-Ooshima. The conclusion is that and each has a fixed point.
General Common Fixed Point Theorems and Applications
Directory of Open Access Journals (Sweden)
Shyam Lal Singh
2012-01-01
Full Text Available The main result is a common fixed point theorem for a pair of multivalued maps on a complete metric space extending a recent result of Đorić and Lazović (2011 for a multivalued map on a metric space satisfying Ćirić-Suzuki-type-generalized contraction. Further, as a special case, we obtain a generalization of an important common fixed point theorem of Ćirić (1974. Existence of a common solution for a class of functional equations arising in dynamic programming is also discussed.
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
Simplicial fixed point algorithms and applications
Yang, Z.F.
1996-01-01
Fixed point theory is an important branch of modern mathematics and has always been a major theoretical tool in fields such as differential equations, topology, function analysis, optimal control, economics, and game theory. Its applicability has been increased enormously by the development of
Common Fixed Points for Weakly Compatible Maps
Indian Academy of Sciences (India)
Renu Chugh; Sanjay Kumar
2001-05-01
The purpose of this paper is to prove a common fixed point theorem, from the class of compatible continuous maps to a larger class of maps having weakly compatible maps without appeal to continuity, which generalized the results of Jungck [3], Fisher [1], Kang and Kim [8], Jachymski [2], and Rhoades [9].
A New Fixed Point Theorem and Applications
Directory of Open Access Journals (Sweden)
Min Fang
2013-01-01
Full Text Available A new fixed point theorem is established under the setting of a generalized finitely continuous topological space (GFC-space without the convexity structure. As applications, a weak KKM theorem and a minimax inequalities of Ky Fan type are also obtained under suitable conditions. Our results are different from known results in the literature.
Some Generalizations of Jungck's Fixed Point Theorem
Directory of Open Access Journals (Sweden)
J. R. Morales
2012-01-01
Full Text Available We are going to generalize the Jungck's fixed point theorem for commuting mappings by mean of the concepts of altering distance functions and compatible pair of mappings, as well as, by using contractive inequalities of integral type and contractive inequalities depending on another function.
Generalized Common Fixed Point Results with Applications
Directory of Open Access Journals (Sweden)
Marwan Amin Kutbi
2014-01-01
Full Text Available We obtained some generalized common fixed point results in the context of complex valued metric spaces. Moreover, we proved an existence theorem for the common solution for two Urysohn integral equations. Examples are presented to support our results.
Uniqueness of entire functions and fixed points
Chang, Jianming; Fang, Mingliang
2002-01-01
Let $f$ be a nonconstant entire function. %If $f(z)=z$ $\\Longleftrightarrow $ $f'(z)=z$, and %$f'(z)=z$ $\\Longrightarrow $ $f''(z)=z$, then $f\\equiv f'$. In particular, If $f$, $f'$ and $f''$ have the same fixed points, then $f\\equiv f'.$
Simplicial fixed point algorithms and applications
Yang, Z.F.
1996-01-01
Fixed point theory is an important branch of modern mathematics and has always been a major theoretical tool in fields such as differential equations, topology, function analysis, optimal control, economics, and game theory. Its applicability has been increased enormously by the development of simpl
Uniqueness of entire functions and fixed points
Chang, Jianming; Fang, Mingliang
2002-01-01
Let $f$ be a nonconstant entire function. %If $f(z)=z$ $\\Longleftrightarrow $ $f'(z)=z$, and %$f'(z)=z$ $\\Longrightarrow $ $f''(z)=z$, then $f\\equiv f'$. In particular, If $f$, $f'$ and $f''$ have the same fixed points, then $f\\equiv f'.$
Fixed points and self-reference
Directory of Open Access Journals (Sweden)
Raymond M. Smullyan
1984-01-01
Full Text Available It is shown how Gödel's famous diagonal argument and a generalization of the recursion theorem are derivable from a common construation. The abstract fixed point theorem of this article is independent of both metamathematics and recursion theory and is perfectly comprehensible to the non-specialist.
Precise Point Positioning with Partial Ambiguity Fixing
Li, Pan; Zhang, Xiaohong
2015-01-01
Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196
Energy Technology Data Exchange (ETDEWEB)
Antonov, N V; Kapustin, A S, E-mail: nikolai.antonov@pobox.spbu.r [Department of Theoretical Physics, St Petersburg State University, Uljanovskaja 1, St Petersburg, Petrodvorez 198504 (Russian Federation)
2010-10-08
Critical behaviour of two systems, subjected to the turbulent mixing, is studied by means of the field theoretic renormalization group. The first system, described by the equilibrium model A, corresponds to the relaxational dynamics of a non-conserved order parameter. The second one is the strongly non-equilibrium reaction-diffusion system known as Gribov process and equivalent to the Reggeon field theory. The turbulent mixing is modelled by the Kazantsev-Kraichnan 'rapid-change' ensemble: time-decorrelated Gaussian velocity field with the power-like spectrum {approx}k{sup -d-{xi}}. Effects of compressibility of the fluid are studied. It is shown that, depending on the relation between the exponent {xi} and the spatial dimension d, both the systems exhibit four different types of critical behaviour, associated with four possible fixed points of the renormalization group equations. Three fixed points correspond to known regimes: Gaussian fixed point, original model without mixing and passively advected scalar field. The most interesting fourth point corresponds to a new type of critical behaviour, in which both nonlinearity and turbulent mixing are relevant, and the critical exponents depend on d, {xi} and the degree of compressibility. The critical exponents and regions of stability for all the regimes are calculated in the leading order of the double expansion in two parameters {xi} and {epsilon} = 4 - d. For both models, compressibility enhances the role of the nonlinear terms in the dynamical equations: the region in the {epsilon}-{xi} plane, where the new nontrivial regime is stable, is getting much wider as the degree of compressibility increases. For the incompressible fluid, the most realistic values d = 3 and {xi} = 4/3 (Kolmogorov turbulence) lie in the region of stability of the passive scalar regime. If the compressibility becomes strong enough, the crossover in the critical behaviour occurs, and these values of d and {xi} fall into the region
Traveling waves and the renormalization group improvedBalitsky-Kovchegov equation
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard
2006-12-01
I study the incorporation of renormalization group (RG)improved BFKL kernels in the Balitsky-Kovchegov (BK) equation whichdescribes parton saturation. The RG improvement takes into accountimportant parts of the next-to-leading and higher order logarithmiccorrections to the kernel. The traveling wave front method for analyzingthe BK equation is generalized to deal with RG-resummed kernels,restricting to the interesting case of fixed QCD coupling. The resultsshow that the higher order corrections suppress the rapid increase of thesaturation scale with increasing rapidity. I also perform a "diffusive"differential equation approximation, which illustrates that someimportant qualitative properties of the kernel change when including RGcorrections.
Holography as a highly efficient renormalization group flow. II. An explicit construction
Behr, Nicolas; Mukhopadhyay, Ayan
2016-07-01
We complete the reformulation of the holographic correspondence as a highly efficient renormalization group (RG) flow that can also determine the UV data in the field theory in the strong-coupling and large-N limit. We introduce a special way to define operators at any given scale in terms of appropriate coarse-grained collective variables, without requiring the use of the elementary fields. The Wilsonian construction is generalized by promoting the cutoff to a functional of these collective variables. We impose three criteria to determine the coarse-graining. The first criterion is that the effective Ward identities for local conservation of energy, momentum, etc. should preserve their standard forms, but in new scale-dependent background metric and sources which are functionals of the effective single-trace operators. The second criterion is that the scale-evolution equations of the operators in the actual background metric should be state-independent, implying that the collective variables should not explicitly appear in them. The final required criterion is that the end point of the scale-evolution of the RG flow can be transformed to a fixed point corresponding to familiar nonrelativistic equations with a finite number of parameters, such as incompressible nonrelativistic Navier-Stokes, under a certain universal rescaling of the scale and of the time coordinate. Using previous work, we explicitly show that in the hydrodynamic limit each such highly efficient RG flow reproduces a unique classical gravity theory with precise UV data that satisfy our IR criterion and also lead to regular horizons in the dual geometries. We obtain the explicit coarse-graining which reproduces Einstein's equations. In a simple example, we are also able to construct a low-energy effective action and compute the beta function. Finally, we show how our construction can be interpolated with the traditional Wilsonian RG flow at a suitable scale and can be used to develop new
Ultraviolet fixed point and massive composite particles in TeV scales
Directory of Open Access Journals (Sweden)
She-Sheng Xue
2014-10-01
Full Text Available We present a further study of the dynamics of high-dimension fermion operators attributed to the theoretical inconsistency of the fundamental cutoff (quantum gravity and the parity-violating gauge symmetry of the standard model. Studying the phase transition from a symmetry-breaking phase to a strong-coupling symmetric phase and the β-function behavior in terms of four-fermion coupling strength, we discuss the critical transition point as a ultraviolet-stable fixed point where a quantum field theory preserving the standard model gauge symmetry with composite particles can be realized. The form-factors and masses of composite particles at TeV scales are estimated by extrapolating the solution of renormalization-group equations from the infrared-stable fixed point where the quantum field theory of standard model is realized and its phenomenology including Higgs mass has been experimentally determined. We discuss the probability of composite-particle formation and decay that could be experimentally verified in the LHC by measuring the invariant mass of relevant final states and their peculiar kinetic distributions.
The universal cardinal ordering of fixed points
Energy Technology Data Exchange (ETDEWEB)
San Martin, Jesus [Departamento de Matematica Aplicada, E.U.I.T.I, Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Departamento de Fisica Matematica y Fluidos, U.N.E.D. Senda del Rey 9, 28040 Madrid (Spain); Moscoso, Ma Jose [Departamento de Matematica Aplicada, E.U.I.T.I, Universidad Politecnica de Madrid, Ronda de Valencia 3, 28012 Madrid (Spain); Gonzalez Gomez, A. [Departamento de Matematica Aplicada a los Recursos Naturales, E.T. Superior de Ingenieros de Montes, Universidad Politecnica de Madrid, 28040 Madrid (Spain)], E-mail: antonia.gonzalez@upm.es
2009-11-30
We present the theorem which determines, by a permutation, the cardinal ordering of fixed points for any orbit of a period doubling cascade. The inverse permutation generates the orbit and the symbolic sequence of the orbit is obtained as a corollary. Interestingly enough, it is important to point that this theorem needs no previous information about any other orbit; also the cardinal ordering is achieved automatically with no need to compare numerical values associated with every point of the orbit (as would be the case if kneading theory were used)
Nogawa, Tomoaki; Hasegawa, Takehisa; Nemoto, Koji
2012-09-01
We study the Ising model in a hierarchical small-world network by renormalization group analysis and find a phase transition between an ordered phase and a critical phase, which is driven by the coupling strength of the shortcut edges. Unlike ordinary phase transitions, which are related to unstable renormalization fixed points (FPs), the singularity in the ordered phase of the present model is governed by the FP that coincides with the stable FP of the ordered phase. The weak stability of the FP yields peculiar criticalities, including logarithmic behavior. On the other hand, the critical phase is related to a nontrivial FP, which depends on the coupling strength and is continuously connected to the ordered FP at the transition point. We show that this continuity indicates the existence of a finite correlation-length-like quantity inside the critical phase, which diverges upon approaching the transition point.
Numerical renormalization group method for quantum impurity systems
Bulla, Ralf; Costi, Theo A.; Pruschke, Thomas
2008-04-01
In the early 1970s, Wilson developed the concept of a fully nonperturbative renormalization group transformation. When applied to the Kondo problem, this numerical renormalization group (NRG) method gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG method was later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method, including some guidelines for calculating physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi-liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean-field theory.
Renormalization Group Invariance and Optimal QCD Renormalization Scale-Setting
Wu, Xing-Gang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J; Mojaza, Matin
2014-01-01
A valid prediction from quantum field theory for a physical observable should be independent of the choice of renormalization scheme -- this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since truncated perturbation series do not automatically satisfy the requirements of the renormalization group. Two distinct approaches for satisfying the RGI principle have been suggested in the literature. One is the "Principle of Maximum Conformality" (PMC) in which the terms associated with the $\\beta$-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the "Principle of Minimum Sensitivity" (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a deta...
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-01-01
We develop a field theoretical approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Dynamical renormalization group resummation of finite temperature infrared divergences
Boyanovsky, D; Holman, R; Simionato, M
1999-01-01
We introduce the method of dynamical renormalization group to study relaxation and damping out of equilibrium directly in real time and applied it to the study of infrared divergences in scalar QED. This method allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse photons and leads to anomalous logarithmic relaxation of the form $e^{-\\alpha T t \\ln[t/t_0]}$ which prevents a quasiparticle interpretation of charged collective excitations at finite temperature. The hard thermal loop resummation program is incorporated consistently into the dynamical renormalization group yielding a picture of relaxation and damping phenomena in a plasma in real time that trascends the conceptual limitations of the quasiparticle picture and other type of resummation schemes. We derive a simple criterion for establishing the validity of the quasiparticle picture to lowest order.
Renormalization group study of damping in nonequilibrium field theory
Zanella, J
2006-01-01
In this paper we shall study whether dissipation in a $\\lambda\\phi^{4}$ may be described, in the long wavelength, low frequency limit, with a simple Ohmic term $\\kappa\\dot{\\phi}$, as it is usually done, for example, in studies of defect formation in nonequilibrium phase transitions. We shall obtain an effective theory for the long wavelength modes through the coarse graining of shorter wavelengths. We shall implement this coarse graining by iterating a Wilsonian renormalization group transformation, where infinitesimal momentum shells are coarse-grained one at a time, on the influence action describing the dissipative dynamics of the long wavelength modes. To the best of our knowledge, this is the first application of the nonequilibrium renormalization group to the calculation of a damping coefficient in quantum field theory.
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-08-01
We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Renormalization group approach to scalar quantum electrodynamics on de Sitter
González, Francisco Fabián
2016-01-01
We consider the quantum loop effects in scalar electrodynamics on de Sitter space by making use of the functional renormalization group approach. We first integrate out the photon field, which can be done exactly to leading (zeroth) order in the gradients of the scalar field, thereby making this method suitable for investigating the dynamics of the infrared sector of the theory. Assuming that the scalar remains light we then apply the functional renormalization group methods to the resulting effective scalar theory and focus on investigating the effective potential, which is the leading order contribution in the gradient expansion of the effective action. We find symmetry restoration at a critical renormalization scale $\\kappa=\\kappa_{\\rm cr}$ much below the Hubble scale $H$. When compared with the results of Serreau and Guilleux [arXiv:1306.3846 [hep-th], arXiv:1506.06183 [hep-th
Dimensional Reduction, Hard Thermal Loops and the Renormalization Group
Stephens, C R; Hess, P O; Astorga, F; Weber, Axel; Hess, Peter O.; Astorga, Francisco
2004-01-01
We study the realization of dimensional reduction and the validity of the hard thermal loop expansion for lambda phi^4 theory at finite temperature, using an environmentally friendly finite-temperature renormalization group with a fiducial temperature as flow parameter. The one-loop renormalization group allows for a consistent description of the system at low and high temperatures, and in particular of the phase transition. The main results are that dimensional reduction applies, apart from a range of temperatures around the phase transition, at high temperatures (compared to the zero temperature mass) only for sufficiently small coupling constants, while the HTL expansion is valid below (and rather far from) the phase transition, and, again, at high temperatures only in the case of sufficiently small coupling constants. We emphasize that close to the critical temperature, physics is completely dominated by thermal fluctuations that are not resummed in the hard thermal loop approach and where universal quant...
Philosophical Implications of Kadanoff's Work on the Renormalization Group
Batterman, Robert W.
2017-05-01
This paper investigates the consequences for our understanding of physical theories as a result of the development of the renormalization group. Kadanoff's assessment of these consequences is discussed. What he called the "extended singularity theorem" (that phase transitons only can occur in infinite systems) poses serious difficulties for philosophical interpretation of theories. Several responses are discussed. The resolution demands a philosophical rethinking of the role of mathematics in physical theorizing.
The Numerical Renormalization Group Method for correlated electrons
Bulla, Ralf
2000-01-01
The Numerical Renormalization Group method (NRG) has been developed by Wilson in the 1970's to investigate the Kondo problem. The NRG allows the non-perturbative calculation of static and dynamic properties for a variety of impurity models. In addition, this method has been recently generalized to lattice models within the Dynamical Mean Field Theory. This paper gives a brief historical overview of the development of the NRG and discusses its application to the Hubbard model; in particular th...
Background independent exact renormalization group for conformally reduced gravity
2015-01-01
Within the conformally reduced gravity model, where the metric is parametrised by a function f ( ϕ ) of the conformal factor ϕ , we keep dependence on both the background and fluctuation fields, to local potential approximation and O ∂ 2 $$ \\mathcal{O}\\left({\\partial}^2\\right) $$ respectively, making no other approximation. Explicit appearances of the background metric are then dictated by realising a remnant diffeomorphism invariance. The standard non-perturbative Renormalization Group (RG) ...
Renormalization-group calculation of excitation properties for impurity models
Yoshida, M.; Whitaker, M. A.; Oliveira, L. N.
1990-05-01
The renormalization-group method developed by Wilson to calculate thermodynamical properties of dilute magnetic alloys is generalized to allow the calculation of dynamical properties of many-body impurity Hamiltonians. As a simple illustration, the impurity spectral density for the resonant-level model (i.e., the U=0 Anderson model) is computed. As a second illustration, for the same model, the longitudinal relaxation rate for a nuclear spin coupled to the impurity is calculated as a function of temperature.
A Constraint on Defect and Boundary Renormalization Group Flows
Jensen, Kristan
2015-01-01
A conformal field theory (CFT) in dimension $d\\geq 3$ coupled to a planar, two-dimensional, conformal defect is characterized in part by a "central charge" $b$ that multiplies the Euler density in the defect's Weyl anomaly. For defect renormalization group flows, under which the bulk remains critical, we use reflection positivity to show that $b$ must decrease or remain constant from ultraviolet to infrared. Our result applies also to a CFT in $d=3$ flat space with a planar boundary.
Renormalization-group transformations and correlations of seismicity.
Corral, Alvaro
2005-07-08
The effect of transformations analogous to those of the real-space renormalization group are analyzed for the temporal occurrence of earthquakes. A recently reported scaling law for the distribution of recurrence times implies that these distributions must be invariant under such transformations, for which the role of the correlations between the magnitudes and the recurrence times are fundamental. This approach puts the study of the temporal structure of seismicity in the context of critical phenomena.
Constraint on Defect and Boundary Renormalization Group Flows.
Jensen, Kristan; O'Bannon, Andy
2016-03-04
A conformal field theory (CFT) in dimension d≥3 coupled to a planar, two-dimensional, conformal defect is characterized in part by a "central charge" b that multiplies the Euler density in the defect's Weyl anomaly. For defect renormalization group flows, under which the bulk remains critical, we use reflection positivity to show that b must decrease or remain constant from the ultraviolet to the infrared. Our result applies also to a CFT in d=3 flat space with a planar boundary.
Renormalization group analysis for an asymmetric simple exclusion process.
Mukherji, Sutapa
2017-03-01
A perturbative renormalization group method is used to obtain steady-state density profiles of a totally asymmetric simple exclusion process with particle adsorption and evaporation. This method allows us to obtain a globally valid solution for the density profile without the asymptotic matching of bulk and boundary layer solutions. In addition, we show a nontrivial scaling of the boundary layer width with the system size close to specific phase boundaries.
Subtractive Renormalization Group Invariance: Pionless EFT at NLO
Timóteo, Varese S.; Szpigel, Sérgio; Durães, Francisco O.
2010-11-01
We show some results concerning the renormalization group (RG) invariance of the nucleon-nucleon (NN) interaction in pionless effective field theory at next-to-leading order (NLO), using a non-relativistic Callan-Symanzik equation (NRCS) for the driving term of the Lippmann-Schwinger (LS) equation with three recursive subtractions. The phase-shifts obtained for the RG evolved potential are same as those for the original potential, apart from relative differences of order 10-15.
An algebraic Birkhoff decomposition for the continuous renormalization group
Girelli, F; Martinetti, P
2004-01-01
This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.
Numerical renormalization group studies of the partially brogen SU(3) Kondo model
Energy Technology Data Exchange (ETDEWEB)
Fuh Chuo, Evaristus
2013-04-15
The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}
Fourier Monte Carlo renormalization-group approach to crystalline membranes.
Tröster, A
2015-02-01
The computation of the critical exponent η characterizing the universal elastic behavior of crystalline membranes in the flat phase continues to represent challenges to theorists as well as computer simulators that manifest themselves in a considerable spread of numerical results for η published in the literature. We present additional insight into this problem that results from combining Wilson's momentum shell renormalization-group method with the power of modern computer simulations based on the Fourier Monte Carlo algorithm. After discussing the ideas and difficulties underlying this combined scheme, we present a calculation of the renormalization-group flow of the effective two-dimensional Young modulus for momentum shells of different thickness. Extrapolation to infinite shell thickness allows us to produce results in reasonable agreement with those obtained by functional renormalization group or by Fourier Monte Carlo simulations in combination with finite-size scaling. Moreover, our method allows us to obtain a decent estimate for the value of the Wegner exponent ω that determines the leading correction to scaling, which in turn allows us to refine our numerical estimate for η previously obtained from precise finite-size scaling data.
Duan's fixed point theorem: proof and generalization
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Let X be an H-space of the homotopy type of a connected, finite CW-complex, f:X→X any map and p k :X→X the k th power map. Duan proved that p k f :X→X has a fixed point if k≥2 . We give a new, short and elementary proof of this. We then use rational homotopy to generalize to spaces X whose rational cohomology is the tensor product of an exterior algebra on odd dimensional generators with the tensor product of truncated polynomial algebras on even dimensional generators. The role of the power map is played by a θ -structure μ θ :X→X as defined by Hemmi-Morisugi-Ooshima. The conclusion is that μ θ f and f μ θ each has a fixed point.
An Extension of Gregus Fixed Point Theorem
Directory of Open Access Journals (Sweden)
J. O. Olaleru
2007-03-01
Full Text Available Let C be a closed convex subset of a complete metrizable topological vector space (X,d and T:CÃ¢Â†Â’C a mapping that satisfies d(Tx,TyÃ¢Â‰Â¤ad(x,y+bd(x,Tx+cd(y,Ty+ed(y,Tx+fd(x,Ty for all x,yÃ¢ÂˆÂˆC, where 0fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of T.
Time Stamps for Fixed-Point Approximation
DEFF Research Database (Denmark)
Damian, Daniela
2001-01-01
Time stamps were introduced in Shivers's PhD thesis for approximating the result of a control-flow analysis. We show them to be suitable for computing program analyses where the space of results (e.g., control-flow graphs) is large. We formalize time-stamping as a top-down, fixed-point approximat......Time stamps were introduced in Shivers's PhD thesis for approximating the result of a control-flow analysis. We show them to be suitable for computing program analyses where the space of results (e.g., control-flow graphs) is large. We formalize time-stamping as a top-down, fixed......-point approximation algorithm which maintains a single copy of intermediate results. We then prove the correctness of this algorithm....
Fixed point theory in distance spaces
Kirk, William
2014-01-01
This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain re...
Topological entropy and renormalization group flow in 3-dimensional spherical spaces
Energy Technology Data Exchange (ETDEWEB)
Asorey, M. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); Beneventano, C.G. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Cavero-Peláez, I. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); CUD,E-50090, Zaragoza (Spain); D’Ascanio, D.; Santangelo, E.M. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina)
2015-01-15
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a≪1 of a massive field theory in 3-dimensional spherical spaces, M{sub 3}, with constant curvature 6/a{sup 2}. For masses lower than ((2π)/β), this term can be identified with the free energy of the same theory on M{sub 3} considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S{sub hol}, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S{sub hol} decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S{sub top}{sup UV}>S{sub top}{sup IR}. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
Topological entropy and renormalization group flow in 3-dimensional spherical spaces
Asorey, M.; Beneventano, C. G.; Cavero-Peláez, I.; D'Ascanio, D.; Santangelo, E. M.
2015-01-01
We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3, with constant curvature 6 /a 2. For masses lower than , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S {top/ UV } > S {top/ IR }. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
Antenucci, F; Crisanti, A; Leuzzi, L
2014-07-01
The Ising and Blume-Emery-Griffiths (BEG) models' critical behavior is analyzed in two dimensions and three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells. Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is thoroughly analyzed and motivated.
Zhong, Fan; Chen, Qizhou
2005-10-21
Phase transitions are of great importance in a diversity of fields. They are usually classified into continuous phase transitions and first-order phase transitions (FOPTs). Whereas the former has a well-developed theoretical framework of the renormalization-group (RG) theory, no general theory has yet been developed for the latter that appear far more frequently. Focusing on the dynamics of a generic FOPT in the phi4 model below its critical point, we show by a field-theoretic RG method that it is governed by an unexpected unstable fixed point of the corresponding phi3 model. Accordingly, it exhibits a distinct scaling and universality behavior with unstable exponents different from the critical ones.
On Fixed Points of Linguistic Dynamic Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Linguistic dynamic systems (LDS) are dynamic systems whose state variables are generalized from numbers to words. Generally speaking, LDS can model all evolving processes in word domains by using linguistic evolving laws which are naturally the linguistic extension of evolving laws in numbers. There are two kinds of LDS; namely, type-I and type-II LDS. If the word domain is modeled by fuzzy sets, then the evolving laws of a type-I LDS are constructed by applying the fuzzy extension principle to those of its conventional counterpart. On the other hand, the evolving laws of a type-II LDS are modeled by fuzzy if/then rules. Note that the state spaces of both type-I and type-II LDSs are word continuum. However, in practice, the representation of the state space of a type-II LDS consists of finite number while its computation actually involves a word continuum. In this paper, the existence of fixed points of type-II LDS is studied based on point-to-fuzzy-set mappings. The properties of the fixed point of type-II LDS are also studied. In addition, linguistic controllers are designed to control type-II LDS to goal states specified in words.
Fixed points and controllability in delay systems
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Schaefer's fixed point theorem is used to study the controllability in an infinite delay system x ′ ( t = G ( t , x t + ( B u ( t . A compact map or homotopy is constructed enabling us to show that if there is an a priori bound on all possible solutions of the companion control system x ′ ( t = λ [ G ( t , x t + ( B u ( t ] , 0 < λ < 1 , then there exists a solution for λ = 1 . The a priori bound is established by means of a Liapunov functional or applying an integral inequality. Applications to integral control systems are given to illustrate the approach.
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
Dynamics and applicability of the similarity renormalization group
Energy Technology Data Exchange (ETDEWEB)
Launey, K D; Dytrych, T; Draayer, J P [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Popa, G, E-mail: kristina@baton.phys.lsu.edu [Department of Physics and Astronomy, Ohio University, Zanesville, OH 43701 (United States)
2012-01-13
The similarity renormalization group (SRG) concept (or flow equations methodology) is studied with a view toward the renormalization of nucleon-nucleon interactions for ab initio shell-model calculations. For a general flow, we give quantitative measures, in the framework of spectral distribution theory, for the strength of the SRG-induced higher order (many-body) terms of an evolved interaction. Specifically, we show that there is a hierarchy among the terms, with those of the lowest particle rank being the most important. This feature is crucial for maintaining the unitarity of SRG transformations and key to the method's applicability. (paper)
Truncation Effects in Monte Carlo Renormalization Group Improved Lattice Actions
Takaishi, T; Forcrand, Ph. de
1998-01-01
We study truncation effects in the SU(3) gauge actions obtained by the Monte Carlo renormalization group method. By measuring the heavy quark potential we find that the truncation effects in the actions coarsen the lattice by 40-50 % from the original blocked lattice. On the other hand, we find that rotational symmetry of the heavy quark potentials is well recovered on such coarse lattices, which may indicate that rotational symmetry breaking terms are easily cancelled out by adding a short distance operator. We also discuss the possibility of reducing truncation effects.
Renormalization-group running cosmologies and the generalized second law
Horvat, R
2007-01-01
We explore some thermodynamical consequences of accelerated universes driven by a running cosmological constant (CC) from the renormalization group (RG). Application of the generalized second law (GSL) of gravitational thermodynamics to a framework where the running of the CC goes at the expense of energy transfer between vacuum and matter, strongly restricts the mass spectrum of a (hypothetical) theory controlling the CC running. We find that quantum effects driving the running of the CC should be dominated by a trans-planckian mass field, in marked contrast with the GUT-scale upper mass bo obtained by analyzing density perturbations for the running CC. The model shows compliance with the holographic principle.
Summation of Higher Order Effects using the Renormalization Group Equation
Elias, V; Sherry, T N
2004-01-01
The renormalization group (RG) is known to provide information about radiative corrections beyond the order in perturbation theory to which one has calculated explicitly. We first demonstrate the effect of the renormalization scheme used on these higher order effects determined by the RG. Particular attention is payed to the relationship between bare and renormalized quantities. Application of the method of characteristics to the RG equation to determine higher order effects is discussed, and is used to examine the free energy in thermal field theory, the relationship between the bare and renormalized coupling and the effective potential in massless scalar electrodynamics.
Density matrix renormalization group numerical study of the kagome antiferromagnet.
Jiang, H C; Weng, Z Y; Sheng, D N
2008-09-12
We numerically study the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice using the density-matrix renormalization group method. We find that the ground state is a magnetically disordered spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a magnetic structure factor showing system-size independent peaks at commensurate magnetic wave vectors. We obtain a spin triplet excitation gap DeltaE(S=1)=0.055+/-0.005 by extrapolation based on the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such an exotic spin liquid is also discussed.
Ensemble renormalization group for the random-field hierarchical model.
Decelle, Aurélien; Parisi, Giorgio; Rocchi, Jacopo
2014-03-01
The renormalization group (RG) methods are still far from being completely understood in quenched disordered systems. In order to gain insight into the nature of the phase transition of these systems, it is common to investigate simple models. In this work we study a real-space RG transformation on the Dyson hierarchical lattice with a random field, which leads to a reconstruction of the RG flow and to an evaluation of the critical exponents of the model at T=0. We show that this method gives very accurate estimations of the critical exponents by comparing our results with those obtained by some of us using an independent method.
A direct renormalization group approach for the excluded volume problem
de Queiroz, S. L. A.; Chaves, C. M.
1980-03-01
We propose a position-space renormalization group approach for the excluded volume problem in a square lattice by considering “percolating” self-avoiding paths in a b×b cell, where b=2,3,4: Two ways of counting the paths are presented. The values obtained for the exponent v converge respectively to 0.731 and 0.720, close to the usually accepted value v=0.75. Comments on the relation between percolation and self-avoiding walks are made.
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Tensor renormalization group analysis of CP(N-1) model
Kawauchi, Hikaru
2016-01-01
We apply the higher order tensor renormalization group to lattice CP($N-1$) model in two dimensions. A tensor network representation of the CP($N-1$) model in the presence of the $\\theta$-term is derived. We confirm that the numerical results of the CP(1) model without the $\\theta$-term using this method are consistent with that of the O(3) model which is analyzed by the same method in the region $\\beta \\gg 1$ and that obtained by Monte Carlo simulation in a wider range of $\\beta$. The numerical computation including the $\\theta$-term is left for future challenges.
Tensor renormalization group analysis of CP (N -1 ) model
Kawauchi, Hikaru; Takeda, Shinji
2016-06-01
We apply the higher-order tensor renormalization group to the lattice CP (N -1 ) model in two dimensions. A tensor network representation of the CP (N -1 ) model in the presence of the θ term is derived. We confirm that the numerical results of the CP(1) model without the θ term using this method are consistent with that of the O(3) model which is analyzed by the same method in the region β ≫1 and that obtained by the Monte Carlo simulation in a wider range of β . The numerical computation including the θ term is left for future challenges.
Fine-grained entanglement loss along renormalization group flows
Latorre, J I; Rico, E; Vidal, G
2004-01-01
We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along RG trajectories from the properties of the vacuum only, without need to study the whole hamiltonian.
Wang, Ziyue; Zhuang, Pengfei
2017-07-01
The pion superfluid and the corresponding Goldstone and soft modes are investigated in a two-flavor quark-meson model with a functional renormalization group. By solving the flow equations for the effective potential and the meson two-point functions at finite temperature and isospin density, the critical temperature for the superfluid increases sizeably in comparison with solving the flow equation for the potential only. The spectral function for the soft mode shows clearly a transition from meson gas to quark gas with increasing temperature and a crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer pairing of quarks with increasing isospin density.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Bound states of the $\\phi^4$ model via the Non-Perturbative Renormalization Group
Rose, F; Leonard, F; Delamotte, B
2016-01-01
Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $\\phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--M\\'endez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods
Energy Technology Data Exchange (ETDEWEB)
Gallavotti, G.
1985-04-01
A self-contained analysis is given of the simplest quantum fields from the renormalization group point of view: multiscale decomposition, general renormalization theory, resummations of renormalized series via equations of the Callan-Symanzik type, asymptotic freedom, and proof of ultraviolet stability for sine-Gordon fields in two dimensions and for other super-renormalizable scalar fields. Renormalization in four dimensions (Hepp's theorem and the De Calan--Rivasseau nexclamation bound) is presented and applications are made to the Coulomb gases in two dimensions and to the convergence of the planar graph expansions in four-dimensional field theories (t' Hooft--Rivasseau theorem).
Duan's fixed point theorem: Proof and generalization
Directory of Open Access Journals (Sweden)
Martin Arkowitz
2006-02-01
Full Text Available Let X be an H-space of the homotopy type of a connected, finite CW-complex, f:XÃ¢Â†Â’X any map and pk:XÃ¢Â†Â’X the kth power map. Duan proved that pkf:XÃ¢Â†Â’X has a fixed point if kÃ¢Â‰Â¥2. We give a new, short and elementary proof of this. We then use rational homotopy to generalize to spaces X whose rational cohomology is the tensor product of an exterior algebra on odd dimensional generators with the tensor product of truncated polynomial algebras on even dimensional generators. The role of the power map is played by a ÃŽÂ¸-structure ÃŽÂ¼ÃŽÂ¸:XÃ¢Â†Â’X as defined by Hemmi-Morisugi-Ooshima. The conclusion is that ÃŽÂ¼ÃŽÂ¸f and fÃŽÂ¼ÃŽÂ¸ each has a fixed point.
Renormalization group methods for the Reynolds stress transport equations
Rubinstein, R.
1992-01-01
The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.
Electroweak renormalization group corrections in high energy processes
Melles, M
2001-01-01
At energies ($\\sqrt{s}$) much higher than the electroweak gauge boson masses ($M$) large logarithmic corrections of the scale ratio $\\sqrt{s}/M$ occur. While the electroweak Sudakov type double (DL) and universal single (SL) logarithms have recently been resummed, at higher orders the electroweak renormalization group (RG) corrections are folded with the DL Sudakov contributions and must be included for a consistent subleading treatment to all orders. In this paper we derive first all relevant formulae for massless as well as massive gauge theories including all such terms up to order ${\\cal O} (\\alpha^n \\beta_0 \\log^{2n-1} \\frac{s}{M^2})$ by integrating over the corresponding running couplings. The results for broken gauge theories in the high energy regime are then given in the framework of the infrared evolution equation (IREE) method. The analogous QED-corrections below the weak scale $M$ are included by appropriately matching the low energy solution to the renormalization group improved high energy resul...
Bilayer linearized tensor renormalization group approach for thermal tensor networks
Dong, Yong-Liang; Chen, Lei; Liu, Yun-Jing; Li, Wei
2017-04-01
Thermal tensor networks constitute an efficient and versatile representation for quantum lattice models at finite temperatures. By Trotter-Suzuki decomposition, one obtains a D +1 dimensional TTN for the D -dimensional quantum system and then employs efficient renormalizaton group (RG) contractions to obtain the thermodynamic properties with high precision. The linearized tensor renormalization group (LTRG) method, which can be used to contract TTN efficiently and calculate the thermodynamics, is briefly reviewed and then generalized to a bilayer form. We dub this bilayer algorithm as LTRG++ and explore its performance in both finite- and infinite-size systems, finding the numerical accuracy significantly improved compared to single-layer algorithm. Moreover, we show that the LTRG++ algorithm in an infinite-size system is in essence equivalent to transfer-matrix renormalization group method, while reformulated in a tensor network language. As an application of LTRG++, we simulate an extended fermionic Hubbard model numerically, where the phase separation phenomenon, ground-state phase diagram, as well as quantum criticality-enhanced magnetocaloric effects, are investigated.
Renormalization group improved bottom mass from {Upsilon} sum rules at NNLL order
Energy Technology Data Exchange (ETDEWEB)
Hoang, Andre H.; Stahlhofen, Maximilian [Wien Univ. (Austria). Fakultaet fuer Physik; Ruiz-Femenia, Pedro [Wien Univ. (Austria). Fakultaet fuer Physik; Valencia Univ. - CSIC (Spain). IFIC
2012-09-15
We determine the bottom quark mass from non-relativistic large-n {Upsilon} sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of {alpha}{sub s} ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic {alpha}{sub s} ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling ({alpha}{sub s}(M{sub Z})=0.1183{+-}0.0010) we obtain M{sub b}{sup 1S}=4.755{+-}0.057{sub pert} {+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.
Duality Fixed Point and Zero Point Theorems and Applications
Directory of Open Access Journals (Sweden)
Qingqing Cheng
2012-01-01
Full Text Available The following main results have been given. (1 Let E be a p-uniformly convex Banach space and let T:E→E* be a (p-1-L-Lipschitz mapping with condition 0<(pL/c21/(p-1<1. Then T has a unique generalized duality fixed point x*∈E and (2 let E be a p-uniformly convex Banach space and let T:E→E* be a q-α-inverse strongly monotone mapping with conditions 1/p+1/q=1, 0<(q/(q-1c2q-1<α. Then T has a unique generalized duality fixed point x*∈E. (3 Let E be a 2-uniformly smooth and uniformly convex Banach space with uniformly convex constant c and uniformly smooth constant b and let T:E→E* be a L-lipschitz mapping with condition 0<2b/c2<1. Then T has a unique zero point x*. These main results can be used for solving the relative variational inequalities and optimal problems and operator equations.
Equilibria, Fixed Points, and Complexity Classes
Yannakakis, Mihalis
2008-01-01
Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or ...
Fixed point theorems for generalized Lipschitzian semigroups
Directory of Open Access Journals (Sweden)
Jong Soo Jung
2001-01-01
semigroup of K into itself, that is, for s∈G, ‖Tsx−Tsy‖≤as‖x−y‖+bs(‖x−Tsx‖+‖y−Tsy‖+cs(‖x−Tsy‖+‖y−Tsx‖, for x,y∈K where as,bs,cs>0 such that there exists a t1∈G such that bs+cs<1 for all s≽t1. It is proved that if there exists a closed subset C of K such that ⋂sco¯{Ttx:t≽s}⊂C for all x∈K, then with [(α+βp(αp⋅2p−1−1/(cp−2p−1βp⋅Np]1/p<1 has a common fixed point, where α=lim sups(as+bs+cs/(1-bs-cs and β=lim sups(2bs+2cs/(1-bs-cs.
Lifting fixed points of completely positive semigroups
Prunaru, Bebe
2011-01-01
Let $\\{\\phi_s\\}_{s\\in S}$ be a commutative semigroup of completely positive and contractive linear maps acting on a von Neumann algebra $N$. Assume there exists a semigroup $\\{\\alpha_s\\}_{s\\in S}$ of *-endomorphisms of some larger von Neumann algebra $M\\supset N$ and a projection $p\\in M$ with $N=pMp$ such that $\\alpha_s(1-p)\\le 1-p$ for every $s\\in S$ and $\\phi_s(y)=p\\alpha_s(y)p$ for all $y\\in N$. If $\\inf_{s\\in S}\\alpha_s(1-p)=0$ then we show that the map $E:M\\to N$ defined by $E(x)=pxp$ for $x\\in M$ induces a complete isometry between the fixed point spaces of $\\{\\alpha_s\\}_{s\\in S}$ and $\\{\\phi_s\\}_{s\\in S}$.
On Krasnoselskii's Cone Fixed Point Theorem
Directory of Open Access Journals (Sweden)
Man Kam Kwong
2008-04-01
Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.
Fixed Points for Stochastic Open Chemical Systems
Malyshev, V A
2011-01-01
In the first part of this paper we give a short review of the hierarchy of stochastic models, related to physical chemistry. In the basement of this hierarchy there are two models --- stochastic chemical kinetics and the Kac model for Boltzman equation. Classical chemical kinetics and chemical thermodynamics are obtained as some scaling limits in the models, introduced below. In the second part of this paper we specify some simple class of open chemical reaction systems, where one can still prove the existence of attracting fixed points. For example, Michaelis\\tire Menten kinetics belongs to this class. At the end we present a simplest possible model of the biological network. It is a network of networks (of closed chemical reaction systems, called compartments), so that the only source of nonreversibility is the matter exchange (transport) with the environment and between the compartments. Keywords: chemical kinetics, chemical thermodynamics, Kac model, mathematical biology
MEIR-KEELER TYPE CONTRACTIONS FOR TRIPLED FIXED POINTS
Institute of Scientific and Technical Information of China (English)
Hassen Aydi; Erdal Karapinar; Calogero Vetro
2012-01-01
In 2011,Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces.In our paper,we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction.
A Dual of the Compression-Expansion Fixed Point Theorems
Directory of Open Access Journals (Sweden)
Henderson Johnny
2007-01-01
Full Text Available This paper presents a dual of the fixed point theorems of compression and expansion of functional type as well as the original Leggett-Williams fixed point theorem. The multi-valued situation is also discussed.
Fixed Points for Pseudocontractive Mappings on Unbounded Domains
Directory of Open Access Journals (Sweden)
García-Falset Jesús
2010-01-01
Full Text Available We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and Németh. An application to integral equations is given.
Quinto, A G
2016-01-01
We studied the Dynamical Symmetry Breaking (DSB) mechanism in a supersymmetric Chern-Simons theory in $\\left(2+1\\right)$ dimensions coupled to $N$ matter superfields in the superfield formalism. For this purpose, we developed a mechanism to calculate the effective superpotencial $K_{\\mathrm{eff}}\\left(\\sigma_{\\mathrm{cl}},\\alpha\\right)$, where $\\sigma_{\\mathrm{cl}}$ is a background superfield, and $\\alpha$ a gauge-fixing parameter that is introduced in the quantization process. The possible dependence of the effective potential on the gauge parameter have been studied in the context of quantum field theory. We developed the formalism of the Nielsen identities in the superfield language, which is the appropriate formalism to study DSB when the effective potential is gauge dependent. We also discuss how to calculate the effective superpotential via the Renormalization Group Equation (RGE) from the knowledge of the renormalization group functions of the theory, i.e., $\\beta$ functions and anomalous dimensions $\\...
Functional renormalization group studies of nuclear and neutron matter
Drews, Matthias
2016-01-01
Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The questio...
On the Standard Approach to Renormalization Group Improvement
Chishtie, F A; Mann, R B; McKeon, D G C; Steele, T G
2006-01-01
Two approaches to renormalization-group improvement are examined: the substitution of the solutions of running couplings, masses and fields into perturbatively computed quantities is compared with the systematic sum of all the leading log (LL), next-to-leading log (NLL) etc. contributions to radiatively corrected processes, with n-loop expressions for the running quantities being responsible for summing N^{n}LL contributions. A detailed comparison of these procedures is made in the context of the effective potential V in the 4-dimensional O(4) massless $\\lambda \\phi^{4}$ model, showing the distinction between these procedures at two-loop order when considering the NLL contributions to the effective potential V.
Numerical renormalization group for quantum impurities in a bosonic bath
Bulla, Ralf; Lee, Hyun-Jung; Tong, Ning-Hua; Vojta, Matthias
2005-01-01
We present a detailed description of the recently proposed numerical renormalization group method for models of quantum impurities coupled to a bosonic bath. Specifically, the method is applied to the spin-boson model, both in the Ohmic and sub-Ohmic cases. We present various results for static as well as dynamic quantities and discuss details of the numerical implementation, e.g., the discretization of a bosonic bath with arbitrary continuous spectral density, the suitable choice of a finite basis in the bosonic Hilbert space, and questions of convergence with respect to truncation parameters. The method is shown to provide high-accuracy data over the whole range of model parameters and temperatures, which are in agreement with exact results and other numerical data from the literature.
The Polarizable Embedding Density Matrix Renormalization Group Method
Hedegård, Erik D
2016-01-01
The polarizable embedding (PE) approach is a flexible embedding model where a pre-selected region out of a larger system is described quantum mechanically while the interaction with the surrounding environment is modeled through an effective operator. This effective operator represents the environment by atom-centered multipoles and polarizabilities derived from quantum mechanical calculations on (fragments of) the environment. Thereby, the polarization of the environment is explicitly accounted for. Here, we present the coupling of the PE approach with the density matrix renormalization group (DMRG). This PE-DMRG method is particularly suitable for embedded subsystems that feature a dense manifold of frontier orbitals which requires large active spaces. Recovering such static electron-correlation effects in multiconfigurational electronic structure problems, while accounting for both electrostatics and polarization of a surrounding environment, allows us to describe strongly correlated electronic structures ...
Renormalization group analysis of the gluon mass equation
Aguilar, A C; Papavassiliou, J
2014-01-01
In the present work we carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass. A detailed, all-order analysis of the complete kernel appearing in this particular equation reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, whose deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various p...
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Holographic entanglement entropy of N =2* renormalization group flow
Pang, Da-Wei
2015-10-01
The N =2* theory is obtained by deforming N =4 supersymmetric Yang-Mills theory with two relevant operators of dimensions 2 and 3. We study the holographic entanglement entropy of the N =2* theory along the whole renormalization group flow. We find that in the UV the holographic entanglement entropy for an arbitrary entangling region receives a universal logarithmic correction, which is related to the relevant operator of dimension 3. This universal behavior can be interpreted on the field theory side by perturbatively evaluating the entanglement entropy of a conformal field theory (CFT) under relevant deformations. In the IR regime, we obtain the large R behavior of the renormalized entanglement entropy for both a strip and a sphere entangling region, where R denotes the size of the entangling region. A term proportional to 1 /R is found for both cases, which can be attributed to the emergent CFT5 in the IR.
Magnus expansion and in-medium similarity renormalization group
Morris, T. D.; Parzuchowski, N. M.; Bogner, S. K.
2015-09-01
We present an improved variant of the in-medium similarity renormalization group (IM-SRG) based on the Magnus expansion. In the new formulation, one solves flow equations for the anti-Hermitian operator that, upon exponentiation, yields the unitary transformation of the IM-SRG. The resulting flow equations can be solved using a first-order Euler method without any loss of accuracy, resulting in substantial memory savings and modest computational speedups. Since one obtains the unitary transformation directly, the transformation of additional operators beyond the Hamiltonian can be accomplished with little additional cost, in sharp contrast to the standard formulation of the IM-SRG. Ground state calculations of the homogeneous electron gas (HEG) and 16O nucleus are used as test beds to illustrate the efficacy of the Magnus expansion.
Advanced density matrix renormalization group method for nuclear structure calculations
Legeza, Ö; Poves, A; Dukelsky, J
2015-01-01
We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous $400$ KeV discrepancy in the ground state energy of $^{56}$Ni. We then report the first DMRG results in the $pf+g9/2$ shell model space for the ground $0^+$ and first $2^+$ states of $^{64}$Ge which are benchmarked with reference data obtained from Monte Carlo shell model. The corresponding correlation structure among the proton and neutron orbitals is determined in terms of the two-orbital mutual information. Based on such correlation graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation of tensor network based algorithms.
Advanced density matrix renormalization group method for nuclear structure calculations
Legeza, Ã.-.; Veis, L.; Poves, A.; Dukelsky, J.
2015-11-01
We present an efficient implementation of the Density Matrix Renormalization Group (DMRG) algorithm that includes an optimal ordering of the proton and neutron orbitals and an efficient expansion of the active space utilizing various concepts of quantum information theory. We first show how this new DMRG methodology could solve a previous 400 keV discrepancy in the ground state energy of 56Ni. We then report the first DMRG results in the p f +g 9 /2 shell model space for the ground 0+ and first 2+ states of 64Ge which are benchmarked with reference data obtained from a Monte Carlo shell model. The corresponding correlation structure among the proton and neutron orbitals is determined in terms of two-orbital mutual information. Based on such correlation graphs we propose several further algorithmic improvement possibilities that can be utilized in a new generation of tensor network based algorithms.
Dimensional reduction of Markov state models from renormalization group theory
Orioli, S.; Faccioli, P.
2016-09-01
Renormalization Group (RG) theory provides the theoretical framework to define rigorous effective theories, i.e., systematic low-resolution approximations of arbitrary microscopic models. Markov state models are shown to be rigorous effective theories for Molecular Dynamics (MD). Based on this fact, we use real space RG to vary the resolution of the stochastic model and define an algorithm for clustering microstates into macrostates. The result is a lower dimensional stochastic model which, by construction, provides the optimal coarse-grained Markovian representation of the system's relaxation kinetics. To illustrate and validate our theory, we analyze a number of test systems of increasing complexity, ranging from synthetic toy models to two realistic applications, built form all-atom MD simulations. The computational cost of computing the low-dimensional model remains affordable on a desktop computer even for thousands of microstates.
Real-space renormalization group approach to the Anderson model
Campbell, Eamonn
Many of the most interesting electronic behaviours currently being studied are associated with strong correlations. In addition, many of these materials are disordered either intrinsically or due to doping. Solving interacting systems exactly is extremely computationally expensive, and approximate techniques developed for strongly correlated systems are not easily adapted to include disorder. As a non-interacting disordered model, it makes sense to consider the Anderson model as a first step in developing an approximate method of solution to the interacting and disordered Anderson-Hubbard model. Our renormalization group (RG) approach is modeled on that proposed by Johri and Bhatt [23]. We found an error in their work which we have corrected in our procedure. After testing the execution of the RG, we benchmarked the density of states and inverse participation ratio results against exact diagonalization. Our approach is significantly faster than exact diagonalization and is most accurate in the limit of strong disorder.
Renormalization group analysis of anisotropic diffusion in turbulent shear flows
Rubinstein, Robert; Barton, J. Michael
1991-01-01
The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.
Dimensional reduction of Markov state models from renormalization group theory.
Orioli, S; Faccioli, P
2016-09-28
Renormalization Group (RG) theory provides the theoretical framework to define rigorous effective theories, i.e., systematic low-resolution approximations of arbitrary microscopic models. Markov state models are shown to be rigorous effective theories for Molecular Dynamics (MD). Based on this fact, we use real space RG to vary the resolution of the stochastic model and define an algorithm for clustering microstates into macrostates. The result is a lower dimensional stochastic model which, by construction, provides the optimal coarse-grained Markovian representation of the system's relaxation kinetics. To illustrate and validate our theory, we analyze a number of test systems of increasing complexity, ranging from synthetic toy models to two realistic applications, built form all-atom MD simulations. The computational cost of computing the low-dimensional model remains affordable on a desktop computer even for thousands of microstates.
Keldysh functional renormalization group for electronic properties of graphene
Fräßdorf, Christian; Mosig, Johannes E. M.
2017-03-01
We construct a nonperturbative nonequilibrium theory for graphene electrons interacting via the instantaneous Coulomb interaction by combining the functional renormalization group method with the nonequilibrium Keldysh formalism. The Coulomb interaction is partially bosonized in the forward scattering channel resulting in a coupled Fermi-Bose theory. Quantum kinetic equations for the Dirac fermions and the Hubbard-Stratonovich boson are derived in Keldysh basis, together with the exact flow equation for the effective action and the hierarchy of one-particle irreducible vertex functions, taking into account a possible nonzero expectation value of the bosonic field. Eventually, the system of equations is solved approximately under thermal equilibrium conditions at finite temperature, providing results for the renormalized Fermi velocity and the static dielectric function, which extends the zero-temperature results of Bauer et al., Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409.
Aperiodic quantum XXZ chains: Renormalization-group results
Vieira, André P.
2005-04-01
We report a comprehensive investigation of the low-energy properties of antiferromagnetic quantum XXZ spin chains with aperiodic couplings. We use an adaptation of the Ma-Dasgupta-Hu renormalization-group method to obtain analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations of chains with couplings following several two-letter aperiodic sequences, including the quasiperiodic Fibonacci and other precious-mean sequences, as well as sequences inducing strong geometrical fluctuations. For a given aperiodic sequence, we argue that in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. We also discuss the nature of the ground-state structures and their comparison with the random-singlet phase characteristic of random-bond chains.
Renormalization Group Optimized Perturbation Theory at Finite Temperatures
Kneur, J -L
2015-01-01
A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar $ \\lambda\\phi^4$ field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-$N$ results of the $O(N)$ model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard therm...
Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf
2011-09-01
The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.
Renormalization Group Analysis of Weakly Rotating Turbulent Flows
Institute of Scientific and Technical Information of China (English)
王晓宏; 周全
2011-01-01
Dynamic renormalization group (RNG) analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence. For turbulent How subject to weak rotation, the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part. Then, with a low-order approximation, the coarsening procedure of RNG transformation is performed. After implementing the coarsening and rescaling procedures, the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k) ∝ k11/5 for weakly rotating turbulence. It is also shown that the Coriolis force will disturb the stability of the Kolmogorov -5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.%Dynamic renormalization group(RNG)analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence.For turbulent flow subject to weak rotation,the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part.Then,with a low-order approximation,the coarsening procedure of RNG transformation is performed.After implementing the coarsening and rescaling procedures,the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k)∝ k-11/5 for weakly rotating turbulence.It is also shown that the Coriolis force will disturb the stability of the Kolmogorov-5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.
Renormalization group analysis of the gluon mass equation
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2014-04-01
We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.
Background independence in a background dependent renormalization group
Labus, Peter; Slade, Zoë H
2016-01-01
Within the derivative expansion of conformally reduced gravity, the modified split Ward identities are shown to be compatible with the flow equations if and only if either the anomalous dimension vanishes or the cutoff profile is chosen to be power law. No solutions exist if the Ward identities are incompatible. In the compatible case, a clear reason is found for why Ward identities can still forbid the existence of fixed points; however, for any cutoff profile, a background independent (and parametrisation independent) flow equation is uncovered. Finally, expanding in vertices, the combined equations are shown generically to become either over-constrained or highly redundant beyond the six-point level.
Gómez-Rocha, María
2016-01-01
The renormalization group procedure for effective particles (RGPEP), developed as a nonperturbative tool for constructing bound states in quantum field theories, is applied to QCD. The approach stems from the similarity renormalization group and introduces the concept of effective particles. It has been shown that the RGPEP passes the test of exhibiting asymptotic freedom. We present the running of the Hamiltonian coupling with the renormalization-group scale and summarize the basic elements needed in the formulation of the bound-state problem.
Tensor renormalization group approach to two-dimensional classical lattice models.
Levin, Michael; Nave, Cody P
2007-09-21
We describe a simple real space renormalization group technique for two-dimensional classical lattice models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical analogue of the density matrix renormalization group method. We demonstrate the method - which we call the tensor renormalization group method - by computing the magnetization of the triangular lattice Ising model.
Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach
2013-12-11
Geometry of Dynamic Large Networks - A Scaling and Renormalization Group Approach IRAJ SANIEE LUCENT TECHNOLOGIES INC 12/11/2013 Final Report...Z39.18 Final Performance Report Grant Title: Geometry of Dynamic Large Networks: A Scaling and Renormalization Group Approach Grant Award Number...test itself may be scaled to much larger graphs than those we examined via renormalization group methodology. Using well-understood mechanisms, we
Fixed Points of -Endomorphisms of a Free Metabelian Lie Algebra
Indian Academy of Sciences (India)
Naime Ekici; Demet Parlak Sönmez
2011-11-01
Let be a free metabelian Lie algebra of finite rank at least 2. We show the existence of non-trivial fixed points of an -endomorphism of and give an algorithm detecting them. In particular, we prove that the fixed point subalgebra Fix of an -endomorphism of is not finitely generated.
A non-perturbative real-space renormalization group scheme for the spin-1/2 XXX Heisenberg model
Degenhard, Andreas
1999-01-01
In this article we apply a recently invented analytical real-space renormalization group formulation which is based on numerical concepts of the density matrix renormalization group. Within a rigorous mathematical framework we construct non-perturbative renormalization group transformations for the spin-1/2 XXX Heisenberg model in the finite temperature regime. The developed renormalization group scheme allows for calculating the renormalization group flow behaviour in the temperature depende...
A novel functional renormalization group framework for gauge theories and gravity
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro
2010-07-01
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for k{yields}{infinity} and the standard effective action for k{yields}0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NL{sigma}M) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or
Renormalization group evolution of multi-gluon correlators in high energy QCD
Dumitru, A.; Jalilian-Marian, J.; Lappi, T.; Schenke, B.; Venugopalan, R.
2011-12-01
Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky-JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron-gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky-JIMWLK hierarchy. We compare the results to mean-field Gaussian and large Nc approximations used in previous phenomenological studies. We comment on the implications of our results for quantitative studies of multi-gluon final states in high energy QCD.
Renormalization group evolution of multi-gluon correlators in high energy QCD
Dumitru, Adrian; Lappi, Tuomas; Schenke, Bjoern; Venugopalan, Raju
2011-01-01
Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky-JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron-gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky-JIMWLK hierarchy. We compare the results to mean-field Gaussian and large N_c approximations used in previous phenomenological studies. We comment on the implications of our results for quantitative studies of multi-gluon final states in high energy QCD.
Large-cell Monte Carlo renormalization group for percolation
Reynolds, Peter J.; Stanley, H. Eugene; Klein, W.
1980-02-01
We obtain the critical parameters for the site-percolation problem on the square lattice to a high degree of accuracy (comparable to that of series expansions) by using a Monte Carlo position-space renormalization-group procedure directly on the site-occupation probability. Our method involves calculating recursion relations using progressively larger lattice rescalings, b. We find smooth sequences for the value of the critical percolation concentration pc(b) and for the scaling powers yp(b) and yh(b). Extrapolating these sequences to the limit b-->∞ leads to quite accurate numerical predictions. Further, by considering other weight functions or "rules" which also embody the essential connectivity feature of percolation, we find that the numerical results in the infinite-cell limit are in fact "rule independent." However, the actual fashion in which this limit is approached does depend upon the rule chosen. A connection between extrapolation of our renormalization-group results and finite-size scaling is made. Furthermore, the usual finite-size scaling arguments lead to independent estimates of pc and yp. Combining both the large-cell approach and the finite-size scaling results, we obtain yp=0.7385+/-0.0080 and yh=1.898+/-0.003. Thus we find αp=-0.708+/-0.030, βp=0.138(+0.006,-0.005), γp=2.432+/-0.035, δp=18.6+/-0.6, νp=1.354+/-0.015, and 2-ηp=1.796+/-0.006. The site-percolation threshold is found for the square lattice at pc=0.5931+/-0.0006. We note that our calculated value of νp is in considerably better agreement with the proposal of Klein et al. that νp=ln3ln(32)≅1.3548, than with den Nijs' recent conjecture, which predicts νp=43. However, our results cannot entirely rule out the latter possibility.
Real-space renormalization group for the transverse-field Ising model in two and three dimensions.
Miyazaki, Ryoji; Nishimori, Hidetoshi; Ortiz, Gerardo
2011-05-01
The two- and three-dimensional transverse-field Ising models with ferromagnetic exchange interactions are analyzed by means of the real-space renormalization-group method. The basic strategy is a generalization of a method developed for the one-dimensional case, which exploits the exact invariance of the model under renormalization and is known to give the exact values of the critical point and critical exponent ν. The resulting values of the critical exponent ν in two and three dimensions are in good agreement with those for the classical Ising model in three and four dimensions. To the best of our knowledge, this is the first example in which a real-space renormalization group on (2+1)- and (3+1)-dimensional Bravais lattices yields accurate estimates of the critical exponents.
Georgiev, Ivan T; McKay, Susan R
2003-05-01
This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability alpha that a particle will flow into the chain to the leftmost site, the probability beta that a particle will flow out from the rightmost site, and the probability p that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system's dynamics. The method yields a critical point at alpha(c)=beta(c)=1/2, in agreement with the exact values, and the critical exponent nu=2.71, as compared with the exact value nu=2.00.
Georgiev, Ivan T.; McKay, Susan R.
2003-05-01
This paper introduces a position-space renormalization-group approach for nonequilibrium systems and applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are characterized by three parameters: the probability α that a particle will flow into the chain to the leftmost site, the probability β that a particle will flow out from the rightmost site, and the probability p that a particle will jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the space of these transition probabilities, which are relevant to the system’s dynamics. The method yields a critical point at αc=βc=1/2, in agreement with the exact values, and the critical exponent ν=2.71, as compared with the exact value ν=2.00.
Diep, H T; Kaufman, Miron
2009-09-01
We extend the model of a 2d solid to include a line of defects. Neighboring atoms on the defect line are connected by springs of different strength and different cohesive energy with respect to the rest of the system. Using the Migdal-Kadanoff renormalization group we show that the elastic energy is an irrelevant field at the bulk critical point. For zero elastic energy this model reduces to the Potts model. By using Monte Carlo simulations of the three- and four-state Potts model on a square lattice with a line of defects, we confirm the renormalization-group prediction that for a defect interaction larger than the bulk interaction the order parameter of the defect line changes discontinuously while the defect energy varies continuously as a function of temperature at the bulk critical temperature.
On Approximate Coincidence Point Properties and Their Applications to Fixed Point Theory
Wei-Shih Du
2012-01-01
We first establish some existence results concerning approximate coincidence point properties and approximate fixed point properties for various types of nonlinear contractive maps in the setting of cone metric spaces and general metric spaces. From these results, we present some new coincidence point and fixed point theorems which generalize Berinde-Berinde's fixed point theorem, Mizoguchi-Takahashi's fixed point theorem, and some well-known results in the literature.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Dissipative two-electron transfer: A numerical renormalization group study
Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Nitzan, Abraham
2008-07-01
We investigate nonequilibrium two-electron transfer in a model redox system represented by a two-site extended Hubbard model and embedded in a dissipative environment. The influence of the electron-electron interactions and the coupling to a dissipative bosonic bath on the electron transfer is studied in different temperature regimes. At high temperatures, Marcus transfer rates are evaluated, and at low temperatures, we calculate equilibrium and nonequilibrium population probabilities of the donor and acceptor with the nonperturbative numerical renormalization group approach. We obtain the nonequilibrium dynamics of the system prepared in an initial state of two electrons at the donor site and identify conditions under which the electron transfer involves one concerted two-electron step or two sequential single-electron steps. The rates of the sequential transfer depend nonmonotonically on the difference between the intersite and on-site Coulomb interaction, which become renormalized in the presence of the bosonic bath. If this difference is much larger than the hopping matrix element, the temperature as well as the reorganization energy, simultaneous transfer of both electrons between donor and acceptor can be observed.
Nearest neighbor interaction in the Path Integral Renormalization Group method
de Silva, Wasanthi; Clay, R. Torsten
2014-03-01
The Path Integral Renormalization Group (PIRG) method is an efficient numerical algorithm for studying ground state properties of strongly correlated electron systems. The many-body ground state wave function is approximated by an optimized linear combination of Slater determinants which satisfies the variational principle. A major advantage of PIRG is that is does not suffer the Fermion sign problem of quantum Monte Carlo. Results are exact in the noninteracting limit and can be enhanced using space and spin symmetries. Many observables can be calculated using Wick's theorem. PIRG has been used predominantly for the Hubbard model with a single on-site Coulomb interaction U. We describe an extension of PIRG to the extended Hubbard model (EHM) including U and a nearest-neighbor interaction V. The EHM is particularly important in models of charge-transfer solids (organic superconductors) and at 1/4-filling drives a charge-ordered state. The presence of lattice frustration also makes studying these systems difficult. We test the method with comparisons to small clusters and long one dimensional chains, and show preliminary results for a coupled-chain model for the (TMTTF)2X materials. This work was supported by DOE grant DE-FG02-06ER46315.
The impact of renormalization group theory on magnetism
Köbler, U.; Hoser, A.
2007-11-01
The basic issues of renormalization group (RG) theory, i.e. universality, crossover phenomena, relevant interactions etc. are verified experimentally on magnetic materials. Universality is demonstrated on account of the saturation of the magnetic order parameter for T ↦ 0. Universal means that the deviations with respect to saturation at T = 0 can perfectly be described by a power function of absolute temperature with an exponent ɛ that is independent of spin structure and lattice symmetry. Normally the Tɛ function holds up to ~0.85Tc where crossover to the critical power function occurs. Universality for T ↦ 0 cannot be explained on the basis of the material specific magnon dispersions that are due to atomistic symmetry. Instead, continuous dynamic symmetry has to be assumed. The quasi particles of the continuous symmetry can be described by plane waves and have linear dispersion in all solids. This then explains universality. However, those quasi particles cannot be observed using inelastic neutron scattering. The principle of relevance is demonstrated using the competition between crystal field interaction and exchange interaction as an example. If the ratio of crystal field interaction to exchange interaction is below some threshold value the local crystal field is not relevant under the continuous symmetry of the ordered state and the saturation moment of the free ion is observed for T ↦ 0. Crossover phenomena either between different exponents or between discrete changes of the pre-factor of the Tɛ function are demonstrated for the spontaneous magnetization and for the heat capacity.
Exploration of Similarity Renormalization Group Generators in 1-Dimensional Potentials
Heinz, Matthias
2016-09-01
The Similarity Renormalization Group (SRG) is used in nuclear theory to decouple high- and low-momentum components of potentials to improve convergence and thus reduce the computational requirements of many-body calculations. The SRG is a series of unitary transformations defined by a differential equation for the Hamiltonian. The user input into the SRG evolution is a matrix called the generator, which determines to what form the Hamiltonian is transformed. As it is currently used, the SRG evolves Hamiltonian into a band diagonal form. However, due to many-body forces induced by the evolution, the SRG introduces errors when used to renormalize many-body potentials. This makes it unfit for calculations with nuclei larger than a certain size. A recent paper suggests that alternate generators may induce smaller many-body forces. Smaller many-body force induction would allow SRG use to be extended to larger nuclei. I use 1-dimensional systems of two, three, and four bosons to further study the SRG evolution and how alternate generators affect many-body forces induced.
Alternative similarity renormalization group generators in nuclear structure calculations
Dicaire, Nuiok M; Navratil, Petr
2014-01-01
The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with oper...
Functional renormalization group studies of nuclear and neutron matter
Drews, Matthias; Weise, Wolfram
2017-03-01
Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.
Spectral functions and transport coefficients from the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Tripolt, Ralf-Arno
2015-06-03
In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.
XY-sliding phases - mirage of the Renormalization Group
Vayl, Steven; Kuklov, Anatoly; Oganesyan, Vadim
The so called sliding XY phases in layered systems are predicted to occur if the one loop renormalization group (RG) flow renders the interlayer Josephson coupling irrelevant, while each layer still features broken U(1) symmetry. In other words, such a layered system remains essentially two-dimensional despite the presence of inter-layer Josephson coupling. We have analyzed numerically a layered system consisting of groups of asymmetric layers where the RG analysis predicts sliding phases to occur. Monte Carlo simulations of such a system have been conducted in the dual representation by Worm Algorithm in terms of the closed loops of J-currents for layer sizes varying from 4 ×4 to 640 ×640 and the number of layers - from 2 to 40. The resulting flow of the inter-layer XY-stiffness has been found to be inconsistent with the RG prediction and fully consistent with the behavior of the 3D standard XY model where the bare inter-layer Josephson coupling is much smaller than the intra-layer stiffness. This result emphasizes the importance of the compactness of the U(1) variable for 2D to 3D transformation. This work was supported by the NSF Grant PHY1314469.
High-performance functional Renormalization Group calculations for interacting fermions
Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.
2017-04-01
We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.
Renormalization group evolution of the universal theories EFT
Energy Technology Data Exchange (ETDEWEB)
Wells, James D.; Zhang, Zhengkang [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2016-06-21
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, but dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.
Applications of the Similarity Renormalization Group to the Nuclear Interaction
Jurgenson, E D
2009-01-01
The Similarity Renormalization Group (SRG) is investigated as a powerful yet practical method to modify nuclear potentials so as to reduce computational requirements for calculations of observables. The key feature of SRG transformations that leads to computational benefits is the decoupling of low-energy nuclear physics from high-energy details of the inter-nucleon interaction. We examine decoupling quantitatively for two-body observables and few-body binding energies. The universal nature of this decoupling is illustrated and errors from suppressing high-momentum modes above the decoupling scale are shown to be perturbatively small. To explore the SRG evolution of many-body forces, we use as a laboratory a one-dimensional system of bosons with short-range repulsion and mid-range attraction, which emulates realistic nuclear forces. The free-space SRG is implemented for few-body systems in a symmetrized harmonic oscillator basis using a recursive construction analogous to no-core shell model implementations. ...
Holographic torus entanglement and its renormalization group flow
Bueno, Pablo; Witczak-Krempa, William
2017-03-01
We study the universal contributions to the entanglement entropy (EE) of 2 +1 -dimensional and 3 +1 -dimensional holographic conformal field theories (CFTs) on topologically nontrivial manifolds, focusing on tori. The holographic bulk corresponds to anti-de Sitter-soliton geometries. We characterize the properties of these regulator-independent EE terms as a function of both the size of the cylindrical entangling region, and the shape of the torus. In 2 +1 dimensions, in the simple limit where the torus becomes a thin one-dimensional ring, the EE reduces to a shape-independent constant 2 γ . This is twice the EE obtained by bipartitioning an infinite cylinder into equal halves. We study the renormalization group flow of γ by defining a renormalized EE that (1) is applicable to general QFTs, (2) resolves the failure of the area law subtraction, and (3) is inspired by the F-theorem. We find that the renormalized γ decreases monotonically at small coupling when the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also discuss the question of nonuniqueness of such renormalized EEs both in 2 +1 dimensions and 3 +1 dimensions.
Discrete Renormalization Group for SU(2) Tensorial Group Field Theory
Carrozza, Sylvain
2014-01-01
This article provides a Wilsonian description of the perturbatively renormalizable Tensorial Group Field Theory introduced in arXiv:1303.6772 [hep-th] (Commun. Math. Phys. 330, 581-637). It is a rank-3 model based on the gauge group SU(2), and as such is expected to be related to Euclidean quantum gravity in three dimensions. By means of a power-counting argument, we introduce a notion of dimensionality of the free parameters defining the action. General flow equations for the dimensionless bare coupling constants can then be derived, in terms of a discretely varying cut-off, and in which all the so-called melonic Feynman diagrams contribute. Linearizing around the Gaussian fixed point allows to recover the splitting between relevant, irrelevant, and marginal coupling constants. Pushing the perturbative expansion to second order for the marginal parameters, we are able to determine their behaviour in the vicinity of the Gaussian fixed point. Along the way, several technical tools are reviewed, including a dis...
Brouwer's ε-fixed point from Sperner's lemma
Dalen, D. van
2009-01-01
It is by now common knowledge that Brouwer gave mathematics in 1911 a miraculous tool, the fixed point theorem, and that later in life, he disavowed it. It usually came as a shock when he replied to the question “is the fixed point theorem correct ?” with a point blank “no”. This rhetoric exchange d
Characteristic Formulae for Relations with Nested Fixed Points
Directory of Open Access Journals (Sweden)
Luca Aceto
2012-02-01
Full Text Available A general framework for the connection between characteristic formulae and behavioral semantics is described in [2]. This approach does not suitably cover semantics defined by nested fixed points, such as the n-nested simulation semantics for n greater than 2. In this study we address this deficiency and give a description of nested fixed points that extends the approach for single fixed points in an intuitive and comprehensive way.
Existence of Multiple Fixed Points for Nonlinear Operators and Applications
Institute of Scientific and Technical Information of China (English)
Jing Xian SUN; Ke Mei ZHANG
2008-01-01
In this paper,by the fixed point index theory,the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied.Under suitable conditions,the existence of at least nine or seven distinct fixed points for sublinear and asymptotically linear operators is proved.Finally,the theoretical results are applied to a nonlinear system of Hammerstein integral equations.
Renormalization group theory of the three-dimensional dilute Bose gas
Bijlsma, M.; Stoof, H.T.C.
1996-01-01
We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowledge of the microscopic details of the interatomic interaction, we determine the correct initial values of our renormalization group equations and thus obtain also information on nonuniversal proper
Benitez, F; Blaizot, J-P; Chaté, H; Delamotte, B; Méndez-Galain, R; Wschebor, N
2012-02-01
We present the implementation of the Blaizot-Méndez-Wschebor approximation scheme of the nonperturbative renormalization group we present in detail, which allows for the computation of the full-momentum dependence of correlation functions. We discuss its significance and its relation with other schemes, in particular, the derivative expansion. Quantitative results are presented for the test ground of scalar O(N) theories. Besides critical exponents, which are zero-momentum quantities, we compute the two-point function at criticality in the whole momentum range in three dimensions and, in the high-temperature phase, the universal structure factor. In all cases, we find very good agreement with the best existing results.
Enhancement of field renormalization in scalar theories via functional renormalization group
Zappalà, Dario
2012-01-01
The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, to determine the effective potential and the renormalization function of the field in the broken phase. The flow equations of these quantities are derived from a reduction of the full flow of the effective action onto a set of equations for the n-point vertices of the theory. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-perturbatively large value of the physical renormalization of the longitudinal component of the field is observed. The dependence of the field renormalization on the UV cut-off and on the bare coupling is also investigated.
Protsenko, V. S.; Katanin, A. A.
2017-06-01
We explore the effects of asymmetry of hopping parameters between double parallel quantum dots and the leads on the conductance and a possibility of local magnetic moment formation in this system using functional renormalization group approach with the counterterm. We demonstrate a possibility of a quantum phase transition to a local moment regime [so-called singular Fermi liquid (SFL) state] for various types of hopping asymmetries and discuss respective gate voltage dependencies of the conductance. We show that, depending on the type of the asymmetry, the system can demonstrate either a first-order quantum phase transition to an SFL state, accompanied by a discontinuous change of the conductance, similarly to the symmetric case, or the second-order quantum phase transition, in which the conductance is continuous and exhibits Fano-type asymmetric resonance near the transition point. A semianalytical explanation of these different types of conductance behavior is presented.
Facilitated spin models in one dimension: a real-space renormalization group study.
Whitelam, Stephen; Garrahan, Juan P
2004-10-01
We use a real-space renormalization group (RSRG) to study the low-temperature dynamics of kinetically constrained Ising chains (KCICs). We consider the cases of the Fredrickson-Andersen (FA) model, the East model, and the partially asymmetric KCIC. We show that the RSRG allows one to obtain in a unified manner the dynamical properties of these models near their zero-temperature critical points. These properties include the dynamic exponent, the growth of dynamical length scales, and the behavior of the excitation density near criticality. For the partially asymmetric chain, the RG predicts a crossover, on sufficiently large length and time scales, from East-like to FA-like behavior. Our results agree with the known results for KCICs obtained by other methods.
Random vector and matrix and vector theories: a renormalization group approach
Zinn-Justin, Jean
2014-01-01
Random matrices in the large N expansion and the so-called double scaling limit can be used as toy models for quantum gravity: 2D quantum gravity coupled to conformal matter. This has generated a tremendous expansion of random matrix theory, tackled with increasingly sophisticated mathematical methods and number of matrix models have been solved exactly. However, the somewhat paradoxical situation is that either models can be solved exactly or little can be said. Since the solved models display critical points and universal properties, it is tempting to use renormalization group ideas to determine universal properties, without solving models explicitly. Initiated by Br\\'ezin and Zinn-Justin, the approach has led to encouraging results, first for matrix integrals and then quantum mechanics with matrices, but has not yet become a universal tool as initially hoped. In particular, general quantum field theories with matrix fields require more detailed investigations. To better understand some of the encountered d...
Renormalization group equation for f (R ) gravity on hyperbolic spaces
Falls, Kevin; Ohta, Nobuyoshi
2016-10-01
We derive the flow equation for the gravitational effective average action in an f (R ) truncation on hyperbolic spacetimes using the exponential parametrization of the metric. In contrast to previous works on compact spaces, we are able to evaluate traces exactly using the optimized cutoff. This reveals in particular that all modes can be integrated out for a finite value of the cutoff due to a gap in the spectrum of the Laplacian, leading to the effective action. Studying polynomial solutions, we find poorer convergence than has been found on compact spacetimes even though at small curvature the equations only differ in the treatment of certain modes. In the vicinity of an asymptotically free fixed point, we find the universal beta function for the R2 coupling and compute the corresponding effective action which involves an R2log (R2) quantum correction.
Tensor renormalization group methods for spin and gauge models
Zou, Haiyuan
The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.
Efficient perturbation theory to improve the density matrix renormalization group
Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej
2017-02-01
The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.
Impulsive differential inclusions a fixed point approach
Ouahab, Abdelghani; Henderson, Johnny
2013-01-01
Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, etc. The questions of existence and stability of solutions for different classes of initial values problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems and relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simple
Floating-to-Fixed-Point Conversion for Digital Signal Processors
Directory of Open Access Journals (Sweden)
Menard Daniel
2006-01-01
Full Text Available Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
FIXED POINT RESULTS ON METRIC-TYPE SPACES
Institute of Scientific and Technical Information of China (English)
Monica COSENTINO; Peyman SALIMI; Pasquale VETRO
2014-01-01
In this paper we obtain fixed point and common fixed point theorems for self-mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.
Caristi Fixed Point Theorem in Metric Spaces with a Graph
Directory of Open Access Journals (Sweden)
M. R. Alfuraidan
2014-01-01
Full Text Available We discuss Caristi’s fixed point theorem for mappings defined on a metric space endowed with a graph. This work should be seen as a generalization of the classical Caristi’s fixed point theorem. It extends some recent works on the extension of Banach contraction principle to metric spaces with graph.
Some fixed point results for dualistic rational contractions
Directory of Open Access Journals (Sweden)
Muhammad Nazam
2016-10-01
Full Text Available In this paper, we introduce a new contraction called dualistic contraction of rational type and obtain some fixed point results. These results generalize various comparable results appeared in the literature. We provide an example to show the superiority of our results over corresponding fixed point results proved in metric spaces.
FIXED POINTS THEOREMS IN MULTI-METRIC SPACES
Directory of Open Access Journals (Sweden)
Laurentiu I. Calmutchi
2011-07-01
Full Text Available The aim of the present article is to give some general methods inthe fixed point theory for mappings of general topological spaces. Using the notions of the multi-metric space and of the E-metric space, we proved the analogous of several classical theorems: Banach fixed point principle, Theorems of Edelstein, Meyers, Janos etc.
STABILITY OF A PARABOLIC FIXED POINT OF REVERSIBLE MAPPINGS
Institute of Scientific and Technical Information of China (English)
LIUBIN; YOUJIANGONG
1994-01-01
KAM theorem of reversible system is used to provide a sufficient condition which guarantees the stability of a parabolic fixed point of reversible mappings, The main idea is to discuss when the parabolic fixed point is surrounded by closed invariant carves and thus exhibits stable behaviour.
Fixed Points on Abstract Structures without the Equality Test
DEFF Research Database (Denmark)
Korovina, Margarita
2002-01-01
The aim of this talk is to present a study of definability properties of fixed points of effective operators on abstract structures without the equality test. The question of definability of fixed points of -operators on abstract structures with equality was first studied by Gandy, Barwise, Mosch...
Nonlinear Contractive Conditions for Coupled Cone Fixed Point Theorems
Directory of Open Access Journals (Sweden)
Du Wei-Shih
2010-01-01
Full Text Available We establish some new coupled fixed point theorems for various types of nonlinear contractive maps in the setting of quasiordered cone metric spaces which not only obtain several coupled fixed point theorems announced by many authors but also generalize them under weaker assumptions.
ON COLLECTIVELY FIXED POINT THEOREMS ON FC-SPACES
Institute of Scientific and Technical Information of China (English)
Yongjie Piao
2010-01-01
Based on a KKM type theorem on FC-space,some new fixed point theorems for Fan-Browder type are established,and then some collectively fixed point theorems for a family of Φ-maps defined on product space of FC-spaees are given.These results generalize and improve many corresponding results.
Fixed points in a group of isometries
Voorneveld, M.
2000-01-01
The Bruhat-Tits xed point theorem states that a group of isometries on a complete metric space with negative curvature possesses a xed point if it has a bounded orbit. This theorem is extended by a relaxation of the negative curvature condition in terms of the w-distance functions introduced by Kada
Fixed points in a group of isometries
Voorneveld, M.
2001-01-01
The Bruhat-Tits xed point theorem states that a group of isometries on a complete metric space with negative curvature possesses a xed point if it has a bounded orbit. This theorem is extended by a relaxation of the negative curvature condition in terms of the w-distance functions introduced by Kada
Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study
Sindel, M.; Borda, L.; Martinek, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.
2007-07-01
We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson’s numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi surface), (ii) a Stoner splitting in the bands (governed by the band edges), and (iii) an arbitrary shape of the lead density of states. For a generic lead density of states, the quantum dot favors being occupied by a particular spin species due to exchange interaction with ferromagnetic leads, leading to suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry, restoring the Kondo effect. We study both the gate voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in the presence of leads with an energy-dependent density of states is possible not only by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands, simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.
Functional renormalization group study of fluctuation effects in fermionic superfluids
Energy Technology Data Exchange (ETDEWEB)
Eberlein, Andreas
2013-03-22
This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
José, Jorge V.
2017-03-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson’s RG for lattice gauge theories. Although Migdal’s RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN’s results gave a theoretical formulation foundation and justification for BKT’s sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
José, Jorge V.
2013-06-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson's RG for lattice gauge theories. Although Migdal's RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN's results gave a theoretical formulation foundation and justification for BKT's sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested
Gómez-Rocha, María
2017-03-01
The renormalization group procedure for effective particles (RGPEP), developed as a nonperturbative tool for constructing bound states in quantum field theories, is applied to QCD. The approach stems from the similarity renormalization group and introduces the concept of effective particles. It has been shown that the RGPEP passes the test of exhibiting asymptotic freedom. We present the running of the Hamiltonian coupling constant with the renormalization-group scale and we summarize the basic elements needed in the formulation of the bound-state problem.
Liu, X M; Cheng, W W; Liu, J-M
2016-01-19
We investigate the quantum Fisher information and quantum phase transitions of an XY spin chain with staggered Dzyaloshinskii-Moriya interaction using the quantum renormalization-group method. The quantum Fisher information, its first-derivatives, and the finite-size scaling behaviors are rigorously calculated respectively. The singularity of the derivatives at the phase transition point as a function of lattice size is carefully discussed and it is revealed that the scaling exponent for quantum Fisher information at the critical point can be used to describe the correlation length of this model, addressing the substantial role of staggered Dzyaloshinskii-Moriya interaction in modulating quantum phase transitions.
Fixed points and contraction factor functions
Voorneveld, M.
2001-01-01
In a complete metric space (X; d), we dene w-distance functions p : X X ! [0; 1), of which the metric d is a special case, and contraction factor functions r : X X ! [0; 1) such that if p(Tx;Ty) r(x; y)p(x; y) for all x; y 2 X, thenT : X ! X has a (unique) xed point.
Fixed points and contraction factor functions
Voorneveld, M.
2000-01-01
In a complete metric space (X; d), we dene w-distance functions p : X X ! [0; 1), of which the metric d is a special case, and contraction factor functions r : X X ! [0; 1) such that if p(Tx;Ty) r(x; y)p(x; y) for all x; y 2 X, thenT : X ! X has a (unique) xed point.
Scheme Transformations in the Vicinity of an Infrared Fixed Point
DEFF Research Database (Denmark)
Ryttov, Thomas; Shrock, Robert
2012-01-01
We analyze the effect of scheme transformations in the vicinity of an exact or approximate infrared fixed point in an asymptotically free gauge theory with fermions. We show that there is far less freedom in carrying out such scheme transformations in this case than at an ultraviolet fixed point....... We construct a transformation from the $\\bar{MS}$ scheme to a scheme with a vanishing three-loop term in the $\\beta$ function and use this to assess the scheme dependence of an infrared fixed point in SU($N$) theories with fermions. Implications for the anomalous dimension of the fermion bilinear...
Renormalization group theory of the critical properties of the interacting bose fluid
Creswick, Richard J.; Wiegel, F.W.
1982-01-01
Starting from a functional integral representation of the partition function we apply the renormalization group to the interacting Bose fluid. A closed form for the renormalization equation is derived and the critical exponents are calculated in 4-ε dimensions.
A geometrical formulation of the renormalization group method for global analysis
Kunihiro, T
1995-01-01
On the basis of the classical theory of envelope,we formulate the renormalization group (RG) method for global analysis, recently proposed by Goldenfeld et al. It is clarified why the RG equation improves things.
47 CFR 101.137 - Interconnection of private operational fixed point-to-point microwave stations.
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection of private operational fixed point-to-point microwave stations. 101.137 Section 101.137 Telecommunication FEDERAL COMMUNICATIONS....137 Interconnection of private operational fixed point-to-point microwave stations....
Fixing the quantum three-point function
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yunfeng; Kostov, Ivan [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France); Loebbert, Florian [School of Natural Sciences, Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,Blegdamsvej 17, 2100 Copenhagen (Denmark); Serban, Didina [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2014-04-03
We propose a new method for the computation of quantum three-point functions for operators in su(2) sectors of N=4 super Yang-Mills theory. The method is based on the existence of a unitary transformation relating inhomogeneous and long-range spin chains. This transformation can be traced back to a combination of boost operators and an inhomogeneous version of Baxter’s corner transfer matrix. We reproduce the existing results for the one-loop structure constants in a simplified form and indicate how to use the method at higher loop orders. Then we evaluate the one-loop structure constants in the quasiclassical limit and compare them with the recent strong coupling computation.
Energy Technology Data Exchange (ETDEWEB)
Brito, L.C.T. [Federal University of Minas Gerais, Physics Department, ICEx, PO Box 702, 30.161-970 Belo Horizonte, MG (Brazil)], E-mail: lctbrito@fisica.ufmg.br; Fargnoli, H.G. [Federal University of Minas Gerais, Physics Department, ICEx, PO Box 702, 30.161-970 Belo Horizonte, MG (Brazil)], E-mail: helvecio@fisica.ufmg.br; Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, MG, Avenida Amazonas, 7675, 30510-000 Nova Gameleira, Belo Horizonte, MG (Brazil)], E-mail: scarp@fisica.ufmg.br; Sampaio, Marcos [Federal University of Minas Gerais, Physics Department, ICEx, PO Box 702, 30.161-970 Belo Horizonte, MG (Brazil)], E-mail: msampaio@fisica.ufmg.br; Nemes, M.C. [Federal University of Minas Gerais, Physics Department, ICEx, PO Box 702, 30.161-970 Belo Horizonte, MG (Brazil)], E-mail: carolina@fisica.ufmg.br
2009-03-23
We show that to n loop order the divergent content of a Feynman amplitude is spanned by a set of basic (logarithmically divergent) integrals I{sub log}{sup (i)}({lambda}{sup 2}), i=1,2,...,n, {lambda} being the renormalization group scale, which need not be evaluated. Only the coefficients of the basic divergent integrals are show to determine renormalization group functions. Relations between these coefficients of different loop orders are derived.
Generalization of the tensor renormalization group approach to 3-D or higher dimensions
Teng, Peiyuan
2017-04-01
In this paper, a way of generalizing the tensor renormalization group (TRG) is proposed. Mathematically, the connection between patterns of tensor renormalization group and the concept of truncation sequence in polytope geometry is discovered. A theoretical contraction framework is therefore proposed. Furthermore, the canonical polyadic decomposition is introduced to tensor network theory. A numerical verification of this method on the 3-D Ising model is carried out.
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1976-01-01
The transverse correlation range ξ and the susceptibility in the critical region has been measured by neutron scattering. A special technique required to resolve the superdiverging longitudinal correlation range has been utilized. The results for ξ together with existing specific-heat data are in...... are in remarkable agreement with the renormalization group theory of systems with marginal dimensionality. The ratio between the susceptibility amplitudes above and below Tc was found to be 2 in accordance with renormalization-group and meanfield theory....
AdS/CFT and local renormalization group with gauge fields
Kikuchi, Ken
2015-01-01
We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a $(d+1)$-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation by working with the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector $\\beta$-functions, and some interesting properties of them are known to follow. We give a systematic rederivation of them on the basis of the HJ formulation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the HJ formulation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for $d=4$. A relation between a choice of schemes and a Virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From th...
\\alpha_S from $F_\\pi$ and Renormalization Group Optimized Perturbation
Kneur, J -L
2013-01-01
A variant of variationally optimized perturbation, incorporating renormalization group properties in a straightforward way, uniquely fixes the variational mass interpolation in terms of the anomalous mass dimension. It is used at three successive orders to calculate the nonperturbative ratio $F_\\pi/\\Lambda$ of the pion decay constant and the basic QCD scale in the MSbar scheme. We demonstrate the good stability and (empirical) convergence properties of this modified perturbative series for this quantity, and provide simple and generic cures to previous problems of the method, principally the generally non-unique and non-real optimal solutions beyond lowest order. Using the experimental $F_\\pi$ input value we determine \\Lambda^{n_f=2}\\simeq 359^{+38}_{-25} \\pm 5 MeV and \\Lambda^{n_f=3}=317^{+14}_{-7} \\pm 13 MeV, where the first quoted errors are our estimate of theoretical uncertainties of the method, which we consider conservative. The second uncertainties come from the present uncertainties in F_\\pi/F and F_...
Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model
Ehlers, G.; White, S. R.; Noack, R. M.
2017-03-01
The performance of the density matrix renormalization group (DMRG) is strongly influenced by the choice of the local basis of the underlying physical lattice. We demonstrate that, for the two-dimensional Hubbard model, the hybrid-real-momentum-space formulation of the DMRG is computationally more efficient than the standard real-space formulation. In particular, we show that the computational cost for fixed bond dimension of the hybrid-space DMRG is approximately independent of the width of the lattice, in contrast to the real-space DMRG, for which it is proportional to the width squared. We apply the hybrid-space algorithm to calculate the ground state of the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n =0.875 filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight sites for both U /t =4.0 and 8.0 . We find that the strength of the charge ordering depends on U /t and on the boundary conditions. Furthermore, we investigate the magnetic ordering as well as the decay of the static spin, charge, and pair-field correlation functions.
AdS/CFT and local renormalization group with gauge fields
Kikuchi, Ken; Sakai, Tadakatsu
2016-03-01
We revisit a study of local renormalization group (RG) with background gauge fields incorporated using the AdS/CFT correspondence. Starting with a (d+1)-dimensional bulk gravity coupled to scalars and gauge fields, we derive a local RG equation from a flow equation by working in the Hamilton-Jacobi formulation of the bulk theory. The Gauss's law constraint associated with gauge symmetry plays an important role. RG flows of the background gauge fields are governed by vector β -functions, and some of their interesting properties are known to follow. We give a systematic rederivation of them on the basis of the flow equation. Fixing an ambiguity of local counterterms in such a manner that is natural from the viewpoint of the flow equation, we determine all the coefficients uniquely appearing in the trace of the stress tensor for d=4. A relation between a choice of schemes and a virial current is discussed. As a consistency check, these are found to satisfy the integrability conditions of local RG transformations. From these results, we are led to a proof of a holographic c-theorem by determining a full family of schemes where a trace anomaly coefficient is related with a holographic c-function.
Proceedings 8th Workshop on Fixed Points in Computer Science
Miller, Dale; 10.4204/EPTCS.77
2012-01-01
This volume contains the proceedings of the Eighth Workshop on Fixed Points in Computer Science which took place on 24 March 2012 in Tallinn, Estonia as an ETAPS-affiliated workshop. Past workshops have been held in Brno (1998, MFCS/CSL workshop), Paris (2000, LC workshop), Florence (2001, PLI workshop), Copenhagen (2002, LICS (FLoC) workshop), Warsaw (2003, ETAPS workshop), Coimbra (2009, CSL workshop), and Brno (2010, MFCS-CSL workshop). Fixed points play a fundamental role in several areas of computer science and logic by justifying induction and recursive definitions. The construction and properties of fixed points have been investigated in many different frameworks such as: design and implementation of programming languages, program logics, and databases. The aim of this workshop is to provide a forum for researchers to present their results to those members of the computer science and logic communities who study or apply the theory of fixed points.
On the δ-continuous fixed point property
Directory of Open Access Journals (Sweden)
F. Cammaroto
1990-01-01
Full Text Available In this paper, we define and investigate the δ-continuous retraction and the δ-continuous fixed point property. Theorem 1 of Connell [11] and Theorem 3.4 of Arya and Deb [2] are improved.
On some fixed point theorems in Banach spaces
Directory of Open Access Journals (Sweden)
D. V. Pai
1982-01-01
Full Text Available In this paper, some fixed point theorems are proved for multi-mappings as well as a pair of mappings. These extend certain known results due to Kirk, Browder, Kanna, Ćirić and Rhoades.
Tripled Fixed Point in Ordered Multiplicative Metric Spaces
Directory of Open Access Journals (Sweden)
Laishram Shanjit
2017-06-01
Full Text Available In this paper, we present some triple fixed point theorems in partially ordered multiplicative metric spaces depended on another function. Our results generalise the results of [6] and [5].
Common Fixed Point Theorems in Intuitionistic Fuzzy Metric Spaces
Institute of Scientific and Technical Information of China (English)
H.M.Abu-Donia; A.A.Nasef
2008-01-01
The purpose of this paper is to introduce some types of compatibility of maps, and we prove some common fixed point theorems for mappings satisfying some conditions on intuitionistic fuzzy metric spaces which defined by J.H.Park.
Combining Deduction Modulo and Logics of Fixed-Point Definitions
Baelde, David
2012-01-01
Inductive and coinductive specifications are widely used in formalizing computational systems. Such specifications have a natural rendition in logics that support fixed-point definitions. Another useful formalization device is that of recursive specifications. These specifications are not directly complemented by fixed-point reasoning techniques and, correspondingly, do not have to satisfy strong monotonicity restrictions. We show how to incorporate a rewriting capability into logics of fixed-point definitions towards additionally supporting recursive specifications. In particular, we describe a natural deduction calculus that adds a form of "closed-world" equality - a key ingredient to supporting fixed-point definitions - to deduction modulo, a framework for extending a logic with a rewriting layer operating on formulas. We show that our calculus enjoys strong normalizability when the rewrite system satisfies general properties and we demonstrate its usefulness in specifying and reasoning about syntax-based ...
The Fixed Point Theory for Some Generalized Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
Enrique Llorens Fuster
2011-01-01
Full Text Available We study some aspects of the fixed point theory for a class of generalized nonexpansive mappings, which among others contain the class of generalized nonexpansive mappings recently defined by Suzuki in 2008.
On Approximate -Ternary -Homomorphisms: A Fixed Point Approach
Directory of Open Access Journals (Sweden)
Cho YJ
2011-01-01
Full Text Available Using fixed point methods, we prove the stability and superstability of -ternary additive, quadratic, cubic, and quartic homomorphisms in -ternary rings for the functional equation , for each .
Fixed Point Theorems for Times Reasonable Expansive Mapping
Directory of Open Access Journals (Sweden)
Chen Chunfang
2008-01-01
Full Text Available Abstract Based on previous notions of expansive mapping, times reasonable expansive mapping is defined. The existence of fixed point for times reasonable expansive mapping is discussed and some new results are obtained.
ORIGINAL Some Generalized Fixed Point Results on Compact ...
African Journals Online (AJOL)
Department of Mathematics College of Natural Science Jimma. University ... Fixed point theory in metric spaces perhaps originated from the well known .... METHODOLOGY. Study Site and Period ..... gs, J. Land, Mathsec. 37, 74-79. Fisher, B.
Infrared Behavior and Fixed Points in Landau-Gauge QCD
Pawlowski, Jan M.; Litim, Daniel F.; Nedelko, Sergei; von Smekal, Lorenz
2004-10-01
We investigate the infrared behavior of gluon and ghost propagators in Landau-gauge QCD by means of an exact renormalization group equation. We explain how, in general, the infrared momentum structure of Green functions can be extracted within this approach. An optimization procedure is devised to remove residual regulator dependences. In Landau-gauge QCD this framework is used to determine the infrared leading terms of the propagators. The results support the Kugo-Ojima confinement scenario. Possible extensions are discussed.
Measures of Noncircularity and Fixed Points of Contractive Multifunctions
Directory of Open Access Journals (Sweden)
Marrero Isabel
2010-01-01
Full Text Available In analogy to the Eisenfeld-Lakshmikantham measure of nonconvexity and the Hausdorff measure of noncompactness, we introduce two mutually equivalent measures of noncircularity for Banach spaces satisfying a Cantor type property, and apply them to establish a fixed point theorem of Darbo type for multifunctions. Namely, we prove that every multifunction with closed values, defined on a closed set and contractive with respect to any one of these measures, has the origin as a fixed point.
Tracking unstable fixed points in parametrically dynamic systems
Mondragón, Raúl J.; Arrowsmith, David K.
1997-02-01
The method of Ott, Grebogi and Yorke is extended to control a two-parameter system when one of the parameters is time dependent and the other is used as the control-parameter. As one of the parameters changes, the unstable fixed point follows its branch of the bifurcation tree. We control a chaotic orbit such that it tracks this “moving” unstable fixed point using an adaptive control method.
Fixed Points of Multivalued Maps in Modular Function Spaces
Directory of Open Access Journals (Sweden)
Kutbi MarwanA
2009-01-01
Full Text Available The purpose of this paper is to study the existence of fixed points for contractive-type and nonexpansive-type multivalued maps in the setting of modular function spaces. We also discuss the concept of -modular function and prove fixed point results for weakly-modular contractive maps in modular function spaces. These results extend several similar results proved in metric and Banach spaces settings.
Fixed Point Theorems for Generalized Mizoguchi-Takahashi Graphic Contractions
Directory of Open Access Journals (Sweden)
Nawab Hussain
2016-01-01
Full Text Available Remarkable feature of contractions is associated with the concept Mizoguchi-Takahashi function. For the purpose of extension and modification of classical ideas related with Mizoguchi-Takahashi contraction, we define generalized Mizoguchi-Takahashi G-contractions and establish some generalized fixed point theorems regarding these contractions in this paper. Some applications to the construction of a fixed point of multivalued mappings in ε-chainable metric space are also discussed.
Lopatnikova, Anna; Berker, A. Nihat
1997-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.
Fixed Points of Two-Sided Fractional Matrix Transformations
Directory of Open Access Journals (Sweden)
Handelman David
2007-01-01
Full Text Available Let and be complex matrices, and consider the densely defined map on matrices. Its fixed points form a graph, which is generically (in terms of nonempty, and is generically the Johnson graph ; in the nongeneric case, either it is a retract of the Johnson graph, or there is a topological continuum of fixed points. Criteria for the presence of attractive or repulsive fixed points are obtained. If and are entrywise nonnegative and is irreducible, then there are at most two nonnegative fixed points; if there are two, one is attractive, the other has a limited version of repulsiveness; if there is only one, this fixed point has a flow-through property. This leads to a numerical invariant for nonnegative matrices. Commuting pairs of these maps are classified by representations of a naturally appearing (discrete group. Special cases (e.g., is in the radical of the algebra generated by and are discussed in detail. For invertible size two matrices, a fixed point exists for all choices of if and only if has distinct eigenvalues, but this fails for larger sizes. Many of the problems derived from the determination of harmonic functions on a class of Markov chains.
Image integrity authentication scheme based on fixed point theory.
Li, Xu; Sun, Xingming; Liu, Quansheng
2015-02-01
Based on the fixed point theory, this paper proposes a new scheme for image integrity authentication, which is very different from digital signature and fragile watermarking. By the new scheme, the sender transforms an original image into a fixed point image (very close to the original one) of a well-chosen transform and sends the fixed point image (instead of the original one) to the receiver; using the same transform, the receiver checks the integrity of the received image by testing whether it is a fixed point image and locates the tampered areas if the image has been modified during the transmission. A realization of the new scheme is based on Gaussian convolution and deconvolution (GCD) transform, for which an existence theorem of fixed points is proved. The semifragility is analyzed via commutativity of transforms, and three commutativity theorems are found for the GCD transform. Three iterative algorithms are presented for finding a fixed point image with a few numbers of iterations, and for the whole procedure of image integrity authentication; a fragile authentication system and a semifragile one are separately built. Experiments show that both the systems have good performance in transparence, fragility, security, and tampering localization. In particular, the semifragile system can perfectly resist the rotation by a multiple of 90° flipping and brightness attacks.
Design and Implementation of Fixed Point Arithmetic Unit
Directory of Open Access Journals (Sweden)
S Ramanathan
2016-06-01
Full Text Available This paper aims at Implementation of Fixed Point Arithmetic Unit. The real number is represented in Qn.m format where n is the number of bits to the left of the binary point and m is the number of bits to the right of the binary point. The Fixed Point Arithmetic Unit was designed using Verilog HDL. The Fixed Point Arithmetic Unit incorporates adder, multiplier and subtractor. We carried out the simulations in ModelSim and Cadence IUS, used Cadence RTL Compiler for synthesis and used Cadence SoC Encounter for physical design and targeted 180 nm Technology for ASIC implementation. From the synthesis result it is found that our design consumes 1.524 mW of power and requires area 20823.26 μm2 .
Galley, Chad R; Porto, Rafael A; Ross, Andreas
2015-01-01
We use the effective field theory (EFT) framework to calculate the tail effect in gravitational radiation reaction, which enters at 4PN order in the dynamics of a binary system. The computation entails a subtle interplay between the near (or potential) and far (or radiation) zones. In particular, we find that the tail contribution to the effective action is non-local in time, and features both a dissipative and a `conservative' term. The latter includes a logarithmic ultraviolet divergence, which we show cancels against an infrared singularity found in the (conservative) near zone. The origin of this behavior in the long-distance EFT is due to the point-particle limit --shrinking the binary to a point-- which transforms a would-be infrared singularity into an ultraviolet divergence. This is a common occurrence in an EFT approach, which furthermore allows us to use renormalization group (RG) techniques to resum the resulting logarithmic contributions. We then derive the RG evolution for the binding potential a...
Oh, Jae-Hyuk
2016-11-01
We explore the mathematical relation between stochastic quantization (SQ) and the holographic Wilsonian renormalization group (HWRG) of a massive scalar field defined in asymptotically anti-de Sitter space. We compute the stochastic two-point correlation function by quantizing the boundary on-shell action (it is identified with the Euclidean action in our stochastic frame) of the scalar field, requiring the initial value of the stochastic field Dirichlet boundary condition, and study its relationship with the double-trace deformation in HWRG computation. It turns out that the stochastic two-point function precisely corresponds to the double-trace deformation through the relation proposed in [J. High Energy Phys. 11 (2012) 144] even in the case that the scalar field mass is arbitrary. In our stochastic framework, the Euclidean action constituting the Langevin equation is not the same as that in the original stochastic theory; in fact, it contains the stochastic time "t -dependent" kernel in it. A justification for the exotic Euclidean action is provided by proving that it transforms to the usual form of the Euclidean action in a new stochastic frame by an appropriate rescaling of both the stochastic fields and time. We also apply the Neumann boundary condition to the stochastic fields to study the relation between SQ and the HWRG when alternative quantization is allowed. It turns out that the application of the Neumann boundary condition to the stochastic fields generates the radial evolution of the single-trace operator as well as the double-trace term.
Georgiev, Ivan T.; McKay, Susan R.
2001-03-01
We present a position-space renormalization-group method for nonequilibrium systems, and illustrate its application using the one-dimensional driven asymmetric chain. The dynamics in this case are characterized by three parameters: the probability α that a particle will enter the chain from the left boundary, the probability β that a particle will exit the chain at the right boundary, and the probability p that a particle will jump to its right neighboring site if that site is empty. Rescaling trajectories flow in the space of these probabilities and the dynamics are implemented sequentially. The phase diagram for the steady states consists of three distinct regions, one with high current and two others distinguished by their average densities. This method yields a multicritical point at α_c=β_c=0.5, in agreement with the exact solution.(B. Derrida, et al., J. Phys. A: Math. Gen. 26), 1493 (1993); G. Schutz and E. Domany, J. Stat. Phys. 72, 277 (1993). We find the exponent ν = 2.71 associated with this fixed point, as compared with the exact value of 2.00.
Some Common Fixed Point Theorems in Generalized Vector Metric Spaces
Directory of Open Access Journals (Sweden)
Rajesh Shrivastava
2013-11-01
Full Text Available In this paper we give some theorems on point of coincidence and common fixed point for two self mappings satisfying some general contractive conditions in generalized vector spaces. Our results generalize some well-known recent results in this direction.
On Common Fixed Point of Noncompatible Mapping Pairs
Institute of Scientific and Technical Information of China (English)
朱元泽; 吕中学
2002-01-01
In this paper, two common fixed point theorems for noncompatible maps in a metric space have been proved under the condition of without taking completeness of the space or continuity of the mapings into account. The related common point theorems were improved.
Design and DSP Implementation of Fixed-Point Systems
Directory of Open Access Journals (Sweden)
Martin Coors
2002-09-01
Full Text Available This article is an introduction to the FRIDGE design environment which supports the design and DSP implementation of fixed-point digital signal processing systems. We present the tool-supported transformation of signal processing algorithms coded in floating-point ANSI C to a fixed-point representation in SystemC. We introduce the novel approach to control and data flow analysis, which is necessary for the transformation. The design environment enables fast bit-true simulation by mapping the fixed-point algorithm to integral data types of the host machine. A speedup by a factor of 20 to 400 can be achieved compared to C++-library-based bit-true simulation. FRIDGE also provides a direct link to DSP implementation by processor specific C code generation and advanced code optimization.
Retracts, fixed point property and existence of periodic points
Institute of Scientific and Technical Information of China (English)
MAI; Jiehua(
2001-01-01
［1］Sarkovskii, A. N. , Coexistence of cycles of a continuous map of a line into itself, Ukrain. Mat. Z. , 1964, 16(1): 61－71.［2］Li, T. Y., Misiurewicz, M., Pianigiani, G. et al., No division implies chaos, Trans. Amer. Math. Soc., 1982, 273(1):191－199.［3］Mai Jiehua, Multi-separation, centrifugality and centripetality imply chaos, Trans. Amer. Math. Soc., 1999, 351 (1):343－351.［4］Block, L., Coppel, W., Dynamics in One Dimension, Berlin, New York: Springer-Verlag, 1992.［5］Misiurewicz, M., Periodic points of maps of degree one of a circle, Ergod. Th. & Dynam. Sys. , 1982, 2(2): 221－227.［6］Alseda, L., Llibre, J., Misiurewicz, M., Periodic orbits of maps of Y, Trans. Amer. Math. Soc., 1989, 313(2): 475－538.［7］Baldwin, S. , An extension of Sarkovskii's theorem to the n-od, Ergod. Th. & Dynam. Sys. , 1991, 11(2): 249－271.［8］Alseda, L. , Ye, X. D. , No division and the set of periods for tree maps, Ergod. Th. & Dynam. Sys., 1995, 15(2): 221－237.［9］Leseduarte, M. C., Llibre, J., On the set of periods for σ maps, Trans. Amer. Math. Soc., 1995, 347(12): 4899－4942.［10］Armstrong, M. A., Basic Topology, New York: Springer-Verlag, 1983.［11］Dicks, W. , Llibre, J. , Orientation-preserving self-homeomorphisms of the surface of genus two have points of period at most two, Proc. Amer. Math. Soc., 1996, 124(5): 1583－1591.［12］Kolev, B., Peroueme, M. C., Recurrent surface homeonorphisms, Math. Proc. Camb. Phil. Soc., 1998, 124(1): 161－168.［13］Franks, J., Generalizations of the Poincare-Birkhoff theorem, Ann. Math., 1988, 128(1): 139－151.［14］Hall, G. R. , Some problems on dynamics of annulus maps, Contemporary Mathematics, 1988, 81(1): 135－152.［15］Barge, M., Matison, T., A Poincare-Birkhoff theorem on invariant plane continua, Ergod. Th. & Dynam. Sys., 1998, 18(1): 41－52.［16］Munkres, J. Pt., Topology, Englewood Cliffs: Prentice-Hall, 1975.
Fixed Points in Discrete Models for Regulatory Genetic Networks
Directory of Open Access Journals (Sweden)
Orozco Edusmildo
2007-01-01
Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.
Hering, Max; Reuther, Johannes
2017-02-01
We investigate the effects of Dzyaloshinsky-Moriya (DM) interactions on the frustrated J1-J2 kagome-Heisenberg model using the pseudofermion functional renormalization group (PFFRG) technique. In order to treat the off-diagonal nature of DM interactions, we develop an extended PFFRG scheme. We benchmark this approach in parameter regimes that have previously been studied with other methods and find good agreement of the magnetic phase diagram. Particularly, finite DM interactions are found to stabilize all types of noncollinear magnetic orders of the J1-J2 Heisenberg model (q =0 , √{3 }×√{3 } , and cuboc orders) and shrink the extents of magnetically disordered phases. We discuss our results in the light of the mineral herbertsmithite which has been experimentally predicted to host a quantum spin liquid at low temperatures. Our PFFRG data indicate that this material lies in close proximity to a quantum critical point. In parts of the experimentally relevant parameter regime for herbertsmithite, the spin-correlation profile is found to be in good qualitative agreement with recent inelastic-neutron-scattering data.
Guilleux, Maxime; Serreau, Julien
2017-02-01
Nonperturbative renormalization group techniques have recently proven a powerful tool to tackle the nontrivial infrared dynamics of light scalar fields in de Sitter space. In the present article, we develop the formalism beyond the local potential approximation employed in earlier works. In particular, we consider the derivative expansion, a systematic expansion in powers of field derivatives, appropriate for long wavelength modes, that we generalize to the relevant case of a curved metric with Lorentzian signature. The method is illustrated with a detailed discussion of the so-called local potential approximation prime which, on top of the full effective potential, includes a running (but field-independent) field renormalization. We explicitly compute the associated anomalous dimension for O (N ) theories. We find that it can take large values along the flow, leading to sizable differences as compared to the local potential approximation. However, it does not prevent the phenomenon of gravitationally induced dimensional reduction pointed out in previous studies. We show that, as a consequence, the effective potential at the end of the flow is unchanged as compared to the local potential approximation, the main effect of the running anomalous dimension being merely to slow down the flow. We discuss some consequences of these findings.
IR fixed points in $SU(3)$ gauge Theories
Ishikawa, K -I; Nakayama, Yu; Yoshie, Y
2015-01-01
We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the $SU(3)$ gauge theories with $N_f$ fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off, which we cannot remove in the conformal field theories in sharp contrast with the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for $N_f=16, 12, 8 $ and $N_f=7$ and indeed identify the location of the IR fixed points in all cases.
Matrix product density operators: Renormalization fixed points and boundary theories
Energy Technology Data Exchange (ETDEWEB)
Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)
2017-03-15
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).
Border collisions inside the stability domain of a fixed point
Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2016-05-01
Recent studies on a power electronic DC/AC converter (inverter) have demonstrated that such systems may undergo a transition from regular dynamics (associated with a globally attracting fixed point of a suitable stroboscopic map) to chaos through an irregular sequence of border-collision events. Chaotic dynamics of an inverter is not suitable for practical purposes. However, the parameter domain in which the stroboscopic map has a globally attracting fixed point has generally been considered to be uniform and suitable for practical use. In the present paper we show that this domain actually has a complicated interior structure formed by boundaries defined by persistence border collisions. We describe a simple approach that is based on symbolic dynamics and makes it possible to detect such boundaries numerically. Using this approach we describe several regions in the parameter space leading to qualitatively different output signals of the inverter although all associated with globally attracting fixed points of the corresponding stroboscopic map.
Fixed Points of Two-Sided Fractional Matrix Transformations
Directory of Open Access Journals (Sweden)
David Handelman
2007-02-01
Full Text Available Let C and D be nÃƒÂ—n complex matrices, and consider the densely defined map ÃÂ†C,D:XÃ¢Â†Â¦(IÃ¢ÂˆÂ’CXDÃ¢ÂˆÂ’1 on nÃƒÂ—n matrices. Its fixed points form a graph, which is generically (in terms of (C,D nonempty, and is generically the Johnson graph J(n,2n; in the nongeneric case, either it is a retract of the Johnson graph, or there is a topological continuum of fixed points. Criteria for the presence of attractive or repulsive fixed points are obtained. If C and D are entrywise nonnegative and CD is irreducible, then there are at most two nonnegative fixed points; if there are two, one is attractive, the other has a limited version of repulsiveness; if there is only one, this fixed point has a flow-through property. This leads to a numerical invariant for nonnegative matrices. Commuting pairs of these maps are classified by representations of a naturally appearing (discrete group. Special cases (e.g., CDÃ¢ÂˆÂ’DC is in the radical of the algebra generated by C and D are discussed in detail. For invertible size two matrices, a fixed point exists for all choices of C if and only if D has distinct eigenvalues, but this fails for larger sizes. Many of the problems derived from the determination of harmonic functions on a class of Markov chains.
Disordered horizons: Holography of randomly disordered fixed points
Hartnoll, Sean A
2014-01-01
We deform conformal field theories with classical gravity duals by marginally relevant random disorder. We show that the disorder generates a flow to IR fixed points with a finite amount of disorder. The randomly disordered fixed points are characterized by a dynamical critical exponent $z>1$ that we obtain both analytically (via resummed perturbation theory) and numerically (via a full simulation of the disorder). The IR dynamical critical exponent increases with the magnitude of disorder, probably tending to $z \\to \\infty$ in the limit of infinite disorder.
Variational inequalities and fixed point problems : a survey
Directory of Open Access Journals (Sweden)
Renu Chugh
2014-06-01
Full Text Available The variational inequality problem provides a broad unifying setting for the study of optimization, equilibrium and related problems and serves as a useful computational framework for the solution of a host of problems in very diverse applications. Variational inequalities have been a classical subject in mathematical physics, particularly in the calculus of variations associated with the minimization of infinite-dimensional functionals. This paper presents a survey of main results related to variational inequalities and fixed point problems defined on real Hilbert spaces and Banach spaces. Keywords: Fixed Point Problem, Inverse-Strongly-Monotone Mappings, Monotone Mappings, Projection Mappings, Variational Inequality Problem.
Convergence theorems for fixed points of demicontinuous pseudocontractive mappings
Directory of Open Access Journals (Sweden)
Chidume CE
2005-01-01
Full Text Available Let be an open subset of a real uniformly smooth Banach space . Suppose is a demicontinuous pseudocontractive mapping satisfying an appropriate condition, where denotes the closure of . Then, it is proved that (i for every ; (ii for a given , there exists a unique path , , satisfying . Moreover, if or there exists such that the set is bounded, then it is proved that, as , the path converges strongly to a fixed point of . Furthermore, explicit iteration procedures with bounded error terms are proved to converge strongly to a fixed point of .
Vojta, Matthias; Bulla, Ralf; Güttge, Fabian; Anders, Frithjof
2010-02-01
We discuss a particular source of error in the numerical renormalization group (NRG) method for quantum impurity problems, which is related to a renormalization of impurity parameters due to the bath propagator. At any step of the NRG calculation, this renormalization is only partially taken into account, leading to systematic variation in the impurity parameters along the flow. This effect can cause qualitatively incorrect results when studying quantum-critical phenomena, as it leads to an implicit variation in the phase transition’s control parameter as function of the temperature and thus to an unphysical temperature dependence of the order-parameter mass. We demonstrate the mass-flow effect for bosonic impurity models with a power-law bath spectrum, J(ω)∝ωs , namely, the dissipative harmonic oscillator and the spin-boson model. We propose an extension of the NRG to correct the mass-flow error. Using this, we find unambiguous signatures of a Gaussian critical fixed point in the spin-boson model for s<1/2 , consistent with mean-field behavior as expected from quantum-to-classical mapping.
Georgiev, Ivan T.; McKay, Susan R.
2004-03-01
We have introduced a general position-space renormalization-group approach for non-equilibrium systems developed from the microscopic master equation. The method is based upon a closed form representation of the parameters of the system in terms of the steady state probability distribution of small clusters. From the master equation in terms of these small clusters, we build recursion relations linking parameters affecting transition rates on various length scales and determine the flow topology. Results for the three-state driven lattice gas show many of the expected features associated with the phase diagrams previously reported for this system, (G. Korniss, B. Schmittmann, and R.K.P. Zia, Non-Equilibrium Phase Transitions in a Simple Three-State Lattice Gas, J. Stat. Phys. 86, 721 (1997).)in excellent agreement with simulations. The flow diagrams also exhibit added complexities, suggesting multiple regions within the ordered phase for some values of parameters and the presence of an extra "source" fixed point. (I.T. Georgiev, U. of Maine Ph.D. Thesis (2003); I.T. Georgiev and S.R. McKay, in preparation.)
Renormalization-group symmetries for solutions of nonlinear boundary value problems
Kovalev, V F
2008-01-01
Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...
Güven, Can; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Functional renormalization group approach to the singlet-triplet transition in quantum dots.
Magnusson, E B; Hasselmann, N; Shelykh, I A
2012-09-12
We present a functional renormalization group approach to the zero bias transport properties of a quantum dot with two different orbitals and in the presence of Hund's coupling. Tuning the energy separation of the orbital states, the quantum dot can be driven through a singlet-triplet transition. Our approach, based on the approach by Karrasch et al (2006 Phys. Rev. B 73 235337), which we apply to spin-dependent interactions, recovers the key characteristics of the quantum dot transport properties with very little numerical effort. We present results on the conductance in the vicinity of the transition and compare our results both with previous numerical renormalization group results and with predictions of the perturbative renormalization group.
Güven, Can; Hinczewski, Michael; Berker, A Nihat
2010-11-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.
Three- and four-body systems with the Functional Renormalization Group
Raziel, Benjamín; Ávila, Jaramillo
2016-10-01
The Efimov effect arises in three-body systems near the unitary limit. Some of its features are universal, while others are not. This article uses a Functional-Renormalization- Group approach to discuss the Efimov effect and four-body systems. In this context, the Efimov effect appears as a consequence of the Renormalization-Group flow of couplings. On the four- body system, we find three tetramers below each Efimov trimer, and no evidence of four- body universality breaking. Two of these tetramers are in agreement with quantum-mechanical calculations and experimental results.
Active space decomposition with multiple sites: Density matrix renormalization group algorithm
Parker, Shane M
2014-01-01
We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few {\\mu}Eh or less) with M = 128 in both cases, which is in contrast to conventional ab initio density matrix renormalization group.
Real space renormalization group for twisted lattice N=4 super Yang-Mills
Catterall, Simon
2014-01-01
A necessary ingredient for our previous results on the form of the long distance effective action of the twisted lattice N=4 super Yang-Mills theory is the existence of a real space renormalization group which preserves the lattice structure, both the symmetries and the geometric interpretation of the fields. In this brief article we provide an explicit example of such a blocking scheme and illustrate its practicality in the context of a small scale Monte Carlo renormalization group calculation. We also discuss the implications of this result, and the possible ways in which to use it in order to obtain further information about the long distance theory.
Histogram Monte Carlo position-space renormalization group: Applications to the site percolation
Hu, Chin-Kun; Chen, Chi-Ning; Wu, F. Y.
1996-02-01
We study site percolation on the square lattice and show that, when augmented with histogram Monte Carlo simulations for large lattices, the cell-to-cell renormalization group approach can be used to determine the critical probability accurately. Unlike the cell-to-site method and an alternate renormalization group approach proposed recently by Sahimi and Rassamdana, both of which rely on ab initio numerical inputs, the cell-to-cell scheme is free of prior knowledge and thus can be applied more widely.
Stability of common fixed points in uniform spaces
Directory of Open Access Journals (Sweden)
Singh Shyam
2011-01-01
Full Text Available Abstract Stability results for a pair of sequences of mappings and their common fixed points in a Hausdorff uniform space using certain new notions of convergence are proved. The results obtained herein extend and unify several known results. AMS(MOS Subject classification 2010: 47H10; 54H25.
Wess Zumino Couplings for Generalized $\\Sigma$ Orbifold Fixed-points
Ospina-Giraldo, J F
2000-01-01
The Wess-Zumino couplings for generalized sigma-orbifold fixed-points are presented and the generalized GS 6-form that encoding the complete sigma-standard gauge-gravitational-non standard gauge anomaly and its opposite inflow is derived.
Fixed Points of Averages of Resolvents: Geometry and Algorithms
Bauschke, Heinz H; Wylie, Calvin J S
2011-01-01
To provide generalized solutions if a given problem admits no actual solution is an important task in mathematics and the natural sciences. It has a rich history dating back to the early 19th century when Carl Friedrich Gauss developed the method of least squares of a system of linear equations - its solutions can be viewed as fixed points of averaged projections onto hyperplanes. A powerful generalization of this problem is to find fixed points of averaged resolvents (i.e., firmly nonexpansive mappings). This paper concerns the relationship between the set of fixed points of averaged resolvents and certain fixed point sets of compositions of resolvents. It partially extends recent work for two mappings on a question of C. Byrne. The analysis suggests a reformulation in a product space. Furthermore, two new algorithms are presented. A complete convergence proof that is based on averaged mappings is provided for the first algorithm. The second algorithm, which currently has no convergence proof, iterates a map...
Fixed point theorems for generalized Lipschitzian semigroups in Banach spaces
Directory of Open Access Journals (Sweden)
Balwant Singh Thakur
1999-01-01
Full Text Available Fixed point theorems for generalized Lipschitzian semigroups are proved in p-uniformly convex Banach spaces and in uniformly convex Banach spaces. As applications, its corollaries are given in a Hilbert space, in Lp spaces, in Hardy space Hp, and in Sobolev spaces Hk,p, for 1
Fixed Point Theorems of the Iterated Function Systems
Institute of Scientific and Technical Information of China (English)
Ji You-qing; Liu Zhi; Ri Song-il
2016-01-01
In this paper, we present some fixed point theorems of iterated function systems consisting ofα-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function systems consisting of Banach contractive mappings in Fractal space constituted by the compact subset of general-ized metric space, which is also extensively applied in topological dynamic system.
Fixed Points in Self-Similar Analysis of Time Series
Gluzman, S.; Yukalov, V. I.
1998-01-01
Two possible definitions of fixed points in the self-similar analysis of time series are considered. One definition is based on the minimal-difference condition and another, on a simple averaging. From studying stock market time series, one may conclude that these two definitions are practically equivalent. A forecast is made for the stock market indices for the end of March 1998.
Probabilistic G-Metric space and some fixed point results
Directory of Open Access Journals (Sweden)
A. R. Janfada
2013-01-01
Full Text Available In this note we introduce the notions of generalized probabilistic metric spaces and generalized Menger probabilistic metric spaces. After making our elementary observations and proving some basic properties of these spaces, we are going to prove some fixed point result in these spaces.
Solution of fractional differential equations via coupled fixed point
Directory of Open Access Journals (Sweden)
Hojjat Afshari
2015-11-01
Full Text Available In this article, we investigate the existence and uniqueness of a solution for the fractional differential equation by introducing some new coupled fixed point theorems for the class of mixed monotone operators with perturbations in the context of partially ordered complete metric space.
Wess Zumino Couplings for Generalized Sigma Orbifold Fixed-points
Giraldo, Juan Fernando Ospina
2000-01-01
The Wess-Zumino couplings for generalized sigma-orbifold fixed-points are presented and the generalized GS 6-form that encoding the complete sigma-standard gauge-gravitational-non standard gauge anomaly and its opposite inflow is derived.
Some Fixed Point Results for TAC-Type Contractive Mappings
Directory of Open Access Journals (Sweden)
Sumit Chandok
2016-01-01
Full Text Available We prove some fixed point results for new type of contractive mappings using the notion of cyclic admissible mappings in the framework of metric spaces. Our results extend, generalize, and improve some well-known results from literature. Some examples are given to support our main results.
Common fixed points of single-valued and multivalued maps
Directory of Open Access Journals (Sweden)
Yicheng Liu
2005-01-01
Full Text Available We define a new property which contains the property (EA for a hybrid pair of single- and multivalued maps and give some new common fixed point theorems under hybrid contractive conditions. Our results extend previous ones. As an application, we give a partial answer to the problem raised by Singh and Mishra.
Quantum fixed-point search algorithm with general phase shifts
Institute of Scientific and Technical Information of China (English)
2008-01-01
Grover presented the Phase-π/3 search by replacing the selective inversions by selective phase shifts of π/3.In this paper,we review and discuss the fixed-point search with general but equal phase shifts and the fixedpoint search with general but different phase shifts.
Fixed point theorems for d-complete topological spaces I
Directory of Open Access Journals (Sweden)
Troy L. Hicks
1992-01-01
Full Text Available Generalizations of Banach's fixed point theorem are proved for a large class of non-metric spaces. These include d-complete symmetric (semi-metric spaces and complete quasi-metric spaces. The distance function used need not be symmetric and need not satisfy the triangular inequality.
Common fixed point result by using weak commutativity
Gupta, Vishal; Mani, Naveen; Devi, Seema
2017-07-01
The main objective of this paper is to establish a common fixed point result for ten mappings satisfying a weaker condition, has been obtained. Our main result generalizes various previously known results such as Kannan, Fisher, Hardy & Rogers and Pande & Dubey.
ISHIKAWA ITERATIVE PROCEDURE FORAPPROXIMATING FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS
Institute of Scientific and Technical Information of China (English)
ZengLuchuan
2003-01-01
It is shown that any fixed point of a Lipschitzian,strictly pseudocontractive muping T on a closed convex subset K of a Banach space X may be approximated by Ishikawa iterative procedure. The results in this paper provide the new convergence criteria and novel convergence rate estimate for Ishikawa iterative sequence.
Fixed Points on the Real numbers without the Equality Test
DEFF Research Database (Denmark)
Korovina, Margarita
2002-01-01
In this paper we present a study of definability properties of fixed points of effective operators on the real numbers without the equality test. In particular we prove that Gandy theorem holds for the reals without the equality test. This provides a useful tool for dealing with recursive...
Fixed Points on Abstract Structures without the Equality Test
DEFF Research Database (Denmark)
Korovina, Margarita V.
2002-01-01
In this paper we present a study of definability properties of fixed points of effective operators on abstract structures without the equality test. In particular we prove that Gandy theorem holds for abstract structures. This provides a useful tool for dealing with recursive definitions using -f...
Common Fixed Points for Multimaps in Metric Spaces
Directory of Open Access Journals (Sweden)
Rafa Espínola
2010-01-01
Full Text Available We discuss the existence of common fixed points in uniformly convex metric spaces for single-valued pointwise asymptotically nonexpansive or nonexpansive mappings and multivalued nonexpansive, ∗-nonexpansive, or ε-semicontinuous maps under different conditions of commutativity.
STABILITY OF NONLINEAR NEUTRAL DIFFERENTIAL EQUATION VIA FIXED POINT
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,a nonlinear neutral differential equation is considered.By a fixed point theory,we give some conditions to ensure that the zero solution to the equation is asymptotically stable.Some existing results are improved and generalized.
Hierarchical Fixed Point Problems in Uniformly Smooth Banach Spaces
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We propose some relaxed implicit and explicit viscosity approximation methods for hierarchical fixed point problems for a countable family of nonexpansive mappings in uniformly smooth Banach spaces. These relaxed viscosity approximation methods are based on the well-known viscosity approximation method and hybrid steepest-descent method. We obtain some strong convergence theorems under mild conditions.
Fixed point theorems for generalized contractions in ordered metric spaces
O'Regan, Donal; Petrusel, Adrian
2008-05-01
The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, MEC. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.
Men'shenin, V. V.
2013-06-01
A transition from the paramagnetic state to a long-period magnetic structure with an incommensurate wave vector along one crystallographic axis in RMn2O5 multiferroics is considered. An effective Hamiltonian for these oxides is constructed with allowance for spin fluctuations. Critical points are found, and their stability is analyzed using the renormalization group approach. It is shown that critical fluctuations in these compounds admit a second-order phase transition with respect to a multicomponent order parameter.
Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.; Ross, Andreas
2016-06-01
We use the effective field theory (EFT) framework to calculate the tail effect in gravitational radiation reaction, which enters at the fourth post-Newtonian order in the dynamics of a binary system. The computation entails a subtle interplay between the near (or potential) and far (or radiation) zones. In particular, we find that the tail contribution to the effective action is nonlocal in time and features both a dissipative and a "conservative" term. The latter includes a logarithmic ultraviolet (UV) divergence, which we show cancels against an infrared (IR) singularity found in the (conservative) near zone. The origin of this behavior in the long-distance EFT is due to the point-particle limit—shrinking the binary to a point—which transforms a would-be infrared singularity into an ultraviolet divergence. This is a common occurrence in an EFT approach, which furthermore allows us to use renormalization group (RG) techniques to resum the resulting logarithmic contributions. We then derive the RG evolution for the binding potential and total mass/energy, and find agreement with the results obtained imposing the conservation of the (pseudo) stress-energy tensor in the radiation theory. While the calculation of the leading tail contribution to the effective action involves only one diagram, five are needed for the one-point function. This suggests logarithmic corrections may be easier to incorporate in this fashion. We conclude with a few remarks on the nature of these IR/UV singularities, the (lack of) ambiguities recently discussed in the literature, and the completeness of the analytic post-Newtonian framework.
Directory of Open Access Journals (Sweden)
Ishak Altun
2016-01-01
Full Text Available We provide sufficient conditions for the existence of a unique common fixed point for a pair of mappings T,S:X→X, where X is a nonempty set endowed with a certain metric. Moreover, a numerical algorithm is presented in order to approximate such solution. Our approach is different to the usual used methods in the literature.
Moritz, Gerrit; Hess, Bernd Artur; Reiher, Markus
2005-01-08
The density-matrix renormalization group algorithm has emerged as a promising new method in ab initio quantum chemistry. However, many problems still need to be solved before this method can be applied routinely. At the start of such a calculation, the orbitals originating from a preceding quantum chemical calculation must be placed in a specific order on a one-dimensional lattice. This ordering affects the convergence of the density-matrix renormalization group iterations significantly. In this paper, we present two approaches to obtain optimized orderings of the orbitals. First, we use a genetic algorithm to optimize the ordering with respect to a low total electronic energy obtained at a predefined stage of the density-matrix renormalization group algorithm with a given number of total states kept. In addition to that, we derive orderings from the one- and two-electron integrals of our test system. This test molecule is the chromium dimer, which is known to possess a complicated electronic structure. For this molecule, we have carried out calculations for the various orbital orderings obtained. The convergence behavior of the density-matrix renormalization group iterations is discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Pruschke, T.; Bulla, R. [Institute fuer Theoretische Physik der Universitaet, Regensburg (Germany)
1995-05-01
The numerical renormalization group method is applied to an Anderson impurity with an energy dependent coupling to the conduction band. We describe how the discrete spectra resulting from the numerical calculation can be reliably smoothed using a continued fraction expansion. The investigations are connected with the study of models in infinite spatial dimensions.
PyR@TE: Renormalization Group Equations for General Gauge Theories
Lyonnet, Florian; Staub, Florian; Wingerter, Akin
2014-01-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for "Python Renormalization group equations At Two-loop for Everyone". In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and ...
KAM-renormalization-group for Hamiltonian systems with two degrees of freedom
Chandre, C
1998-01-01
We review a formulation of a renormalization-group scheme for Hamiltonian systems with two degrees of freedom. We discuss the renormalization flow on the basis of the continued fraction expansion of the frequency. The goal of this approach is to understand universal scaling behavior of critical invariant tori.
Energy Technology Data Exchange (ETDEWEB)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch [Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard, E-mail: hjj@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense (Denmark)
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
New method of the functional renormalization group approach for Yang-Mills fields
Lavrov, P. M.; Shapiro, I. L.
2014-12-01
We propose a new formulation of the functional renormalization group (FRG) approach, based on the use of regulator functions as composite operators. In this case one can provide (in contrast with standard approach) on-shell gauge-invariance for the effective average action.
Loop expansion of the average effective action in the functional renormalization group approach
Lavrov, Peter M.; Merzlikin, Boris S.
2015-10-01
We formulate a perturbation expansion for the effective action in a new approach to the functional renormalization group method based on the concept of composite fields for regulator functions being their most essential ingredients. We demonstrate explicitly the principal difference between the properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.
Loop expansion of average effective action in functional renormalization group approach
Lavrov, Peter M
2015-01-01
We formulate a perturbation expansion for the effective action in new approach to the functional renormalization group (FRG) method based on concept of composite fields for regulator functions being therein most essential ingredients. We demonstrate explicitly the principal difference between properties of effective actions in these two approaches existing already on the one-loop level in a simple gauge model.
Renormalization Group, Non-Gibbsian states, their relationship and further developments.
Enter, Aernout C.D. van
2006-01-01
We review what we have learned about the “Renormalization Group peculiarities” which were discovered more than twentyfive years ago by Griffiths and Pearce. We discuss which of the questions they asked have been answered and which ones are still widely open. The problems they raised have led to the
The Real-Space Renormalization Group Applied to Diffusion in Inhomogeneous Media
Kawasaki, Mitsuhiro
2002-01-01
The real-space renormalization group technique is introduced to evaluate the effective diffusion constant for diffusion in inhomogeneous media, which has been obtained by singular perturbation methods. Our method is formulated on a discretized real space and hence it can be easily combined with numerical studies for partial differential equations.
Real-space renormalization-group approach to field evolution equations.
Degenhard, Andreas; Rodríguez-Laguna, Javier
2002-03-01
An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential equations (PDE) via real-space renormalization group is introduced, in which cell overlapping is the key concept. Applications to (1+1)-dimensional PDEs are presented for linear and quadratic equations that are first order in time.
Novel Position-Space Renormalization Group for Bond Directed Percolation in Two Dimensions
KAYA, H.; Erzan, A.
1998-01-01
A new position-space renormalization group approach is investigated for bond directed percolation in two dimensions. The threshold value for the bond occupation probabilities is found to be $p_c=0.6443$. Correlation length exponents on time (parallel) and space (transverse) directions are found to be $\
Renormalization Group, Non-Gibbsian states, their relationship and further developments.
Enter, Aernout C.D. van
2006-01-01
We review what we have learned about the “Renormalization Group peculiarities” which were discovered more than twentyfive years ago by Griffiths and Pearce. We discuss which of the questions they asked have been answered and which ones are still widely open. The problems they raised have led to the
DEFF Research Database (Denmark)
Frota, H.O.; Flensberg, Karsten
1992-01-01
We have done a numerical renormalization-group calculation for a Hamiltonian modeling charging effect in ultrasmall tunnel junctions. We find that the conductance is enhanced by the quantum charge fluctuations allowing tunneling below the charging energy gap. However, in all cases the conductance...
DEFF Research Database (Denmark)
Codello, Alessandro; Tonero, Alberto
2016-01-01
the momentum modes that contribute to it according to their renormalization group (RG) relevance, i.e. we weight each mode according to the value of the running couplings at that scale. In this way, we are able to encode in a loop computation the information regarding the RG trajectory along which we...
DEFF Research Database (Denmark)
Hedegård, Erik D.; Knecht, Stefan; Kielberg, Jesper Skau
2015-01-01
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electroncorrelation...
Ron, Dorit; Brandt, Achi; Swendsen, Robert H
2017-05-01
We present a surprisingly simple approach to high-accuracy calculations of the critical properties of the three-dimensional Ising model. The method uses a modified block-spin transformation with a tunable parameter to improve convergence in the Monte Carlo renormalization group. The block-spin parameter must be tuned differently for different exponents to produce optimal convergence.
Hedegård, Erik Donovan; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard; Reiher, Markus
2015-01-01
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Fixed-rate compressed floating-point arrays
Energy Technology Data Exchange (ETDEWEB)
2014-03-30
ZFP is a library for lossy compression of single- and double-precision floating-point data. One of the unique features of ZFP is its support for fixed-rate compression, which enables random read and write access at the granularity of small blocks of values. Using a C++ interface, this allows declaring compressed arrays (1D, 2D, and 3D arrays are supported) that through operator overloading can be treated just like conventional, uncompressed arrays, but which allow the user to specify the exact number of bits to allocate to the array. ZFP also has variable-rate fixed-precision and fixed-accuracy modes, which allow the user to specify a tolerance on the relative or absolute error.
Quantum critical points in quantum impurity systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)]. E-mail: bulla@cpfs.mpg.de
2005-04-30
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Quantum critical points in quantum impurity systems
Lee, Hyun Jung; Bulla, Ralf
2005-04-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.