Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
Dynamical renormalization group resummation of finite temperature infrared divergences
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de; Boyanovsky, D.; Simionato, M.; Holman, R.; Simionato, M.
1999-01-01
We introduce the method of dynamical renormalization group to study relaxation and damping out of equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse photons and leads to anomalous logarithmic relaxation of the form e -αampersandhthinsp;Tampersandhthinsp;tampersandhthinsp;ln[t/t 0 ] for hard momentum charged excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorporated consistently into the dynamical renormalization group yielding a picture of relaxation and damping phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and other types of resummation schemes. copyright 1999 The American Physical Society
Aspects of renormalization in finite-density field theory
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia
2015-05-26
We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.
General renormalized statistical approach with finite cross-field correlations
International Nuclear Information System (INIS)
Vakulenko, M.O.
1992-01-01
The renormalized statistical approach is proposed, accounting for finite correlations of potential and magnetic fluctuations. It may be used for analysis of a wide class of nonlinear model equations describing the cross-correlated plasma states. The influence of a cross spectrum on stationary potential and magnetic ones is investigated. 10 refs. (author)
Numerical renormalization group method for entanglement negativity at finite temperature
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Finite cluster renormalization and new two step renormalization group for Ising model
International Nuclear Information System (INIS)
Benyoussef, A.; El Kenz, A.
1989-09-01
New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs
Renormalization in self-consistent approximation schemes at finite temperature I: theory
International Nuclear Information System (INIS)
Hees, H. van; Knoll, J.
2001-07-01
Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)
Finite cluster renormalization group for disordered two-dimensional systems
International Nuclear Information System (INIS)
El Kenz, A.
1987-09-01
A new type of renormalization group theory using the generalized Callen identities is exploited in the study of the disordered systems. Bond diluted and frustrated Ising systems on a square lattice are analyzed with this new scheme. (author). 9 refs, 2 figs, 2 tabs
Renormalization group and finite size effects in scalar lattice field theories
International Nuclear Information System (INIS)
Bernreuther, W.; Goeckeler, M.
1988-01-01
Binder's phenomenological renormalization group is studied in the context of the O(N)-symmetric euclidean lattice φ 4 theory in dimensions d ≤ 4. By means of the field theoretical formulation of the renormalization group we analyse suitable ratios of Green functions on finite lattices in the limit where the dimensionless lattice length L >> 1 and where the dimensionless bare mass approaches the critical point of the corresponding infinite volume model. If the infrared-stable fixed point which controls this limit is a simple zero of the β-function we are led to formulae which allow the extraction of the critical exponents ν and η. For the gaussian fixed point in four dimensions, discussed as a known example for a multiple zero of the β-function, we derive for these ratios the leading logarithmic corrections to mean field scaling. (orig.)
Renormalized action improvements
International Nuclear Information System (INIS)
Zachos, C.
1984-01-01
Finite lattice spacing artifacts are suppressed on the renormalized actions. The renormalized action trajectories of SU(N) lattice gauge theories are considered from the standpoint of the Migdal-Kadanoff approximation. The minor renormalized trajectories which involve representations invariant under the center are discussed and quantified. 17 references
Renormalization of self-consistent Schwinger-Dyson equations at finite temperature
International Nuclear Information System (INIS)
Hees, H. van; Knoll, J.
2002-01-01
We show that Dyson resummation schemes based on Baym's Φ-derivable approximations can be renormalized with counter term structures solely defined on the vacuum level. First applications to the self-consistent solution of the sunset self-energy in φ 4 -theory are presented. (orig.)
International Nuclear Information System (INIS)
Hees, Hendrik van; Knoll, Joern
2002-01-01
The theoretical concepts for the renormalization of self-consistent Dyson resummations, devised in the first paper of this series, are applied to first example cases of φ 4 theory. In addition to the tadpole (Hartree) approximation, as a novel part the numerical solutions are presented, which include the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or the two-particle irreducible effective action concept
International Nuclear Information System (INIS)
Hees, H. van; Knoll, J.
2001-01-01
The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the φ 4 -theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ-derivable approximation or 2PI effective action concept. (orig.)
A perturbative study of two four-quark operators in finite volume renormalization schemes
Palombi, Filippo; Sint, S
2006-01-01
Starting from the QCD Schroedinger functional (SF), we define a family of renormalization schemes for two four-quark operators, which are, in the chiral limit, protected against mixing with other operators. With the appropriate flavour assignments these operators can be interpreted as part of either the $\\Delta F=1$ or $\\Delta F=2$ effective weak Hamiltonians. In view of lattice QCD with Wilson-type quarks, we focus on the parity odd components of the operators, since these are multiplicatively renormalized both on the lattice and in continuum schemes. We consider 9 different SF schemes and relate them to commonly used continuum schemes at one-loop order of perturbation theory. In this way the two-loop anomalous dimensions in the SF schemes can be inferred. As a by-product of our calculation we also obtain the one-loop cutoff effects in the step-scaling functions of the respective renormalization constants, for both O(a) improved and unimproved Wilson quarks. Our results will be needed in a separate study of ...
Variational solution of the Gross-Neveu model; 2, finite-N and renormalization
Arvanitis, C; Iacomi, M; Kneur, J L; Neveu, A
1995-01-01
We show how to perform systematically improvable variational calculations in the O(2N) Gross-Neveu model for generic N, in such a way that all infinities usually plaguing such calculations are accounted for in a way compatible with the renormalization group. The final point is a general framework for the calculation of non-perturbative quantities like condensates, masses, etc..., in an asymptotically free field theory. For the Gross-Neveu model, the numerical results obtained from a "two-loop" variational calculation are in very good agreement with exact quantities down to low values of N.
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
Renormalization of QED with planar binary trees
International Nuclear Information System (INIS)
Brouder, C.
2001-01-01
The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)
Renormalization of fermion mixing
International Nuclear Information System (INIS)
Schiopu, R.
2007-01-01
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Renormalization of fermion mixing
Energy Technology Data Exchange (ETDEWEB)
Schiopu, R.
2007-05-11
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Determination of the ultimate load in concrete slabs by the yield line finite element method
International Nuclear Information System (INIS)
Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.
1984-01-01
A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt
The renormalization of the electroweak standard model
International Nuclear Information System (INIS)
Boehm, M.; Spiesberger, H.; Hollik, W.
1984-03-01
A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)
Holographic renormalization and supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)
2017-02-27
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
DEFF Research Database (Denmark)
Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars Vabbersgaard
2015-01-01
Purpose – The purpose of this paper is to present several methods on how to deal with yield surface discontinuities. The explicit formulations, first presented by Koiter (1953), result in multisingular constitutive matrices which can cause numerical problems in elasto-plastic finite element...... documented in the literature all present “easy” calculation examples, e.g. low friction angles and few elements. The amendments presented in this paper result in robust elasto-plastic computations, making the solution of “hard” problems possible without introducing approximations in the yield surfaces...... calculations. These problems, however, are not documented in previous literature. In this paper an amendment to the Koiter formulation of the constitutive matrices for stress points located on discontinuities is proposed. Design/methodology/approach – First, a review of existing methods of handling yield...
Enter, Aernout C.D. van; Fernández, Roberto
For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the
Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars
2006-01-01
The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...
Holographic Renormalization in Dense Medium
International Nuclear Information System (INIS)
Park, Chanyong
2014-01-01
The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space
Renormalization group procedure for potential −g/r2
Directory of Open Access Journals (Sweden)
S.M. Dawid
2018-02-01
Full Text Available Schrödinger equation with potential −g/r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r=0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Renormalization in few body nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Tomio, L.; Biswas, R. [Instituto de Fisica Teorica, UNESP, 01405-900 Sao Paulo (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminenese, Niteroi (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, CTA 12228-900 Sao Jose dos Campos (Brazil)
2001-09-01
Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the {sup 3}S{sub l} -{sup 3} D{sub 1} states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three
Renormalization in few body nuclear physics
International Nuclear Information System (INIS)
Tomio, L.; Biswas, R.; Delfino, A.; Frederico, T.
2001-01-01
Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the 3 S l - 3 D 1 states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three-body halo nuclei is also
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Renormalization of the inflationary perturbations revisited
Markkanen, Tommi
2018-05-01
In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.
Renormalization of Hamiltonians
International Nuclear Information System (INIS)
Glazek, S.D.; Wilson, K.G.
1993-01-01
This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
Algebraic renormalization. Perturbative renormalization, symmetries and anomalies
International Nuclear Information System (INIS)
Piguet, O.
1995-01-01
This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)
Nataf, Pierre; Mila, Frédéric
2018-04-01
We develop an efficient method to perform density matrix renormalization group simulations of the SU(N ) Heisenberg chain with open boundary conditions taking full advantage of the SU(N ) symmetry of the problem. This method is an extension of the method previously developed for exact diagonalizations and relies on a systematic use of the basis of standard Young tableaux. Concentrating on the model with the fundamental representation at each site (i.e., one particle per site in the fermionic formulation), we have benchmarked our results for the ground-state energy up to N =8 and up to 420 sites by comparing them with Bethe ansatz results on open chains, for which we have derived and solved the Bethe ansatz equations. The agreement for the ground-state energy is excellent for SU(3) (12 digits). It decreases with N , but it is still satisfactory for N =8 (six digits). Central charges c are also extracted from the entanglement entropy using the Calabrese-Cardy formula and agree with the theoretical values expected from the SU (N) 1 Wess-Zumino-Witten conformal field theories.
The analytic renormalization group
Directory of Open Access Journals (Sweden)
Frank Ferrari
2016-08-01
Full Text Available Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k∈Z, associated with the Matsubara frequencies νk=2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk|<μ (with the possible exception of the zero mode G0, together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)
2006-12-15
In part I general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of 't Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, are discussed in part III where numerical results, e.g. for the complex poles of the unstable gauge bosons, are shown. An attempt is made to define the running of the electromagnetic coupling constant at the two-loop level. (orig.)
International Nuclear Information System (INIS)
Actis, S.; Passarino, G.
2006-12-01
In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)
2006-12-15
In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)
Physical renormalization condition for de Sitter QED
Hayashinaka, Takahiro; Xue, She-Sheng
2018-05-01
We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.
Hadamard and minimal renormalizations
International Nuclear Information System (INIS)
Castagnino, M.A.; Gunzig, E.; Nardone, P.; Paz, J.P.
1986-01-01
A common language is introduced to study two, well-known, different methods for the renormalization of the energy-momentum tensor of a scalar neutral quantum field in curved space-time. Different features of the two renormalizations are established and compared
Renormalization and effective lagrangians
International Nuclear Information System (INIS)
Polchinski, J.
1984-01-01
There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)
A comprehensive coordinate space renormalization of quantum electrodynamics to two-loop order
International Nuclear Information System (INIS)
Haagensen, P.E.; Latorre, J.I.
1993-01-01
We develop a coordinate space renormalization of massless quantum electrodynamics using the powerful method of differential renormalization. Bare one-loop amplitudes are finite at non-coincident external points, but do not accept a Fourier transform into momentum space. The method provides a systematic procedure to obtain one-loop renormalized amplitudes with finite Fourier transforms in strictly four dimensions without the appearance of integrals or the use of a regulator. Higher loops are solved similarly by renormalizing from the inner singularities outwards to the global one. We compute all one- and two-loop 1PI diagrams, run renormalization group equations on them. and check Ward identities. The method furthermore allows us to discern a particular pattern of renormalization under which certain amplitudes are seen not to contain higher-loop leading logarithms. We finally present the computation of the chiral triangle showing that differential renormalization emerges as a natural scheme to tackle γ 5 problems
Non-Perturbative Renormalization
Mastropietro, Vieri
2008-01-01
The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi
Renormalization of supersymmetric theories
International Nuclear Information System (INIS)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses
International Nuclear Information System (INIS)
Stephens, C. R.
2006-01-01
In this article I give a brief account of the development of research in the Renormalization Group in Mexico, paying particular attention to novel conceptual and technical developments associated with the tool itself, rather than applications of standard Renormalization Group techniques. Some highlights include the development of new methods for understanding and analysing two extreme regimes of great interest in quantum field theory -- the ''high temperature'' regime and the Regge regime
On the renormalization of string functionals
International Nuclear Information System (INIS)
Dietz, K.; Filk, T.
1982-09-01
We investigate analytic renormalization procedures for functional integrals, corresponding to field theories defined on compact manifolds, which arise e.g. from string functionals of the Nambu-Schild-Eguchi type. Although these models belong to the nonrenormalizable class of quantum field theories, we prove finiteness for a rectangular string shape up to three loop level, for circular boundary up to two loop order, and for a variety of graphs in higher order, thus indicating that the result might hold in general. From the explicit calculation of the two loop approximation we extract the first model dependent corrections to the qanti q - potential or the Casimir effect. The importance of dilation transformations for the properties of the renormalization procedure are investigated. We prove that under certain conditions, forced by symmetry properties, the association of finite values to divergent series is unique, independent of the regularization procedure. (orig.)
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Renormalization of the QEMD of a dyon field
International Nuclear Information System (INIS)
Panagiotakopoulos, C.
1983-01-01
A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n-independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (orig.)
Renormalization of the QEMD of a dyon field
International Nuclear Information System (INIS)
Panagiotakopoulos, C.
1982-05-01
A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (author)
Non-perturbative renormalization of HQET and QCD
International Nuclear Information System (INIS)
Sommer, Rainer
2003-01-01
We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Dynamical renormalization group approach to relaxation in quantum field theory
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
Effects of renormalizing the chiral SU(2) quark-meson model
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
Renormalization and effective actions for general relativity
International Nuclear Information System (INIS)
Neugebohrn, F.
2007-05-01
Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)
Renormalization and effective actions for general relativity
Energy Technology Data Exchange (ETDEWEB)
Neugebohrn, F.
2007-05-15
Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)
Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics
International Nuclear Information System (INIS)
Coquereaux, R.
1979-02-01
The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes
Perturbative and constructive renormalization
International Nuclear Information System (INIS)
Veiga, P.A. Faria da
2000-01-01
These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)
Renormalized vacuum polarization for finite range potentials
International Nuclear Information System (INIS)
Lewin, J.D.
1975-10-01
This report presents computed vacuum polarization effects for leptons in a spherical potential well of radius large compared with the lepton Compton wavelength. These results, together with those previously obtained for small radius wells, show that the total charge generated is independent of well radius and lepton mass; thus the quadratic divergence obtained for the total unrenormalized charge can be removed by the subtraction of the contribution computed for a lepton of mass M(→ infinity) as in the case of the Coulomb potential. Various other problems arising from the earlier study are clarified by the present results. (author)
Renormalization and plasma physics
International Nuclear Information System (INIS)
Krommes, J.A.
1980-02-01
A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields
Renormalization and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Krommes, J.A.
1980-02-01
A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.
On renormalization of axial anomaly
International Nuclear Information System (INIS)
Efremov, A.V.; Teryaev, O.V.
1989-01-01
It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Renormalized trajectory for non-linear sigma model and improved scaling behaviour
International Nuclear Information System (INIS)
Guha, A.; Okawa, M.; Zuber, J.B.
1984-01-01
We apply the block-spin renormalization group method to the O(N) Heisenberg spin model. Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(infinite) in two dimensions. Four finite N models, we choose a four-parameter action near the large-N renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum limit by performing Monte Carlo simulation of O(3) and O(4) models. (orig.)
Renormalization group and asymptotic freedom
International Nuclear Information System (INIS)
Morris, J.R.
1978-01-01
Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Constructive renormalization theory
International Nuclear Information System (INIS)
Rivasseau, Vincent
2000-01-01
These notes are the second part of a common course on Renormalization Theory given with Professor P. da Veiga. I emphasize here the rigorous non-perturbative or constructive aspects of the theory. The usual formalism for the renormalization group in field theory or statistical mechanics is reviewed, together with its limits. The constructive formalism is introduced step by step. Taylor forest formulas allow to perform easily the cluster and Mayer expansions which are needed for a single step of the renormalization group in the case of Bosonic theories. The iteration of this single step leads to further difficulties whose solution is briefly sketched. The second part of the course is devoted to Fermionic models. These models are easier to treat on the constructive level so they are very well suited to beginners in constructive theory. It is shown how the Taylor forest formulas allow to reorganize perturbation theory nicely in order to construct the Gross-Neveu 2 model without any need for cluster or Mayer expansions. Finally applications of this technique to condensed matter and renormalization group around Fermi surface are briefly reviewed. (author)
Energy Technology Data Exchange (ETDEWEB)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, Suita 565-0871 (Japan); Zhang, Xu [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); Shang, Fulin [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources and pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.
Renormalizing Entanglement Distillation
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Renormalization of the new trajectory in the unitarized conventional dual model
International Nuclear Information System (INIS)
Quiros, M.
1978-08-01
The contribution of one-loop planar diagrams to the two-reggeon two-particle amplitude is derived. Its regge limit splits into two separate contributions which must be interpreted as renormalization effects, to order g 2 , of the α and β trajectories. It is shown that the Neveu-Scherk renormalization prescription is able to render finite both contributions. The intercept of the β trajectory is shifted from its bare value by the renormalization procedure, whereas that of the α trajectrory is not renormalized as it was required by the gauge invariance of dual theories
Convergence and analytic properties of manifestly finite perturbation theory
International Nuclear Information System (INIS)
Mtingwa, S.K.
1979-01-01
The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation
Technical fine-tuning problem in renormalized perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Technical fine-tuning problem in renormalized perturbation theory
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes
Nonperturbative Renormalization of Composite Operators with Overlap Fermions
Energy Technology Data Exchange (ETDEWEB)
J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams
2005-12-01
We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.
Temperature renormalization group approach to spontaneous symmetry breaking
International Nuclear Information System (INIS)
Manesis, E.; Sakakibara, S.
1985-01-01
We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)
NLO renormalization in the Hamiltonian truncation
Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.
2017-09-01
Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.
Renormalization Group Functional Equations
Curtright, Thomas L
2011-01-01
Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.
Universal conditions for finite renormalizable quantum field theories
International Nuclear Information System (INIS)
Kranner, G.
1990-10-01
Analyzing general renormalization constants in covariant gauge and minimal subtraction, we consider universal conditions for cancelling UV-divergences in renormalizable field theories with simple gauge groups, and give constructive methods for finding nonsupersymmetric finite models. The divergent parts of the renormalization constants for fields explicitly depend on the gauge parameter ξ. Finite theories simply need finite couplings. We show that respective FinitenessConditions imply a hierarchy, the center of which are the FCs for the gauge coupling g and the Yukawa couplings of the massless theory. To gain more information about F we analyze the Yukawa-FC in greater detail. Doing so algebraically, we find out and fix all inner symmetries. Additionally, Yuakawa-couplings must be invariant under gauge transformation. Then it becomes extremely difficult to obey a FC, yield rational numbers for F ∼ 1, and satisfy the factorization-condition, unless F = 1. The particular structure of the F = 1-system allows for a most general ansatz. We figure out the simplest case, getting precisely just couplings and particle content of a general N=1-supersymmetric theory. We list a class of roughly 4000 types of theories, containing all supersymmetric, completely finite, and many more finite theories as well. (Author, shortened by Quittner) 11 figs., 54 refs
Finiteness of quantum field theories and supersymmetry
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)
Quantum renormalization group approach to geometric phases in spin chains
International Nuclear Information System (INIS)
Jafari, R.
2013-01-01
A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size
Renormalization in the stochastic quantization of field theories
International Nuclear Information System (INIS)
Brunelli, J.C.
1991-01-01
In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Functional renormalization group methods in quantum chromodynamics
International Nuclear Information System (INIS)
Braun, J.
2006-01-01
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
Finiteness of PST self-dual models
International Nuclear Information System (INIS)
Del Cima, Oswaldo M.; Piguet, Olivier; Sarandy, Marcelo S.
2000-12-01
The Pasti-Sorokin-Tonin model for describing chiral forms is considered at the quantum level. We study the ultraviolet and infrared behaviour of the model in two, four and six dimensions in the framework of algebraic renormalization. The absence of anomalies, as well as the finiteness, up to non-physical renormalizations, are shown in all dimensions analyzed. (author)
Renormalization of loop functions for all loops
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Sato, M.
1981-01-01
It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j
The Analytic Renormalization Group
Ferrari, Frank
2016-01-01
Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients $G_{k}$, $k\\in\\mathbb Z$, associated with the Matsubara frequencies $\
Compositeness condition in the renormalization group equation
International Nuclear Information System (INIS)
Bando, Masako; Kugo, Taichiro; Maekawa, Nobuhiro; Sasakura, Naoki; Watabiki, Yoshiyuki; Suehiro, Kazuhiko
1990-01-01
The problems in imposing compositeness conditions as boundary conditions in renormalization group equations are discussed. It is pointed out that one has to use the renormalization group equation directly in cutoff theory. In some cases, however, it can be approximated by the renormalization group equation in continuum theory if the mass dependent renormalization scheme is adopted. (orig.)
Supersymmetry at finite temperature
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1983-01-01
Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Unambiguity of renormalization group calculations in QCD
International Nuclear Information System (INIS)
Vladimirov, A.A.
1979-01-01
A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated
Yucesoy, C.A.; Koopman, Hubertus F.J.M.; Grootenboer, H.J.; Huijing, P.A.J.B.M.
2007-01-01
Finite element modeling of aponeurotomized rat extensor digitorium longus muscle was performed to investigate the acute effects of proximal aponeurotomy. The specific goal was to assess the changes in lengths of sarcomeres within aponeurotomized muscle and to explain how the intervention leads to
Differential renormalization of gauge theories
International Nuclear Information System (INIS)
Aguila, F. del; Perez-Victoria, M.
1998-01-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author)
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Renormalization group analysis of the temperature dependent coupling constant in massless theory
International Nuclear Information System (INIS)
Yamada, Hirofumi.
1987-06-01
A general analysis of finite temperature renormalization group equations for massless theories is presented. It is found that in a direction where momenta and temperature are scaled up with their ratio fixed the coupling constant behaves in the same manner as in zero temperature and that asymptotic freedom at short distances is also maintained at finite temperature. (author)
Stochastic quantization of fermionic theories: renormalization of the massive Thirring model
Energy Technology Data Exchange (ETDEWEB)
Brunelli, J C
1992-10-01
Using the Langevin approach for stochastic processes we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times. (author). 12 refs., 3 figs.
The renormalization scale-setting problem in QCD
Energy Technology Data Exchange (ETDEWEB)
Wu, Xing-Gang [Chongqing Univ. (China); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mojaza, Matin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Southern Denmark, Odense (Denmark)
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scale ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan
2013-12-01
Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.
Renormalization of the nonlinear O(3) model with θ-term
Energy Technology Data Exchange (ETDEWEB)
Flore, Raphael, E-mail: raphael.flore@uni-jena.de [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)
2013-05-11
The renormalization of the topological term in the two-dimensional nonlinear O(3) model is studied by means of the Functional Renormalization Group. By considering the topological charge as a limit of a more general operator, it is shown that a finite multiplicative renormalization occurs in the extreme infrared. In order to compute the effects of the zero modes, a specific representation of the Clifford algebra is developed which allows to reformulate the bosonic problem in terms of Dirac operators and to employ the index theorem.
Ultracold atoms and the Functional Renormalization Group
International Nuclear Information System (INIS)
Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian
2012-01-01
We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.
Effective-field renormalization-group method for Ising systems
Fittipaldi, I. P.; De Albuquerque, D. F.
1992-02-01
A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.
Fermionic functional integrals and the renormalization group
Feldman, Joel; Trubowitz, Eugene
2002-01-01
This book, written by well-known experts in the field, offers a concise summary of one of the latest and most significant developments in the theoretical analysis of quantum field theory. The renormalization group is the name given to a technique for analyzing the qualitative behavior of a class of physical systems by iterating a map on the vector space of interactions for the class. In a typical nonrigorous application of this technique, one assumes, based on one's physical intuition, that only a certain finite dimensional subspace (usually of dimension three or less) is important. The material in this book concerns a technique for justifying this approximation in a broad class of fermionic models used in condensed matter and high energy physics. This volume is based on the Aisenstadt Lectures given by Joel Feldman at the Centre de Recherches Mathematiques (Montreal, Canada). It is suitable for graduate students and research mathematicians interested in mathematical physics. Included are many problems and so...
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on
Renormalization group in modern physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1988-01-01
Renormalization groups used in diverse fields of theoretical physics are considered. The discussion is based upon functional formulation of group transformations. This attitude enables development of a general method by using the notion of functional self-similarity which generalizes the usual self-similarity connected with power similarity laws. From this point of view the authors present a simple derivation of the renorm-group (RG) in QFT liberated from ultra-violet divergences philosophy, discuss the RG approach in other fields of physics and compare different RG's
Renormalized modes in cuprate superconductors
Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.
2018-04-01
The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.
Point transformations and renormalization in the unitary gauge. III. Renormalization effects
International Nuclear Information System (INIS)
Sherry, T.N.
1976-06-01
An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ
Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M
2016-06-14
Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Renormalization group and Mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-02-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)
Renormalization group and mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere
Renormalization group in quantum mechanics
International Nuclear Information System (INIS)
Polony, J.
1996-01-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright copyright 1996 Academic Press, Inc
Superfield perturbation theory and renormalization
International Nuclear Information System (INIS)
Delbourgo, R.
1975-01-01
The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond
On renormalization-invariant masses
International Nuclear Information System (INIS)
Fleming, H.; Furuya, K.
1978-02-01
It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory
The Implementation of the Renormalized Complex MSSM in FeynArts and FormCalc
Fritzsche, T; Heinemeyer, S; Rzehak, H; Schappacher, C
2014-01-01
We describe the implementation of the renormalized complex MSSM (cMSSM) in the diagram generator FeynArts and the calculational tool FormCalc. This extension allows to perform UV-finite one-loop calculations of cMSSM processes almost fully automatically. The Feynman rules for the cMSSM with counterterms are available as a new model file for FeynArts. Also included are default definitions of the renormalization constants; this fixes the renormalization scheme. Beyond that all model parameters are generic, e.g. we do not impose any relations to restrict the number of input parameters. The model file has been tested extensively for several non-trivial decays and scattering reactions. Our renormalization scheme has been shown to give stable results over large parts of the cMSSM parameter space.
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Matrix product density operators: Renormalization fixed points and boundary theories
Energy Technology Data Exchange (ETDEWEB)
Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)
2017-03-15
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).
The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model
International Nuclear Information System (INIS)
Thorleifsson, G.; Damgaard, P.H.
1990-07-01
We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)
$\\delta$-Expansion at Finite Temperature
Ramos, Rudnei O.
1996-01-01
We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.
On truncations of the exact renormalization group
Morris, T R
1994-01-01
We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.
Renormalization group theory of earthquakes
Directory of Open Access Journals (Sweden)
H. Saleur
1996-01-01
Full Text Available We study theoretically the physical origin of the proposed discrete scale invariance of earthquake processes, at the origin of the universal log-periodic corrections to scaling, recently discovered in regional seismic activity (Sornette and Sammis (1995. The discrete scaling symmetries which may be present at smaller scales are shown to be robust on a global scale with respect to disorder. Furthermore, a single complex exponent is sufficient in practice to capture the essential properties of the leading correction to scaling, whose real part may be renormalized by disorder, and thus be specific to the system. We then propose a new mechanism for discrete scale invariance, based on the interplay between dynamics and disorder. The existence of non-linear corrections to the renormalization group flow implies that an earthquake is not an isolated 'critical point', but is accompanied by an embedded set of 'critical points', its foreshocks and any subsequent shocks for which it may be a foreshock.
Renormalization group and critical phenomena
International Nuclear Information System (INIS)
Ji Qing
2004-01-01
The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)
QCD: Renormalization for the practitioner
International Nuclear Information System (INIS)
Pascual, P.; Tarrach, R.
1984-01-01
These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)
Renormalization-scheme-invariant QCD and QED: The method of effective charges
International Nuclear Information System (INIS)
Grunberg, G.
1984-01-01
We review, extend, and give some further applications of a method recently suggested to solve the renormalization-scheme-dependence problem in perturbative field theories. The use of a coupling constant as a universal expansion parameter is abandoned. Instead, to each physical quantity depending on a single scale variable is associated an effective charge, whose corresponding Stueckelberg--Peterman--Gell-Mann--Low function is identified as the proper object on which perturbation theory applies. Integration of the corresponding renormalization-group equations yields renormalization-scheme-invariant results free of any ambiguity related to the definition of the kinematical variable, or that of the scale parameter Λ, even though the theory is not solved to all orders. As a by-product, a renormalization-group improvement of the usual series is achieved. Extension of these methods to operators leads to the introduction of renormalization-group-invariant Green's function and Wilson coefficients, directly related to effective charges. The case of nonzero fermion masses is discussed, both for fixed masses and running masses in mass-independent renormalization schemes. The importance of the scale-invariant mass m is emphasized. Applications are given to deep-inelastic phenomena, where the use of renormalization-group-invariant coefficient functions allows to perform the factorization without having to introduce a factorization scale. The Sudakov form factor of the electron in QED is discussed as an example of an extension of the method to problems involving several momentum scales
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach
International Nuclear Information System (INIS)
Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.
1991-01-01
The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs
Algebraic renormalization of parity-preserving QED3 coupled to scalar matter II: broken case
International Nuclear Information System (INIS)
Cima, O.M. del; Franco, D.H.T.; Helayel-Neto, J.A.; Piguet, O.
1996-11-01
In this letter the algebraic renormalization method, which is independent of any kind of regularization scheme, is presented for the parity-preserving QED 3 coupled to scalar matter in the broken regime, where the scalar assumes a finite vacuum expectation value, =v. The model shows to be stable under radiative corrections and anomaly free. (author)
One-loop renormalization of Resonance Chiral Theory: scalar and pseudoscalar resonances
International Nuclear Information System (INIS)
Rosell, Ignasi; Ruiz-FemenIa, Pedro; Portoles, Jorge
2005-01-01
We consider the Resonance Chiral Theory with one multiplet of scalar and pseudoscalar resonances, up to bilinear couplings in the resonance fields, and evaluate its β-function at one-loop with the use of the background field method. Thus we also provide the full set of operators that renormalize the theory at one loop and render it finite
A complete non-perturbative renormalization prescription for quasi-PDFs
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, Kyriakos [The Cyprus Institute, Nicosia (Cyprus); Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2017-06-15
In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI{sup '} scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator. We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing. We apply the methodology for the renormalization to an ensemble of twisted mass fermions with N{sub f}=2+1+1 dynamical quarks, and a pion mass of around 375 MeV.
Renormalization ambiguities and conformal anomaly in metric-scalar backgrounds
International Nuclear Information System (INIS)
Asorey, M.; Berredo-Peixoto, G. de; Shapiro, I. L.
2006-01-01
We analyze the problem of the existing ambiguities in the conformal anomaly in theories with an external scalar field in curved backgrounds. In particular, we consider the anomaly of a self-interacting massive scalar field theory and of a Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of local nonminimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise
Real space renormalization tecniques for disordered systems
International Nuclear Information System (INIS)
Anda, E.V.
1984-01-01
Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt
Introduction to the functional renormalization group
International Nuclear Information System (INIS)
Kopietz, Peter; Bartosch, Lorenz; Schuetz, Florian
2010-01-01
This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics. (orig.)
Physical renormalization schemes and asymptotic safety in quantum gravity
Falls, Kevin
2017-12-01
The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Sepehri, Mohammadali; Apel, Derek; Liu, Wei
2017-09-01
Predicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio "k" on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.
Hopf-algebraic renormalization of QED in the linear covariant gauge
Energy Technology Data Exchange (ETDEWEB)
Kißler, Henry, E-mail: kissler@physik.hu-berlin.de
2016-09-15
In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.
Noncommutative quantum field theory: attempts on renormalization
International Nuclear Information System (INIS)
Popp, L.
2002-05-01
Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be
Renormalization methods in solid state physics
Energy Technology Data Exchange (ETDEWEB)
Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)
1976-01-01
Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).
Renormalization Group and Phase Transitions in Spin, Gauge, and QCD Like Theories
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuzhi [Univ. of Iowa, Iowa City, IA (United States)
2013-08-01
In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG).
A simple method for one-loop renormalization in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@uis.no [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2013-08-01
We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.
Renormalization and scaling behavior of non-Abelian gauge fields in curved spacetime
International Nuclear Information System (INIS)
Leen, T.K.
1983-01-01
In this article we discuss the one loop renormalization and scaling behavior of non-Abelian gauge field theories in a general curved spacetime. A generating functional is constructed which forms the basis for both the perturbation expansion and the Ward identifies. Local momentum space representations for the vector and ghost particles are developed and used to extract the divergent parts of Feynman integrals. The one loop diagram for the ghost propagator and the vector-ghost vertex are shown to have no divergences not present in Minkowski space. The Ward identities insure that this is true for the vector propagator as well. It is shown that the above renormalizations render the three- and four-vector vertices finite. Finally, a renormalization group equation valid in curved spacetimes is derived. Its solution is given and the theory is shown to be asymptotically free as in Minkowski space
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Class renormalization: islands around islands
International Nuclear Information System (INIS)
Meiss, J.D.
1986-01-01
An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)
Golden mean Siegel disk universality and renormalization
Gaidashev, Denis; Yampolsky, Michael
2016-01-01
We provide a computer-assisted proof of one of the central open questions in one-dimensional renormalization theory -- universality of the golden-mean Siegel disks. We further show that for every function in the stable manifold of the golden-mean renormalization fixed point the boundary of the Siegel disk is a quasicircle which coincides with the closure of the critical orbit, and that the dynamics on the boundary of the Siegel disk is rigid. Furthermore, we extend the renormalization from on...
Critical phenomena and renormalization group transformations
International Nuclear Information System (INIS)
Castellani, C.; Castro, C. di
1980-01-01
Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)
Sigma models and renormalization of string loops
International Nuclear Information System (INIS)
Tseytlin, A.A.
1989-05-01
An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs
The renormalization group and lattice QCD
International Nuclear Information System (INIS)
Gupta, R.
1989-01-01
This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory
Distribution of the minimum path on percolation clusters: A renormalization group calculation
International Nuclear Information System (INIS)
Hipsh, Lior.
1993-06-01
This thesis uses the renormalization group for the research of the chemical distance or the minimal path on percolation clusters on a 2 dimensional square lattice. Our aims are to calculate analytically (iterative calculation) the fractal dimension of the minimal path. d min. , and the distributions of the minimum paths, l min for different lattice sizes and for different starting densities (including the threshold value p c ). For the distributions. We seek for an analytic form which describes them. The probability to get a minimum path for each linear size L is calculated by iterating the distribution of l min for the basic cell of size 2*2 to the next scale sizes, using the H cell renormalization group. For the threshold value of p and for values near to p c . We confirm a scaling in the form: P(l,L) =f1/l(l/(L d min ). L - the linear size, l - the minimum path. The distribution can be also represented in the Fourier space, so we will try to solve the renormalization group equations in this space. A numerical fitting is produced and compared to existing numerical results. In order to improve the agreement between the renormalization group and the numerical simulations, we also present attempts to generalize the renormalization group by adding more parameters, e.g. correlations between bonds in different directions or finite densities for occupation of bonds and sites. (author) 17 refs
Renormalization Analysis of a Composite Ultrasonic Transducer with a Fractal Architecture
Algehyne, Ebrahem A.; Mulholland, Anthony J.
To ensure the safe operation of many safety critical structures such as nuclear plants, aircraft and oil pipelines, non-destructive imaging is employed using piezoelectric ultrasonic transducers. These sensors typically operate at a single frequency due to the restrictions imposed on their resonant behavior by the use of a single length scale in the design. To allow these transducers to transmit and receive more complex signals it would seem logical to use a range of length scales in the design so that a wide range of resonating frequencies will result. In this paper, we derive a mathematical model to predict the dynamics of an ultrasound transducer that achieves this range of length scales by adopting a fractal architecture. In fact, the device is modeled as a graph where the nodes represent segments of the piezoelectric and polymer materials. The electrical and mechanical fields that are contained within this graph are then expressed in terms of a finite element basis. The structure of the resulting discretized equations yields to a renormalization methodology which is used to derive expressions for the non-dimensionalized electrical impedance and the transmission and reception sensitivities. A comparison with a standard design shows some benefits of these fractal designs.
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Renormalized thermodynamic entropy of black holes in higher dimensions
International Nuclear Information System (INIS)
Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.
1997-01-01
We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society
Complex-mass shell renormalization of the higher-derivative electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Turcati, Rodrigo [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil); Neves, Mario Junior [Universidade Federal Rural do Rio de Janeiro, Departamento de Fisica, Rio de Janeiro (Brazil)
2016-08-15
We consider a higher-derivative extension of QED modified by the addition of a gauge-invariant dimension-6 kinetic operator in the U(1) gauge sector. The Feynman diagrams at one-loop level are then computed. The modification in the spin-1 sector leads the electron self-energy and vertex corrections diagrams finite in the ultraviolet regime. Indeed, no regularization prescription is used to calculate these diagrams because the modified propagator always occurs coupled to conserved currents. Moreover, besides the usual massless pole in the spin-1 sector, there is the emergence of a massive one, which becomes complex when computing the radiative corrections at one-loop order. This imaginary part defines the finite decay width of the massive mode. To check consistency, we also derive the decay length using the electron-positron elastic scattering and show that both results are equivalent. Because the presence of this unstable mode, the standard renormalization procedures cannot be used and is necessary adopt an appropriate framework to perform the perturbative renormalization. For this purpose, we apply the complex-mass shell scheme (CMS) to renormalize the aforementioned model. As an application of the formalism developed, we estimate a quantum bound on the massive parameter using the measurement of the electron anomalous magnetic moment and compute the Uehling potential. At the end, the renormalization group is analyzed. (orig.)
Higher derivatives and renormalization in quantum cosmology
International Nuclear Information System (INIS)
Mazzitelli, F.D.
1991-10-01
In the framework of the canonical quantization of general relativity, quantum field theory on a fixed background formally arises in an expansion in powers of the Planck length. In order to renormalize the theory, quadratic terms in the curvature must be included in the gravitational action from the beginning. These terms contain higher derivatives which change the Hamiltonian structure of the theory completely, making the relation between the renormalized-theory and the original one not clear. We show that it is possible to avoid this problem. We replace the higher derivative theory by a second order one. The classical solutions of the latter are also solutions of the former. We quantize the theory, renormalize the infinities and show that there is a smooth limit between the classical and the renormalized theories. We work in a Robertson Walker minisuperspace with a quantum scalar field. (author). 32 refs
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
New renormalization group approach to multiscale problems
Energy Technology Data Exchange (ETDEWEB)
Einhorn, M B; Jones, D R.T.
1984-02-27
A new renormalization group is presented which exploits invariance with respect to more than one scale. The method is illustrated by a simple model, and future applications to fields such as critical phenomena and supersymmetry are speculated upon.
Real space renormalization techniques for disordered systems
International Nuclear Information System (INIS)
Anda, E.V.
1985-01-01
Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt
Effective AdS/renormalized CFT
Fan, JiJi
2011-01-01
For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a dou...
Renormalization group flow of scalar models in gravity
International Nuclear Information System (INIS)
Guarnieri, Filippo
2014-01-01
In this Ph.D. thesis we study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Horava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson's renormalization group. In particular we quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω=0 in the local potential approximation. Finally, we investigate, using a perturbative RG scheme, the asymptotic freedom of the Horava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton's constant to a marginal coupling and explicitly preserves unitarity. In particular we evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
International Nuclear Information System (INIS)
Monthus, Cécile
2015-01-01
For the quantum Ising chain, the self-dual block renormalization procedure of Fernandez-Pacheco (1979 Phys. Rev. D 19 3173) is known to reproduce exactly the location of the zero-temperature critical point and the correlation length exponent ν = 1. Recently, Miyazaki and Nishimori (2013 Phys. Rev. E 87 032154) have proposed to study the disordered quantum Ising model in dimensions d > 1 by applying the Fernandez-Pacheco procedure successively in each direction. To avoid the inequivalence of directions of their approach, we propose here an alternative procedure where the d directions are treated on the same footing. For the pure model, this leads to the correlation length exponents ν ≃ 0.625 in d = 2 (to be compared with the 3D classical Ising model exponent ν ≃ 0.63) and ν ≃ 0.5018 (to be compared with the 4D classical Ising model mean-field exponent ν = 1/2). For the disordered model in dimension d = 2, either ferromagnetic or spin-glass, the numerical application of the renormalization rules to samples of linear size L = 4096 yields that the transition is governed by an Infinite Disorder Fixed Point, with the activated exponent ψ ≃ 0.65, the typical correlation exponent ν typ ≃ 0.44 and the finite-size correlation exponent ν FS ≃ 1.25. We discuss the similarities and differences with the Strong Disorder Renormalization results. (paper)
Phase structure of NJL model with weak renormalization group
Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi
2018-06-01
We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.
One-loop Renormalization of Resonance Chiral Theory with Scalar and Pseudoscalar Resonances
International Nuclear Information System (INIS)
Rosell, I.
2007-01-01
The divergent part of the generating functional of the Resonance Chiral Theory is evaluated up to one loop when one multiplet of scalar and pseudoscalar resonances are included and interaction terms which couple up to two resonances are considered. Hence we obtain the renormalization of the couplings of the initial Lagrangian and, moreover, the complete list of operators that make this theory finite, at this order
A confining and asymptotically free solution for the renormalization group invariant charge
International Nuclear Information System (INIS)
Kellett, B.H.
1978-01-01
The central role of the invariant charge in applications of the renormalization group to quantum chromodynamics is discussed. The general structure of the invariant charge is examined, and it is shown to be a non-singular function of q 2 for all finite non-zero q 2 . At q 2 = 0 and q 2 = +or- infinity shows that QCD is asymptotically free. Some applications of these general results are discussed
Renormalization of the three-boson system with short-range interactions revisited
International Nuclear Information System (INIS)
Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang
2017-01-01
We consider renormalization of the three-body scattering problem in low-energy effective field theory of self-interacting scalar particles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation. The obtained leading-order equation is perturbatively renormalizable and non-perturbatively finite and does not require a three-body counter term in contrast to its non-relativistic approximation. (orig.)
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2012-01-01
The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
Perturbatively improving RI-MOM renormalization constants
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M.; Costa, M.; Panagopoulos, H. [Cyprus Univ. (Cyprus). Dept. of Physics; Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schhierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-03-15
The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.
Renormalization group theory of critical phenomena
International Nuclear Information System (INIS)
Menon, S.V.G.
1995-01-01
Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)
Renormalization group approach in the turbulence theory
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1983-01-01
In the framework of the renormalization groUp approach in the turbulence theory sUggested in another paper, the problem of renormalization and evaluation of critical dimensions of composite operators is discussed. Renormalization of a system of operators of canonical dimension equal to 4, including the operator F=phiΔphi (where phi is the velocity field), is considered. It is shown that the critical dimension Δsub(F)=0. The appendice includes the brief proofs of two theorems: 1) the theorem on the equivalence between the arbitrary stochastic problem and quantum field theory; 2) the theorem which determines the reduction of Green functions of the stochastic problem to the hypersurface of coinciding times
Renormalization: infinity in today microscopic physics
International Nuclear Information System (INIS)
Zinn-Justin, J.
2000-01-01
The expectations put in quantum electrodynamics were deceived when first calculations showed that divergencies, due to the pinpoint aspect of the electron, continued to exist. Later, as a consequence of new experimental data and theoretical progress, an empirical method called renormalization was proposed to allow the evaluation of expressions involving infinite terms. The development of this method opened the way to the theory of re-normalizing fields and gave so successful results that it was applied to all fundamental interactions except gravity. This theory allowed the standard model in weak, electromagnetic and strong interactions to be confronted successfully with experimental data during more than 25 years. This article presents the progressive evolution of ideas in the concept of renormalization. (A.C.)
Renormalization transformation of periodic and aperiodic lattices
International Nuclear Information System (INIS)
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-01-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process
Exact renormalization group equations: an introductory review
Bagnuls, C.; Bervillier, C.
2001-07-01
We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.
Renormalization using the background-field method
International Nuclear Information System (INIS)
Ichinose, S.; Omote, M.
1982-01-01
Renormalization using the background-field method is examined in detail. The subtraction mechanism of subdivergences is described with reference to multi-loop diagrams and one- and two-loop counter-term formulae are explicitly given. The original one-loop counter-term formula of 't Hooft is thereby improved. The present method of renormalization is far easier to manage than the usual one owing to the fact only gauge-invariant quantities are to be considered when worked in an appropriate gauge. Gravity and Yang-Mills theories are studied as examples. (orig.)
Hypercuboidal renormalization in spin foam quantum gravity
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
Renormalization of a distorted gauge: invariant theory
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1976-02-01
A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities
Field renormalization in photonic crystal waveguides
DEFF Research Database (Denmark)
Colman, Pierre
2015-01-01
A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... orders of magnitude larger than in bulk material. We show that it takes into account in a simple and efficient way the specificity of the nonlinearity in nanostructures that is determined by geometrical parameters like the effective mode area and the group index. The renormalization of the nonlinear...
DeWitt-Schwinger renormalization and vacuum polarization in d dimensions
International Nuclear Information System (INIS)
Thompson, R. T.; Lemos, Jose P. S.
2009-01-01
Calculation of the vacuum polarization, 2 (x)>, and expectation value of the stress tensor, μν (x)>, has seen a recent resurgence, notably for black hole spacetimes. To date, most calculations of this type have been done only in four dimensions. Extending these calculations to d dimensions includes d-dimensional renormalization. Typically, the renormalizing terms are found from Christensen's covariant point splitting method for the DeWitt-Schwinger expansion. However, some manipulation is required to put the correct terms into a form that is compatible with problems of the vacuum polarization type. Here, after a review of the current state of affairs for 2 (x)> and μν (x)> calculations and a thorough introduction to the method of calculating 2 (x)>, a compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional spacetimes is derived. This formula should be useful for calculations of 2 (x)> and μν (x)> in even dimensions, and the renormalization terms are shown explicitly for four and six dimensions. Furthermore, use of the finite terms of the DeWitt-Schwinger expansion as an approximation to 2 (x)> for certain spacetimes is discussed, with application to four and five dimensions.
Excited state TBA and renormalized TCSA in the scaling Potts model
Lencsés, M.; Takács, G.
2014-09-01
We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.
Functional renormalization group approach to interacting three-dimensional Weyl semimetals
Sharma, Anand; Scammell, Arthur; Krieg, Jan; Kopietz, Peter
2018-03-01
We investigate the effect of long-range Coulomb interaction on the quasiparticle properties and the dielectric function of clean three-dimensional Weyl semimetals at zero temperature using a functional renormalization group (FRG) approach. The Coulomb interaction is represented via a bosonic Hubbard-Stratonovich field which couples to the fermionic density. We derive truncated FRG flow equations for the fermionic and bosonic self-energies and for the three-legged vertices with two fermionic and one bosonic external legs. We consider two different cutoff schemes—cutoff in fermionic or bosonic propagators—in order to calculate the renormalized quasiparticle velocity and the dielectric function for an arbitrary number of Weyl nodes and the interaction strength. If we approximate the dielectric function by its static limit, our results for the velocity and the dielectric function are in good agreement with that of A. A. Abrikosov and S. D. Beneslavskiĭ [Sov. Phys. JETP 32, 699 (1971)] exhibiting slowly varying logarithmic momentum dependence for small momenta. We extend their result for an arbitrary number of Weyl nodes and finite frequency by evaluating the renormalized velocity in the presence of dynamic screening and calculate the wave function renormalization.
Directory of Open Access Journals (Sweden)
Durães F.O.
2010-04-01
Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral eﬀective ﬁeld theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a ﬁxed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoﬀ through the SRG transformation.
Optimization of renormalization group transformations in lattice gauge theory
International Nuclear Information System (INIS)
Lang, C.B.; Salmhofer, M.
1988-01-01
We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)
Renormalization group in statistical physics - momentum and real spaces
International Nuclear Information System (INIS)
Yukalov, V.I.
1988-01-01
Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs
Perturbative renormalization of QED via flow equations
International Nuclear Information System (INIS)
Keller, G.; Kopper, C.
1991-01-01
We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)
Perturbative renormalization of QED via flow equations
Energy Technology Data Exchange (ETDEWEB)
Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))
1991-12-19
We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Renormalization of Magnetic Excitations in Praseodymium
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1975-01-01
The magnetic exciton renormalization and soft-mode behaviour as the temperature approaches zero of the singlet-doublet magnet (dhcp)pr are accounted for by a selfconsistent rpa theory with no adjustable parameters. The crystal-field splitting between the ground state and the doublet is d=3.74 mev...
Mass renormalization in sine-Gordon model
International Nuclear Information System (INIS)
Xu Bowei; Zhang Yumei
1991-09-01
With a general gaussian wave functional, we investigate the mass renormalization in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to a system of massless free bosons which possesses conformal symmetry. (author). 8 refs, 1 fig
Spectral functions and transport coefficients from the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Tripolt, Ralf-Arno
2015-06-03
In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
International Nuclear Information System (INIS)
Lenaghan, J.T.; Rischke, D.H.
2000-01-01
The temperature dependence of the sigma meson and pion masses is studied in the framework of the O(N ) model. The Cornwall-Jackiw-Tomboulis formalism is applied to derive gap equations for the masses in the Hartree and large-N approximations. Renormalization of the gap equations is carried out within the cut-off and counter-term renormalization schemes. A consistent renormalization of the gap equations within the cut-off scheme is found to be possible only in the large-N approximation and for a finite value of the cut-off. On the other hand, the counter-term scheme allows for a consistent renormalization of both the large-N and Hartree approximations. In these approximations, the meson masses at a given nonzero temperature depend in general on the choice of the cut-off or renormalization scale. As an application, we also discuss the in-medium on-shell decay widths for sigma mesons and pions at rest. (author)
Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.
2017-07-01
The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.
Probing renormalization group flows using entanglement entropy
International Nuclear Information System (INIS)
Liu, Hong; Mezei, Márk
2014-01-01
In this paper we continue the study of renormalized entanglement entropy introduced in http://dx.doi.org/10.1007/JHEP04(2013)162. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen
Poissonian renormalizations, exponentials, and power laws
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Poissonian renormalizations, exponentials, and power laws.
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Renormalization group flow of the Higgs potential.
Gies, Holger; Sondenheimer, René
2018-03-06
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Renormalization group treatment of nonrenormalizable interactions
International Nuclear Information System (INIS)
Kazakov, D I; Vartanov, G S
2006-01-01
The structure of the UV divergences in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergences (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. An explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the naive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms
Renormalization group evolution of Dirac neutrino masses
International Nuclear Information System (INIS)
Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas
2005-01-01
There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments
Temperature dependent quasiparticle renormalization in nickel metal
Energy Technology Data Exchange (ETDEWEB)
Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II
2009-07-01
One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.
Renormalization Methods - A Guide For Beginners
International Nuclear Information System (INIS)
Cardy, J
2004-01-01
The stated goal of this book is to fill a perceived gap between undergraduate texts on critical phenomena and advanced texts on quantum field theory, in the general area of renormalization methods. It is debatable whether this gap really exists nowadays, as a number of books have appeared in which it is made clear that field-theoretic renormalization group methods are not the preserve of particle theory, and indeed are far more easily appreciated in the contexts of statistical and condensed matter physics. Nevertheless, this volume does have a fresh aspect to it, perhaps because of the author's background in fluid dynamics and turbulence theory, rather than through the more traditional migration from particle physics. The book begins at a very elementary level, in an effort to motivate the use of renormalization methods. This is a worthy effort, but it is likely that most of this section will be thought too elementary by readers wanting to get their teeth into the subject, while those for whom this section is apparently written are likely to find the later chapters rather challenging. The author's particular approach then leads him to emphasise the role of renormalized perturbation theory (rather than the renormalization group) in a number of problems, including non-linear systems and turbulence. Some of these ideas will be novel and perhaps even surprising to traditionally trained field theorists. Most of the rest of the book is on far more familiar territory: the momentum-space renormalization group, epsilon-expansion, and so on. This is standard stuff, and, like many other textbooks, it takes a considerable chunk of the book to explain all the formalism. As a result, there is only space to discuss the standard φ 4 field theory as applied to the Ising model (even the N-vector model is not covered) so that no impression is conveyed of the power and extent of all the applications and generalizations of the techniques. It is regrettable that so much space is spent
Renormalization of gauge theories without cohomology
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
Covariant Derivatives and the Renormalization Group Equation
Dolan, Brian P.
The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.
Renormalized powers of quantum white noise
International Nuclear Information System (INIS)
Accardi, L.; Boukas, A.
2009-01-01
Giving meaning to the powers of the creation and annihilation densities (quantum white noise) is an old and important problem in quantum field theory. In this paper we present an account of some new ideas that have recently emerged in the attempt to solve this problem. We emphasize the connection between the Lie algebra of the renormalized higher powers of quantum white noise (RHPWN), which can be interpreted as a suitably deformed (due to renormalization) current algebra over the 1-mode full oscillator algebra, and the current algebra over the centerless Virasoro (or Witt)-Zamolodchikov-ω ∞ Lie algebras of conformal field theory. Through a suitable definition of the action on the vacuum vector we describe how to obtain a Fock representation of all these algebras. We prove that the restriction of the vacuum to the abelian subalgebra generated by the field operators gives an infinitely divisible process whose marginal distribution is the beta (or continuous binomial). (authors)
Simple renormalization group method for calculating geometrical and other equations of states
International Nuclear Information System (INIS)
Tsallis, C.; Schwaccheim, G.; Coniglio, A.
1984-01-01
A real space renormalization group procedure to calculate geometrical and thermal equations of states for the entire range of values of the external parameters is described. Its use is as simple as a Mean Field Approximation; however, it yields non trivial results and can be systematically improved. Such a procedure is illustrated by calculating, for all bond concentrations, the site mass density for the complete and the backbone percolating infinite clusters in square lattice: the results are quite satisfactory. (Author) [pt
A renormalization group theory of cultural evolution
Fath, Gabor; Sarvary, Miklos
2003-01-01
We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequa...
The Bogolyubov renormalization group. Second English printing
International Nuclear Information System (INIS)
Shirkov, D.V.
1996-01-01
We begin with personal notes describing the atmosphere of 'Bogolyubov renormalization group' birth. Then we expose the history of RG discovery in the QFT and of the RG method devising in the mid-fifties. The third part is devoted to proliferation of RG ideas into diverse parts of theoretical physics. We conclude with discussing the perspective of RG method further development and its application in mathematical physics. 58 refs
Zero Point Energy of Renormalized Wilson Loops
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...
Generalized Hubbard Hamiltonian: renormalization group approach
International Nuclear Information System (INIS)
Cannas, S.A.; Tamarit, F.A.; Tsallis, C.
1991-01-01
We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs
Quarkonia from charmonium and renormalization group equations
International Nuclear Information System (INIS)
Ditsas, P.; McDougall, N.A.; Moorhouse, R.G.
1978-01-01
A prediction of the upsilon and strangeonium spectra is made from the charmonium spectrum by solving the Salpeter equation using an identical potential to that used in charmonium. Effective quark masses and coupling parameters αsub(s) are functions of the inter-quark distance according to the renormalization group equations. The use of the Fermi-Breit Hamiltonian for obtaining the charmonium hyperfine splitting is criticized. (Auth.)
Renormalization group equations with multiple coupling constants
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1975-01-01
The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given
Chaotic renormalization group approach to disordered systems
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Continentino, M.A.; Makler, S.S.; Anda, E.V.
1984-01-01
We study the eletronic properties of the disordered linear chain using a technique previously developed by some of the authors for an ordered chain. The equations of motion for the one electron Green function are obtained and the configuration average is done according to the GK scheme. The dynamical problem is transformed, using a renormalization group procedure, into a bidimensional map. The properties of this map are investigated and related to the localization properties of the eletronic system. (Author) [pt
A shape dynamical approach to holographic renormalization
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)
Introduction to the nonequilibrium functional renormalization group
International Nuclear Information System (INIS)
Berges, J.; Mesterházy, D.
2012-01-01
In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.
Exact renormalization group for gauge theories
International Nuclear Information System (INIS)
Balaban, T.; Imbrie, J.; Jaffe, A.
1984-01-01
Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
The Physical Renormalization of Quantum Field Theories
International Nuclear Information System (INIS)
Binger, Michael William.; Stanford U., Phys. Dept.; SLAC
2007-01-01
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, α(k 1 2 , k 2 2 , k 3 2 ), depends on three momentum scales and gives rise to an effective scale Q eff 2 (k 1 2 , k 2 2 , k 3 2 ) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi-scale analytic renormalization scheme based on gauge-invariant Green
Bischoff, Jan-Moritz; Jeckelmann, Eric
2017-11-01
We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.
Functional renormalization group study of fluctuation effects in fermionic superfluids
Energy Technology Data Exchange (ETDEWEB)
Eberlein, Andreas
2013-03-22
This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature
Renormalization and radiative corrections to masses in a general Yukawa model
Fox, M.; Grimus, W.; Löschner, M.
2018-01-01
We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.
The adjoint string at finite temperature
International Nuclear Information System (INIS)
Damgaard, P.H.
1986-10-01
Expectations for the behavior of the adjoint string at finite temperature are presented. In the Migdal-Kadanoff approximation a real-space renormalization group study of the effective Polyakov like action predicts a deconfinement-like crossover for adjoint sources at a temperature slightly below the deconfinement temperature of fundamental sources. This prediction is compared with a Monte Carlo simulation of SU(2) lattice gauge theory on an 8 3 x2 lattice. (orig.)
Renormalization of g-boson effects under weak coupling condition
International Nuclear Information System (INIS)
Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping
1998-01-01
An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed
Renormalization group and fixed points in quantum field theory
International Nuclear Information System (INIS)
Hollowood, Timothy J.
2013-01-01
This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.
Renormalization in general theories with inter-generation mixing
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Sirlin, Alberto
2011-11-01
We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)
Zeta Functions, Renormalization Group Equations, and the Effective Action
International Nuclear Information System (INIS)
Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M.
1998-01-01
We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society
On the renormalization group equations of quantum electrodynamics
International Nuclear Information System (INIS)
Hirayama, Minoru
1980-01-01
The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)
The Background-Field Method and Noninvariant Renormalization
International Nuclear Information System (INIS)
Avdeev, L.V.; Kazakov, D.I.; Kalmykov, M.Yu.
1994-01-01
We investigate the consistency of the background-field formalism when applying various regularizations and renormalization schemes. By an example of a two-dimensional σ model it is demonstrated that the background-field method gives incorrect results when the regularization (and/or renormalization) is noninvariant. In particular, it is found that the cut-off regularization and the differential renormalization belong to this class and are incompatible with the background-field method in theories with nonlinear symmetries. 17 refs
Renormalization in the complete Mellin representation of Feynman amplitudes
International Nuclear Information System (INIS)
Calan, C. de; David, F.; Rivasseau, V.
1981-01-01
The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)
Charge transport properties of a twisted DNA molecule: A renormalization approach
Energy Technology Data Exchange (ETDEWEB)
Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)
2016-10-20
In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.
Renormalization techniques applied to the study of density of states in disordered systems
International Nuclear Information System (INIS)
Ramirez Ibanez, J.
1985-01-01
A general scheme for real space renormalization of formal scattering theory is presented and applied to the calculation of density of states (DOS) in some finite width systems. This technique is extended in a self-consistent way, to the treatment of disordered and partially ordered chains. Numerical results of moments and DOS are presented in comparison with previous calculations. In addition, a self-consistent theory for the magnetic order problem in a Hubbard chain is derived and a parametric transition is observed. Properties of localization of the electronic states in disordered chains are studied through various decimation averaging techniques and using numerical simulations. (author) [pt
Golden mean renormalization for a generalized Harper equation: The Ketoja-Satija orchid
International Nuclear Information System (INIS)
Mestel, B.D.; Osbaldestin, A.H.
2004-01-01
We provide a rigorous analysis of the fluctuations of localized eigenstates in a generalized Harper equation with golden mean flux and with next-nearest-neighbor interactions. For next-nearest-neighbor interaction above a critical threshold, these self-similar fluctuations are characterized by orbits of a renormalization operator on a universal strange attractor, whose projection was dubbed the ''orchid'' by Ketoja and Satija [Phys. Rev. Lett. 75, 2762 (1995)]. We show that the attractor is given essentially by an embedding of a subshift of finite type, and give a description of its periodic orbits
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
The two-loop renormalization of general quantum field theories
International Nuclear Information System (INIS)
Damme, R.M.J. van.
1984-01-01
This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
Directory of Open Access Journals (Sweden)
Huan-Yu Bi
2015-09-01
Full Text Available The Principle of Maximum Conformality (PMC eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I; the other, more recent, method (PMC-II uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e− and the Higgs partial width Γ(H→bb¯. Both methods lead to the same resummed (‘conformal’ series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi}-terms in the pQCD expansion are taken into account. We also show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.
Temperature dependent quasiparticle renormalization in nickel and iron
Energy Technology Data Exchange (ETDEWEB)
Ovsyannikov, Ruslan; Thirupathaiah, Setti; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann [Helmholtz Zentrum Berlin, BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)
2010-07-01
One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed' with an excitation cloud resulting in quasiparticles. Such a quasiparticle will carry the same spin and charge as the original particle, but will have a renormalized mass and a finite lifetime. The properties of many-body interactions are described with a complex function called self energy which is directly accessible to modern high-resolution angle resolved photoemission spectroscopy (ARPES). Ferromagnetic metals like nickel or iron offers the exciting possibility to study the spin dependence of quasiparticle coupling to bosonic modes. Utilizing the exchange split band structure as an intrinsic 'spin detector' it is possible to distinguish between electron-phonon and electron-magnon coupling phenomena. In this contribution we will report a systematic investigation of the k- and temperature dependence of the electron-boson coupling in nickel and iron metals as well as discuss origin of earlier observed anomalous lifetime broadening of majority spin states of nickel at Fermi level.
Renormalization group flows and continual Lie algebras
International Nuclear Information System (INIS)
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)
The evolution of Bogolyubov's renormalization group
International Nuclear Information System (INIS)
Shirkov, D.V.
2000-01-01
We review the evolution of the concept of Renormalization Group (RG). This notion, as was first introduced in quantum field theory (QFT) in the mid-fifties in N.N.Bogolyubov's formulation, is based upon a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of a boundary condition) specifying some particular solution. To illustrate this approach's effectiveness, we end with its application to the analysis of the laser beam self-focusing in a non-linear medium
Indefinite metric fields and the renormalization group
International Nuclear Information System (INIS)
Sherry, T.N.
1976-11-01
The renormalization group equations are derived for the Green functions of an indefinite metric field theory. In these equations one retains the mass dependence of the coefficient functions, since in the indefinite metric theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and infrared limits is analyzed. The analysis is illustrated by means of a simple model incorporating indefinite metric fields. The model scales at first order, and at this order also the effective coupling constant has both ultra-violet and infra-red fixed points, the former being the bare coupling constant
Zero point energy of renormalized Wilson loops
International Nuclear Information System (INIS)
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.
Perturbative and nonperturbative renormalization in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)
2010-03-15
We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)
Renormalized plasma turbulence theory: A quasiparticle picture
International Nuclear Information System (INIS)
DuBois, D.F.
1981-01-01
A general renormalized statistical theory of Vlasov turbulence is given which proceeds directly from the Vlasov equation and does not assume prior knowledge of sophisticated field-theoretic techniques. Quasiparticles are the linear excitations of the turbulent system away from its instantaneous mean (ensemble-averaged) state or background; the properties of this background state ''dress'' or renormalize the quasiparticle responses. It is shown that all two-point responses (including the dielectric) and all two-point correlation functions can be completely described by the mean distribution function and three fundamental quantities. Two of these are the quasiparticle responses: the propagator and the potential source: which measure, respectively, the separate responses of the mean distribution function and the mean electrostatic potential to functional changes in an external phase-space source added to Vlasov's equation. The third quantity is the two-point correlation function of the incoherent part of the phase-space density which acts as a self-consistent source of quasiparticle and potential fluctuations. This theory explicitly takes into account the self-consistent nature of the electrostatic-field fluctuations which introduces new effects not found in the usual ''test-particle'' theories. Explicit equations for the fundamental quantities are derived in the direct interaction approximation. Special attention is paid to the two-point correlations and the relation to theories of phase-space granulation
Optimal renormalization scales and commensurate scale relations
International Nuclear Information System (INIS)
Brodsky, S.J.; Lu, H.J.
1996-01-01
Commensurate scale relations relate observables to observables and thus are independent of theoretical conventions, such as the choice of intermediate renormalization scheme. The physical quantities are related at commensurate scales which satisfy a transitivity rule which ensures that predictions are independent of the choice of an intermediate renormalization scheme. QCD can thus be tested in a new and precise way by checking that the observables track both in their relative normalization and in their commensurate scale dependence. For example, the radiative corrections to the Bjorken sum rule at a given momentum transfer Q can be predicted from measurements of the e+e - annihilation cross section at a corresponding commensurate energy scale √s ∝ Q, thus generalizing Crewther's relation to non-conformal QCD. The coefficients that appear in this perturbative expansion take the form of a simple geometric series and thus have no renormalon divergent behavior. The authors also discuss scale-fixed relations between the threshold corrections to the heavy quark production cross section in e+e - annihilation and the heavy quark coupling α V which is measurable in lattice gauge theory
The large-Nc renormalization group
International Nuclear Information System (INIS)
Dorey, N.
1995-01-01
In this talk, we review how effective theories of mesons and baryons become exactly soluble in the large-N c , limit. We start with a generic hadron Lagrangian constrained only by certain well-known large-N c , selection rules. The bare vertices of the theory are dressed by an infinite class of UV divergent Feynman diagrams at leading order in 1/N c . We show how all these leading-order dia, grams can be summed exactly using semiclassical techniques. The saddle-point field configuration is reminiscent of the chiral bag: hedgehog pions outside a sphere of radius Λ -1 (Λ being the UV cutoff of the effective theory) matched onto nucleon degrees of freedom for r ≤ Λ -1 . The effect of this pion cloud is to renormalize the bare nucleon mass, nucleon-Δ hyperfine mass splitting, and Yukawa couplings of the theory. The corresponding large-N c , renormalization group equations for these parameters are presented, and solved explicitly in a series of simple models. We explain under what conditions the Skyrmion emerges as a UV fixed-point of the RG flow as Λ → ∞
Some applications of renormalized RPA in bosonic field theories
International Nuclear Information System (INIS)
Hansen, H.; Chanfray, G.
2003-01-01
We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Φ 4 theory and discuss its phase structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA. (authors)
International Nuclear Information System (INIS)
Luo, Da-Wei; Xu, Jing-Bo
2015-01-01
We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
Directory of Open Access Journals (Sweden)
Nikos Irges
2017-11-01
Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.
On renormalization group flow in matrix model
International Nuclear Information System (INIS)
Gao, H.B.
1992-10-01
The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs
A renormalization group theory of cultural evolution
Fáth, Gábor; Sarvary, Miklos
2005-03-01
We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision-making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequate order parameter. As the importance of social interactions increases or agents become more intelligent, we observe and quantify a series of dynamic phase transitions by which cultural coherence advances in the society. A similar phase transition may explain the so-called “cultural explosion’’ in human evolution some 50,000 years ago.
Renormalization group approach to soft gluon resummation
International Nuclear Information System (INIS)
Forte, Stefano; Ridolfi, Giovanni
2003-01-01
We present a simple proof of the all-order exponentiation of soft logarithmic corrections to hard processes in perturbative QCD. Our argument is based on proving that all large logs in the soft limit can be expressed in terms of a single dimensionful variable, and then using the renormalization group to resum them. Beyond the next-to-leading log level, our result is somewhat less predictive than previous all-order resummation formulae, but it does not rely on non-standard factorization, and it is thus possibly more general. We use our result to settle issues of convergence of the resummed series, we discuss scheme dependence at the resummed level, and we provide explicit resummed expressions in various factorization schemes
Nonlinear relativistic plasma resonance: Renormalization group approach
Energy Technology Data Exchange (ETDEWEB)
Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-02-15
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.
The Renormalization Group in Nuclear Physics
International Nuclear Information System (INIS)
Furnstahl, R.J.
2012-01-01
Modern techniques of the renormalization group (RG) combined with effective field theory (EFT) methods are revolutionizing nuclear many-body physics. In these lectures we will explore the motivation for RG in low-energy nuclear systems and its implementation in systems ranging from the deuteron to neutron stars, both formally and in practice. Flow equation approaches applied to Hamiltonians both in free space and in the medium will be emphasized. This is a conceptually simple technique to transform interactions to more perturbative and universal forms. An unavoidable complication for nuclear systems from both the EFT and flow equation perspective is the need to treat many-body forces and operators, so we will consider these aspects in some detail. We'll finish with a survey of current developments and open problems in nuclear RG.
Functional renormalization and ultracold quantum gases
International Nuclear Information System (INIS)
Floerchinger, Stefan
2010-01-01
Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)
Semihard processes with BLM renormalization scale setting
Energy Technology Data Exchange (ETDEWEB)
Caporale, Francesco [Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15 and U. Autónoma de Madrid, E-28049 Madrid (Spain); Ivanov, Dmitry Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Murdaca, Beatrice; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)
2015-04-10
We apply the BLM scale setting procedure directly to amplitudes (cross sections) of several semihard processes. It is shown that, due to the presence of β{sub 0}-terms in the NLA results for the impact factors, the obtained optimal renormalization scale is not universal, but depends both on the energy and on the process in question. We illustrate this general conclusion considering the following semihard processes: (i) inclusive production of two forward high-p{sub T} jets separated by large interval in rapidity (Mueller-Navelet jets); (ii) high-energy behavior of the total cross section for highly virtual photons; (iii) forward amplitude of the production of two light vector mesons in the collision of two virtual photons.
Large neutrino mixing from renormalization group evolution
International Nuclear Information System (INIS)
Balaji, K.R.S.; Mohapatra, R.N.; Parida, M.K.; Paschos, E.A.
2000-10-01
The renormalization group evolution equation for two neutrino mixing is known to exhibit nontrivial fixed point structure corresponding to maximal mixing at the weak scale. The presence of the fixed point provides a natural explanation of the observed maximal mixing of ν μ - ν τ , if the ν μ and ν τ are assumed to be quasi-degenerate at the seesaw scale without constraining the mixing angles at that scale. In particular, it allows them to be similar to the quark mixings as in generic grand unified theories. We discuss implementation of this program in the case of MSSM and find that the predicted mixing remains stable and close to its maximal value, for all energies below the O(TeV) SUSY scale. We also discuss how a particular realization of this idea can be tested in neutrinoless double beta decay experiments. (author)
Renormalization and the breakup of magnetic surfaces
International Nuclear Information System (INIS)
Greene, J.M.
1983-02-01
There has been very considerable progress in the last few years on problems that are equivalent to finding the global structure of magnetic field lines in toroidal systems. A general problem of this class has a solution that is so complicated that it is impossible to find equations for the location of a field line which are valid everywhere along an infinitely long line. However, recent results are making it possible to find the asymptotic behavior of such systems in the limit of long lengths. This is just the information that is desired in many situations, since it includes the determination of the existence, or nonexistence, of magnetic surfaces. The key to our present understanding is renormalization. The present state-of-the-art has been described in Robert MacKay's thesis, for which this is an advertisement
Renormalization group theory impact on experimental magnetism
Köbler, Ulrich
2010-01-01
Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...
Renormalization of NN scattering: Contact potential
International Nuclear Information System (INIS)
Yang Jifeng; Huang Jianhua
2005-01-01
The renormalization of the T matrix for NN scattering with a contact potential is re-examined in a nonperturbative regime through rigorous nonperturbative solutions. Based on the underlying theory, it is shown that the ultraviolet divergences in the nonperturbative solutions of the T matrix should be subtracted through 'endogenous' counterterms, which in turn leads to a nontrivial prescription dependence. Moreover, employing the effective range expansion, the importance of imposing physical boundary conditions to remove the nontrivial prescription dependence, especially before making any physical claims, is discussed and highlighted. As by-products, some relations between the effective range expansion parameters are derived. We also discuss the power counting of the couplings for the nucleon-nucleon interactions and other subtle points related to the EFT framework beyond perturbative treatment
Gauge field theories. Part three. Renormalization
International Nuclear Information System (INIS)
Frampon, P.H.
1978-01-01
The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references
Renormalized semiclassical quantization for rescalable Hamiltonians
International Nuclear Information System (INIS)
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Non-perturbative renormalization on the lattice
International Nuclear Information System (INIS)
Koerner, Daniel
2014-01-01
Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.
Renormalization group approach to a p-wave superconducting model
International Nuclear Information System (INIS)
Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron
2014-01-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Ultrasoft renormalization of the potentials in vNRQCD
Energy Technology Data Exchange (ETDEWEB)
Stahlhofen, Maximilian Horst
2009-02-18
The effective field theory vNRQCD allows to describe among others the production of top-antitop pairs in electron-positron collisions at threshold, i.e. with very small relative velocity {upsilon} << 1 of the quarks. Potentially large logarithms {proportional_to} ln {upsilon} are systematically summed up and lead to a scale dependence of the Wilson coefficients of the theory. The missing contributions to the cross section {sigma}(e{sup +}e{sup -} {yields} t anti t) in the resonance region at NNLL level are the so-called mixing contributions to the NNLL anomalous dimension of the S-wave production/annihilation current of the topquark pair. To calculate these one has to know the NLL renormalization group running of so-called potentials (4-quark operators). The dominant contributions to the anomalous dimension of these potentials come from vNRQCD diagrams with ultrasoft gluon loops. The aim of this thesis is to derive the complete ultrasoft NLL running of the relevant potentials. For that purpose the UV divergent parts of about 10{sup 4} two-loop diagrams are determined. Technical and conceptional issues are discussed. Some open questions related to the calculation of the non-Abelian two-loop diagrams arise. Preliminary results are analysed with regard to the consequences for the mentioned cross section and its theoretical uncertainty. (orig.)
Renormalization method and singularities in the theory of Langmuir turbulence
International Nuclear Information System (INIS)
Pelletier, G.
1977-01-01
The method of renormalization, using propagators and diagrams, is recalled with enough mathematical details to be read and used by a non-specialist. The Markovian models are discussed and applied to plasma turbulence. The physical meaning of the diagrams is exhibited. In addition to the usual resonance broadening, an improved renormalization is set out, including broadening of the nonlinear resonance with a beat wave by induced scattering. This improved renormalization is emphasized. In the case of Langmuir turbulence, it removes difficulties arising at the group velocity, and enhances large-scale induced-scattering diffusion. (author)
Renormalization group theory of phase transitions in square Ising systems
International Nuclear Information System (INIS)
Nienhuis, B.
1978-01-01
Some renormalization group calculations are presented on a number of phase transitions in a square Ising model, both second and first order. Of these transitions critical exponents are calculated, the amplitudes of the power law divergences and the locus of the transition. In some cases attention is paid to the thermodynamic functions also far from the critical point. Universality and scaling are discussed and the renormalization group theory is reviewed. It is shown how a renormalization transformation, which relates two similar systems with different macroscopic dimensions, can be constructed, and how some critical properties of the system follow from this transformation. Several numerical and analytical applications are presented. (Auth.)
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
Cohomology and renormalization of BFYM theory in three dimensions
International Nuclear Information System (INIS)
Accardi, A.; Belli, A.; Zeni, M.
1997-01-01
The first-order formalism for the 3D Yang-Mills theory is considered and two different formulations are introduced, in which the gauge theory appears to be a deformation of the topological BF theory. We perform the quantization and the algebraic analysis of the renormalization of both the models, which are found to be anomaly free. We discuss also their stability against radiative corrections, giving the full structure of possible counterterms, requiring an involved matricial renormalization of fields and sources. Both models are then proved to be equivalent to the Yang-Mills theory at the renormalized level. (orig.)
International Nuclear Information System (INIS)
Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.
2009-01-01
Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters
Renormalization group analysis of order parameter fluctuations in fermionic superfluids
International Nuclear Information System (INIS)
Obert, Benjamin
2014-01-01
In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.
Renormalization and 3-manifolds which fiber over the circle (AM-142)
McMullen, Curtis T
2014-01-01
Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitativ
Vacuum polarization and renormalized charge in ν-dimensions
International Nuclear Information System (INIS)
Marinho Junior, R.M.; Lucinda, J.
1984-01-01
The expression for the vacuum polarization is obtained for any momentum transfer in ν dimensions. Using the Wilson loop for QED, the renormalized electric charge in ν dimensions is calculated. (Author) [pt
Exact renormalization group as a scheme for calculations
International Nuclear Information System (INIS)
Mack, G.
1985-10-01
In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)
Propagators and renormalization transformations for lattice gauge theories. Pt. 2
International Nuclear Information System (INIS)
Balaban, T.
1984-01-01
We continue the studies of the Paper I and extend the results of this paper to operators defined by restrictions on different scales, or by renormalization transformations of different orders. (orig.)
Renormalization and operator product expansion in theories with massless particles
International Nuclear Information System (INIS)
Anikin, S.A.; Smirnov, V.A.
1985-01-01
Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)
Generalized Callan-Symanzik equations and the Renormalization Group
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg
The functional renormalization group for interacting quantum systems with spin-orbit interaction
International Nuclear Information System (INIS)
Grap, Stephan Michael
2013-01-01
-Buettiker formalism from the renormalized self energy. The multi level quantum dot exhibits Kondo physics at finite Zeeman fields which can be suppressed if the field and the SOI term are not aligned in parallel. Due to broken particle hole symmetry we observed a gate voltage dependence for finite field conductance plateaus. The computed dependencies have been observed in experiments and thus highlight the flexibility of the considered model. Finally we computed the linear conductance for a multi level quantum dot model that has been proposed to describe SOI and impurity scattering effects in carbon nanotubes (CNT). The SOI was seen to affect the already complicated level structure of the CNT and thus profoundly changes the linear conductance, especially the location of conductance resonances with respect to an applied magnetic field and gate voltage. Again asymmetries influence the conductance and the effects are explained by means of the effective tunnel couplings to the eigenstates of the CNT. We finished with an improved analysis of a reduced version of this model that includes two particle vertex renormalization. The computed linear conductance is in excellent agreement with experimental data.
Non-perturbative versus perturbative renormalization of lattice operators
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.
1995-09-01
Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)
Renormalization of the g-boson effects for Os isotopes
International Nuclear Information System (INIS)
Zhang Zhanjun; Liu Yong; Sang Jianping
1996-01-01
A modified renormalization approach based on that proposed by Druce et al. is presented. The overall agreement between the spectra calculated here and the accurate spectra is significantly improved. We also use Druce's approach to generate the renormalized spectra. It is shown that in our microscopic study, both of the approaches are very useful to the determination of several free parameters of fermion residual interactions
The renormalization group: scale transformations and changes of scheme
International Nuclear Information System (INIS)
Roditi, I.
1983-01-01
Starting from a study of perturbation theory, the renormalization group is expressed, not only for changes of scale but also within the original view of Stueckelberg and Peterman, for changes of renormalization scheme. The consequences that follow from using that group are investigated. Following a more general point of view a method to obtain an improvement of the perturbative results for physical quantities is proposed. The results obtained with this method are compared with those of other existing methods. (L.C.) [pt
Anisotropic square lattice Potts ferromagnet: renormalization group treatment
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Tsallis, C.
1981-01-01
The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt
Renormalization in p-adic quantum field theory
International Nuclear Information System (INIS)
Smirnov, V.A.
1990-01-01
A version of p-adic perturbative Euclidean quantum field theory is presented. It is based on the new type of propagator which happens to be rather natural for p-adic space-time. Low-order Feynamn diagrams are explicity calculated and typical renormalization schemes are introduced: analytic, dimensional and BPHZ renormalizations. The calculations show that in p-adic Feynman integrals only logarithmic divergences appear. 14 refs.; 1 fig
Products of composite operators in the exact renormalization group formalism
Pagani, C.; Sonoda, H.
2018-02-01
We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.
A note on nonperturbative renormalization of effective field theory
Energy Technology Data Exchange (ETDEWEB)
Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China)
2009-08-28
Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.
A note on nonperturbative renormalization of effective field theory
International Nuclear Information System (INIS)
Yang Jifeng
2009-01-01
Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.
Renormalization of an abelian gauge theory in stochastic quantization
International Nuclear Information System (INIS)
Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.
1987-01-01
The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)
Investigation of renormalization effects in high temperature cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Zabolotnyy, Volodymyr B.
2008-04-16
It has been found that the self-energy of high-T{sub C} cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T{sub C} suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)
Investigation of renormalization effects in high temperature cuprate superconductors
International Nuclear Information System (INIS)
Zabolotnyy, Volodymyr B.
2008-01-01
It has been found that the self-energy of high-T C cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7-δ were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T C suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)
Renormalization group analysis of a simple hierarchical fermion model
International Nuclear Information System (INIS)
Dorlas, T.C.
1991-01-01
A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)
Quantum field theory and phase transitions: universality and renormalization group
International Nuclear Information System (INIS)
Zinn-Justin, J.
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
Regularization and renormalization of quantum field theory in curved space-time
International Nuclear Information System (INIS)
Bernard, C.; Duncan, A.
1977-01-01
It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed
Some aspects of N = 1 SYM renormalization
Directory of Open Access Journals (Sweden)
Stepanyantz Konstantin
2016-01-01
Full Text Available Using the BRST invariant version of the higher covariant derivative regularization, we demonstrate that in N = 1 supersymmetric gauge theories the three-point vertices with two ghost legs and a single leg of the quantum gauge superfield are finite in all orders. This theorem is proved by the help of the Slavnov–Taylor identities and the supergraph technique. Its correctness is verified by explicit one-loop calculation. Using finiteness of the considered vertices we express the NSVZ relation in terms of the anomalous dimensions of the gauge superfield, of the Faddeev–Popov ghosts, and of the matter superfields.
Renormalizations and operator expansion in sigma model
International Nuclear Information System (INIS)
Terentyev, M.V.
1988-01-01
The operator expansion (OPE) is studied for the Green function at x 2 → 0 (n(x) is the dynamical field ofσ-model) in the framework of the two-dimensional σ-model with the O(N) symmetry group at large N. As a preliminary step we formulate the renormalization scheme which permits introduction of an arbitrary intermediate scale μ 2 in the framework of 1/N expansion and discuss factorization (separation) of small (p μ) momentum region. It is shown that definition of composite local operators and coefficient functions figuring in OPE is unambiguous only in the leading order in 1/N expansion when dominant are the solutions with extremum of action. Corrections of order f(μ 2 )/N (here f(μ 2 ) is the effective interaction constant at the point μ 2 ) in composite operators and coefficient functions essentially depend on factorization method of high and low momentum regions. It is shown also that contributions to the power corrections of order m 2 x 2 f(μ 2 )/N in the Green function (here m is the dynamical mass-scale factor in σ-model) arise simultaneously from two sources: from the mean vacuum value of the composite operator n ∂ 2 n and from the hard particle contributions in the coefficient function of unite operator. Due to the analogy between σ-model and QCD the obtained result indicates theoretical limitations to the sum rule method in QCD. (author)
Block generators for the similarity renormalization group
Energy Technology Data Exchange (ETDEWEB)
Huether, Thomas; Roth, Robert [TU Darmstadt (Germany)
2016-07-01
The Similarity Renormalization Group (SRG) is a powerful tool to improve convergence behavior of many-body calculations using NN and 3N interactions from chiral effective field theory. The SRG method decouples high and low-energy physics, through a continuous unitary transformation implemented via a flow equation approach. The flow is determined by a generator of choice. This generator governs the decoupling pattern and, thus, the improvement of convergence, but it also induces many-body interactions. Through the design of the generator we can optimize the balance between convergence and induced forces. We explore a new class of block generators that restrict the decoupling to the high-energy sector and leave the diagonalization in the low-energy sector to the many-body method. In this way one expects a suppression of induced forces. We analyze the induced many-body forces and the convergence behavior in light and medium-mass nuclei in No-Core Shell Model and In-Medium SRG calculations.
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Renormalization-group theory of spinodal decomposition
International Nuclear Information System (INIS)
Mazenko, G.F.; Valls, O.T.; Zhang, F.C.
1985-01-01
Renormalization-group (RG) methods developed previously for the study of the growth of order in unstable systems are extended to treat the spinodal decomposition of the two-dimensional spin-exchange kinetic Ising model. The conservation of the order parameter and fixed-length sum rule are properly preserved in the theory. Various correlation functions in both coordinate and momentum space are calculated as functions of time. The scaling function for the structure factor is extracted. We compare our results with direct Monte Carlo (MC) simulations and find them in good agreement. The time rescaling parameter entering the RG analysis is temperature dependent, as was determined in previous work through a RG analysis of MC simulations. The results exhibit a long-time logarithmic growth law for the typical domain size, both analytically and numerically. In the time region where MC simulations have previously been performed, the logarithmic growth law can be fitted to a power law with an effective exponent. This exponent is found to be in excellent agreement with the result of MC simulations. The logarithmic growth law agrees with a physical model of interfacial motion which involves an interplay between the local curvature and an activated jump across the interface
Nonperturbative Renormalization Group Approach to Polymerized Membranes
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Slowest kinetic modes revealed by metabasin renormalization
Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi
2018-02-01
Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.
The Obstruction criterion for non existence of Invariant Circles and Renormalization.
De la Llave, R
2003-01-01
We formulate a conjecture which supplements the standard renormalization scenario for the breakdown of golden circle in twist maps. We show rigorously that if the conjecture was true then: a) The stable manifold of the non-trivial fixed point would indeed be a boundary between the existence of smooth invariant tori and hyperbolic orbits with golden mean rotation number. In particular, the boundary of the set of twist maps with a torus with a golden mean rotation number would include a smooth submanifold in the space of analytic mappings. b) The obstruction criterion of [Olvera-Simo] would be sharp in the universality class of the renormalization group. c) The criterion of [Greene-79] for existence of invariant circles if and only if there the residues of approximating orbits are finite would be valid for maps in the universality class. d) If there is no invariant circle, there are hyperbolic sets with golden mean rotation number. We also provide numerical evidence which suggests that the conjecture is true an...
Renormalization as an extension problem on the Count our ordered formalism in FFTF
Energy Technology Data Exchange (ETDEWEB)
Franco, D.H.T. [Centro de Estudos de Fisica Teorica (CEFT), Belo Horizonte, MG (Brazil); Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)
2003-06-01
From a distributional-theoretical framework, we make efforts in order to fill a gap in the series of studies which discuss the inheritance of the renormalization behaviour of a finite temperature field theory (FTFT) from the analogous version in quantum field theory (QFT) at T=0. Renormalization is treated as a distributional extension problem having the mathematical structure disentangled as much as possible from the physical aspects. The purely technical details essential for the discussion are briefly reviewed in a handle manner for further theoretical physics applications. The analysis elucidates some qualitative and quantitative distinctions concerning the divergences in the perturbation series when it is considered the FTFT version associated to a given QFT. Despite the differences, it turns clear the reason why the leading ultraviolet behaviour keeps unaffected when it is considered the FTFT version associated to a given QFT. The study is model independent and the approach allows one to consider the FTFT both imaginary and real time formalism at once in a unified way in the contour ordered formalism. (author)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
Thermal geometry from CFT at finite temperature
Directory of Open Access Journals (Sweden)
Wen-Cong Gan
2016-09-01
Full Text Available We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
Thermal geometry from CFT at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Gan, Wen-Cong, E-mail: ganwencong@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Wu, Meng-He, E-mail: menghewu.physik@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)
2016-09-10
We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.
International Nuclear Information System (INIS)
Honda, Yasushi; Horiguchi, Tsuyoshi
2001-01-01
We investigate a uniformly frustrated 19-vertex model with an anisotropy parameter η by use of the density matrix renormalization group for the transfer matrix for 0.6≤η≤1.3. The scaling dimension x is calculated from eigenvalues of the transfer matrix for several values η. The finite-size scaling analyses with a logarithmic correction are carried out in order to determine transition temperatures. It is found that there are two kinds of phase transitions, although there is a possibility of a single transition. This result is not compatible with the result for the uniformly frustrated XY model
Tensor hypercontraction. II. Least-squares renormalization
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Analysis of coined quantum walks with renormalization
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
The applications of the renormalization group
International Nuclear Information System (INIS)
Hughes, J.L.
1988-01-01
Three applications of the exact renormalization group (RG) to field theory and string theory are developed. (1) First, β-functions are related to the flow of the relevant couplings in the exact RG. The specific case of a cutoff λφ 4 theory in four dimensions is discussed in detail. The underlying idea of convergence of the flow of effective lagrangians is developed to identify the β-functions. A perturbative calculations of the β-functions using the exact flow equations is then sketched. (2) Next, the operator product expansion (OPE) is motivated and developed within the context of effective lagrangians. The exact RG may be used to establish the asymptotic properties of the expansion. Again, the example field theory focused upon is a cutoff λφ 4 in four dimensions. A detailed proof of the asymptotics for the special case of the expansion of φ(χ)φ(0) is given. The ideas of the proof are sufficient to prove the general case of any two local operators. Although both of the above applications are developed for a cutoff λφ 4 , the analysis may be extended to any theory with a physical cutoff. (3) Finally, some consequences of the proposal by Banks and Martinec that the classical string field equation can be written as as exact RG equation are examined. Cutoff conformal field theories on the sphere are identified as possible string field configurations. The Wilson fixed-point equation is generalized to conformal invariance and then taken to be the equation of motion for the string field. The equation's solutions for a restricted set of configurations are examined - namely, closed bosonic strings in 26 dimensions. Tree-level Virasoro-Shapiro (VS) S-matrix elements emerge in what is interpreted as a weak component-field expansion of the solution
International Nuclear Information System (INIS)
Chyla, Jiri
2003-01-01
There is a sizable and systematic discrepancy between experimental data on the b-barb production in , p-barp, γp and γγ collisions and existing theoretical calculations within perturbative QCD. Before interpreting this discrepancy as a signal of new physics, it is important to understand quantitatively the ambiguities of conventional calculations. In this paper the uncertainty coming from renormalization and factorization scale dependence of finite order perturbation calculations of the total cross section of b-barb production in p-barp collisions is discussed in detail. It is shown that the mentioned discrepancy is reduced significantly if these scales are fixed via the Principle of Minimal Sensitivity. (author)
Fisher's Zeros as the Boundary of Renormalization Group Flows in Complex Coupling Spaces
International Nuclear Information System (INIS)
Denbleyker, A.; Du Daping; Liu Yuzhi; Meurice, Y.; Zou Haiyuan
2010-01-01
We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that Fisher's zeros are located at the boundary of the complex basin of attraction of infrared fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of four-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action stabilize at a distance larger than 0.15 from the real axis in the complex β=4/g 2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infrared fixed points in models beyond the standard model.
Truncation effects in the functional renormalization group study of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Defenu, N.; Mati, P.; Márián, I.G.; Nándori, I.; Trombettoni, A.
2015-01-01
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
Renormalization-group flow of the effective action of cosmological large-scale structures
Floerchinger, Stefan
2017-01-01
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...
Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD
Guagnelli, M; Peña, C; Sint, S; Vladikas, A
2006-01-01
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.
Gauge-independent renormalization of the N2HDM
Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui
2017-12-01
The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.
G-Boson renormalizations and mixed symmetry states
International Nuclear Information System (INIS)
Scholten, O.
1986-01-01
In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed
Off-shell renormalization in Higgs effective field theories
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
Wetting transitions: A functional renormalization-group approach
International Nuclear Information System (INIS)
Fisher, D.S.; Huse, D.A.
1985-01-01
A linear functional renormalization group is introduced as a framework in which to treat various wetting transitions of films on substrates. A unified treatment of the wetting transition in three dimensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their three different regimes are reproduced along with new results on the multicritical behavior connecting the various regimes. In addition, the critical behavior as the coexistence curve is approached at complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormalization group are examined briefly and it appears that they do not alter the critical behavior found using the truncated linear renormalization group
Non-perturbative renormalization of three-quark operators
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2008-10-15
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
The ab-initio density matrix renormalization group in practice
Energy Technology Data Exchange (ETDEWEB)
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Extended BPH renormalization of cutoff scalar field theories
International Nuclear Information System (INIS)
Chalmers, G.
1996-01-01
We show through the use of diagrammatic techniques and a newly adapted BPH renormalization method that general momentum cutoff scalar field theories in four dimensions are perturbatively renormalizable. Weinberg close-quote s convergence theorem is used to show that operators in the Lagrangian with dimension greater than four, which are divided by powers of the cutoff, produce perturbatively only local divergences in the two-, three-, and four-point correlation functions. The naive use of the convergence theorem together with the BPH method is not appropriate for understanding the local divergences and renormalizability of these theories. We also show that the renormalized Green close-quote s functions are the same as in ordinary Φ 4 theory up to corrections suppressed by inverse powers of the cutoff. These conclusions are consistent with those of existing proofs based on the renormalization group. copyright 1996 The American Physical Society
Renormalization group and the superconducting susceptibility of a Fermi liquid
International Nuclear Information System (INIS)
Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.
2010-01-01
A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.
Renormalization Group in different fields of theoretical physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1992-02-01
A very simple and general approach to the symmetry that is widely known as a Renormalization Group symmetry is presented. It essentially uses a functional formulation of group transformations that can be considered as a generalization of self-similarity transformations well known in mathematical physics since last century. This generalized Functional Self-Similarity symmetry and corresponding group transformations are discussed first for a number of simple physical problems taken from diverse fields of classical physics as well as for QED. Then we formulate the Renorm-Group Method as a regular procedure that essentially improves the approximate solutions near the singularity. After that we discuss relations between different formulations of Renormalization Group as they appear in various parts of a modern theoretical physics. Finally we present several topics of RGM application in modern QFT. (author)
Renormalization of three-quark operators for baryon distribution amplitudes
International Nuclear Information System (INIS)
Gruber, Michael
2017-01-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI ' /SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
Perturbative renormalization of composite operators via flow equations. Pt. 1
Energy Technology Data Exchange (ETDEWEB)
Keller, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik); Kopper, C. (Goettingen Univ. (Germany). Inst. fuer Theoretische Physik)
1992-09-01
We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive {Phi}{sub 4}{sup 4} theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.).
Perturbative renormalization of composite operators via flow equations. Pt. 1
International Nuclear Information System (INIS)
Keller, G.; Kopper, C.
1992-01-01
We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive Φ 4 4 theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.)
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
Functional renormalization group approach to the two dimensional Bose gas
Energy Technology Data Exchange (ETDEWEB)
Sinner, A; Kopietz, P [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt (Germany); Hasselmann, N [International Center for Condensed Matter Physics, Universidade de BrasIlia, Caixa Postal 04667, 70910-900 BrasIlia, DF (Brazil)], E-mail: hasselma@itp.uni-frankfurt.de, E-mail: sinner@itp.uni-frankfurt.de
2009-02-01
We investigate the small frequency and momentum structure of the weakly interacting Bose gas in two dimensions using a functional renormalization group approach. The flow equations are derived within a derivative approximation of the effective action up to second order in spatial and temporal variables and investigated numerically. The truncation we employ is based on the perturbative structure of the theory and is well described as a renormalization group enhanced perturbation theory. It allows to calculate corrections to the Bogoliubov spectrum and to investigate the damping of quasiparticles. Our approach allows to circumvent the divergences which plague the usual perturbative approach.
Renormalization Group Reduction of Non Integrable Hamiltonian Systems
International Nuclear Information System (INIS)
Tzenov, Stephan I.
2002-01-01
Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Fine-grained entanglement loss along renormalization-group flows
International Nuclear Information System (INIS)
Latorre, J.I.; Rico, E.; Luetken, C.A.; Vidal, G.
2005-01-01
We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along renormalization group trajectories from the properties of the vacuum only, without need to study the whole Hamiltonian
Renormalization of three-quark operators for baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Gruber, Michael
2017-07-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI{sup '}/SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.
2013-01-01
We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Energy Technology Data Exchange (ETDEWEB)
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Multiscale unfolding of real networks by geometric renormalization
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
On Newton-Cartan local renormalization group and anomalies
Energy Technology Data Exchange (ETDEWEB)
Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano; Filippini, Francesco [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)
2016-11-28
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Systematic renormalization of the effective theory of Large Scale Structure
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico
2016-01-01
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.
International Nuclear Information System (INIS)
Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.
2010-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.
Renormalization group coupling flow of SU(3) gauge theory
QCDTARO Collaboration
1998-01-01
We present our new results on the renormalization group coupling flow obtained i n 3 dimensional coupling space $(\\beta_{11},\\beta_{12},\\beta_{twist})$. The value of $\\beta_{twist}$ turns out to be small and the coupling flow projected on $(\\beta_{11},\\beta_{12})$ plane is very similar with the previous result obtained in the 2 dimensional coupling space.
Simple perturbative renormalization scheme for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-06-30
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.
A simple perturbative renormalization scheme for supersymmetric gauge theories
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ] - delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)
Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation
Energy Technology Data Exchange (ETDEWEB)
Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)
1975-01-04
Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.
RENORMALIZATION FACTOR AND ODD-OMEGA GAP SINGLET SUPERCONDUCTIVITY
DOLGOV, OV; LOSYAKOV, VV
1994-01-01
Abrahams et al. [Phys. Rev. B 47 (1993) 513] have considered the possibility of a nonzero critical temperature of the superconductor transition to the state with odd-omega pp function and shown that the condition for it is the following inequality for the renormalization factor. Z (k, omega(n)) <1.
Renormalization group decimation technique for disordered binary harmonic chains
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-10-01
The density of states of disordered binary harmonic chains is calculated using the Renormalization Group Decimation technique on the displacements of the masses from their equilibrium positions. The results are compared with numerical simulation data and with those obtained with the current method of Goncalves da Silva and Koiller. The advantage of our procedure over other methods is discussed. (author)
Running with rugby balls: bulk renormalization of codimension-2 branes
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
Pairing renormalization and regularization within the local density approximation
International Nuclear Information System (INIS)
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-01-01
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Updated RENORM/MBR Predictions for Diffraction at the LHC
Goulianos, K
2015-01-01
Updated RENORM/MBR-model predictions of diffractive, total, and total-inelastic cross sections at the LHC are presented and compared with experimental results and predictions from other models. In addition, expectations for diffraction at the upcoming LHC run at √s = 13 TeV are discussed.
Renormalization constants for 2-twist operators in twisted mass QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.
Renormalization group invariance in the presence of an instanton
International Nuclear Information System (INIS)
Ross, D.A.
1987-01-01
A pure Yang-Mills theory which admits an instanton is under discussion. n=1 supersymmetric (SU-2) Yang-Mills theory, both in the Wess-zumino gauge and in manifestly supersymmetric supergauge is considered. Two-loop vacuum graphs are calculated. The way a renormalization group invariance works under conditions of fermionic zero mode elimination is shown
Dynamic mass generation and renormalizations in quantum field theories
International Nuclear Information System (INIS)
Miransky, V.A.
1979-01-01
It is shown that the dynamic mass generation can destroy the multiplicative renormalization relations and lead to new type divergences in the massive phase. To remove these divergences the values of the bare coupling constants must be fixed. The phase diagrams of gauge theories are discussed
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
On Newton-Cartan local renormalization group and anomalies
International Nuclear Information System (INIS)
Auzzi, Roberto; Baiguera, Stefano; Filippini, Francesco; Nardelli, Giuseppe
2016-01-01
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Real-space renormalization group approach to driven diffusive systems
Energy Technology Data Exchange (ETDEWEB)
Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)
2006-11-24
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.
Equation-free dynamic renormalization in a glassy compaction model
International Nuclear Information System (INIS)
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-01-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena
Equation-free dynamic renormalization in a glassy compaction model
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-07-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.
Real-space renormalization group approach to driven diffusive systems
International Nuclear Information System (INIS)
Hanney, T; Stinchcombe, R B
2006-01-01
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase
Pade expansion and the renormalization of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Yang Jifeng; Huang Jianhua; Liu Dan
2006-01-01
The importance of imposing physical boundary conditions on the T-matrix to remove to nonperturbative renormalization prescription dependence is stressed and demonstrated in two diagonal channels 1 P 1 and 1 D 2 , with the help of Pade expansion. (authors)
Migdal-Kadanoff renormalization group for the Z(5) model
International Nuclear Information System (INIS)
Baltar, V.L.V.; Carneiro, G.M.; Pol, M.E.; Zagury, N.
1984-01-01
The Migdal-Kadanoff renormalization group methods is used to calculate the phase diagram of the AF Z(5) model. It is found that this scheme simulates a fixed line which it is interpreted as the locus of attraction of a critical phase. This result is in reasonable agreement with the predictions of Monte Carlo simulations. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Chankowski, Piotr H. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Lewandowski, Adrian [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Meissner, Krzysztof A. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)
2016-11-18
We perform a systematic one-loop renormalization of a general renormalizable Yang-Mills theory coupled to scalars and fermions using a regularization scheme with a smooth momentum cutoff Λ (implemented through an exponential damping factor). We construct the necessary finite counterterms restoring the BRST invariance of the effective action by analyzing the relevant Slavnov-Taylor identities. We find the relation between the renormalized parameters in our scheme and in the conventional (MS)-bar scheme which allow us to obtain the explicit two-loop renormalization group equations in our scheme from the known two-loop ones in the (MS)-bar scheme. We calculate in our scheme the divergences of two-loop vacuum graphs in the presence of a constant scalar background field which allow us to rederive the two-loop beta functions for parameters of the scalar potential. We also prove that consistent application of the proposed regularization leads to counterterms which, together with the original action, combine to a bare action expressed in terms of bare parameters. This, together with treating Λ as an intrinsic scale of a hypothetical underlying finite theory of all interactions, offers a possibility of an unconventional solution to the hierarchy problem if no intermediate scales between the electroweak scale and the Planck scale exist.
Finite volume form factors in the presence of integrable defects
International Nuclear Information System (INIS)
Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.
2014-01-01
We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found
Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.
Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten
2017-04-07
We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.
International Nuclear Information System (INIS)
Jullien, R.; Pfeuty, P.; Fields, J.N.; Doniach, S.
1978-01-01
A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising model with a transverse field in one dimension. The transition between the low-field and high-field regimes is studied. Magnetization components, spin correlation functions, and critical exponents are derived and checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure yields more accurate results, especially for the critical ''magnetic'' exponents near the transition
Renormalization Group scale-setting in astrophysical systems
Domazet, Silvije; Štefančić, Hrvoje
2011-09-01
A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.
Renormalization Group scale-setting in astrophysical systems
International Nuclear Information System (INIS)
Domazet, Silvije; Stefancic, Hrvoje
2011-01-01
A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.
E-cigarette marketing and older smokers: road to renormalization.
Cataldo, Janine K; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-05-01
To describe older smokers' perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking.
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
Belinchon, J A; Harko, T; Mak, M K
2002-01-01
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
Computing the effective action with the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro [CP3-Origins and the Danish IAS University of Southern Denmark, Odense (Denmark); Percacci, Roberto [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Rachwal, Leslaw [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Tonero, Alberto [ICTP-SAIFR and IFT, Sao Paulo (Brazil)
2016-04-15
The ''exact'' or ''functional'' renormalization group equation describes the renormalization group flow of the effective average action Γ{sub k}. The ordinary effective action Γ{sub 0} can be obtained by integrating the flow equation from an ultraviolet scale k = Λ down to k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. (orig.)
Renormalization-group study of the four-body problem
International Nuclear Information System (INIS)
Schmidt, Richard; Moroz, Sergej
2010-01-01
We perform a renormalization-group analysis of the nonrelativistic four-boson problem by means of a simple model with pointlike three- and four-body interactions. We investigate in particular the region where the scattering length is infinite and all energies are close to the atom threshold. We find that the four-body problem behaves truly universally, independent of any four-body parameter. Our findings confirm the recent conjectures of others that the four-body problem is universal, now also from a renormalization-group perspective. We calculate the corresponding relations between the four- and three-body bound states, as well as the full bound-state spectrum and comment on the influence of effective range corrections.
Strong-Weak CP Hierarchy from Non-Renormalization Theorems
Energy Technology Data Exchange (ETDEWEB)
Hiller, Gudrun
2002-01-28
We point out that the hierarchy between the measured values of the CKM phase and the strong CP phase has a natural origin in supersymmetry with spontaneous CP violation and low energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the strong CP phase is protected by an exact non-renormalization theorem while the CKM phase is not. We present explicit examples of models which exploit this fact and discuss corrections to the non-renormalization theorem in the presence of supersymmetry breaking. This framework for solving the strong CP problem has generic predictions for the superpartner spectrum, for CP and flavor violation, and predicts a preferred range of values for electric dipole moments.
Scaling algebras and renormalization group in algebraic quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Verch, R.
1995-01-01
For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)
The density-matrix renormalization group: a short introduction.
Schollwöck, Ulrich
2011-07-13
The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.
E-cigarette Marketing and Older Smokers: Road to Renormalization
Cataldo, Janine K.; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-01-01
Objectives To describe older smokers’ perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Methods Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Results Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. Conclusions To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking. PMID:25741681
Two-loop renormalization of quantum gravity simplified
Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex
2017-02-01
The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. We explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.
One-loop renormalization of Lee-Wick gauge theory
International Nuclear Information System (INIS)
Grinstein, Benjamin; O'Connell, Donal
2008-01-01
We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theory than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.
On the renormalization of operator products: the scalar gluonic case
International Nuclear Information System (INIS)
Zoller, Max F.
2016-01-01
In this paper we study the renormalization of the product of two operators O 1 =−(1/4)G μν G μν in QCD. An insertion of two such operators O 1 (x)O 1 (0) into a Greens function produces divergent contact terms for x→0. In the course of the computation of the operator product expansion (OPE) of the correlator of two such operators i∫ d 4 x e iqx T{ O 1 (x)O 1 (0)} to three-loop order http://dx.doi.org/10.1007/JHEP12(2012)119; http://dx.doi.org/10.1007/JHEP10(2014)169 we discovered that divergent contact terms remain not only in the leading Wilson coefficient C 0 , which is just the VEV of the correlator, but also in the Wilson coefficient C 1 in front of O 1 . As this correlator plays an important role for example in QCD sum rules a full understanding of its renormalization is desireable. This work explains how the divergences encountered in higher orders of an OPE of this correlator should be absorbed in counterterms and derives an additive renormalization constant for C 1 from first principles and to all orders in perturnbation theory. The method to derive the renormalization of this operator product is an extension of the ideas of V. Spiridonov, Anomalous dimension of g μν 2 and β-function, Preprint IYAI-P-0378 (1984). and can be generalized to other cases.
Quasi-renormalization of the axial vector model
International Nuclear Information System (INIS)
Schweda, M.
1979-01-01
Using the regulator-free BPHZL renormalization scheme the problem of anomalies in a massive axial vector meson model is reinvestigated. The Adler-Bardeen-Bell-Jackiw anomaly introduces some impressive modifications: the nontrivial self-energy and the counterterm of the longitudinal part of the axial vector field depend on the anomaly via the anomalous Ward identity. The investigations are based on a Fermi-type gauge. (author)
Fierz transformations and renormalization schemes for fourquark operators
Directory of Open Access Journals (Sweden)
Garron Nicolas
2018-01-01
Full Text Available It has been shown that the choice of renormalization scheme is crucial for four-quark operators, in particular for neutral kaon mixing beyond the Standard Model. In the context of SMOM schemes, the choice of projector is not unique and is part of the definition of the renormalisation scheme. I present the non-diagonal Fierz relations which relate some of these projectors.
Evaluation of spectral zeta-functions with the renormalization group
International Nuclear Information System (INIS)
Boettcher, Stefan; Li, Shanshan
2017-01-01
We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)
Disordered systems and the functional renormalization group, a pedagogical introduction
International Nuclear Information System (INIS)
Wiese, K.J.
2002-01-01
In this article, we review basic facts about disordered systems, especially the existence of many metastable states and and the resulting failure of dimensional reduction. Besides techniques based on the Gaussian variational method and replica-symmetry breaking (RSB), the functional renormalization group (FRG) is the only general method capable of attacking strongly disordered systems. We explain the basic ideas of the latter method and why it is difficult to implement. We finally review current progress for elastic manifolds in disorder (Author)
Nonthermal fixed points and the functional renormalization group
International Nuclear Information System (INIS)
Berges, Juergen; Hoffmeister, Gabriele
2009-01-01
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium
Renormalization group, principle of invariance and functional automodelity
International Nuclear Information System (INIS)
Shirkov, D.V.
1981-01-01
There exists a remarkable identity of functional equations describing the property of functional automodelity in diverse branches of physics: renormalization group equations in quantum field theory, functional equations of the invariance principle of the one-dimensional transport theory and some others. The origin of this identity is investigated. It is shown that the structure of these equations reflects the simple and general property of transitivity with respect to the way of fixatio of initial on effective degrees of freedom [ru
Renormalization of the δ expansion in curved space-time
International Nuclear Information System (INIS)
Cho, H.T.
1991-01-01
Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered
Tadpole renormalization and relativistic corrections in lattice NRQCD
Shakespeare, Norman H.; Trottier, Howard D.
1998-08-01
We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.
Renormalization analysis of catalytic Wright-Fisher diffusions
Czech Academy of Sciences Publication Activity Database
Swart, Jan M.; Fleischmann, K.
2006-01-01
Roč. 2006, č. 11 (2006), s. 585-654 ISSN 1083-6489 R&D Projects: GA ČR GA201/06/1323 Institutional research plan: CEZ:AV0Z10750506 Keywords : renormalization * catalytic Wright-Fisher diffusion * embedded particle system * extinction * unbounded growth * interacting diffusions * universality Subject RIV: BA - General Mathematics Impact factor: 0.676, year: 2006
The Bogolyubov renormalization group in theoretical and mathematical physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1999-01-01
This text follows the line of a talk on Ringberg symposium dedicated to Wolfhart Zimmermann 70th birthday. The historical overview (Part I) partially overlaps with corresponding text of my previous commemorative paper - see Ref. [6] in the list. At the same time the second part includes some fresh results in QFT (Sect. 2.1.) and summarizes (Sect. 2.4) an impressive recent progress of the 'QFT renormalization group' application in mathematical physics
Renormalization-group flows and charge transmutation in string theory
International Nuclear Information System (INIS)
Orlando, D.; Petropoulos, P.M.; Sfetsos, K.
2006-01-01
We analyze the behaviour of heterotic squashed-Wess-Zumino-Witten backgrounds under renormalization-group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also address the question of instabilities created by the presence of closed time-like curves in string backgrounds. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Renormalization, unstable manifolds, and the fractal structure of mode locking
International Nuclear Information System (INIS)
Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.
1985-01-01
The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed
Real space renormalization group for spectra and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1984-09-01
We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)
BPHZ renormalization in configuration space for the A4-model
Pottel, Steffen
2018-02-01
Recent developments for BPHZ renormalization performed in configuration space are reviewed and applied to the model of a scalar quantum field with quartic self-interaction. An extension of the results regarding the short-distance expansion and the Zimmermann identity is shown for a normal product, which is quadratic in the field operator. The realization of the equation of motion is computed for the interacting field and the relation to parametric differential equations is indicated.
Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears
Panagopoulos, Haralambos; Spanoudes, Gregoris
2018-03-01
In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].
Can renormalization group flow end in a Big Mess?
International Nuclear Information System (INIS)
Morozov, Alexei; Niemi, Antti J.
2003-01-01
The field theoretical renormalization group equations have many common features with the equations of dynamical systems. In particular, the manner how Callan-Symanzik equation ensures the independence of a theory from its subtraction point is reminiscent of self-similarity in autonomous flows towards attractors. Motivated by such analogies we propose that besides isolated fixed points, the couplings in a renormalizable field theory may also flow towards more general, even fractal attractors. This could lead to Big Mess scenarios in applications to multiphase systems, from spin-glasses and neural networks to fundamental string (M?) theory. We consider various general aspects of such chaotic flows. We argue that they pose no obvious contradictions with the known properties of effective actions, the existence of dissipative Lyapunov functions, and even the strong version of the c-theorem. We also explain the difficulties encountered when constructing effective actions with chaotic renormalization group flows and observe that they have many common virtues with realistic field theory effective actions. We conclude that if chaotic renormalization group flows are to be excluded, conceptually novel no-go theorems must be developed
One-loop renormalization of a gravity-scalar system
Energy Technology Data Exchange (ETDEWEB)
Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)
2017-05-15
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)
Renormalization group fixed points of foliated gravity-matter systems
Energy Technology Data Exchange (ETDEWEB)
Biemans, Jorn [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Platania, Alessia [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Department of Physics and Astronomy, University of Catania,Via S. Sofia 63, 95123 Catania (Italy); INFN, Catania section,Via S. Sofia 64, 95123, Catania (Italy); INAF, Catania Astrophysical Observatory,Via S. Sofia 78, 95123, Catania (Italy); Saueressig, Frank [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2017-05-17
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) “time”-direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton’s constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d{sub g}, d{sub λ}. We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
One-loop renormalization of a gravity-scalar system
International Nuclear Information System (INIS)
Park, I.Y.
2017-01-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)
One-loop renormalization of a gravity-scalar system
Park, I. Y.
2017-05-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.
International Nuclear Information System (INIS)
Vakulenko, M.O.
1992-01-01
Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2017-01-30
We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.
Space-time versus world-sheet renormalization group equation in string theory
International Nuclear Information System (INIS)
Brustein, R.; Roland, K.
1991-05-01
We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Locally Finite Root Supersystems
Yousofzadeh, Malihe
2013-01-01
We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.
Dimension 7 operators in the b{yields}s transition
Energy Technology Data Exchange (ETDEWEB)
Chalons, G. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik; Domingo, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-03-15
We extend the low-energy effective field theory relevant for b{yields}s transitions up to operators of mass-dimension 7 and compute the associated anomalous-dimension matrix. We then compare our findings to the known results for dimension 6 operators and derive a solution for the renormalization group equations involving operators of dimension 7. We finally apply our analysis to a particularly simple case where the Standard Model is extended by an electroweak-magnetic operator and consider limits on this scenario from the decays B{sub s}{yields}{mu}{sup +}{mu}{sup -} and B{yields}K{nu} anti {nu}.
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)
Unique determination of the effective potential in terms of renormalization group functions
International Nuclear Information System (INIS)
Chishtie, F. A.; Hanif, T.; McKeon, D. G. C.; Steele, T. G.
2008-01-01
The perturbative effective potential V in the massless λφ 4 model with a global O(N) symmetry is uniquely determined to all orders by the renormalization group functions alone when the Coleman-Weinberg renormalization condition (d 4 V/dφ 4 )| φ=μ =λ is used, where μ represents the renormalization scale. Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions. Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions to V. An essential element of this analysis is a conversion of the renormalization group functions in the Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the explicit five-loop effective potential is obtained from the known five-loop MS renormalization group functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-logarithm contributions to V. Extensions of these results to massless scalar QED are also presented. Because massless scalar QED has two couplings, conversion of the renormalization group functions from the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group methods.
Transformation of renormalization groups in 2N-component fermion hierarchical model
International Nuclear Information System (INIS)
Stepanov, R.G.
2006-01-01
The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru
Renormalization of the γ-ray strength functions of light nuclei
International Nuclear Information System (INIS)
Canbula, B.; Ersan, S.; Babacan, H.
2015-01-01
γ-ray strength function is the key input for the photonuclear reactions, which have a special astrophysical importance, and should be renormalized by using the nuclear level density for calculating the theoretical average radiative capture width, but performing such renormalization is challenging for light nuclei. With this motivation, recently introduced level density parameter formula including collective effects is used to calculate the average radiative capture width of light nuclei, and therefore to renormalize their γ-ray strength functions. Obtained normalization factors are tested in (n, γ) reactions for the necessity of renormalization for light nuclei. (author)
Energy Technology Data Exchange (ETDEWEB)
Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)
2014-07-15
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)
Finite-amplitude, pulsed, ultrasonic beams
Coulouvrat, François; Frøysa, Kjell-Eivind
An analytical, approximate solution of the inviscid KZK equation for a nonlinear pulsed sound beam radiated by an acoustic source with a Gaussian velocity distribution, is obtained by means of the renormalization method. This method involves two steps. First, the transient, weakly nonlinear field is computed. However, because of cumulative nonlinear effects, that expansion is non-uniform and breaks down at some distance away from the source. So, in order to extend its validity, it is re-written in a new frame of co-ordinates, better suited to following the nonlinear distorsion of the wave profile. Basically, the nonlinear coordinate transform introduces additional terms in the expansion, which are chosen so as to counterbalance the non-uniform ones. Special care is devoted to the treatment of shock waves. Finally, comparisons with the results of a finite-difference scheme turn out favorable, and show the efficiency of the method for a rather large range of parameters.
Renormalized G-convolution of n-point functions in quantum field theory. I. The Euclidean case
International Nuclear Information System (INIS)
Bros, Jacques; Manolessou-Grammaticou, Marietta.
1977-01-01
The notion of Feynman amplitude associated with a graph G in perturbative quantum field theory admits a generalized version in which each vertex v of G is associated with a general (non-perturbative) nsub(v)-point function Hsup(nsub(v)), nsub(v) denoting the number of lines which are incident to v in G. In the case where no ultraviolet divergence occurs, this has been performed directly in complex momentum space through Bros-Lassalle's G-convolution procedure. The authors propose a generalization of G-convolution which includes the case when the functions Hsup(nsub(v)) are not integrable at infinity but belong to a suitable class of slowly increasing functions. A finite part of the G-convolution integral is then defined through an algorithm which closely follows Zimmermann's renormalization scheme. The case of Euclidean four-momentum configurations is only treated
Energy Technology Data Exchange (ETDEWEB)
Ma, Hong -Hao [Chongqing Univ., Chongqing (People' s Republic of China); Wu, Xing -Gang [Chongqing Univ., Chongqing (People' s Republic of China); Ma, Yang [Chongqing Univ., Chongqing (People' s Republic of China); Brodsky, Stanley J. [Stanford Univ., Stanford, CA (United States); Mojaza, Matin [KTH Royal Inst. of Technology and Stockholm Univ., Stockholm (Sweden)
2015-05-26
A key problem in making precise perturbative QCD (pQCD) predictions is how to set the renormalization scale of the running coupling unambiguously at each finite order. The elimination of the uncertainty in setting the renormalization scale in pQCD will greatly increase the precision of collider tests of the Standard Model and the sensitivity to new phenomena. Renormalization group invariance requires that predictions for observables must also be independent on the choice of the renormalization scheme. The well-known Brodsky-Lepage-Mackenzie (BLM) approach cannot be easily extended beyond next-to-next-to-leading order of pQCD. Several suggestions have been proposed to extend the BLM approach to all orders. In this paper we discuss two distinct methods. One is based on the “Principle of Maximum Conformality” (PMC), which provides a systematic all-orders method to eliminate the scale and scheme ambiguities of pQCD. The PMC extends the BLM procedure to all orders using renormalization group methods; as an outcome, it significantly improves the pQCD convergence by eliminating renormalon divergences. An alternative method is the “sequential extended BLM” (seBLM) approach, which has been primarily designed to improve the convergence of pQCD series. The seBLM, as originally proposed, introduces auxiliary fields and follows the pattern of the β0-expansion to fix the renormalization scale. However, the seBLM requires a recomputation of pQCD amplitudes including the auxiliary fields; due to the limited availability of calculations using these auxiliary fields, the seBLM has only been applied to a few processes at low orders. In order to avoid the complications of adding extra fields, we propose a modified version of seBLM which allows us to apply this method to higher orders. As a result, we then perform detailed numerical comparisons of the two alternative scale-setting approaches by investigating their predictions for the annihilation cross section ratio R
Renormalization of total sets of states into generalized bases with a resolution of the identity
International Nuclear Information System (INIS)
Vourdas, A
2017-01-01
A total set of states for which we have no resolution of the identity (a ‘pre-basis’), is considered in a finite dimensional Hilbert space. A dressing formalism renormalizes them into density matrices which resolve the identity, and makes them a ‘generalized basis’, which is practically useful. The dresssing mechanism is inspired by Shapley’s methodology in cooperative game theory, and it uses Möbius transforms. There is non-independence and redundancy in these generalized bases, which is quantified with a Shannon type of entropy. Due to this redundancy, calculations based on generalized bases are sensitive to physical changes and robust in the presence of noise. For example, the representation of an arbitrary vector in such generalized bases, is robust when noise is inserted in the coefficients. Also in a physical system with a ground state which changes abruptly at some value of the coupling constant, the proposed methodology detects such changes, even when noise is added to the parameters in the Hamiltonian of the system. (paper)
A renormalization group invariant line and an infrared attractive top-Higgs mass relation
International Nuclear Information System (INIS)
Schrempp, B.; Schrempp, F.
1992-10-01
The renormalization group equations (RGE's) of the Standard Model at one loop in terms of the gauge couplings g 1,2,3, the top Yukawa coupling g t and the scalar self coupling λ are reexamined. For g 1,2 = 0, the general solution of the RGE's is obtained analytically in terms of an interesting special solution for the ratio λ/g 2 t as function of the ratio g 2 t /g 2 3 which i) represents an RG invariant line which is strongly infrared attractive ii) interpolates all known quasi-fixed points and iii) is finite for large g 2 t /g 2 3 (ultraviolet limit). All essential features survive for g 1,2 ≠ 0. The invariant line translates into an infrared attractive top-Higgs mass relation, which e.g. associates to the top masses m t = 130/145/200 GeV the Higgs masses m H ≅ 68-90/103-115/207 GeV, respectively. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Barriga, Jaime; Varykhalov, Andrei; Fink, Joerg; Rader, Oliver; Duerr, Hermann; Eberhardt, Wolfgang [Bessy GmbH, Berlin (Germany)
2008-07-01
Spin dependent low-energy electronic excitations in 3d ferromagnets are of special interest due to the need of a microscopic understanding of the electronic structure of solids. Low-energy electrons (or holes) become dressed by a cloud of excitations resulting in quasiparticles of a finite lifetime and a different effective mass. These type of excitations have been studied by many theoretical methods, and it has been found that because of many body effects no sharp quasiparticle peaks exist for binding energies larger than 2 eV. Interestingly, it has been shown that strong correlation effects could particularly affect majority spin electrons, leading to a pronounced damping of quasiparticles at binding energies around 2 eV and above. In order to give an experimental corroboration to these findings, we have performed a systematic study of the spin-dependent quasiparticle lifetime and band structure of ferromagnetic 3d transition metal surfaces by means of spin and angle-resolved photoemission spectroscopy. On hcp Co(0001), fcc Ni(111) and bcc Fe(110), we have found a more pronounced renormalization of the majority spin quasiparticle spectral weight going from Ni to Co which are both strong ferromagnets. For Fe, a weak ferromagnet, such a process becomes more prominent in the minority channel.
Relativistic time-dependent Fermion-mass renormalization using statistical regularization
Kutnink, Timothy; McMurray, Christian; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios
2017-09-01
The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Furthermore, the contribution of positive and negative energy states to the asymptotic values and the gauge fields is analyzed. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size and momentum-dependence and produce a finite result in the continuum limit.
Extending the range of real time density matrix renormalization group simulations
Kennes, D. M.; Karrasch, C.
2016-03-01
We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.
Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program
Manin, Yuri I.
Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].
Results in finite temperature quantum electrodynamics
International Nuclear Information System (INIS)
Down, D.M.
1985-01-01
First, three quantities of physical interest are calculated. The first two quantities are the self energy of the electron at order α and the self mass of the electron at order α 2 due to its interaction with a thermal bath of photons. The third quantity of physical interest is the thermal contribution to the self mass of the axion. Second, some formal developments are presented. First among these is the proof of an extension to the familiar optical theorem to cover processes taking place at finite temperature. Then an example of the application of the theorem is given for a simple field theory involving two types of scalar particles. The example illustrates that the relationship between the forward scattering amplitude and the total cross section is more complex at finite temperature than at zero temperature. Third, a method for calculating the wave function renormalization constant at finite temperature for an electron in a thermal bath of photons is presented. This method is compared with methods invented by other authors
Finite Range Decomposition of Gaussian Processes
Brydges, C D; Mitter, P K
2003-01-01
Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0
Kumar, Manoranjan
2016-02-03
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
Kumar, Manoranjan; Parvej, Aslam; Thomas, Simil; Ramasesha, S.; Soos, Z. G.
2016-01-01
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
Non-renormalization theorems andN=2 supersymmetric backgrounds
International Nuclear Information System (INIS)
Butter, Daniel; Wit, Bernard de; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed
Studies in the renormalization-prescription dependence of perturbative calculations
International Nuclear Information System (INIS)
Celmaster, W.; Sivers, D.
1981-01-01
Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion parameter which reduces the magnitude of high-order corrections. We give explicit arguments suggesting that a choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD and QED are used to illustrate these arguments, and we also discuss possibilities for refining them
On the renormalization group flow in two dimensional superconformal models
International Nuclear Information System (INIS)
Ahn, Changrim; Stanishkov, Marian
2014-01-01
We extend the results on the RG flow in the next to leading order to the case of the supersymmetric minimal models SM p for p≫1. We explain how to compute the NS and Ramond fields conformal blocks in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination expressing the infrared limit of these fields in term of the IR theory SM p−2 is exactly the same as those of the nonsupersymmetric minimal theory
Renormalization group approach to Sudakov resummation in prompt photon production
International Nuclear Information System (INIS)
Bolzoni, Paolo; Forte, Stefano; Ridolfi, Giovanni
2005-01-01
We prove the all-order exponentiation of soft logarithmic corrections to prompt photon production in hadronic collisions, by generalizing an approach previously developed in the context of Drell-Yan production and deep-inelastic scattering. We show that all large logs in the soft limit can be expressed in terms of two dimensionful variables, and we use the renormalization group to resum them. The resummed results that we obtain are more general though less predictive than those proposed by other groups, in that they can accommodate for violations of Sudakov factorization
Renormalization and applications of baryon distribution amplitudes QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization-group analysis of the Kobayashi-Maskawa matrix
International Nuclear Information System (INIS)
Babu, K.S.
1987-01-01
The one-loop renormalization-group equations for the quark mixing (Kobayashi-Maskawa) matrix V are derived, independent of one's weak interaction basis, in the standard model as well as in its two Higgs and supersymmetric extensions, and their numerical solutions are presented. While the mixing angles vertical strokeV ub vertical stroke, vertical strokeV cb vertical stroke, vertical strokeV td vertical stroke and the phase-invariant measure of CP nonconservation J all vary slowly with momentum, in the standard model they are predicted to increase in clear contrast to the two Higgs and supersymmetric extensions where they decrease with momentum. (orig.)
Renormalizing the kinetic energy operator in elementary quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br
2009-09-15
In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Exact renormalization group equation for the Lifshitz critical point
Bervillier, C.
2004-10-01
An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Renormalization and applications of baryon distribution amplitudes in QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)
Potts ferromagnet correlation length in hypercubic lattices: Renormalization - group approach
International Nuclear Information System (INIS)
Curado, E.M.F.; Hauser, P.R.
1984-01-01
Through a real space renormalization group approach, the q-state Potts ferromagnet correlation length on hierarchical lattices is calculated. These hierarchical lattices are build in order to simulate hypercubic lattices. The high-and-low temperature correlation length asymptotic behaviours tend (in the Ising case) to the Bravais lattice correlation length ones when the size of the hierarchical lattice cells tends to infinity. It is conjectured that the asymptotic behaviours several values of q and d (dimensionality) so obtained are correct. Numerical results are obtained for the full temperature range of the correlation length. (Author) [pt
Renormalization group equations in the stochastic quantization scheme
International Nuclear Information System (INIS)
Pugnetti, S.
1987-01-01
We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)
Renormalizing the kinetic energy operator in elementary quantum mechanics
International Nuclear Information System (INIS)
Coutinho, F A B; Amaku, M
2009-01-01
In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form ψ(r) = u(r)/r, where u(0) ≠ 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Entanglement renormalization, quantum error correction, and bulk causality
Energy Technology Data Exchange (ETDEWEB)
Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2017-04-07
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
Tensor renormalization group with randomized singular value decomposition
Morita, Satoshi; Igarashi, Ryo; Zhao, Hui-Hai; Kawashima, Naoki
2018-03-01
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.
Supersymmetric QED at finite temperature and the principle of equivalence
International Nuclear Information System (INIS)
Robinett, R.W.
1985-01-01
Unbroken supersymmetric QED is examined at finite temperature and it is shown that the scalar and spinor members of a chiral superfield acquire different temperature-dependent inertial masses. By considering the renormalization of the energy-momentum tensor it is also shown that the T-dependent scalar-spinor gravitational masses are also no longer degenerate and, moreover, are different from their T-dependent inertial mass shifts implying a violation of the equivalence principle. The temperature-dependent corrections to the spinor (g-2) are also calculated and found not to vanish
Superconformal gravity in Hamiltonian form: another approach to the renormalization of gravitation
International Nuclear Information System (INIS)
Kaku, M.
1983-01-01
We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24 generators of the group as Dirac constraints on the Hilbert space. From this, we can establish a firm foundation for the canonical quantization of superconformal gravity. The purpose of writing down the Hamiltonian form of the theory is to reexamine the question of renormalization and unitarity. Usually, we start with unitary theories of gravity, such as the Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In this series of papers, we take the opposite approach and start with a theory which is renormalizable but has problems with unitarity. Conformal and superconformal gravity are both plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is difficult to interpret the results of perturbation theory because the asymptotic states have zero norm and the potential between particles grows linearly with the separation distance. The purpose of writing the Hamiltonian form of these theories is to approach the question of unitarity from a different point of view. For example, a strong-coupling approach to these theories may yield a totally different perturbation expansion. We speculate that canonically quantizing the theory by power expanding in the strong-coupling regime may yield a different set of asymptotic states, somewhat similar to the situation in gauge theories. In this series of papers, we wish to reopen the question of the unitarity of conformal theories. We conjecture that ghosts are ''confined.''
Modification of the ''Coulomb'' interaction at small distances in finite quantum electrodynamics
International Nuclear Information System (INIS)
Manoukian, E.B.
1982-01-01
We investigate the ''Coulomb'' interaction in finite QED at small distances. By finite QED it is meant that we sum all photon self-energy subgraphs in renormalized QED and fix α, the renormalized fine-structure constant, as the (infinite order) zero of the Callan-Symanzik function: β(α) = 0/sup infinity/. We show that for mcVertical Barx-x 'Vertical Bar/h 1 and e 2 at x and x ', respectively, is given by V(Vertical Barx-x'Vertical Bar)approx. =(e 1 e 2 / 4πVertical Barx-x'Vertical Bar) [q 1 (α)-q 2 (α)mcVertical Barx-x'Vertical Bar / h+O(m 2 c 2 Vertical Barx-x'Vertical Bar 2 /h 2 )], where 1 1 (α) 2 (α)< infinity
Communication: Random phase approximation renormalized many-body perturbation theory
International Nuclear Information System (INIS)
Bates, Jefferson E.; Furche, Filipp
2013-01-01
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations
Source Localization by Entropic Inference and Backward Renormalization Group Priors
Directory of Open Access Journals (Sweden)
Nestor Caticha
2015-04-01
Full Text Available A systematic method of transferring information from coarser to finer resolution based on renormalization group (RG transformations is introduced. It permits building informative priors in finer scales from posteriors in coarser scales since, under some conditions, RG transformations in the space of hyperparameters can be inverted. These priors are updated using renormalized data into posteriors by Maximum Entropy. The resulting inference method, backward RG (BRG priors, is tested by doing simulations of a functional magnetic resonance imaging (fMRI experiment. Its results are compared with a Bayesian approach working in the finest available resolution. Using BRG priors sources can be partially identified even when signal to noise ratio levels are up to ~ -25dB improving vastly on the single step Bayesian approach. For low levels of noise the BRG prior is not an improvement over the single scale Bayesian method. Analysis of the histograms of hyperparameters can show how to distinguish if the method is failing, due to very high levels of noise, or if the identification of the sources is, at least partially possible.
Renormalization group flow of entanglement entropy on spheres
Energy Technology Data Exchange (ETDEWEB)
Ben-Ami, Omer; Carmi, Dean [Raymond and Beverly Sackler Faculty of Exact Sciences School of Physics and Astronomy,Tel-Aviv University, Ramat-Aviv 69978 (Israel); Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)
2015-08-12
We explore entanglement entropy of a cap-like region for a generic quantum field theory residing in the Bunch-Davies vacuum on de Sitter space. Entanglement entropy in our setup is identical with the thermal entropy in the static patch of de Sitter, and we derive a simple relation between the vacuum expectation value of the energy-momentum tensor trace and the RG flow of entanglement entropy. In particular, renormalization of the bare couplings and logarithmic divergence of the entanglement entropy are interrelated in our setup. We confirm our findings by recovering known universal contributions for a free field theory deformed by a mass operator as well as obtain correct universal behaviour at the fixed points. Simple examples of entanglement entropy flows are elaborated in d=2,3,4. In three dimensions we find that while the renormalized entanglement entropy is stationary at the fixed points, it is not monotonic. We provide a computational evidence that the universal ‘area law’ for a conformally coupled scalar is different from the known result in the literature, and argue that this difference survives in the limit of flat space. Finally, we carry out the spectral decomposition of entanglement entropy flow and discuss its application to the F-theorem.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
The renormalized action principle in quantum field theory
International Nuclear Information System (INIS)
Balasin, H.
1990-03-01
The renormalized action principle holds a central position in field theory, since it offers a variety of applications. The main concern of this work is the proof of the action principle within the so-called BPHZ-scheme of renormalization. Following the classical proof given by Lam and Lowenstein, some loopholes are detected and closed. The second part of the work deals with the application of the action principle to pure Yang-Mills-theories within the axial gauge (n 2 ≠ 0). With the help of the action principle we investigate the decoupling of the Faddeev-Popov-ghost-fields from the gauge field. The consistency of this procedure, suggested by three-graph approximation, is proven to survive quantization. Finally we deal with the breaking of Lorentz-symmetry caused by the presence of the gauge-direction n. Using BRST-like techniques and the semi-simplicity of the Lorentz-group, it is shown that no new breakings arise from quantization. Again the main step of the proof is provided by the action principle. (Author, shortened by G.Q.)
Effective field renormalization group approach for Ising lattice spin systems
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
Renormalized sum rules for structure functions of heavy meson decays
International Nuclear Information System (INIS)
Grozin, A.G.; Korchemsky, G.P.
1996-01-01
We consider the properties of the structure functions of inclusive heavy meson decays B→X c and treat the c quark mass as a free parameter. We show that in two extreme cases of heavy and light c quarks the structure functions of heavy-heavy and heavy-light transitions are given by a Fourier transform of the matrix elements of Wilson lines containing a timelike and a lightlike segment, correspondingly. Using the renormalization properties of Wilson lines we find the dependence of the structure functions on the factorization scale, the structure function of the heavy-heavy transition is renormalized multiplicatively, while that of the heavy-light transition obeys the GLAP-type evolution equation. We propose a generalization of the sum rules for the moments of the structure functions (Bjorken, Voloshin, and the open-quote open-quote third close-quote close-quote sum rules) with a soft exponential factorization cutoff, which correctly incorporates both perturbative and nonperturbative effects. We analyze nonperturbative corrections by first considering infrared renormalon contributions to the Wilson lines. Uncertainties induced by the leading renormalon pole at u=1/2 are exactly canceled by a similar uncertainty in the heavy quark pole mass. The leading nonperturbative corrections associated with the next renormalon at u=1 are parametrized by the matrix element μ π 2 which is proportional to the heavy quark kinetic energy. copyright 1996 The American Physical Society
A non-renormalization theorem for conformal anomalies
International Nuclear Information System (INIS)
Petkou, Anastasios; Skenderis, Kostas
1999-01-01
We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
Energy Technology Data Exchange (ETDEWEB)
Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)
1975-01-01
With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.
Renormalization group improved Yennie-Frautschi-Suura theory for Z0 physics
International Nuclear Information System (INIS)
Ward, B.F.L.
1987-06-01
Described is a recently developed renormalization group improved version of the program of Yennie, Frautschi and Suura for the exponentiation of infrared divergences in Abelian gauge theories. Particular attention is paid to the relevance of this renormalization group improved exponentiation to Z 0 physics at the SLC and LEP
Renormalization Group Invariance of the Pole Mass in the Multi-Higgs System
Kim, Chungku
2018-06-01
We have investigated the renormalization group running of the pole mass in the multi-Higgs theory in two different types of gauge fixing conditions. The pole mass, when expressed in terms of the Lagrangian parameters, turns out to be invariant under the renormalization group with the beta and gamma functions of the symmetric phase.
Application of 't Hooft's renormalization scheme to two-loop calculations 230
International Nuclear Information System (INIS)
Vladimirov, A.A.
1975-01-01
The advantages of the Hooft scheme for asymptotic calculations in the renormalization group have been demonstrated. Two-loop calculations have been carried out in three renormalized models: in scalar electrodynamics, in a pseudoscalar Yukawa theory and in the Weiss-Zumino supersymmetrical model [ru
A low-energy β-function in a finite super-Yang-Mills model with multiple mass scales
International Nuclear Information System (INIS)
Foda, O.; Helayel-Neto, J.A.
1985-01-01
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass μ. The requirement that the S-matrix elements be independent of μ leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing β-function. (orig.)
Low-energy. beta. -function in a finite super-Yang-Mills model with multiple mass scales
Energy Technology Data Exchange (ETDEWEB)
Foda, O.; Helayel-Neto, J.A. (International Centre for Theoretical Physics, Trieste (Italy))
1985-02-14
We compute the one-loop contribution to the low-energy light-fermion gauge coupling in a finite supersymmetric gauge theory with two mass scales: a heavy mass that breaks an initial N=4 supersymmetry down to N=2, but respects the finiteness, and a light mass that, for simplicity, is set to zero. We find that coupling grows with the mass of the heavy intermediate states. Hence the latter do not decouple at low energies, leading to large logarithms that invalidate low-energy perturbation theory. Consequently, further manipulations are required to obtain a meaningful perturbative expansion. Enforcing decoupling through finite renormalizations, that absorb the heavy mass effects into a redefinition of the parameters of the lagrangian, introduces an arbitrary subtraction mass ..mu... The requirement that the S-matrix elements be independent of ..mu.. leads to a non-trivial renormalization-group equation for the low-energy theory, with a non-vanishing ..beta..-function.
Metastability of the (φiφi)32 model at finite temperature and density
International Nuclear Information System (INIS)
Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.
1996-11-01
Using concurrently the dimensional and analytic regularization methods we applied the Gross-Neveu model at finite temperature and density (chemical potential) in a D-dimensional spacetime. The renormalized effective potential is presented at the one-loop approximation. In the case of non-zero chemical potential we show that the effective potential acquires an imaginary part, which means that the system becomes metastable, indicating the possibility of a first phase transition. (author)
Two-loop renormalization in the standard model, part I. Prolegomena
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ferroglia, A. [Albert-Ludwigs-Univ., Freiburg (Germany). Fakultat fur Phys.]|[Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Passera, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN, Sezione di Padova (Italy); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[INFN, Sezione di Torino (Italy)
2006-12-15
In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. In part III, a renormalization scheme will be introduced, connecting the renormalized quantities to an input parameter set of (pseudo-)experimental data, critically discussing renormalization of a gauge theory with unstable particles. (orig.)
Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions
DEFF Research Database (Denmark)
Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi
2017-01-01
We perform the renormalization of different types of Two-Higgs-Doublet Models for the calculation of observables at next-to-leading order. In detail, we suggest four different renormalization schemes based on on-shell renormalization conditions as far as possible and on M S ¯ prescriptions for th...
International Nuclear Information System (INIS)
Fucito, F.; Tanzini, A.; Sorella, S.P.
1997-07-01
The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author)
Topological field theory: zero-modes and renormalization
International Nuclear Information System (INIS)
Ouvry, S.; Thompson, G.
1989-09-01
We address the issue of the non-triviality of the observables in various Topological Field Theories by means of the explicit introduction of the zero-modes into the BRST algebra. Supersymmetric quantum mechanics and Topological Yang-Mills theory are dealt with in detail. It is shown that due to the presence of fermionic zero-modes the BRST algebra may be dynamically broken leading to non trivial observables albeit the local cohomology being trivial. However the metric and coupling constant independence of the observables are still valid. A renormalization procedure is given that correctly incorporates the zero-modes. Particular attention is given to the conventional gauge fixing in Topological Yang-Mills theories, with emphasis on the geometrical character of the fields and their role in the non-triviality of the observables
Perturbative renormalization and effective Langrangians in Φ44
International Nuclear Information System (INIS)
Keller, G.; Salmhofer, M.; Kopper, C.
1992-01-01
Polchinski's proof of the perturbative renormalizability of massive Euclidean Φ 4 4 is considerably simplified, in some respects clarified and extended to general renormalization conditions and Green's functions with arbitrary external momenta. Φ 3 4 and Φ 2 4 are also dealt with. Moreover we show that adding e.g. Φ≥ 5 type interactions to the bare Lagrangian, with coupling constants vanishing at least as some inverse power of the UV-cutoff, does not alter the Green's functions in the limit where the UV-cutoff is removed. Establishing the validity of the action principle in this formalism has not yet been possible, but some partial results are obtained. (orig.)
The renormalized theory of beam-beam interaction
International Nuclear Information System (INIS)
Chin, Yong Ho.
1988-06-01
A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs
Momentum-subtraction renormalization techniques in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-10-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.
Momentum-subtraction renormalization techniques in curved space-time
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should
Gauge mediation scenario with hidden sector renormalization in MSSM
International Nuclear Information System (INIS)
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2010-01-01
We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5 minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.
Gauge mediation scenario with hidden sector renormalization in MSSM
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2010-02-01
We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5¯ minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.
High Precision Renormalization Group Study of the Roughening Transition
Hasenbusch, M; Pinn, K
1994-01-01
We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.
Improved quasi parton distribution through Wilson line renormalization
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, Center for Theoretical Sciences, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 106, Taiwan (China); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ji, Xiangdong [INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China); Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Zhang, Jian-Hui, E-mail: jianhui.zhang@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2017-02-15
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Improved quasi parton distribution through Wilson line renormalization
Directory of Open Access Journals (Sweden)
Jiunn-Wei Chen
2017-02-01
Full Text Available Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Resummation and renormalization in effective theories of particle physics
Jakovac, Antal
2015-01-01
Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...
A geometric renormalization group in discrete quantum space-time
International Nuclear Information System (INIS)
Requardt, Manfred
2003-01-01
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality
Mutual information, neural networks and the renormalization group
Koch-Janusz, Maciej; Ringel, Zohar
2018-06-01
Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Rigorous Free-Fermion Entanglement Renormalization from Wavelet Theory
Directory of Open Access Journals (Sweden)
Jutho Haegeman
2018-01-01
Full Text Available We construct entanglement renormalization schemes that provably approximate the ground states of noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms, which are approximately related by a “half-shift”: translation by half a unit cell. The presence of the Fermi surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the entanglement in the ground state. We show how the error in the approximation can be controlled without ever performing a variational optimization.
Irreversibility of world-sheet renormalization group flow
International Nuclear Information System (INIS)
Oliynyk, T.; Suneeta, V.; Woolgar, E.
2005-01-01
We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order in α ' in string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases monotonically along the flow, based on Perelman's Ricci flow entropy. One consequence is the absence of periodic solutions, and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov's c-theorem for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodchikov C-function)
Functional renormalization group study of the Anderson–Holstein model
International Nuclear Information System (INIS)
Laakso, M A; Kennes, D M; Jakobs, S G; Meden, V
2014-01-01
We present a comprehensive study of the spectral and transport properties in the Anderson–Holstein model both in and out of equilibrium using the functional renormalization group (fRG). We show how the previously established machinery of Matsubara and Keldysh fRG can be extended to include the local phonon mode. Based on the analysis of spectral properties in equilibrium we identify different regimes depending on the strength of the electron–phonon interaction and the frequency of the phonon mode. We supplement these considerations with analytical results from the Kondo model. We also calculate the nonlinear differential conductance through the Anderson–Holstein quantum dot and find clear signatures of the presence of the phonon mode. (paper)
Higgs boson, renormalization group, and naturalness in cosmology
International Nuclear Information System (INIS)
Barvinsky, A.O.; Kamenshchik, A.Yu.; Kiefer, C.; Starobinsky, A.A.; Steinwachs, C.F.
2012-01-01
We consider the renormalization group improvement in the theory of the Standard Model (SM) Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity. At the one-loop level with the running of constants taken into account, it leads to a range of the Higgs mass that is entirely determined by the lower WMAP bound on the cosmic microwave background (CMB) spectral index. We find that the SM phenomenology is sensitive to current cosmological data, which suggests to perform more precise CMB measurements as a SM test complementary to the LHC program. By using the concept of a field-dependent cutoff, we show the naturalness of the gradient and curvature expansion in this model within the conventional perturbation theory range of the SM. We also discuss the relation of these results to two-loop calculations and the limitations of the latter caused by parametrization and gauge dependence problems. (orig.)
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2010-01-01
It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.
Fermi-edge singularity and the functional renormalization group
Kugler, Fabian B.; von Delft, Jan
2018-05-01
We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.
Evolution of topological features in finite antiferromagnetic Heisenberg chains
International Nuclear Information System (INIS)
Chen Changfeng
2003-01-01
We examine the behavior of nonlocal topological order in finite antiferromagnetic Heisenberg chains using the density matrix renormalization group techniques. We find that chains with even and odd site parity show very different behavior in the topological string order parameter, reflecting interesting interplay of the intrinsic magnetic correlation and the topological term in the chains. Analysis of the calculated string order parameter as a function of the chain length and the topological angle indicates that S=1/2 and S=1 chains show special behavior while all S>1 chains have similar topological structure. This result supports an earlier conjecture on the classification of quantum spin chains based on an analysis of their phase diagrams. Implications of the topological behavior in finite quantum spin chains are discussed
International Nuclear Information System (INIS)
Maris, Th.A.J.
1976-01-01
The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt
Finite-size scaling in two-dimensional superfluids
International Nuclear Information System (INIS)
Schultka, N.; Manousakis, E.
1994-01-01
Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments
Finite Unification: Theory, Models and Predictions
Heinemeyer, S; Zoupanos, G
2011-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...
International Nuclear Information System (INIS)
Acharya, B.S.; Douglas, M.R.
2006-06-01
We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)
Nilpotent -local finite groups
Cantarero, José; Scherer, Jérôme; Viruel, Antonio
2014-10-01
We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
Renormalization group scale-setting from the action—a road to modified gravity theories
International Nuclear Information System (INIS)
Domazet, Silvije; Štefančić, Hrvoje
2012-01-01
The renormalization group (RG) corrected gravitational action in Einstein–Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein–Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein–Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor. (paper)
Renormalization group scale-setting from the action—a road to modified gravity theories
Domazet, Silvije; Štefančić, Hrvoje
2012-12-01
The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.
Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.
2017-08-01
We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.
Differential regularization and renormalization: a new method of calculation in quantum field theory
International Nuclear Information System (INIS)
Freedman, D.Z.; Johnson, K.; Latorre, J.I.
1992-01-01
Most primitively divergent Feynman diagrams are well defined in x-space but too singular at short distances for transformation to p-space. A new method of regularization is developed in which singular functions are written as derivatives of less singular functions which contain a logarithmic mass scale. The Fourier transform is then defined by formal integration by parts. The procedure is extended to graphs with divergent subgraphs. No explicit cutoff or counterterms are required, and the method automatically delivers renormalized amplitudes which satisfy Callan-Symanzik equations. These features are thoroughly explored in massless φ 4 theory through 3-loop order, and the method yields explicit functional forms for all amplitudes with less difficulty than conventional methods which use dimensional regularization in p-space. The procedure also appears to be compatible with gauge invariance and the chiral structure of the standard model. This aspect is tested in extensive 1-loop calculations which include the Ward identity in quantum electrodynamics, the chiral anomaly, and the background field algorithm in non-abelian gauge theories. (orig.)
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits
Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.
1983-09-01
A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.
Strong renormalization scheme dependence in τ-lepton decay: Fact or fiction?
International Nuclear Information System (INIS)
Chyla, J.
1995-01-01
The question of the renormalization scheme dependence of the τ semileptonic decay rate is examined in response to a recent criticism. Particular attention is payed to a distinction between a consistent quantitative description of this dependence and the actual selection of a subset of ''acceptable'' renormalization schemes. It is pointed out that this criticism is valid only within a particular definition of the ''strength'' of the renormalization scheme dependence and should not discourage further attempts to use the semileptonic τ decay rate for quantitative tests of perturbative QCD
Renormalization-group theory for the eddy viscosity in subgrid modeling
Zhou, YE; Vahala, George; Hossain, Murshed
1988-01-01
Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.