WorldWideScience

Sample records for renewing nuclear power

  1. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  2. Renewable Energy versus Nuclear Power (Summary)

    International Nuclear Information System (INIS)

    Mraz, G.; Wallner, A.

    2014-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas- emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where our money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The recent state aid case for the construction of the nuclear power plant Hinkley Point in United Kingdom serves as the model for the nuclear option. New milestone in nuclear state aid: Hinkley Point It is planned to construct two additional reactors at Hinkley Point. The EU estimates the total capital needed for construction at € 43 billion. The UK government intends to grant state aid for this project; in accordance with EU state aid rules, the suggested state aid scheme was submitted to the EU Commission for approval as public funds would be used for a company. A central part of the state aid scheme is the Contract for Difference which runs for 35 years. According to this contract, the state commits to compensating any difference between the electricity market price (reference price) and the negotiated Strike Price. Consequently, the plant operator, NNB Generation Company Limited (NNBG), has received a long term price guarantee which, in principle, is analogous to the feed-in tariffs commonly used to support renewable energies. The Strike Price for the first unit to be constructed has been set at € 108 per MWh (with

  3. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  4. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Science.gov (United States)

    2012-06-08

    ... Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Spent Fuel Storage Installation (ISFSI) at the Calvert Cliffs Nuclear Power Plant site near Lusby... Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to the NRC to renew NRC License SNM-2505...

  5. 78 FR 37281 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses

    Science.gov (United States)

    2013-06-20

    ... factors: (1) License renewal will involve nuclear power plants for which the environmental impacts of...) Changes in the environment around nuclear power plants are gradual and predictable. The 1996 GEIS improved... environmental impacts that may occur from renewing commercial nuclear power plant operating licenses; (2...

  6. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Science.gov (United States)

    2013-06-20

    ... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...

  7. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Science.gov (United States)

    2013-07-31

    ... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear... nuclear power plant. Compliance with the provisions of the rule is required by June 20, 2014. This... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to...

  8. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    International Nuclear Information System (INIS)

    Park, Soo Ho; Jung, Woo Jin; Kim, Tae Hwan; Lee, Sang Yong Tom

    2016-01-01

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea

  9. Can Renewable Energy Replace Nuclear Power in Korea? An Economic Valuation Analysis

    Directory of Open Access Journals (Sweden)

    Soo-Ho Park

    2016-04-01

    Full Text Available This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP. For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW per month (approx. US $85. Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion. Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  10. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  11. The Role of License Renewal in PLiM for U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Young, G.G.

    2012-01-01

    At the 2nd International Symposium on Nuclear Power Plant Life Management (PLiM) in 2007, it was reported that the NRC had approved renewal of operating licenses for 48 nuclear units, which would allow operation for up to 60 years (i.e., an additional 20 years from the original 40-year license term). Of the 104 operating nuclear units in the U.S. in 2007, it was anticipated that almost 100% would eventually pursue license renewal. At that time, it was also concluded that the regulatory process was stable and predictable for license renewal, and that successful PLiM activities were helping to ensure the safety, economic, and political factors in the U.S. remained favorable for continued success with license renewal. The status of license renewal in 2012 is even better than it was in 2007. As of April 2012, the NRC has approved renewal of the operating licenses for 71 nuclear units and has applications under review for 15 more units. In addition, nuclear plant owners of at least 14 more units have announced plans to submit license renewal applications over the next few years. This brings the total of renewed licenses and announced plans for license renewal to 96% of the 104 currently operating nuclear units in the U.S. The prediction that almost 100% would eventually pursue license renewal is assured. This positive trend for long term operation of nuclear power plants in the U.S. is attributed to: (1) the success of PLiM activities in achieving an excellent safety record for the nuclear power industry and in ensuring on-going positive economics for nuclear plant operation, and (2) the stable and predictable regulatory process for license renewal. U.S. efforts are now underway to consider long term operation for more than 60 years and the process of preparing a second round of license renewals for up to 80 years of operation is likely to begin within the next few years. (author)

  12. Limitation of fusion power plant installation on future power grids under the effect of renewable and nuclear power sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shutaro, E-mail: takeda.shutarou.55r@st.kyoto-u.ac.jp [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Sakurai, Shigeki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Kasada, Ryuta; Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan)

    2016-11-01

    Graphical abstract: - Highlights: • Future power grids would be unstable due to renewable and nuclear power sources. • Output interruptions of fusion plant would cause disturbances to future grids. • Simulation results suggested they would create limitations in fusion installation. • A novel diagram was presented to illustrate this suggested limitation. - Abstract: Future power grids would be unstable because of the larger share of renewable and nuclear power sources. This instability might bring some additional difficulties to fusion plant installation. Therefore, the authors carried out a quantitative feasibility study from the aspect of grid stability through simulation. Results showed that the more renewable and nuclear sources are linked to a grid, the greater disturbance the grid experiences upon a sudden output interruption of a fusion power plant, e.g. plasma disruption. The frequency deviations surpassed 0.2 Hz on some grids, suggesting potential limitations of fusion plant installation on future grids. To clearly show the suggested limitations of fusion plant installations, a novel diagram was presented.

  13. Nuclear power : decline, prolongation or renewal?

    International Nuclear Information System (INIS)

    Goldberg, Nicolas

    2014-01-01

    In an international context still under the shock of Fukushima, and at a time when France is committed to an energy transition, the details of which still have to be decided, the future of nuclear power in the world is provoking intense and contradictory debate. What to expert: a decline, business as usual, or a renewal of the sector throughout its value chain? Some answers are to be found in an analysis by Colombus Consulting. (author)

  14. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility Operating License No. DPR-46 for an... Power District (NPPD), the operator of the Cooper Nuclear Station (CNS). Renewed facility operating...

  15. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  16. The art and trend of nuclear power plants aging management and licenses renewal activity In USA

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zhang Mengyi

    2014-01-01

    This paper briefly introduced the history and the art of nuclear power plants licenses renewal in United State. The aims, working scope, methodology, the art and trend of aging management and its role in license renewal process in United State nuclear power plants license renewal process were discussed in details. Furthermore, the aging management current research focus in United State was described. Then, take into account the AP serials Pressurized Water Reactor and nuclear safety requirements in the regulatory and safety guide in China, some suggestions and recommendation on nuclear power plants aging management were introduced, which will be helpful when we developed related aging management works in China. (authors)

  17. Public perspectives on proposed license renewal regulations for nuclear power plants

    International Nuclear Information System (INIS)

    Ligon, D.; Hughes, A.; Seth, S.

    1991-01-01

    On 17 July 1990, the U.S Nuclear Regulatory Commission (NRC) issued for public comment its proposed rule for renewing the operating licenses of nuclear power plants (55 FR 29043). This solicitation marked the fourth time that NRC has Invited public comments on its efforts to develop regulatory requirements for re licensing nuclear power plants. Previously, NRC solicited public comments on establishing a policy statement on plant life extension, and on the issues and options for license renewal discussed in NUREG-1317. On 13-14 November 1989, NRC held a public workshop where the NRC staff discussed a conceptual approach to the rule and solicited written comments on the regulatory philosophy, conceptual rule, and on certain questions. NRC is taking into account all comments received in its development of the final rule which is scheduled for issuance in the summer of 1991

  18. Nuclear power in societal flux. The renewal of nuclear power in Finland in the context of global concern over energy security

    International Nuclear Information System (INIS)

    Litmanen, Tapio

    2010-01-01

    This paper will address nuclear power's relationship with societal flux. The history of nuclear power indicates that this type of technology is unusually to societal flux. Instability in nuclear power's societal status is created by the ambiguous nature of the technology itself, changing public opinion, the fluidity of political judgments, the flow of cultural meanings attaching to nuclear power and the unpredictability of media processing. Even though the risks of nuclear technology are highly regulated by the companies themselves and by the state and public administration, it remains capable of inflaming political debate and igniting controversy. One public opinion survey after another reveals how divisive nuclear power is. Unlike most other industrial activities nuclear power decision-making involves extraordinary levels of political consideration, societal processing and cultural valuation by stakeholders and the media. In order to illustrate the idea of societal flux, the paper will deal with major shifts in Finnish nuclear power policy since the 1950s, focusing particularly, however, on changes between 1986-2010. The recent changes in the country's nuclear power policy prove interesting having proceeded from a phase of rejection during the period 1986-1993, to a revival between 1994-2002 and renewal between 2002-2009. The rejection period ended in 1993 during which time the Parliament of Finland had rejected the further construction of nuclear power plants in the wake of the Chernobyl accident. In less than a decade, however, nuclear power policy changed. The revival period ended in 2001 as Parliament ratified a Decision in Principle for the final disposal of spent nuclear fuel and in 2002 for the construction of a new nuclear power plant unit, Olkiluoto 3. Characteristic of the ongoing renewal period is that in 2008-2009 the nuclear industry submitted three further applications for the construction of new NPP units. Thus Finland today has acquired a

  19. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix

    International Nuclear Information System (INIS)

    Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne

    2016-01-01

    The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.

  20. Is nuclear economical in comparison to renewables?

    International Nuclear Information System (INIS)

    Suna, Demet; Resch, Gustav

    2016-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where public money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The comparison is conducted exemplarily for the United Kingdom (UK) at a country level and for the EU 28 overall. The recent state aid case for the construction of the Hinkley Point nuclear power plant (NPP) in the UK serves as the model for the nuclear option. - Highlights: • State aids for new nuclear power is compared with incentives for renewables. • Hinkley Point C in the UK is considered as example for new nuclear power. • Comparison is conducted for the UK at a country level and for the EU 28 overall. • Analysis shows that renewable energies are more economical than nuclear power.

  1. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  2. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  3. Can nuclear power and renewable energies be friends? - 15555

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Colbert, C.; Houghton, Z.; Snuggerud, R.; Gaston, J.W.; Empey, M.

    2015-01-01

    The increasing penetration of renewable energies, especially wind generation, have dramatically changed the economics and realities of grid management in ways that now encourage some level of load-following capabilities for historically base-load plants, including nuclear. The NuScale small modular reactor design currently under development in the United States is well suited for integration with renewable energies because of several design features related to the nuclear steam supply system, the power conversion system, and the overall plant architecture. The fundamental building block of the NuScale plant is the NuScale power module. The power module consists of a small 160 MWt reactor core housed with other primary system components in an integral reactor pressure vessel and surrounded by a steel containment pressure vessel, which is immersed in a large pool of water. Several power modules (as many as 12) are co-located in the same pool to comprise a single plant. A dedicated turbine/generator system is coupled to each module to provide a gross electrical power of 50 MWe. The module design allows changes to reactor power down to 40% using only control rod movement (no boron adjustments) to increase power maneuverability. The condenser is designed to accommodate full steam bypass, thus allowing rapid changes to system output while minimizing the impact to the reactor system, which can be maintained at full power. The multi-module nature of a NuScale plant allows the plant output to be varied in 3 ways spanning a wide range of different time frames: (1) taking one or more modules offline for extended periods of sustained wind output, (2) adjusting reactor power for one or more modules for intermediate periods to compensate for hourly changes in wind generation, or (3) bypassing the steam turbine for rapid responses to wind generation variations. Results are presented from a recent analysis of nuclear-wind integration that utilized historical wind generation data

  4. Analysis of license renewal at U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nagayama, Munehiro

    2017-01-01

    The U.S. NRC had implemented the rules for LR (License Renewal) of NPPs (Nuclear Power Plants) and the LR rules allow plus 20-year operation of NPPs adding to initial 40-year term for reactor license. The U.S. NRC has already issued ROL (Renewed Operating License) for over forty NPPs. The Atomic Energy Act do not limit the number of LR, so the fleet of U.S. Nuclear, including agency, industry and academy, is continuing efforts to develop rules for SLR (Subsequent License Renewal). The framework of SLR rules has been developed and there is a plan of implementation of SLR for a pilot plant on FY 2018. The total operating term of a SLR plant is 80-year. The LR/SLR of NPPs is effective for stable power supply, greenhouse gas suppression, maintenance of technology, and securing employment. These profits will return to society. It is important to maintain required function of SSCs (Structure, System, and Components) for period of long term operation of NPPs. The U.S. fleet has established integrated ageing management strategy and each NPPs is developing their maintenance plans for long term operation. These adequate maintenance plans may enable to achieve good capacity factor of LR applied NPPs. In this report, domestic LR position will be considered by referring the good performance of U.S. NPPs which entered long term operation beyond 40-year and some conditions such as energy security. (author)

  5. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  6. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  7. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  8. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    International Nuclear Information System (INIS)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act

  9. Environmental assessment for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    The Atomic Energy Act and Nuclear Regulatory Commission (NRC) regulations provide for the renewal of nuclear power plant operating licenses beyond their initial 40-year term. The Act and NRC regulations, however, do not specify the procedures, criteria, and standards that must be satisfied in order to renew a license. The NRC is promulgating a rule (10 CFR Part 54) to codify such requirements prior to the receipt of applications for license renewal. The NRC has assessed the possible environmental effects of promulgating requirements in 10 CFR Part 54 now rather than employing such requirements in an ad hoc manner in individual licensing actions. The final part 54 rule requires the development of information and analyses to identify aging problems of systems, structures, and components unique to license renewal that will be of concern during the period of extended operation and will not be controlled by existing effective programs. In general, licensee activities for license renewal may involve replacement, refurbishment, inspection, testing, or monitoring. Such actions will be generally be within the range of similar actions taken for plants during the initial operating term. These actions would be primarily confined within the plants with potential for only minor disruption to the environment. It is unlikely that these actions would change the operating conditions of plants in ways that would change the environmental effects already being experienced. Relicensing under existing regulations would also be primarily focused on aging degradation and would likely result in requirements similar to those that will result from relicensing under the final rule

  10. Analyses of operating license renewal for nuclear power plants in USA

    International Nuclear Information System (INIS)

    Chiba, Goro

    2007-01-01

    Although the originally-approved operating period for nuclear power plants in the U.S. is 40 years, the operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, in Japan, plant life management is carried out assuming long-term operation of the plant, and the electric power company submits reports, such as aging technology assessment, and receives evaluation by the authorities. In this paper, the situation regarding plant life management was investigated and a Japan-U.S. comparison was made. As a result, differences were found in the procedure, the background, the manpower, the review period, etc. in Japan and the U.S. but there is no difference between Japan and the U.S. in aiming for a check of the integrity of components, assuming long-term operation for 60 years. Moreover, trend analysis using the overseas fault database of INSS examined the effect on the preservation activities of a license renewal. As a result, there is a tendency for license renewal not to be applied for in units in which the number of aging faults increases with the increase in elapsed years. The U.S. license renewal system was considered to be effective in plant life management, and suggested the validity of plant life management in Japan which is employing the equivalent system to the U.S. (author)

  11. Close or renew? Factors affecting local community support for rebuilding nuclear power plants in the Czech Republic

    International Nuclear Information System (INIS)

    Frantál, Bohumil; Malý, Jiří

    2017-01-01

    Rebuilding and upgrading of existing nuclear power plants represent a great energy policy challenge today. In this paper, factors that affect local community support for the rebuilding of an existing nuclear power plant are explored using a regression analysis model. It is based on a survey involving nearly 600 residents of twelve municipalities located in the vicinity of the Dukovany power plant in the Czech Republic. Nearly two thirds of local population support the rebuilding of the plant. The support for rebuilding is not directly affected by distance of residence from the power plant or perceptions of its local economic impacts, but is more influenced by general perceptions of pros of nuclear power. Work in the power plant, perception of nuclear power as a clean energy contributing to climate change mitigation and negative attitude to the renewable energy development are strongest predictors of the support. In terms of energy policy implications, it seems that the education of the public and awareness of nuclear power plants as a clean, safe and landscape compatible system of energy production are more important for increasing acceptance of rebuilding projects than spatial distribution of economic benefits to local communities. - Highlights: • Predictors of support for nuclear power plant (NPP) rebuilding are explored. • Support is not affected by distance or perception of local economic impacts. • Support is affected by general perceptions of pros of NPPs. • Support is determined by perception of NPPs as a clean energy. • Support is correlated with a negative attitude to renewable energy promotion.

  12. Renewable Energy. The Power to Choose.

    Science.gov (United States)

    Deudney, Daniel; Flavin, Christopher

    This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…

  13. Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects

    International Nuclear Information System (INIS)

    Supersberger, Nikolaus; Fuehrer, Laura

    2011-01-01

    The North African countries Morocco, Algeria, Tunisia, Libya and Egypt have been and are currently experiencing rapid growth in energy demand. This development confronts their political leaders with the question of how to expand or diversify their countries' generation capacities. In this context, renewable energies and nuclear power constitute options that have rarely been exploited so far in the region. This article analyzes the drawbacks and benefits of both alternatives, with a special focus on import and export dynamics. When attempting to make the strategic decision between renewables and atomic power, North African regional specifics and circumstances have to be taken into account. Hence, in a first step, the article characterizes the energy systems of the North African countries and presents scenarios for their future development. In a second step, it scrutinizes the energy challenges these states face in terms of domestic concerns and foreign affairs. Finally, a case study of Algeria is used to demonstrate how renewable energies, but not nuclear power, are able to respond to North African energy challenges. - Research highlights: → Using nuclear power would require fuel imports over the entire operation time. → Hence, energy exporters (Algeria, Libya) would become dependent on fuel imports. → Renewable energies can make North African countries less fuel import dependent. → Nuclear technologies would have to be imported over the whole life cycle of plants. → Domestic production for renewables technologies could be established after a first phase of technology imports.

  14. Evaluation of the contribution of license renewal of nuclear power plants to fault reduction in the U.S

    International Nuclear Information System (INIS)

    Chiba, Goro

    2008-01-01

    Although nuclear power plants in the U.S. were originally permitted to operate for 40 years, operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, plant life management of nuclear power plants in Japan is carried out assuming long-term operation, and the licensee submits aging technology assessment reports before the plant has been operating commercially for 30 years, and then every ten years thereafter, and receives an evaluation by the authorities. In this paper, trend analysis using the INSS database on faults at nuclear power plants overseas, state of implementation of relevant aging management programs, and the effects of license renewal on preservation activities are examined. It is shown that the aging management program identified that many of the cases of fatigue, FAC, and a closed cycle cooling system have been addressed. As a result of analyzing the fault number for each unit, the number of aging faults trends to decrease after applying for license renewal. Therefore, the U.S. license renewal system is considered to be effective for plant life management, and hence the plant life management in Japan, which is substantially equivalent to the U.S. system, is valid. (author)

  15. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  16. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  17. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  18. Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission's environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC's review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative

  19. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  20. Renewing the licenses of US nuclear plants: An assessment of the socioeconomic impacts

    International Nuclear Information System (INIS)

    Schweitzer, M.; Saulsbury, J.W.; Schexnayder, S.M.

    1993-01-01

    In recent years, increased national attention has been focused on the potential effects of renewing, or not renewing, the licenses of nuclear power plants as the oldest of them approach the end of the 40-year operating period allowed by their original licenses. As part of a larger study for the US Nuclear Regulatory commission (NRC), the authors conducted an assessment of the potential socioeconomic impacts to those communities throughout the country in which nuclear power plants are located and which, therefore, are most directly affected by renewal of nuclear power plant licenses. This paper focuses on six key issues that are traditionally considered essential in the assessment of social impacts: Population; housing; tax payments; local public services; land use and development; and economic structure

  1. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, Larry D.; Harrison, Dennis L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE co-sponsored with the Electric Power Research Institute (EPRI) 'pilot-plant' efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankees Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. These include (1) development of a methodology for identifying systems, structures, and components important to license renewal, (2) development of industry reports that describe industry-accepted approaches for license renewal of ten important classes of equipment, (3) development of technical basis to support license renewal, and (4) interaction/negotiation with the NRC through the Nuclear Management Resources Council (NUMARC) regarding appropriate regulatory requirements for license renewal. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions and ongoing activities of the DOE effort

  2. Department of Energy interest and involvement in nuclear plant license renewal activities

    International Nuclear Information System (INIS)

    Bustard, L.D.; Harrison, D.L.

    1991-01-01

    Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort. 18 refs

  3. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  4. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  5. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    OpenAIRE

    Morel, Jorge; Obara, Shin’ya; Morizane, Yuta

    2015-01-01

    This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to...

  6. The Economic Potential of Two Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Tightly coupled nuclear-renewable hybrid energy systems (N-R HESs) are an option that can generate zero-carbon, dispatchable electricity and provide zero-carbon energy for industrial processes at a lower cost than alternatives. N-R HESs are defined as systems that are managed by a single entity and link a nuclear reactor that generates heat, a thermal power cycle for heat to electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy. This report provides results of an analysis of two N-R HES scenarios. The first is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second is an Arizona-desalination scenario with its four subsystems a nuclear reactor, thermal power cycle, solar photovoltaics, and a desalination plant. The analysis focuses on the economics of the N-R HESs and how they compare to other options, including configurations without all the subsystems in each N-R HES and alternatives where the energy is provided by natural gas.

  7. RENEWABLE ENERGY SOURCES IN ELECTRIC-POWER IN-DUSTRY OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. M. Oleshkevich

    2014-01-01

    Full Text Available The paper investigates technical and economic indices (specific capital inputs, construction period, pay-off period, possible economically substantiated generation of electric power of electric power plants using renewable energy sources under climatic conditions ofBelarus. The indices have been compared with the data of nuclear power engineering. The most efficient directions are wind and biomass power engineering. In accordance with its technical and economic and ecological indices the biomass power engineering is more profitable than nuclear, hydro- and solar power engineering.

  8. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  9. Probabilistic life-cycle cost analysis for renewable and non-renewable power plants

    International Nuclear Information System (INIS)

    Cartelle Barros, Juan José; Lara Coira, Manuel; Cruz López, María Pilar de la; Caño Gochi, Alfredo del

    2016-01-01

    Two probabilistic models are presented to assess the costs of power plants. One of them uses requirement trees, value functions and the analytic hierarchy process. It is also based on Monte Carlo simulation. The second one is a mathematical model for calculating the levelised cost of electricity (LCOE) based on discounted cash flow techniques, and combined with Monte Carlo simulation. The results obtained with both models are compared and discussed. On the one hand, the LCOE model provides the most reliable results. These results reinforce the idea that conventional or coal, lignite, oil, natural gas and nuclear power plants are still the most competitive options, with the LCOE falling in a range of around 25 to 200 €/MWh and mean values approaching 70 €/MWh. Generally, renewable power plants obtained the worst results, with a LCOE varying from around 30 to more than 450 €/MWh. Nevertheless, this study demonstrates that renewable alternatives can compete with their conventional counterparts under certain conditions. - Highlights: • Two probabilistic models are presented to assess the costs of power plants. • Conventional power plants are still the most competitive options. • Renewable energies can compete with their conventional counterparts under certain conditions. • The model aids the decision making process in the energy policy field.

  10. Nuclear energy and its synergies with renewable energies; Le nucleaire dans ses synergies avec les renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    Carre, F. [CEA Saclay, DEN, 91 - Gif-sur-Yvette (France); Mermilliod, N. [CEA Grenoble, Dir. de la Recherche Technologique, 38 (France); Devezeaux De Lavergne, J.G. [CEA Saclay, Dir. de l' Institut de tecchnico-economie des systemes energetiques I-tese, 91 - Gif-sur-Yvette (France); Durand, S. [CEA Grenoble, European Institute of Technology -KIC InnoEnergy, 38 (France)

    2011-05-15

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  11. Deregulation and sustainable energy supply: perspectives of nuclear power and renewable energies

    International Nuclear Information System (INIS)

    Voss, A.

    2001-01-01

    In the concept expressed by the Brundtland Commission and in the Rio Declaration, sustainability incorporates the need - contradictory at first sight - to make sparing use of the environment and promote economic and social development at the same time. Future generations must not be stripped of their possibilities to live and develop. In this comprehensive interpretation, some quantitative orientation for various energy options can be obtained by means of lifetime analyses. The parameters available for evaluation are resource, environmental and economic aspects. Introducing competition and deregulation in the power industry is legitimate not only for reasons of economic theory. Experience has shown that efficient growth and careful management of scarce resources are achieved not by government planning and regulation, but by the allocation efficiency of the markets. This makes competition a key factor of sustainable development. Against this background, perspectives of nuclear power and of renewable energy sources are evaluated. (orig.) [de

  12. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  13. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  14. Positioning Nuclear Power in the Low-Carbon Electricity Transition

    Directory of Open Access Journals (Sweden)

    Aviel Verbruggen

    2017-01-01

    Full Text Available Addressing climate change requires de-carbonizing future energy supplies in an increasingly energy-dependent world. The IEA and the IPCC (2014 mention the following as low-carbon energy supply options: ‘renewable energy, nuclear power and fossil fuels with carbon capture and storage’. Positioning nuclear power in the decarbonization transition is a problematic issue and is overridden by ill-conceived axioms. Before probing these axioms, we provide an overview of five major, postwar energy-related legacies and some insight into who is engaged in nuclear activities. We check whether low-carbon nuclear power passes the full sustainability test and whether it is compatible with the unfettered deployment of variable renewable power sourced from the sun and from wind and water currents, which delivers two negative answers. We show that the best approach of the sustainable energy transition was Germany’s 2011 decision to phase out nuclear power for a fast development and full deployment of renewable power. This is the best approach for the sustainable energy transition. We offer five practical suggestions to strengthen and accelerate carbon- and nuclear-free transitions. They are related to institutional issues like the role of cost-benefit analysis and the mission of the International Atomic Energy Agency, to the costs of nuclear risks and catastrophes, and to the historical record of nuclear technology and business.

  15. Global zero-carbon energy pathways using viable mixes of nuclear and renewables

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2015-01-01

    Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO 2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person −1 year -1 ). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally

  16. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  17. Citizens’ preferences on nuclear and renewable energy sources: Evidence from Turkey

    International Nuclear Information System (INIS)

    Ertör-Akyazı, Pınar; Adaman, Fikret; Özkaynak, Begüm; Zenginobuz, Ünal

    2012-01-01

    Based on data from a face-to-face survey of 2422 residents from urban Turkey, this paper presents an analysis of citizens’ preferences in Turkey on nuclear and renewable energy sources. Findings indicate that opposition to nuclear power was strong, and only a small number of respondents endorsed it by listing it in their top two choices. Conversely, almost two-thirds of the sample endorsed investment in renewable energy sources (such as wind and solar), and only a small minority was opposed to it. Econometric analyses revealed that knowledge of the climate change problem was a common factor that explained endorsement of both nuclear and renewables. Yet, high levels of concern for the environment and a negative perception regarding its future differentiated the endorsers of renewables from those of nuclear energy. Endorsers of nuclear energy were found to be males who were knowledgeable about climate change and engaged in environmental issues, but less concerned about the environment, and optimistic about its future. Nuclear opponents, on the other hand, were found to be concerned about the environment, pessimistic about its future, and not fully relying on technology. - Highlights: ► We explore determinants of citizens’ preferences for renewable and nuclear energy. ► The analysis is based on a survey conducted in urban Turkey with 2422 respondents. ► Knowledge of climate change is a common factor of renewable and nuclear endorsement. ► Divergences relate to environmental concern and optimism, and reliance on technology. ► Energy conflicts emerge as complex and related to environmental values and attitudes.

  18. Four arguments in favour of nuclear power

    International Nuclear Information System (INIS)

    Pearce, D.

    1994-01-01

    The first argument in favour of nuclear power is scarcity of energy supplies. In about 40 years time, the world will face shortages of natural gas, oil and uranium. Recoverable reserves of coal are very great, but coal creates the highest environmental damage. A balanced portfolio is the second argument. If all energy sources are potentially scarce, then all energy sources must be developed, subject to environmental impact. This leads to the third argument in support of nuclear power, its expansion would contribute to combating the risk of global warming as indeed would the expansion of renewable sources and other low carbon technologies. Fourthly, nuclear power can make a significant contribution to the control of acidic emissions. While nuclear power is not without its own problems of risk, liability and public acceptance, it has some clear advantages over other fuels. It has, at the very least, to be a substantial part of the transitional phase towards a renewable energy world. (UK)

  19. A revival of nuclear power

    International Nuclear Information System (INIS)

    Lavernhe, Ch.; Chalifoux, B.

    1997-01-01

    Worldwide nuclear progress is suspended. The aim of this paper is to show the possibility and to determine the conditions of a new start-up. The goal is to promote a renewal of nuclear power in the new strategic context defined by the end of the 'cold war'. (J.S.)

  20. Renewable energy sources and nuclear installations; Erneuerbare Energien und neue Nuklearanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-15

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  1. Environment and nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  2. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  3. Alternatives to Nuclear Power in Romania

    International Nuclear Information System (INIS)

    Andrei, L.; Manea, Gh.

    1996-01-01

    The paper proposes alternatives to nuclear power generation in Romania. The priorities are: improvement of efficiency in producing, transmission, and energy use; promoting the renewable resources of energy, especially of hydroelectric power; restructuring industry under criteria of power consumption efficiency; commercial purposes from horizontal nuclear sector activity in Romania. There are described the causes behind the energy crisis in Romania and present energy policy solutions to it. (author). 2 tabs., 10 refs

  4. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  5. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  6. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  7. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  8. Renewable energies and their effect on electricity prices: the case of the German nuclear phase-out

    Energy Technology Data Exchange (ETDEWEB)

    Comtesse, Daniel; Schroeer, Sebastian

    2010-07-01

    The aim of this article is to analyze the price effects of the market integration of renewable energies. Previous related studies describe a so-called 'merit order-effect', implying that decreasing electricity prices are caused by an increasing share of renewable energies. However, this is a static effect resulting from the assumption that the existing power plant fleet remains constant. Our contribution is to analyze the long-run price effect of the substitution of renewable energies for existing technologies like nuclear power, coal or gas. This aspect is relevant, since more and more countries increase the share of renewable energies in order to substitute fossil or nuclear power plants. Higher market shares of renewable energies are caused both by their increasing competitiveness and by political actions such as national targets or promotion schemes. Background and Stylized facts Since renewable energies usually have a lower marginal price of electricity generation - which determines the electricity prices at spot markets - their addition to an established power plant fleet consisting of nuclear, coal, lignite and gas power plants leads to lower electricity prices. However, the long-run price effect when fossil or nuclear power plants are substituted remains ambiguous. This is due to the fact that, if compared to fossil and nuclear fuels, renewable energies are characterized by three specific features: firstly, they lack the ability to secure base load. Secondly, they produce energy which is extremely volatile. Thirdly, their marginal costs of production are close to zero. These characteristics are caused by the high dependency of renewable energies on weather conditions. As electricity generation and consumption must happen simultaneously (electricity storage does not pay off yet), power plants with low base load capacity need back-up capacities. Given the actual technological state of the art, these back-up capacities must be fossil or nuclear power

  9. Nuclear regulation. License renewal questions for nuclear plants need to be resolved

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Kruslicky, Mary Ann; McDowell, William D. Jr.; Coleman, Robert L.

    1989-04-01

    A December 1986 pipe rupture at Virginia Power's Surry unit 2 nuclear power plant injured eight workers; four later died. As a result of this accident, Representative Edward J. Markey requested GAO to examine the Surry accident and assess the problems confronting aging nuclear plants. In March 1988 we reported our findings concerning the accident and a July 1987 incident at the Trojan nuclear plant in Oregon. This report addresses problems confronting aging nuclear plants by examining the Nuclear Regulatory Commission's (NRC) program to develop a license renewal policy and accompanying regulations, and the initiatives underway by the Department of Energy (DOE) and the electric utility industry to extend the operating lives of these plants. Nuclear power has become second only to coal as the largest producer of electricity in the United States. The 110 nuclear plants currently in service are operated by 54 utilities, provide about 20 percent of the nation's electricity, and represent a capital investment of over $200 billion. The Atomic Energy Act authorizes NRC to issue nuclear plant operating licenses for up to 40 years and provides for license extensions beyond the initial operating period. The act does not, however, stipulate the criteria for evaluating a utility request to operate a nuclear plant longer than 40 years. The oldest operating license currently in effect will expire in the year 2000. According to NRC, about one-half of the existing operating licenses will terminate by the year 2015, and most licenses will expire by about 2030. Many utilities will have to decide in the early 1990s whether to continue operating older nuclear plants or to construct new generating capacity. A clear understanding of the terms and conditions governing the license renewal process will be a key element in deciding how to meet future electricity demand. Although NRC has developed 3 possible license renewal policy options and identified 15 areas of regulatory uncertainty that

  10. Nuclear Power in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Smith, K.R.

    1982-01-01

    To understand the role of nuclear energy in Asia today, it is important to recognize that nuclear technology has had a long period of development in the region and has helped shape present Asian political and economic patterns. Nuclear power shares with some of the renewable energy systems the problem of capital intensiveness and technological uncertainty, which tends to prevent both from becoming economically attractive during rapid changes in the oil market. The economic and physical risks associated with nuclear power expansion are likely to lead to low growth rates, although nuclear power will remain an important way to help reduce oil dependency. 156 references, 4 figures, 10 tables

  11. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  12. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  13. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  14. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  15. Nuclear power and the public

    International Nuclear Information System (INIS)

    Kovacs, P.; Gordelier, S.

    2009-01-01

    Issues such as climate change, energy security and the longer-term availability of fossil fuels are causing many governments to reconsider their national energy policies. Promotion of renewable energy sources is often a first policy response but, increasingly, it is being recognised that renewable sources may only provide a partial solution, especially in countries where heavy industry or large cities make intense demands on electricity supply. Governments are coming to recognize nuclear power as an attractive option because of its near absence of carbon dioxide emissions and the widespread availability of uranium which serves as fuel. Furthermore, the major uranium producers Canada and Australia are noted for their long term stability and good governance. The difficulty, of course, is that concerns over the safety and security of nuclear power often make it unpopular among the public. Hence, whether governments propose to introduce nuclear power for the first time, to simply replace existing ageing plant or to expand generating capacity, public acceptability questions must be faced. The apparent intractability of this issue has given rise to innumerable studies of public attitudes to nuclear power. The NEA has recently completed a review of this information what might be called a poll of polls. Particularly useful sources of information are surveys conducted for the European Commission (the Eurobarometer series) and the International Atomic Energy Agency (IAEA) between 2005 and 2007. Together, these provide in-depth information that helps to explain country-to-country differences and people's underlying reasons for supporting or opposing nuclear generated electricity. (author)

  16. The United States nuclear regulatory commission license renewal process

    International Nuclear Information System (INIS)

    Holian, B.E.

    2009-01-01

    The United States (U.S.) Nuclear Regulatory Commission (NRC) license renewal process establishes the technical and administrative requirements for the renewal of operating power plant licenses. Reactor ope-rating licenses were originally issued for 40 years and are allowed to be renewed. The review process for license renewal applications (L.R.A.) provides continued assurance that the level of safety provided by an applicant's current licensing basis is maintained for the period of extended operation. The license renewal review focuses on passive, long-lived structures and components of the plant that are subject to the effects of aging. The applicant must demonstrate that programs are in place to manage those aging effects. The review also verifies that analyses based on the current operating term have been evaluated and shown to be valid for the period of extended operation. The NRC has renewed the licenses for 52 reactors at 30 plant sites. Each applicant requested, and was granted, an extension of 20 years. Applications to renew the licenses of 20 additional reactors at 13 plant sites are under review. As license renewal is voluntary, the decision to seek license renewal and the timing of the application is made by the licensee. However, the NRC expects that, over time, essentially all U.S. operating reactors will request license renewal. In 2009, the U.S. has 4 plants that enter their 41. year of ope-ration. The U.S. Nuclear Industry has expressed interest in 'life beyond 60', that is, requesting approval of a second renewal period. U.S. regulations allow for subsequent license renewals. The NRC is working with the U.S. Department of Energy (DOE) on research related to light water reactor sustainability. (author)

  17. Power marketing and renewable energy

    International Nuclear Information System (INIS)

    Fang, J.M.

    1997-01-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences

  18. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Highlights: • We compare a large number of cost-optimal future power systems for Great Britain. • Scenarios are assessed on cost, emissions reductions, and energy security. • Up to 60% of variable renewable capacity is possible with little cost increase. • Higher shares require storage, imports or dispatchable renewables such as tidal range. - Abstract: Mitigating climate change is driving the need to decarbonize the electricity sector, for which various possible technological options exist, alongside uncertainty over which options are preferable in terms of cost, emissions reductions, and energy security. To reduce this uncertainty, we here quantify two questions for the power system of Great Britain (England, Wales and Scotland): First, when compared within the same high-resolution modeling framework, how much do different combinations of technologies differ in these three respects? Second, how strongly does the cost and availability of grid-scale storage affect overall system cost, and would it favor some technology combinations above others? We compare three main possible generation technologies: (1) renewables, (2) nuclear, and (3) fossil fuels (with/without carbon capture and storage). Our results show that across a wide range of these combinations, the overall costs remain similar, implying that different configurations are equally feasible both technically and economically. However, the most economically favorable scenarios are not necessarily favorable in terms of emissions or energy security. The availability of grid-scale storage in scenarios with little dispatchable generation can reduce overall levelized electricity cost by up to 50%, depending on storage capacity costs. The UK can rely on its domestic wind and solar PV generation at lower renewable shares, with levelized costs only rising more than 10% above the mean of 0.084 GBP/kWh for shares of 50% and below at a 70% share, which is 35% higher. However, for more than an 80% renewable

  19. Modern nuclear power-green power of the millennium

    International Nuclear Information System (INIS)

    Biswas, R.N.

    2003-01-01

    In India, as well as many developing countries, the demand for power continues to race ahead of the supply position. Our present generating capacity of about 1,08,000 MW needs to be increased by another 1 lac MW during 10th and 11th 5-year plans. Whereas more friendly renewable energy may reach about 10-12%, the rest has to come from conventional thermal, hydel or nuclear energy. Thermal energy actually needs low investment per MW but it is the least eco-friendly. Hydel power is green and clean power but the actual energy generated depends on the water quantity available, hence not fully dependable. Therefore in short, nuclear energy available in abundance, has no option for meeting the increasing base demand, as has been proved in Britain, USA, France, Japan and other countries. This paper gives the latest improvements in nuclear power plant design and construction for improved efficiency, operating safety and safe waste storage facilities and explains that nuclear power is affordable and indispensable

  20. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Ioannis N. Kessides

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  1. Market designs for a completely renewable power sector

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jenny [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Altmann, Matthias [Ludwig-Boelkow-Systemtechnik GmbH, Ottobrunn (Germany)

    2012-06-15

    The article discusses whether the current German electricity market design is suitable for an electricity system completely based on renewable sources, and analyzes alternatives. Such a system becomes ever more likely due to the phase-out of nuclear power and the carbon reduction targets. Various existing scenarios for a completely renewable electricity system are analyzed and compared with respect to the contribution of different renewable technologies. Challenges for the market design arising from the differences between the current and a completely renewable system are identified - notably problems with cost recovery and investment incentives, an increased need for balancing and/or intraday adjustments, an increased diversity of actors, grid congestion and the continuing occurrence of market power. The current market design's ability to solve these issues is assessed with the result that all but the critical problem of investment incentives and cost recovery can be solved by adapting certain rules. A comparison with other suggested market designs reveals that some designs could ensure cost recovery and investment incentives. However, these market designs have other drawbacks. Therefore, the identification of the optimal market design for a completely renewable electricity system requires further research regarding the qualitative and quantitative effects of different changes to the current market design. The article concludes by developing concrete policy recommendations. (orig.)

  2. Nuclear power fleet replacement: an opportunity for the French energy mix? - 5044

    International Nuclear Information System (INIS)

    Cany, C.; Mansilla, C.; Mathonniere, G.; Duquesnoy, T.; Baschwitz, A.; Da Costa, P.

    2015-01-01

    In France, 27% of the electricity is to be produced by renewable resources by 2020. This share is intended to grow up to 2050. The recent European agreement and the French 'energy transition law' will promote such a development. The French power system is characterized by high nuclear penetration and nuclear power is meant to remain a significant contributor in the medium and long term, as a low-carbon power source. More than half the French nuclear power fleet was installed in the late seventies / early eighties. Thus, the issue of its replacement is at the core of the French power mix issue. The objective of this paper is to provide some insights about the opportunity it enables for the energy mix. Two plausible replacement scenarios are developed and analyzed as regards to the energy cost provided by nuclear power. For a given target level of nuclear installed capacities, the penetration of non-dispatchable renewable energies with dispatch priority will increase the need for nuclear power modulation at reduced average load factor. The impact of modulation on the nuclear levelized cost of electricity is assessed, according to the considered replacement scenario and for different renewable and nuclear energy penetration scenarios. Results show that, according to the selected assumptions, implementing a progressive shut-down (based on an increased operation lifetime of Nuclear Power Plants) appears a relevant choice since it both provides a lowest power production cost even at reduced average load factor to participate to load following and allows the possibility of 'waiting' for choosing most sustainable technologies. (authors)

  3. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  4. Energy and the need for nuclear power

    International Nuclear Information System (INIS)

    1982-11-01

    The subject is discussed under the headings: fuel and mankind (world population estimates); fuel supply and demand (world nuclear and total primary energy demand forecasts); oil dependence; oil, gas and coal (world oil production and consumption; world coal reserves); nuclear option (consumption of nuclear energy in Western Europe; nuclear plant worldwide at December 1981; uranium reserves 1981); renewable resources; price of energy; Britain's need for nuclear power. (U.K.)

  5. Analysis of public comments on the proposed rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This report provides a summary and analysis of public comments on the proposed license renewal rule for the nuclear power plants (10 CFR Part 54) published in the Federal Register on 17 July 1990. It also documents the NRC's resolution of the issues raised by the commenters. Comments from 121 organizations and 76 individuals were reviewed and analyzed to identify the issues, including those pertaining to the adequacy of the licensing basis, the performance of an integrated plant assessment, backfit considerations, and need for public hearings. The analysis included grouping of commenters' views according to the issues raised. The public comments analyzed in this report were taken into consideration in the development of the final rule and revisions to the supporting documents

  6. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  7. Nuclear Power Programme in India—Past, Present and Future

    Indian Academy of Sciences (India)

    India is poised for multifold growth in nuclear power generation to match the needs of sustained economic growth and improving the standard of living for masses. Nuclear power is currently the fourth-largest source of electricity in India after thermal, hydroelectric and renew- able sources of electricity. Thorium utilization for ...

  8. Prospective economical study of the nuclear power file

    International Nuclear Information System (INIS)

    Charpin, J.M.; Dessus, B.; Pellat, R.

    2000-07-01

    On May 7, 1999 an economical study of the overall nuclear file, and in particular, of the back-end part of the fuel cycle and including the reprocessing, was requested by the French Prime Minister. This study includes the cost comparisons with the other means of power production and takes into consideration the environmental costs. The study is shared into five chapters dealing with: 1 - the legacy of the past: todays park of nuclear plants, economical and material status; 2 - the international evolution: the dynamics of nuclear policies worldwide (existing parks and R and D programs), the rise of environmental problems worldwide (CO 2 and the climate convention, nuclear risks, attempts of including environment in the power costs), the choices made for the management of spent fuels in the main countries; 3 - the technological prospects for the power production and use: technologies for the mastery of power demand (residential, industrial and tertiary sectors, power transportation), technologies of power production (production from nuclear, fossil and renewable energies); 4 - prospective scenarios for France: two demand scenarios at the year 2050 vista (energy, electric power), power supply (supply structure with respect to scenarios, nuclear parks, power capacities), environmental aspects (CO 2 emissions, plutonium and minor actinides production); 5 - the economical status of the different scenarios: data preparation, fossil fuel price scenarios, investment and operation costs of the different power production means (nuclear, fossil and renewable energies, natural gas and power distribution networks), comparison between fluxes and cumulated economic costs linked with the different scenarios (investments, exploitation, fuels, R and D, status for 2000 to 2050), time structure of expenditures with respect to the different scenarios (chronology, statuses, kWh costs, sensitivity with respect to the rate of discount, valorization of existing parks in 2050), cost overruns

  9. Status of the Monticello nuclear generating plant lead plant license renewal program

    International Nuclear Information System (INIS)

    Pickens, T.A.

    1992-01-01

    In 1988, the Monticello nuclear generating plant was chosen by the US Department of Energy through Sandia National Laboratories and the Electric Power Research Institute to serve as the lead boiling water reactor in the lead plant license renewal program. The purpose of the lead plant license renewal program is to provide insights during the development of and to demonstrate the license renewal regulatory process with the US Nuclear Regulatory Commission (NRC). The work being performed in three phases: (1) preparation of the technical basis for license renewal; (2) development of the technical basis into a formal license renewal application; and (3) review of the application by the NRC. This paper discusses the systems and structures identified as important to license renewal in accordance with 10CFR54 as well as the plant documents and programs that were used in going through the identification process. The systems and structures important to license renewal will then provide insights into how structures and components were identified that are required to be evaluated for aging, the elements of the aging evaluations, and the effective programs used to manage potentially significant aging

  10. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  11. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  12. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  13. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated NuclearRenewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  14. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    International Nuclear Information System (INIS)

    2014-01-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a ''hybrid system'' that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear - Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to

  15. Global warming---The role for nuclear power

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Fulkerson, W.

    1989-01-01

    Nuclear power is currently making an important contribution to our energy requirements. It provides 17% of the world's electricity today --- almost 20% in the US. Reducing the emissions of carbon dioxide over the next 30 to 50 years sufficiently to address the issue of global warming can only be accomplished by a combination of much improved energy efficiency, substantial growth in use of nuclear power, and substantial growth in use of renewable energy. This paper discusses new initiatives in the major nuclear technologies (LWR, HTGR, LMR) which are emerging from a fundamental reexamination of nuclear power in response to the challenges and opportunities in the 21st century. To fulfill its role, nuclear power must gain worldwide acceptance as a viable energy option. The use of modern technology and ''passive'' safety features in next-generation nuclear power plants offers the potential to simplify their design and operation, enhance their safety, and reduce the cost of electricity. With such improvements, we believe nuclear power can regain public confidence and make a significant contribution to our energy future. 24 refs., 2 figs., 1 tab

  16. Safety and effective developing nuclear power to realize green and low-carbon development

    OpenAIRE

    Ye, Qi-Zhen

    2016-01-01

    This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste trea...

  17. Proceedings of the APPrO 2006 18. annual Canadian power conference and trade show : Green Power Conference : Canada's leading renewable energy conference

    International Nuclear Information System (INIS)

    Brooks, J.

    2007-01-01

    This conference provided a forum for members of the Association of Power Producers of Ontario to discuss recent developments in renewable energy and the electric power industry. An overview of Ontario's renewable standard offer program was provided. Members of the conference also discussed case studies of Ontario renewable energy projects including micro-hydro; anaerobic digesters; stand-alone wind power; and solar energy. The economics of wind power were discussed, and current capital costs for renewable energy technology projects were reviewed. Other topics included the use of base-load nuclear and hydro-electricity; the closing down of coal-fired generation; the integration of wind power; and natural gas and cogeneration. Issues related to interconnected power supplies were also reviewed. Discussions were divided into 5 topics : (1) an introduction to the standard offer program; (2) provincial procurement of green power; (3) case studies of stand-alone project; (4) distributed generation and the standard offer process; and distribution approval and connection issues. refs., tabs., figs

  18. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  19. System effects of nuclear energy and renewables in low-carbon electricity Systems

    International Nuclear Information System (INIS)

    Keppler, J.H.; Gameron, R.; Cometto, M.

    2012-01-01

    Electricity produced by variable renewable energies significantly affects the economics of dispatchable power generators, in particular those of nuclear power, both in the short run and the long run; the outcome of these competing factors will depend on the amount of variable renewables being introduced, local conditions and the level of carbon prices. An assessment of grid-level system costs (including the costs for grid connection, extension and reinforcement, as well as the added costs for balancing and back-up, but excluding the financial costs of intermittency and the impacts on security of supply, the environment, siting and safety), reveals a considerable difference between those of dispatchable technologies and those of variable renewables. Using a common methodology and a broad array of country-specific data, the grid-level system costs for Finland, France, Germany, the Republic of Korea, the United Kingdom and the United States were calculated for nuclear, coal, gas, onshore wind, offshore wind and solar PV both at 10 pc and 30 pc penetration levels. Variable renewables are creating a market environment in which dispatchable technologies can no longer finance themselves through revenues in 'energy only' wholesale markets; this has serious implications for the security of electricity supplies. Four main policy recommendations are proposed

  20. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  1. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  2. Why nuclear power - the Indian context

    International Nuclear Information System (INIS)

    Sarma, M.S.R.

    2000-01-01

    India has made tremendous achievements in increasing electricity generating capacity since independence 50 years ago. The growth rate of electricity production has been greater than the world's average growth rate of electricity. In spite of this, the gap between demand and supply continues to exist because the population of India is large. The development of the nation is affected by this gap. Energy generating resources per capita for this large population are limited. Achieving the desired electricity generation levels is feasible only if India develops technologies to use all renewable and non-renewable resources. Nuclear power has a prominent role to play in this regard. Our resources of uranium are limited but of thorium quite large. Such a resource pattern necessitates adopting breeder technology and thorium as a fuel. This paper describes the status of resources in India and the nuclear power program adopted to use them. (author)

  3. Nuclear Power: Outlook for New U.S. Reactors

    National Research Council Canada - National Science Library

    Parker, Larry; Holt, Mark

    2007-01-01

    .... The renewed interest in nuclear power has resulted primarily from higher prices for natural gas, improved operation of existing reactors, and uncertainty about future restrictions on coal emissions...

  4. Nuclear power and greenhouse - twin issues

    International Nuclear Information System (INIS)

    Row, R.W.

    1990-01-01

    It is shown that nuclear electric power generation has been widely vilified in recent years. Its detractors have gained ascendancy over its proponents in guiding the political processes that control the approval of new civilian nuclear power stations for electricity generation in many countries. As a consequence, worldwide nuclear capacity growth is slowing to about 2.5% per year through the 1990s with a potential decline in nuclear capacity thereafter. This is occurring despite nuclear power's excellent record of safety and economy in comparison with other means of producing electricity, and while technical developments to improve this record continue. Proponents hope that its virtue of being the only proven means of generating electricity worldwide on a large scale that does not produce any greenhouse gases will appeal to environmentalists and help lead to a renewed nuclear age. This paper suggests that more than hope and rational argument based on scientific facts are needed to persuade the public to revise its opinion of nuclear power. A widespread nuclear fear based in part on ignorance, misinformation, and nuclear mythology, encouraged by nuclear opponents and ineptly countered by nuclear advocates, has had an important role in creating this situation. The greenhouse issues, closely resembling the nuclear issues in a number of ways, are also discussed. 23 refs

  5. Conference/debate on nuclear power. Press file

    International Nuclear Information System (INIS)

    1998-01-01

    This press dossier presents in a digest way the advantages of nuclear power with respect to other energy sources. After a presentation of the worldwide energy resources (electric power demand, fossil-fuel reserves, renewable energies, environmental constraints), the dossier describes the functioning principle of a PWR reactor as a presentation of the French nuclear program (historical aspects, policy, organization of activities, trade, EPR project). In the last part, the sociological aspects of nuclear power are approached: environmental aspects (natural radioactivity, reactors safety, radioactive wastes, environment protection, carbon dioxide and energy production), and public health aspects (principles of radioactivity, dose effects, industrial and scientific applications of radionuclides, nuclear controversy, reactor accidents, legal aspects of radioprotection, safety standards and controls). (J.S.)

  6. Analysis on Japan's long-term energy outlook considering massive deployment of variable renewable energy under nuclear energy scenario

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2012-01-01

    This paper investigates Japan's long-term energy outlook to 2050 considering massive deployment of solar photovoltaic (PV) system and wind power generation under nuclear energy scenario. The extensive introduction of PV system and wind power system are expected to play an important role in enhancing electricity supply security after Fukushima Nuclear Power Accident which has increased the uncertainty of future additional construction of nuclear power plant in Japan. On these backgrounds, we develop integrated energy assessment model comprised of both econometric energy demand and supply model and optimal power generation mix model. The latter model is able to explicitly analyze the impact of output fluctuation in variable renewable in detailed time resolution at 10 minutes on consecutive 365 days, incorporating the role of stationary battery technology. Simulation results reveal that intermittent fluctuation derived from high penetration level of those renewables is controlled by quick load following operation by natural gas combined cycle power plant, pumped-storage hydro power, stationary battery technology and the output suppression of PV and wind power. The results show as well that massive penetration of the renewables does not necessarily require the comparable scale of stationary battery capacity. Additionally, on the scenario which assumes the decommissioning of nuclear power plants which lifetime are over 40 years, required PV capacity in 2050 amounts to more than double of PV installment potential in both building and abandoned farmland area. (author)

  7. The future of nuclear power

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1988-01-01

    The desire for safe and plentiful forms of energy led to the rapid development of the nuclear power industry in the years following the Second World War. Although initially embraced as the answer to the dwindling supply of non-renewable fuel resources, plans to expand nuclear power generation have met with growing public resistance as investigations point to the possible harmful effects of radiation, an unavoidable by-product of the process. This book presents the case for nuclear power in the light of the increasing amount of controversy surrounding the issue. Diverse and often contradicting nuclear policies in different countries are examined with reference to the political, historical and economic factors which account for these wide variations in public sentiment. A detailed analysis is given of the growth of world energy demand, energy vs economic growth and alternative energies, and particular emphasis is given to aspects of the environment, pollution, safety, health hazards and the measurement and control of radiation. The role of public attitudes and awareness also receives special attention: a fuller and less emotional public understanding of nuclear power is necessary to assess the various benefits and risks which accompany this important source of energy

  8. Renewable power production in a Pan-Caribbean energy grid

    Science.gov (United States)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  9. Nuclear and renewable energies, master cards of UK

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    UK's greenhouse gas emissions have increased in 2004 and 2005 and the country is no longer self-sufficient with respect to energy supplies. In front of global warming and energy security threats, UK is reconsidering its energy policy. Based on low carbon solutions, the UK energy economy tries to valorize renewable energies: recovery of methane, combined combustion of biomass and fossil fuels, development of offshore wind and wave power, etc. One reason is also for UK to locally recover part of its lost autonomy thanks to energy decentralization. Since 2006, public hearings have been launched to consider a renewal of the present nuclear park, a development of offshore gas storage and LNG terminal facilities and a promotion of cogeneration systems. (J.S.)

  10. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  11. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  12. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  13. Developments of nuclear power in Russia

    International Nuclear Information System (INIS)

    Konowalow, V.; Tytschkow, J.; Terentjew, W.

    1994-01-01

    Since the disintegration of the Soviet Union the economy, and thus also the nuclear industry in Russia, which is supervised by the Ministry for Atomic Energy, is in a process of structural change. The process is to result in a diversification of the products manufactured for use in the power industry and the nuclear fuel cycle, and also in enhanced productivity. Science and research, which enjoy a high reputation worldwide, must be preserved and expanded. Nuclear technology in Russia is to be developed further in three stages. In the renewal phase up until 2000, older nuclear power stations will be phased out and a new generation of reactors will be developed, which will be built and connected to the power grid in the second stage, which will extend until 2010. In the third phase, after 2010, the installed capacity of the nuclear generating units equipped with new reactors is to rise to 30 or 40 million kW. (orig.) [de

  14. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  15. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  16. 76 FR 4948 - GE Hitachi Nuclear Energy; Notice of Receipt and Availability of an Application for Renewal of...

    Science.gov (United States)

    2011-01-27

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0020] GE Hitachi Nuclear Energy; Notice of Receipt and... December 7, 2010, GE Hitachi Nuclear Energy (GEH) filed with the U.S. Nuclear Regulatory Commission (NRC..., Certifications, and Approvals for Nuclear Power Plants,'' an application for a design certification (DC) renewal...

  17. Nuclear power - a business driver for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R. [American Nuclear Society, La Grange Park, Illinois (United States)

    2013-07-01

    This paper the business aspects of nuclear power. It gives a snapshot of energy sources in the US and the distribution of electricity generation between coal, natural gas, hydropower, renewables such as biomass, geothermal, solar, wind, petroleum and other gases. Nuclear power continues to be an important source of electricity. It outlines the impact of new construction in creating jobs, economics and price stability of electricity.

  18. Nuclear power and climate change

    International Nuclear Information System (INIS)

    1998-04-01

    In the Kyoto Protocol, agreed upon by the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) in December 1997, Annex I countries committed to reduce their greenhouse gas (GHG) emissions. Also, the Protocol states that Annex I countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. One important option that could be covered by the last phrase, and is not specifically mentioned, is nuclear energy which is essentially carbon-free. Nuclear Energy Agency (NEA) has investigated the role that nuclear power could play in alleviating the risk of global climate change. The main objective of the study is to provide a quantitative basis for assessing the consequences for the nuclear sector and for the reduction of GHG emissions of alternative nuclear development paths. The analysis covers the economic, financial, industrial and potential environmental effects of three alternative nuclear power development paths ('nuclear variants'). (K.A.)

  19. Can Austria survive without nuclear power?

    International Nuclear Information System (INIS)

    Promper, O.; Boeck, H.

    2007-01-01

    One of the biggest challenges in the future of the Austrian power sector is the reduction of greenhouse gas emissions as Austria agreed in Kyoto to reduce greenhouse gas emissions for 13% compared to 1990. Due to the further increasing electricity demand, there is a need to build new power plants in the future. Today, the use of nuclear power for electricity production in Austria is prohibited by law. The aim of this paper is to analyse the future of the Austrian power sector concerning greenhouse gas emissions and guarantee of supply. Various scenarios taking the above conditions and different technologies taken into account are calculated. The investigated technologies include fossil fuels, renewables and nuclear power. The aim is to analyse the impact of the different scenarios on greenhouse gas emissions and supply security. (author)

  20. What do French people really think of nuclear power?

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    According to an opinion poll performed in end 2003: 70% of the French people think that we can not do without nuclear power for the generation of electricity, 28% are for nuclear power, 17% are against and 55% hesitate, 69% agree with a mix between nuclear energy and renewable energies, 20% are missing the lack of information concerning the latest advances in nuclear energy field (safety, management of radioactive wastes). According to another opinion poll performed by Credoc: 44% of the people surveyed think that the production and disposal of radioactive wastes is the main drawback of nuclear power, as for the issue concerning the activity domain where the risk of major accident is the highest: 29% think of nuclear power, 27% think of road transport and 27% think of chemistry industry. (A.C.)

  1. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2010-01-01

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  2. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  3. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  4. EU remains faithful to nuclear power

    International Nuclear Information System (INIS)

    Ristau, Oliver

    2012-01-01

    Roadmap 2050: The European Commission intends to expand the share of renewable energy sources through 2050. This will be the only way to meet the Community's CO2 reduction goals. In view of impending energy price rise in energy prices, nuclear power and coal will not be abandoned.

  5. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  6. Job creation due to nuclear power resurgence in the United States

    International Nuclear Information System (INIS)

    Kenley, C.R.; Klingler, R.D.; Plowman, C.M.; Soto, R.; Turk, R.J.; Baker, R.L.; Close, S.A.; McDonnell, V.L.; Paul, S.W.; Rabideau, L.R.; Rao, S.S.; Reilly, B.P.

    2009-01-01

    The recent revival of global interest in the next generation of nuclear power reactors is causing a re-examination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current US industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the United States should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction. (author)

  7. Investment issues in nuclear plant license renewal

    International Nuclear Information System (INIS)

    Eynon, R.T.

    1999-01-01

    A method that determines the operating lives for existing nuclear power plants is discussed. These assumptions are the basis for projections of electricity supply through 2020 reported in the Energy Information Administration's (EIA's) Annual Energy Outlook 1999. To determine if plants will seek license renewal, one must first determine if they will be operating to the end of their current licenses. This determination is based on an economic test that assumes an investment of $150/kW will be required after 30 yr of operation for plants with older designs. This expenditure is intended to be equivalent to the cost that would be associated with any of several needs such as a one0time investment to replace aging equipment (steam generators), a series of investments to fix age-related degradation, increases in operating costs, or costs associated with decreased performance. This investment is compared with the cost of building and operating the lowest-cost new plant over the same 10-yr period. If a plant fails this test, it is assumed to be retired after 30 yr of service. All other plants are then considered candidates for license renewal. The method used to determine if it is economic to apply for license renewal and operate plants for an additional 20 yr is to assume that plants face an investment of $250 million after 40 yr of operation to refurbish aging components. This investment is compared with the lowest-cost new plant alternative evaluated over the same 20 yr that the nuclear plant would operate. If the nuclear plant is the lowest cost option, it is projected to continue to operate. EIA projects that it would be economic to extend the operating licenses for 3.7 GW of capacity (6 units)

  8. Nuclear power plants in the world - 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2009 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2010/01/01, Worldwide status of nuclear power plants (12/31/2009), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2009, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear power plants by country at the end 2009, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2009, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2009, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2009, Long term shutdown units at 12/31/2009, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  9. Nuclear power and the logic of globalization

    International Nuclear Information System (INIS)

    Weizsaecker, C.C. von

    2000-01-01

    The article discusses effects and results of globalization for nuclear power and other options of electricity generation. According to the present state of knowledge, it will not be possible to meet the growing worldwide energy requirement with fossil and renewable energy sources only - also because of the CO 2 problem. Consequently, nuclear power will remain an important alternative. On an international scale, this applies in particular to large countries, such as China and India, as large national economies particularly benefit from the economies of scale offered by nuclear power. This could well make Chinese nuclear technology a product for the world market. Thinking along these lines has not really gained ground in Germany, as nuclear power, being a technology requiring considerably capital outlay, is considered unsuitable for southern countries. It is an illusion to believe that Germany's opting out of the use of nuclear power could be a model to others. Instead, we are faced by the ethical question of how we can help to minimize the accident risks of nuclear facilities worldwide. We can do so only by maintaining the use of nuclear power and exporting our level of safety, for the risks will not become any smaller merely as a result of our opting out. (orig.) [de

  10. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  11. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  12. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    International Nuclear Information System (INIS)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-01-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R and D). This report records the proceedings and outcomes of the workshop.

  13. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  14. Can Australia Power the Energy-Hungry Asia with Renewable Energy?

    Directory of Open Access Journals (Sweden)

    Ashish Gulagi

    2017-02-01

    Full Text Available The Paris Agreement points out that countries need to shift away from the existing fossil-fuel-based energy system to limit the average temperature rise to 1.5 or 2 °C. A cost-optimal 100% renewable energy based system is simulated for East Asia for the year 2030, covering demand by power, desalination, and industrial gas sectors on an hourly basis for an entire year. East Asia was divided into 20 sub-regions and four different scenarios were set up based on the level of high voltage grid connection, and additional demand sectors: power, desalination, industrial gas, and a renewable-energy-based synthetic natural gas (RE-SNG trading between regions. The integrated RE-SNG scenario gives the lowest cost of electricity (€52/MWh and the lowest total annual cost of the system. Results contradict the notion that long-distance power lines could be beneficial to utilize the abundant solar and wind resources in Australia for East Asia. However, Australia could become a liquefaction hub for exporting RE-SNG to Asia and a 100% renewable energy system could be a reality in East Asia with the cost assumptions used. This may also be more cost-competitive than nuclear and fossil fuel carbon capture and storage alternatives.

  15. US nuclear power programs

    International Nuclear Information System (INIS)

    McGolf, D.J.

    1994-01-01

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs

  16. US nuclear power programs

    Energy Technology Data Exchange (ETDEWEB)

    McGolf, D J

    1994-12-31

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs.

  17. Nuclear power phaseout - to the benefit of whom?

    International Nuclear Information System (INIS)

    Edin, K.A.

    1996-01-01

    The purpose of this book is to look beyond rhetorics and describe how the energy supply to the world and Sweden can develop in the long term and compare to the Swedish political goals of renewable energy and nuclear phaseout. The following questions are treated: For how long will oil, coal, gas and uranium last? Should Sweden use natural gas? Is the climatic threat real or not? How do other countries reduce the use of fossil fuels? What should Sweden do? Is nuclear power dangerous? What are the pros and cons of phasing out Swedish nuclear power? (Author)

  18. Nuclear power and carbon dioxide; The fallacy of the nuclear industry's new propaganda

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, N. (Sheffield City Polytechnic (UK). School of Urban and Regional Studies)

    The increasingly beleaguered nuclear industry is now highlighting the threat of global warming as a justification for its continued expansion. The industry argues that it produces no carbon dioxide and that nuclear power is therefore a key element in any plan to reduce emissions of this greenhouse gas. However an analysis of the entire nuclear fuel cycle shows that nuclear power is responsible for much larger carbon dioxide emissions than several renewable energy options and efficiency measures. Furthermore, a major expansion of nuclear generating capacity would result in huge increases in CO{sub 2} emissions from the nuclear industry due to the need to mine and process progressively lower quality uranium ores. Nuclear power is an expensive, unsustainable, dangerous and ineffective option in any realistic strategy to combat global warming. (Author).

  19. Economic implications of nuclear plant license renewal in the U.S

    International Nuclear Information System (INIS)

    Smith, L.J.

    2001-01-01

    The NRC and the nuclear industry struggled for many years with the development of a viable license renewal rule. Now that a workable rule appears to have been developed, and the first license renewal applicants have received renewed licenses, the floodgates have opened and a large number of nuclear utilities have announced intentions to seek renewed NRC operating licenses. In this time when profound changes are being experienced in the electric generation markets in the United States, nuclear plant license renewal can have several economic effects that should be considered by utilities prior to the pursuit of an NRC license renewal. This paper examines some of the factors that may be affected by the prospect of an additional 20-year operating life of a nuclear plant. (author)

  20. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    Jones, P.

    1990-11-01

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  1. Nuclear Engineering Education in Support of Thailand’s Nuclear Power Programme

    International Nuclear Information System (INIS)

    Chanyotha, S.; Pengvanich, P.; Nilsuwankosit, S.

    2015-01-01

    This paper aims to introduce the nuclear engineering education at the Department of Nuclear Engineering, Chulalongkon University, Bangkok Thailand. The department has been offering curriculum in nuclear engineering to support the national nuclear power programme since 1970s. It is the oldest established nuclear engineering educational programme in the South East Asia region. Nevertheless, since the nuclear power programme has been postponed several times due to various reasons, the educational programme at the department has been continuously adapted to meet the nation’s needs. Several areas of study have been introduced, including nuclear power engineering, industrial applications of radioisotope, nuclear instrumentation, radioisotope production, radiation processing, environment and safety, nuclear materials, as well as the newly created nuclear security and non-proliferation. With the renewed interest in using nuclear power in Thailand in 2007, the department has been actively assisting both the government and the electric utility in preparing human resources to support the nuclear power programme through various educational and training modules. Realizing the importance of establishing and balancing all 3 aspects of the nuclear 3S (safety, security and safeguard) in Thailand and in the Southeast Asian region. The new curriculum of nuclear security and safeguard programme has been offered since 2013. Since the establishment, the department has produced hundreds of graduates (Diploma, Master’s, and Ph.D. levels) to feed the continuously expanding Thai nuclear industry. The full paper will provide detailed information of the curriculum, the challenges and obstacles that the department has encountered, as well as the national and international linkages which have been established over the years. (author)

  2. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    Energy Technology Data Exchange (ETDEWEB)

    Harthan, Ralph Oliver

    2015-01-14

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  3. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    International Nuclear Information System (INIS)

    Harthan, Ralph Oliver

    2015-01-01

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  4. Nuclear Energy and Renewables. System Effects in Low-carbon Electricity Systems - Executive Summary

    International Nuclear Information System (INIS)

    2012-01-01

    This report addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems. (authors)

  5. ELECNUC Nuclear power plants in the world - 2013 edition

    International Nuclear Information System (INIS)

    2013-01-01

    This small booklet summarizes in a series of tables the figures relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2012 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2012/01/01; Worldwide status of nuclear power plants (12/31/2012); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2012; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2012; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2012; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2012; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2012; Long term shutdown units at 12/31/2012; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  6. Nuclear power: on the razor's edge

    International Nuclear Information System (INIS)

    Udall, M.K.

    1979-01-01

    Congressman Udall, who concedes he has sometimes entertained serious doubts about the viability of the nuclear power industry, discusses the future he foresees for nuclear energy as a source of electricity for U.S. consumers. In spite of misgivings about the dangers and economic uncertainties, he sees it as a bridge between an era of fast depletion of fossil fuels and a future era when reliance may be placed on renewable energy technologies. Nuclear energy, he feels, must be given a chance during the transitional period to prove it is a safe, dependable, and affordable source of commerical energy

  7. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan

    International Nuclear Information System (INIS)

    Cherp, Aleh; Vinichenko, Vadim; Jewell, Jessica; Suzuki, Masahiro; Antal, Miklós

    2017-01-01

    This paper contributes to understanding national variations in using low-carbon electricity sources by comparing the evolution of nuclear, wind and solar power in Germany and Japan. It develops and applies a framework for analyzing low-carbon electricity transitions based on interplay of techno-economic, political and socio-technical processes. We explain why in the 1970s–1980s, the energy paths of the two countries were remarkably similar, but since the 1990s Germany has become a leader in renewables while phasing out nuclear energy, whereas Japan has deployed less renewables while becoming a leader in nuclear power. We link these differences to the faster growth of electricity demand and energy insecurity in Japan, the easier diffusion of onshore wind power technology and the weakening of the nuclear power regime induced by stagnation and competition from coal and renewables in Germany. We show how these changes involve the interplay of five distinct mechanisms which may also play a role in other energy transitions. - Highlights: • We identify five mechanisms which play a role in national low-carbon electricity transitions. • Use of nuclear, wind and solar power in Germany and Japan diverged in the 1990s. • Wind power diffused to Germany from Denmark but different geography stalled it in Japan. • Demand growth and energy insecurity prompted nuclear power expansion in Japan. • Competition with domestic coal and wind led to the demise of nuclear power in Germany.

  8. Russian Nuclear Power: an Instrument of Deterrence and Intimidation

    International Nuclear Information System (INIS)

    Marange, Celine

    2017-01-01

    Given current tensions with Western countries, nuclear power is assuming a new importance for Moscow. It serves as ever to compensate for the relative weakness of Russian forces in comparison to those of NATO and China. Furthermore, it increasingly serves as an intimidation to an adversary by demonstrating renewed power

  9. Nuclear power costs. Ninety-Fifth Congress. Second session. House report No. 95-1090

    International Nuclear Information System (INIS)

    1978-01-01

    Contrary to widespread belief, nuclear power is no longer a cheap energy source. In fact, when the still unknown costs of radioactive waste and spent nuclear fuel management, decommissioning and perpetual care are finally included in the rate base, nuclear power may prove to be much more expensive than conventional energy sources such as coal, and may well not be economically competitive with safe, renewable resource energy alternatives such as solar power. Nuclear power is the only energy technology which has a major capitalization cost at the outset of the fuel cycle and at the end of the fuel cycle. As the cost of nuclear energy continues to climb, and as a solution to the problems of radioactive waste management continues to elude government and industry, States such as California are rejecting the increased use of nuclear power and favoring the greater use of renewable energy technologies. These developments and others discussed in this report raise major questions for Federal decisionmakers about how best to cope with the Nation's energy crisis in the years ahead. Practical recommendations aimed at greater economy, efficiency, and effectiveness in government actions are proposed

  10. Nuclear power: status and outlook

    International Nuclear Information System (INIS)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.

    2001-01-01

    Nuclear power plants worldwide make important contributions to energy production. A total of 439 plants are in operation; with nearly 10 000 years of operating history, they reliably provide some 16 percent of the world's electricity production. The growth rates of nuclear power expansion in the seventies and eighties are no longer achievable now. Growing operating experience and further optimization of plant operation have caused the electricity generation in existing plants to grow overproportionally, corresponding to a calculated equivalent of 28 000 MW of capacity increment in the nineties. The short-term perspectives of nuclear power generation until 2020 as outlined by the International Energy Agency (IEA) indicate a slight decrease of electricity production with a variety of different regional developments. Over the same period of time, there will mainly be further improvements in reliable operation, resulting in higher availability and added safety, as well as measures extending plant life. Studies going beyond the time frame of the IEA Study forecast a major increase in nuclear generating capacity for the period after 2020 up to 2050. The foreseeable long-term developments on the world energy markets, with their limited fossil energy resources, are seen as a reason why nuclear power and renewable energies jointly will be important components in meeting energy requirements and, simultaneously, fulfilling the needs of climate protection. Specific problems of nuclear power, which can be solved, are seen to be the development of innovative plants, a stable cost situation, and the reduction of economic risks because of the long periods of payback of the capital invested. (orig.) [de

  11. Climate change and nuclear power

    International Nuclear Information System (INIS)

    2000-11-01

    Today, the nuclear power industry is an established, experienced industry that generates one sixth of the world's electricity, one fifth of the USA's, and almost one third of Western Europe's. The recent SIRES scenarios highlight that, even in the absence of policies to limit GHG emissions, meeting the energy needs and economic development aspirations of the 21st century will require the full range of energy supply options available including nuclear power. None of the world's available energy supplies should be excluded. Fossil, nuclear, and renewable resources are all large, and the future evolution of the world's energy system is less likely to be determined by resource constraints than by active choices made by governments, the private sector, and individuals. Nuclear power has the potential to fill a substantial part of the gap between where emissions from Annex I countries are now headed, and where they are required to be in 2008-2012 according to the Kyoto Protocol. If the CDM is taken into account, nuclear power's potential approximately doubles. And if the path charted by the Kyoto Protocol is to continue beyond the 2008-2012 commitment window, the potential importance of nuclear power only grows. The best chance for sustainable development - for meeting the needs of the present generation without compromising the ability of future generations to meet their needs - lies in allowing all energy supply options to compete, improve, and contribute on a level playing field directly on the basis of cost-effectiveness, environmental protection, and safety

  12. Nuclear power as a substitute for fossil fuels

    International Nuclear Information System (INIS)

    Bahramabadi, G. A.; Shirzadi, C.

    2008-01-01

    The challenge in energy policy is to reduce CO 2 emissions and the worlds dependence on oil while satisfying a substantially increased demand for energy. Putting aside the still-speculative possibility of sequestering carbon dioxide, this challenge reduces to that of using energy more efficiently and finding substitutes for fossil fuels. Alternatives to fossil fuels fall into two broad categories: Renewable sources. Most of these sources-including hydroelectric power, wind power, direct solar heating, photovoltaic power, and biomass-derive their energy ultimately from the Sun and will not be exhausted during the next billion years. Geothermal energy and tidal energy are also renewable, in this sense, although they do not rely on the sun. However, there is almost an inverse correlation between the extent to which the source b now being used and the size of the potentially trap able resource. Thus, expansion of hydroelectric power (which is substantially used) is constricted by limited sites and environmental objections, whereas wind (for which the resource is large) is as yet less used and thus is not fully proven as a large-scale contributor. Nuclear sources. The two nuclear possibilities are fission and fusion. The latter would be inexhaustible for all practical purposes, but developing an effective fusion system remains an uncertain hope. Fission energy would also have an extremely long time span if breeder reactors arc employed, but with present-day reactors limits on uranium (or thorium) resources could be an eventual problem. At present, fission power faces problems of public acceptance and economic competitiveness. The broad alternatives of renewable energy and nuclear energy can be considered as being in competition, with one or the other to be the dominant choice, or complementary, with both being extensively employed

  13. Nuclear power plants in past and future of Hungarian energy policy

    International Nuclear Information System (INIS)

    Bueki, Gergely

    2014-01-01

    In the Hungarian electric power supply nuclear power plants are important and stay so. It is underpinned by the country's energy resources. Although building nuclear power plants is an enormous investment and the extension with new blocks costs a lot, electric power generated by NPP is the cheapest one and can remain the cheapest if rational decisions will be made. Building and operation Paks Nuclear Power Plant demands for high level professional culture in education, in planning, in industry, in research and in operations. With building new reactor blocks it is expected that energy policy, power plant engineering will renew, while new jobs are created and the economy growths. (TRA)

  14. Elecnuc - Nuclear power plants in the world - 2009 edition

    International Nuclear Information System (INIS)

    2009-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2008 highlights, Main characteristics of reactor types, Map of the French nuclear power plants on 2008/01/01, Worldwide status of nuclear power plants (12/31/2008), Units distributed by countries, Nuclear power plants connected to the Grid- by reactor type groups, Nuclear power plants under construction on 2008, Evolution of nuclear power plants capacities connected to the grid, First electric generations supplied by a nuclear unit in each country, Electrical generation from nuclear powe plants by country at the end 2008, Performance indicator of french PWR units, Evolution of the generation indicators worldwide by type, Nuclear operator ranking according to their installed capacity, Units connected to the grid by countries at 12/31/2008, Status of licence renewal applications in USA, Nuclear power plants under construction at 12/31/2008, Shutdown reactors, Exported nuclear capacity in net MWe, Exported and national nuclear capacity connected to the grid, Exported nuclear power plants under construction, Exported and national nuclear capacity under construction, Nuclear power plants ordered at 12/31/2008, Long term shutdown units at 12/31/2008, COL applications in the USA, Recycling of Plutonium in reactors and experiences, Mox licence plants projects, Appendix - historical development, Meaning of the used acronyms, Glossary

  15. Nuclear power: a false solution to climate change

    International Nuclear Information System (INIS)

    2015-08-01

    Confronted with the decline in nuclear power worldwide, nuclear industry leaders and their political and media allies are trying to impose the idea that this technology is an appropriate and indispensable solution to fight climate change. But how realistic are these assertions? Content: 1 - Climate preservation? Nuclear won't do: At best, nuclear power's contribution would be minor.. and definitely too late; A marginal form of energy in decline; Nuclear energy also produces greenhouse gas; Nuclear energy is too expensive; Nuclear energy is not adapted to a deteriorating climate; 2 - More nuclear dangers to avoid dangerous climate change?: Radioactivity and nuclear waste: more and more pollution; Major accidents: a disaster is possible; Proliferation: radiological terrorism, nuclear war; 3 - The true solutions for the climate: Saving energy: the most efficient, the least expensive; 100% renewables: yes we can; Break out of the nuclear and fossil fuel stranglehold; Energy transition: Germany shows the way; Job creation: far greater potential than nuclear

  16. Public perceptions of nuclear power, climate change and energy options in Britain: summary findings of a survey conducted during October and November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Wouter Poortinga; Nick Pidgeon; Irene Lorenzoni [University of East Anglia, Norwich (United Kingdom). Centre for Environmental Risk, School of Environmental Sciences

    2006-07-01

    This report presents the findings of a large-scale British survey (n=1491) of public opinion towards future energy options for the nation, with a focus on attitudes to nuclear power in the context of climate change. People are generally more interested and concerned about climate change than they are about nuclear power. People tend to favour renewable energy sources over fossil fuels, whilst nuclear power is the least favoured of the three. When asked about the future contribution of energy sources to reliable and secure electricity supplies, a slightly different picture appears: renewables are still most favoured, but nuclear power now gains a ranking above coal and oil and one comparable with gas. People do differentiate various electricity generation sources in terms of their (generally positive and negative) factors. In this respect the general stigma attached to nuclear power remains. Specifically, many people think it creates dangerous waste and is a hazard to human health. On the other hand, most people perceive wind power as clean, safe, good for the economy and cheap. Coal on the other hand is seen as polluting and (correctly) as a cause of climate change. If the costs of supplying the UK's energy needs were the same from either nuclear power or renewable energy sources, 77% of the respondents indicated they would prefer renewable energy sources. Less than 10% would prefer nuclear power over renewables under such circumstances. There was a strong preference for solutions other than nuclear power to mitigate climate change, such as promoting renewable energies (78%), or through lifestyle changes and energy efficiency (76%). 14 refs., 3 tabs.

  17. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  18. On liberation of communities which relies on nuclear power

    International Nuclear Information System (INIS)

    Park, Seung-Joon

    2013-01-01

    Just after the Nuclear Regulation Authority pointed out possible active faults for fracture zones just under the Tsuruga nuclear power station, local government of reactor site criticized this view was mere judgement of small experts group after its short-term field survey and evaluation meeting without enough discussion with nuclear operators. Behavior of local government, which should insist assurance of residents safety at first, seemed inscrutable and the industrial and financial structure of communities dependent on nuclear power should be clarified. Accident affected costs of nuclear power station estimated in the past were far beyond several trillion yen but local residents of reactor site used to believe accident risk might be negligible because of quite low accident probability estimated by probabilistic safety analysis. Economy of local government of reactor site was dependent on nuclear power. Economic benefits consisted of tax or subsidy income of local governments (financial aspect) and limited employment or grants of residents (economical aspect). Depreciation of relevant nuclear power station varied financial dependency of local government respectively, which could be compensated by local tax subsidy after nuclear power was abolished. Local industry dependent on nuclear power was mostly subcontracted building work or related service industry. Nuclear power phaseout could bring about new employment of residents at reactor site with decommissioning works and introduction of gas-fired thermal power or production center for renewable energy. (T. Tanaka)

  19. Nuclear power: time to start again

    International Nuclear Information System (INIS)

    Rezak, W.D.

    2004-01-01

    This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result is that the US nuclear industry is alive and well. Perhaps it's time to start anew the building of nuclear power plants. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in over 30 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crises in California and the Northeast. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year's operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation

  20. POWER-GEN '90 conference papers: Volume 7 (Fossil plant performance availability and improvement) and Volume 8 (Nuclear power issues)

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This is book 4 of papers presented at the Third International Exhibition and Conference for the Power Generation Industries, December 4-6, 1990. This book contains Volume 7, Fossil Plant Performance Availability and Improvement, and Volume 8, Nuclear Power Issues. The topics of the papers include computer applications in plant operations and maintenance, managing aging plants, plant improvements, plant operations and maintenance, the future of nuclear power, achieving cost effective plant operation, managing nuclear plant aging and license renewal, and the factors affecting a decision to build a new nuclear plant

  1. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  2. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  3. Outlook for Global Nuclear Power: Energy, Electricity and Nuclear Power Estimates for the Period up to 2050

    International Nuclear Information System (INIS)

    Gritsevskyi, A.

    2016-01-01

    Nuclear power's global expansion is projected to continue in the coming decades - albeit at a slowing pace - amid challenges including low fossil fuel prices, a sluggish world economy and the legacy of Japan's Fukushima Daiichi accident. Each year, the IAEA publishes projections of the world's nuclear power generating capacity in Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, now in its 35th edition.The latest projections point to slower growth in nuclear power, in keeping with the trend since the 2011 Fukushima Daiichi accident. The world's nuclear power generating capacity is projected to expand by 2.4 percent by 2030, according to the low projections, compared with 7.7 percent estimated in 2014. In the high case, generating capacity is estimated to grow by 68 percent by 2030, versus 88 percent forecast last year. Uncertainty related to energy policy, license renewals, shutdowns and future constructions accounts for the wide range.The estimates also factor in the likely future retirement of many of the world's 438 nuclear reactors currently in operation, more than half of which are over 30 years old. Despite the need to replace scores of retiring reactors, nuclear power is still set to maintain - and possibly increase - its role in the world's low-carbon energy mix. It's important to understand that these projections, while carefully derived, are not predictions.The estimates should be viewed as very general growth trends, whose validity must be constantly subjected to critical review.(author).

  4. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  5. Institutionalization of safety re-assessment system for operating nuclear power plants

    International Nuclear Information System (INIS)

    Kim, H. J.; Cho, J. C.; Min, B. K.; Park, J. S.; Jung, H. D.; Oh, K. M.; Kim, W. K.; Lim, J. H.

    1999-01-01

    In this study, in-depth reviews of the foreign countries' experiences and practices in applications of the periodic safety review (PSR), backfitting and license renewal systems as well as the current status of nuclear power safety assurance programs and activities in Korea have been performed to investigate the necessity and feasibility of the application of the systems for the domestic operating nuclear power plants and to establish effective strategy and methodology for the institutionalization of a periodic safety re-assessment system appropriate to both the domestic and international nuclear power environments by incorporating the PSR with the backfitting and license renewal systems. For these purposes, the regulatory policy, fundamental principles and detailed requirements for the institutionalization of the safety re-assessment system and the effective measures for active implementation of the backfitting program have been developed and then a comparative study of benefits and shortcomings has been conducted for the three different models of the periodic safety re-assessment system incorporated with either the license renewal or life extension process, which have been considered as practicable ones in the domestic situation. The model chosen in this study as the most appropriate safety re-assessment system is the one that the re-assessments are performed at the interval of ten years throughout the service life of nuclear power plant and the ten-year license renewal or life extension after the expiration of design life can be permitted based on the regulatory review of the re-assessment results and follow-up measures. Finally, this paper has discussed on the details of the requirements, approach and procedures established for the institutionalization of the periodic safety re-assessment system chosen as the most appropriate one for domestic applications

  6. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years

    International Nuclear Information System (INIS)

    Kaerrmarck, Urban

    2010-10-01

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  7. Integration of a very high share of renewable production, the role of nuclear; Integracion de una muy alta cuota de produccion renovable. El papel de la nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Chiarri, A.

    2010-07-01

    In the following decade, 2010-2020, there are few uncertainties regarding the generation mix: the Electricity System already counts on the thermal power that ir requires, the renewable energy targets are fairly clear, the nuclear option would require development period that goes beyond this decade and the Carbon Capture and Storage technology (CCS) is unlikely to be commercially available yet. Nevertheless, a challenge arises: how to manage a System with a high share of non-manageable energy sources. In the future, periods of excess of energy are bound to happen and its annual profile is foreseen sharp: high power peaks but little annual energy. Therefore, to make use of such an excess, very high investments in new capacity would be needed (pumping hydro, compressed air). However the load factor of this new capacity would be low, at least by this concept. Spillage of renewable energy may be the most efficient solution, and thus it should be accepted by every stake holder. Looking at the very long term alternative are opened. One of them tends to balance the production of the different energy sources: nuclear, thermal and renewable (1/3-1/3-1/3). Although this option is aligned with the targets of competitiveness, sustainability and energy security, doubts may arise about the compatibility of such share of nuclear and renewable Massive, and coordinated, deployment of the electric vehicle and the smart grids, facilitates remarkably the integration of new nuclear capacity, not as much by the energy involved (TWh) as by the power (GW) and the capacity to manage such power when charging the batteries. (Author)

  8. Green power: A renewable energy resources marketing plan

    International Nuclear Information System (INIS)

    Barr, R.C.

    1997-01-01

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct its own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together

  9. Global status of nuclear power and the needed human resources

    International Nuclear Information System (INIS)

    Bernido, Corazon C.

    2009-01-01

    According to projections of the OECD/IEA, the world energy demand will expand by 45% from now until 2030, with coal accounting for more than a third of the overall rise. To reduce greenhouse gases and mitigate climate change, many countries are resorting to renewables and nuclear power. Some statistics about nuclear energy in the global energy mix and about nuclear power plants worldwide, as well as the energy situation in the country are presented. According to sources from the Department of Energy on the Philippine Energy Plan, nuclear power is a long-term energy option and will likely enter the energy mix by 2025. Preparation of the infrastructure for nuclear power has to start ten to fifteen years before the first plant comes online. The needed human resources, the education and training required are present. (Author)

  10. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  11. Insurance and nuclear power

    International Nuclear Information System (INIS)

    Whipple, C.

    1985-01-01

    The Price-Anderson Act is discussed, which establishes procedures for insuring nuclear facilities (including nuclear power plants). The act was enacted with the dual purpose of protecting the public and encouraging the development of a private nuclear energy industry. Criticisms that can generally be grouped into four categories regarding the Act are presented, the most controversial aspect being that should an accident occur, the aggregate liability of the reactor operator, the NRC, or any others who might be at fault is limited to $560 million. Lawsuits for amounts in excess of $560 million are prohibited. The 1975 renewal of the Price-Anderson Act does provide that damages in excess of the $560 million prompt Congress to review the particular incident and take action to protect the public from the consequences of a disaster of such magnitude

  12. Nuclear Power after Fukushima; L'energie nucleaire apres Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Bigot, B. [CEA Saclay, 91 - Gif sur Yvette (France)

    2011-07-15

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  13. Energy market impacts of nuclear power phase-out policies

    Energy Technology Data Exchange (ETDEWEB)

    Glomsroed, Solveig; Taoyuan, Wei; Mideksa, Torben; Samset, Bjoern H.

    2013-03-01

    After the Fukushima disaster in March 2011 safety concerns have escalated and policies towards nuclear power are being reconsidered in several countries. This article presents a study of the effect of nuclear power phase-out on regional electricity prices. We consider 4 scenarios with various levels of ambition to scale down the nuclear industry using a multiple region, multiple sector global general equilibrium model. Non-nuclear power production follows the New Policies scenario of the World Energy Outlook (IEA, 2010). Phase-out in Germany and Switzerland increases electricity prices of OECD-Europe moderately by 2-3 per cent early on to 4-5 per cent by 2035 if transmission capacity within the region is sufficient. If all regions shut down old plants built before 2011, North America, OECD-Europe and Japan face increasing electricity prices in the range of 23-28 per cent in 2035. These price increases illustrate the incentives for further investments in renewable electricity or improved technologies in nuclear power production. (Author)

  14. Energy Market Impacts of Nuclear Power Phase-Out Policies

    International Nuclear Information System (INIS)

    Glomsroed, Solveig; Taoyuan, Wei; Mideksa, Torben; Samset, Bjoern H.

    2013-01-01

    After the Fukushima disaster in March 2011 safety concerns have escalated and policies towards nuclear power are being reconsidered in several countries. This article presents a study of the effect of nuclear power phase-out on regional electricity prices. We consider 4 scenarios with various levels of ambition to scale down the nuclear industry using a multiple region, multiple sector global general equilibrium model. Non-nuclear power production follows the New Policies scenario of the World Energy Outlook (IEA, 2010). Phase-out in Germany and Switzerland increases electricity prices of OECD-Europe moderately by 2-3 per cent early on to 4-5 per cent by 2035 if transmission capacity within the region is sufficient. If all regions shut down old plants built before 2011, North America, OECD-Europe and Japan face increasing electricity prices in the range of 23-28 per cent in 2035. These price increases illustrate the incentives for further investments in renewable electricity or improved technologies in nuclear power production. (Author)

  15. Renewables for sustainable village power

    International Nuclear Information System (INIS)

    Flowers, L.

    1997-03-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL's RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal

  16. Nuclear power - economics and safety

    International Nuclear Information System (INIS)

    Jones, P.

    1989-01-01

    The market for steam coal is largely related to its use in electricity production and here it has to compete with hydrocarbon fuels, renewable sources and nuclear power. The criteria for fuel choice by utilities are partly economic, partly environmental, partly questions of convenience and fuel supply diversity, and partly a reaction to public and political pressures. The relative importance attached to these factors and even perceptions of the factors themselves differ from country to country and utility to utility so that there is no universal consensus on the ''right balance'' of alternative means of generation. Some countries like France and Belgium are heavily committed to nuclear power while others like Australia are committed to coal. Most have no overwhelming commitment to any one source and operate a mixture of plants, although some like Sweden and Austria have decided either to phase out or not to operate nuclear plants. The net result is that there are now some 400 nuclear reactors in operation in 26 countries with over 200 under construction or planned. However, nuclear power's future prospects were not helped by the Three Mile Island and Chernobyl accidents. Coal has also suffered over concerns about gaseous emissions, acid rain and the effects of mining operations. Nuclear critics worry about the disposal of radioactive wastes whilst critics of coal use (and fossil/wood-fuel) worry about global climatic effects of carbon dioxide and nitrogen oxides. This paper looks at some of the facts about nuclear power and its future prospects and how they are likely to affect coal demand. It is concluded that coal does not face an easy future. (author)

  17. The long term operation of nuclear power plants in the US

    International Nuclear Information System (INIS)

    Young, G.G.

    2015-01-01

    The NRC has so far granted the renewal license for 73 nuclear reactors in the US but because of economic issues some power plants that got a renewal license are planned to be decommissioned earlier: for instance the Oyster Creek reactor will be stopped definitely in 2019 after a 50 year operating life, another example is the Kewaunee plant that closed mid 2013 while this reactor had been allowed to operate till 2033. The economy concern is the falling price of natural gas that make gas-burning power plants more competitive than nuclear stations. The reactors at risk are the oldest and the smallest ones but in the non-deregulated sector the economic benefit is important for the most powerful reactors to be allowed to operate over 40 and 60 years. A renewal request is composed of a safety assessment of the plant and the assessment of its environmental impact. The safety assessment relies on an Integrated Plant Assessment and on a Time-Limited Ageing Analyses. In order to prepare the second renewal campaign that will allow some reactors to operate up to 80 years, NRC, DOE and EPRI have begun first to identify potential concerns concerning material degradation and secondly to develop an adequate ageing management strategy. (A.C.)

  18. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  19. Situation of nuclear power generation in Sweden: swaying nuclear energy policy and conversion from nuclear phase-out policy

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2017-01-01

    In Sweden, fossil fuels cannot be produced domestically, and most of them depend on foreign imports. For this reason, together with hydropower generation using abundant water resources, nuclear power generation was introduced and used since the early stage. Nuclear power generation in 2015 reached 35% of total generated power energy. As of 2016, Sweden was steadily constructing the world's second final disposal site of high-level radioactive waste. On the other hand, this country is known as the one that decided nuclear phase-out policy earliest in the world. However, the country's nuclear policy is swaying together with changes in political party power due to election results. In 1980, they decided the policy of abolishing all nuclear power generation by 2010. Thereafter, the nuclear phase-out policy was frozen and maximum 10 units of nuclear plants were accepted. The goal of the latest policy is to allow new construction up to 10 units as replacement, and to use 100% of renewable energy in 2040. However, the year of 2040 is not a deadline for the abolishment of nuclear power generation. In Sweden's public opinion on nuclear power generation, the early abolition was dominant at about 50% during 1986∼1995, but this opinion decreased to about 10% in the 2000s. There is an increasing number of opinions saying that the existing nuclear plants should be continuously operated for a while, and phased out step by step in the future. (A.O.)

  20. Safe and green nuclear power

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    2010-01-01

    Energy development plays an important role in the national economic growth. Presently the per capita consumption of energy in our country is about 750 kWh including captive power generation which is low in comparison to that in the developed countries like USA where it is about 12,000 kWh. As of now the total installed capacity of electricity generation is about 152,148 MW(e) which is drawn from Thermal (65%), Hydel (24%), Nuclear (3%) power plants and Renewables (8%). It is expected that by the end of year 2020, the required installed capacity would be more than 3,00,000 MW(e), if we assume per capita consumption of about 800-1000 kWh for Indian population of well over one billion. To meet the projected power requirement in India, suitable options need to be identified and explored for generation of electricity. For choosing better alternatives various factors such as availability of resources, potential to generate commercial power, economic viability, etc. need to be considered. Besides these factors, an important factor which must be taken into consideration is protection of environment around the operating power stations. This paper attempts to demonstrate that the nuclear power generation is an environmentally benign option for meeting the future requirement of electricity in India. It also discusses the need for creating the public awareness about the safe operations of the nuclear power plants and ionising radiation. (author)

  1. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  2. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ∼12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ∼30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  3. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  4. To all of you who continue supporting Japanese Nuclear Power. A letter from nuclear engineer

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2012-01-01

    Fukushima accident could not justify nuclear power and obliged nuclear engineers to accept public opinion such as 'nuclear power phase out' in 2030s. During the 'phase out' period, selected nuclear power plants would be restarted taking account of safety and accident effects with reinforced safety countermeasures against Fukushima accident, while shutdown reactor decommissioning with best technologies and intermediate storage of spent fuels before final disposal would be implemented. At the completion of 'phase out', Japanese nuclear power would end. However, renewable energy could not make such progress as expected and consumption of fossil energy would not decrease, which worsened environment and climate in Japan terribly and the public might think wrong decision of 'phase out' in 2012 and again request nuclear power. This nuclear power should be based on 'most advanced safety in the world', whose principle should be discussed and related R and D should be conducted beforehand. Such reactor would be developed to prevent core meltdown or assure containment integrity with 100% passive phenomena without any external power or human works against any cause's accidents, while spent fuels with not containing significant amount of long-life radioactive materials should be stored within artificial structures so as to reduce radioactivity level equivalent to outer environment. (T. Tanaka)

  5. Near-Term Nuclear Power Revival? A U.S. and International Perspective

    International Nuclear Information System (INIS)

    Braun, C.

    2004-01-01

    In this paper I review the causes for the renewed interest in the near-term revival of nuclear power in the U.S. and internationally. I comment on the progress already made in the U.S. in restarting a second era of commercial nuclear power plant construction, and on what is required going forwards, from a utilities perspective, to commit to and implement new plant orders. I review the specific nuclear projects discussed and committed to in the U.S. and abroad in terms of utilities, sites, vendor and suppliers teams, and project arrangements. I will then offer some tentative conclusions regarding the prospects for a near-term U.S. and global nuclear power revival

  6. Economics of license renewal in the U.S. - entergy's perspective

    International Nuclear Information System (INIS)

    Young, Garry G.

    2003-01-01

    License renewal of operating nuclear plants in the United States has become one of the most successful U.S. nuclear regulatory activities in the past few years. In 1995, the U.S. Nuclear Regulatory Commission (NRC) published a revised rule in 10 CFR Part 54 that provided the requirements for an operating nuclear plant to seek license renewal. At that time, many people believed that only a select few operating nuclear plants would pursue license renewal and that most plants would operate for no more than 40 years. By mid-2003, the owners of approximately 52% of the U.S. nuclear fleet of 103 operating nuclear plants have decided to pursue license renewal and more are expected to follow. This change in direction since 1995 can be attributed to the improving economics of U.S. nuclear power plant operation and to the improved regulatory process resulting from the 1995 revision to 10 CFR Part 54. In 2000, Entergy submitted a license renewal application for Arkansas Nuclear One, Unit 1 (ANO-1). This application was the third to be submitted to the NRC at a time when it was still unclear how successful the regulatory process might be. However, less than 17 months later, in June 2001, the NRC granted a renewed operating license for ANO-1 at a total cost of approximately $11 million. Due in part to the ANO-1 license renewal success, Entergy now has tentative plans to pursue license renewal for the entire fleet of operating nuclear power plants. Without license renewal, Entergy's current nuclear fleet capacity of approximately 9,000 MW(e) would begin to decline in 2012. With license renewal, Entergy's nuclear fleet capacity can remain in place until 2032. This projection does not include the expected improvements in capacity due to power uprate that is currently planned. The combination of power uprate and license renewal will add significant economic value to Entergy's nuclear fleet. One of the major factors in strong performance is capacity factor. In 1990, the average

  7. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  8. Economics of nuclear power in Finland

    International Nuclear Information System (INIS)

    Tarjanne, Risto; Luostarinen, Kari

    2002-01-01

    The nuclear power generation fits perfectly with the long duration load profile of the Finnish power system. The good performance of the Finnish nuclear power has yielded benefits also to the consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in carbon dioxide emissions from electricity generation in the shift of 1970's and 1980's. In the year 2001 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.8 TWh electricity, equivalent to 28 per cent of the total consumption. Loviisa power station has a net output capacity of 2 x 488 MW, and Olkiluoto 2 x 840 MW. The capacity factors of the four nuclear units have been above 90 per cent, which are among the highest in the world. The energy-intensive process industries in particular have strong belief in nuclear power. In November 2000, Teollisuuden Voima company (TVO) submitted to the Finnish Government an application for decision in principle concerning the construction of a new nuclear power plant unit. The arguments were among other things to guarantee for the Finnish industry the availability of cheap electric energy and to meet the future growth of electricity consumption in Finland. The carbon-free nuclear power also represents the most efficient means to meet the Greenhouse Gas abatement quota of Finland. Simultaneously, the energy policy of the Government includes intensive R and D and investment support for the renewable energy sources and energy conservation, and the objective is also to replace coal with natural gas as much as reasonably possible. The fifth nuclear unit would be located in one of the existing Finnish nuclear sites, i.e. Olkiluoto or Loviisa. The size of the new nuclear unit would be in the range of 1000 to 1600 MW electric. The ready infrastructure of the existing site could be utilised resulting in lower investment cost for the new unit. The Finnish Government accepted the

  9. A renewables-based South African energy system?

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-12-01

    Full Text Available in electricity mix from 75 to 50% by 2025 That's a reduction by 140 TWh/yr of nuclear power generation, which is the same amount of energy produced by 10 Koebergs This energy will be replaced by renewables This emphasises again the recently achieved cost...-competitiveness of renewableshttp://www.world-nuclear-news.org/NP-French- energy-transition-bill-adopted-2307155.html 8Agenda International context Renewables in South Africa Extreme renewables scenarios 9Integrated Resource Plan 2010 (IRP 2010): Plan of the power generation mix...

  10. Safety and effective developing nuclear power to realize green and low-carbon development

    Directory of Open Access Journals (Sweden)

    Qi-Zhen Ye

    2016-03-01

    Full Text Available This paper analyzes the role of nuclear power of China's energy structure and industry system. Comparing with other renewable energy the nuclear power chain has very low greenhouse gas emission, so it will play more important role in China's low-carbon economy. The paper also discussed the necessity of nuclear power development to achieve emission reduction, energy structure adjustment, nuclear power safety, environmental protection, enhancement of nuclear power technology, nuclear waste treatment, and disposal, as well as nuclear power plant decommissioning. Based on the safety record and situation of the existing power plants in China, the current status of the development of world nuclear power technology, and the features of the independently designed advanced power plants in China, this paper aims to demonstrate the safety of nuclear power. A nuclear power plant will not cause harm either to the environment and nor to the public according to the real data of radioactivity release, which are obtained from an operational nuclear plant. The development of nuclear power technology can enhance the safety of nuclear power. Further, this paper discusses issues related to the nuclear fuel cycle, the treatment, and disposal strategies of nuclear waste, and the decommissioning of a nuclear power plant, all of which are issues of public concern.

  11. Report on the status of instrumentation and control in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Blomberg, P.E.

    1990-01-01

    During 1988 the twelve nuclear power units in Sweden generated 69 TWh, which was 45% of the total electric power produced in Sweden. The production capacity of the nuclear power plants increased successively by upgrading the units to higher nominal power levels. The paper presents an overview of activities on control and instrumentation in the following: maintenance, renewal of the I and C systems, training. The operational data of Swedish reactor units are presented. (author). 1 tab

  12. The new generation of nuclear power stations. A new trend in atomic power?

    International Nuclear Information System (INIS)

    Hohlefelder, W.

    2006-01-01

    According to the author, all options for future power supply should be followed, including atomic power provided that it can be made technically safe and treated with a maximum safety culture. On the one hand, power supply is an elementary human need, deciding on public welfare, economic development and technical progress. On the other hand, there is an impending shortage of power owing to depletion of resources and the emergence of new industrialized nations especially in south east Asia. For this reason, all options should be considered, from renewable energy sources to coal and nuclear power. (orig.)

  13. U.S. Job Creation Due to Nuclear Power Resurgence in The United States — Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Catherine M. Plowman

    2004-11-01

    The recent revival of interest in nuclear power is causing a reexamination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current U.S. industries to support a renewal of nuclear power plant deployment. This study was conducted to provide an initial estimate of jobs to be gained in the U.S. through the repatriation of the nuclear manufacturing industry. In the course of the study, related job categories were also modeled to provide an additional estimate of the potential expansion of existing industries (i.e., plant construction and operations) in conjunction with the repatriation of manufacturing jobs.

  14. Conference on renewable energies integration to power grids

    International Nuclear Information System (INIS)

    Laffaille, Didier; Bischoff, Torsten; Merkel, Marcus; Rohrig, Kurt; Glatigny, Alain; Quitmann, Eckard; Lehec, Guillaume; Teirlynck, Thierry; Stahl, Oliver

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on renewable energies integration to power grids. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the perspectives and possible solutions of this integration in order to warrant the security of supplies and the grid stability in a context of increasing injection and decentralization of renewable power sources. This document brings together the available presentations (slides) made during this event: 1 - French distribution grids - Overview and perspectives (Didier Laffaille); 2 - Distribution Grids in Germany - Overview and Perspective (Torsten Bischoff); 3 - Integration of renewable energies into distribution grids - a case example from Germany (Marcus Merkel); 4 - Regeneratives Kombikraftwerk Deutschland: System Services with 100 % Renewable energies (Kurt Rohrig); 5 - Overview of the different grid instrumentation-control and automation tools (Alain Glatigny); 6 - Which Ancillary Services needs the Power System? The contribution from Wind Power Plants (Eckard Quitmann); 7 - The Flexibility Aggregator - the example of the GreenLys Project (Guillaume Lehec); 8 - Energy Pool - Providing flexibility to the electric system. Consumption cut-off solutions in France (Thierry Teirlynck); 9 - Demand Response experiences from Germany (Oliver Stahl)

  15. Economic analysis to compare fabrication of nuclear power and fossil fuel power plants at Iran

    International Nuclear Information System (INIS)

    Rasouliye Koohi, Mojtaba

    1997-01-01

    Electric power due to its many advantages over other forms of energies covers most of the world's energy demands.The electric power can be produced by various energy converting systems fed by different energy resources like fossil fuels, nuclear, hydro and renewable energies, each having their own appropriate technologies. The fossil fuel not only consumes the deplete and precious sources of non conventional energies but they add pollution to environment too. The nuclear power plants has its own share of radioactive pollutions which, of course can be controlled by taking precautionary measures. The investing cost of each generated unit (KWh) in the nuclear power plants, comparing with its equivalent production by fossil fuels is investigated. The various issues of economical analysis, technical, political and environmental are the different aspects, which individually can influence the decisions for kind of power plant to be installed. Finally, it is concluded that the fossil and nuclear power generations both has its own advantages and disadvantages. Hence, from a specializing point of view, it may not be proper to prefer one over the others

  16. Location matters: The impact of renewable power on transmission congestion and emissions

    International Nuclear Information System (INIS)

    Hitaj, Claudia

    2015-01-01

    Many governments offer subsidies for renewable power to reduce greenhouse gas emissions in the power sector. However, most support schemes for renewable power do not take into account that emissions depend on the location of renewable and conventional power plants within an electricity grid. I simulate optimal power flow in a test grid when 4 renewable power plants connect to the grid across 24 potential sites, amounting to over 10,000 configurations. Each configuration is associated with different levels of emissions and renewable power output. I find that emission reductions vary by a factor of 7 and that curtailment due to transmission congestion is more likely when renewable power plants are concentrated in an area of the grid with low demand. Large cost savings could be obtained by allowing subsidies for renewable power to vary across locations according to abatement potential or by replacing subsidies with a price on emissions. - Highlights: • Analyze the impact of renewable power plant location on congestion and emissions. • Simulate optimal power flow in a test grid for over 10,000 configurations. • Determine that emission reductions vary by a factor of 7. • Find that renewable power is curtailed due to transmission congestion. • Pricing emissions is most efficient since abatement potential varies across locations.

  17. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  18. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  19. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  20. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  1. Professionals Cultivations: critical to the safe operation & sustainable development of nuclear power

    International Nuclear Information System (INIS)

    Zheng, Mingguang

    2017-01-01

    Challenges to nuclear power development: Challenges to nuclear power: •Public acceptance & confidences shaking after SAs •Ecology concerning seriously on rad-waste & spent fuel •Both AP1000 & EPR delayed with investment greatly increased •Economic competition from Renewable & marginal effects from severe regulatory guides; Challenges from HR: •No peoples willing to enter industry for countries with NP phased out •No motivations to develop or innovate the new technology for countries with NP operation but no further planning •Professionals need badly for developing countries looking for more nuclear power •HR setup the balance between money & missions, prides & success

  2. The Monticello license renewal project

    International Nuclear Information System (INIS)

    Clauss, J.M.; Harrison, D.L.; Pickens, T.A.

    1993-01-01

    Today, 111 nuclear power plants provide over 20 percent of the electrical energy generated in the United States. The operating license of the oldest operating plant will expire in 2003, one-third of the existing operating licenses will expire by 2010 and the newest plant's operating license will expire in 2033. The National Energy Strategy (NES) prepared by the Department of Energy (DOE) assumes that 70 percent of the current operating plants will continue to operate beyond their current license expiration. Power from current operating plants can assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth and improved U.S. competitiveness. In order to preserve this energy resource, three major tasks must be successfully completed: (1) establishment of regulations, technical standards, and procedures for the preparation and review of License Renewal Applications (LRAs); (2) development of technical criteria and bases for monitoring, refurbishing or replacing plant equipment; and (3) demonstration of the regulatory process by a plant obtaining a renewed license. Since 1986, the DOE has been working with the nuclear industry and the Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of a nuclear power plant by renewing the operating license. The Monticello Lead Plant demonstration project was initiated in September 1988, following the Pilot Plant studies. This paper is primarily focused on the status and insights gained from the Northern States Power Company (NSP) Monticello Lead Plant demonstration project. The following information is included: (1) Current Status - Monticello License Renewal Application; (2) Economic Analysis; (3) License Renewal Regulatory Uncertainty Issues; (4) Key Decisions; (5) Management Structure; (6) Technical and Licensing Perspective; (7) NRC Interactions; (8) Summary

  3. Climate Change and Nuclear Power 2016

    International Nuclear Information System (INIS)

    2016-09-01

    Climate change is one of the most important environmental challenges facing the world today. Nuclear power can make a significant contribution to reducing greenhouse gas (GHG) emissions while delivering energy in the increasingly large quantities needed for the socioeconomic well-being of a growing population. Nuclear power plants produce virtually no GHG emissions or air pollutants during their operation and only very low emissions over their entire life cycle. Nuclear power fosters energy supply security and industrial development by providing electricity reliably and at stable and predictable prices. The accident at the Fukushima Daiichi nuclear power plant in March 2011 caused deep public anxiety and raised fundamental questions about the future of nuclear energy throughout the world. Yet, more than five years after the accident, it is clear that nuclear energy will remain an important option for many countries. Its advantages in terms of climate change mitigation are an important reason why many countries intend to introduce nuclear power in the coming decades, or to expand existing programmes. All countries have the right to use nuclear technology for peaceful purposes, as well as the responsibility to do so safely and securely. The IAEA provides assistance and information to countries that wish to introduce nuclear power. It also provides information for broader audiences engaged in energy, environmental and economic policy making. This publication provides a comprehensive review of the potential role of nuclear power in mitigating global climate change and its contribution to other economic, environmental and social sustainability challenges. The report also examines broader issues relevant to the climate change–nuclear energy nexus, such as costs, financing, safety, waste management and non-proliferation. Recent and future trends in the increasing share of renewables in overall electricity generation and its effect on nuclear power are also presented

  4. Renewable electricity in Sweden: an analysis of policy and regulations

    International Nuclear Information System (INIS)

    Wang Yan

    2006-01-01

    This study aims to analyse the developments in renewable energy policy making in Sweden. It assesses the energy policy context, changes in the choice of policy instruments, and provides explanations behind policy successes and failures. Swedish renewable energy policy has been developing in a context of uncertainty around nuclear issues. While there has been made a political decision to replace nuclear power with renewable s, there is a lack of consensus about the pace of phasing out nuclear power due to perceived negative impacts on industrial competitiveness. Such uncertainty had an effect in the formulation of renewable energy policy. Biomass and wind power are the main options for renewable electricity production. Throughout 1990s, the combined effect of different policy instruments has stimulated the growth of these two renewable sources. Yet, both biomass and wind power are still a minor contributor in the total electricity generation. Lack of strong government commitment due to uncertainty around nuclear issues is a crucial factor. Short-term subsidies have been preferred rather than open-ended subsidy mechanisms, causing intervals without subsidies and interruption to development. Other factors are such as lack of incentives from the major electricity companies and administrative obstacles. The taxation system has been successful in fostering an expansion of biomass for heating but hindered a similar development in the electricity sector. The quota system adopted in 2003 is expected to create high demand on biomass but does not favour wind power. The renewable energy aims are unlikely to be changed. Yet, the future development of renewable energy policies especially for high-cost technologies will again depend strongly on nuclear policies, which are still unstable and might affect the pace of renewable energy development

  5. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  6. 77 FR 10784 - Calvert Cliffs Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to...

    Science.gov (United States)

    2012-02-23

    ... Nuclear Power Plant, LLC; Notice of Withdrawal of Application for Amendment to Facility Operating License... Nuclear Power Plant, LLC, the licensee, to withdraw its application dated October 25, 2010, for a proposed amendment to Renewed Facility Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Plant...

  7. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  8. The renaissance of Italian nuclear power

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Cassuto, A.

    2010-01-01

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO 2 emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  9. The status quo and future of nuclear power in Germany and worldwide

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2010-01-01

    In the context of predicted energy demand growth, concerns regarding the security of fossil fuel supplies and the need to curb greenhouse gas emissions, a reappraisal of nuclear power has taken place on national, European and international levels. While the Geman government concedes nuclear power only a ''bridging function'' to a world where energy demand is fully covered by renewable energies, international institutions like the International Energy Agency (IEA), the International Atomic Energy Agency (IAEA) and the International Panel on Climate Change (IPCC) see nuclear power as a key element of any sustainable long-term energy strategy compatible with climate protection. They call for a multiplication of nuclear power generation by 2050. In agreement with the international organizations mentioned, nuclear power and renewable energies are seen by AREVA as complementary, not as alternatives and represent today AREVA's core businesses. Over the last two decades, construction of new nuclear power plants has been centering mainly on Asia while in Europe and North America the focus was on lifetime extension of existing plants. In Germany, the government has announced to revise the lifetime restrictions imposed by a former government in 2002. But an upswing in the new-build market can be observed also in Europe, and major new-build programs are being prepared in the US and the UK. Several countries in Europe and abroad are planning new plants, and a growing number of countries, in particular in the Middle and Far East, plan to embark on nuclear power. The IEA scenario consistent with limiting global warming by the year 2100 to 2 C is highly challenging for utilities and the vendor industry, but feasible provided there is a stable political and regulatory environment. Several global vendors offer state-of-the-art designs for generation III+ reactors. (orig.)

  10. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  11. Economic and geopolitical dimensions of renewable vs. nuclear energy in North Africa

    International Nuclear Information System (INIS)

    Marktanner, Marcus; Salman, Lana

    2011-01-01

    Addressing issues of renewable energy in North Africa must incorporate concerns regarding the compatibility of energy mixes with the nature of political regimes, their geopolitical relevance, and their socio-economic effects, in addition to economic cost-benefit deliberations. One important and under-researched aspect of nuclear energy refers to the trade-off between socio-economic development and political power conservation. Competing interests in North Africa's energy market as well as aspects of regional cooperation capacity are important when assessing the choice between renewable and nuclear energy. Therefore, the future course of meeting North Africa's energy needs is subject to a complex political and economic interplay between domestic and geopolitical development interests. The objective of this paper is to explore this complexity in more detail. We argue that the identification of any energy alternative as superior is hardly convincing unless certain standards of inclusive governance are met. We also find that it is important to highlight political-economic differences between energy importers like Morocco and Tunisia and energy exporters like Algeria, Libya, and Egypt. - Research highlights: → North Africa confronted with severe energy supply challenges in near future. → Trade-off between socio-economic development and political power conservation matters. → Economic and geopolitical dimensions of trade-off heterogeneous across North Africa.

  12. Renewal of the French fleet of nuclear reactors

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2012-01-01

    While supposing the lifetime of all present PWR reactors would be extended to sixty years, the author compares two scenarios regarding the renewal of the French fleet of nuclear reactors: the first one over 40 years and the second one over 20 years. This renewal is based on the construction of EPR reactors at different rhythms. The author compares the associated production costs and assesses the exploitation costs. A renewal scenario over 40 years seems to give better results

  13. A renaissance in nuclear power

    International Nuclear Information System (INIS)

    Lambertini, Antonio C.F.

    2009-01-01

    This paper presents an analysis of the worldwide evolution of the fleet of nuclear power plants until the 1980s; the reasons why in the same era this contingent was rejected in various developed countries due to a complete lack of public acceptance, being condemned to a phaseout planned to eliminate more than half of the operating power plants by 2020; and finally, what are the reasons for this competent base-load power source to silently resist for more than a quarter of a century, having been the focus of studies and improvements in the most renowned research centers in the world and the most traditional universities of the developed countries, resurging as one of the main allies of worldwide sustainable development, even with all the difficulties of deployment, ecological risks, and nuclear proliferation. However, after more than 30 years of intense debates involving a wide variety of interrelated problems, scientists have collected irrefutable proof that the actions of humankind have caused climate changes that represent an imminent threat to the survival of the human species on Earth, requiring coordinated international action that seeks to determine the economic aspects of the stabilization of levels of GHGs (greenhouse gases) in the atmosphere. The transition to a worldwide low-carbon economy presents political challenges, where, the most complex political question, is the supply of energy which would depends on a change in the supply of energy from fossil fuels to renewable, hydro and nuclear. Undoubtedly the nuclear power plants are, by far, the most controversial. (author)

  14. Effects of an enhanced promotion of renewable energies on the investment dynamics in a conventional power plant plant. Interim report; Auswirkung einer verstaerkten Foerderung erneuerbarer Energien auf die Investitionsdynamik im konventionellen Kraftwerkspark. Teilbericht

    Energy Technology Data Exchange (ETDEWEB)

    Harthan, Ralph Oliver; Seebach, Dominik [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Berlin (Germany); Boettger, Diana; Bruckner, Thomas [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement

    2012-03-26

    A core component of the German government's Energy Concept is the expansion of electricity production from renewable energies. The German government also decided to decommission or not reactivate eight nuclear power plants following the nuclear catastrophe in Fukushima. For the outstanding reactors in Germany it determined shorter remaining lifetimes. As a result electricity production in Germany is facing extensive transformation. The feed-in of renewable energies influence power plant dispatch and thereby also the electricity price. Since renewable energies are supported by a set price for their feed-in, their production occurs independently of demand with the result that the electricity price on the spot markets falls. Similarly the electricity price on the spot markets is lower in the case of the lifetime extension of nuclear power plants than without such an extension as a result of the low marginal costs of such plants. Moreover an increased feed-in of renewable energies or the lifetime extension of nuclear power plants leads to a lower electricity production in other conventional (fossil) power plants. This has an impact on the dispatch of power plants and the long-term development of the power plant fleet (arising from decommissioned plants and new investments). A lower electricity price, fewer operating hours for fossil power plants and a lifetime extension for nuclear power plants can lead to the profitable operation of fossil power plants no longer being possible and such plants being either decommissioned or mothballed. Similarly, comparatively higher electricity prices resulting from a quicker phase-out of nuclear energy can lead to an improvement in profitability and thereby also a reactivation of mothballed power plants or the retrofitting of fossil power plants. In this research project an iterative consideration of the short-term dispatch of power plants in a dispatch model and of the long-term decommissioning and investment effects in a power

  15. Generic environmental impact statement for license renewal of nuclear plants. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This GEIS examines the possible environmental impacts that could occur as a result of renewing the licenses of individual nuclear power plants under 10 CFR 54. To the extent possible, it establishes the bounds and significance of these potential impacts. The analysis encompasses all operating light-water reactors. For each type of environmental impact, the GEIS attempts to establish generic findings covering as many plants as possible. While plant and site-specific information is used in developing the generic findings, the NRC does not intend for the GEIS to be a compilation of individual plant environmental impacts statements. This document has three principal objectives: (1) to provide an understanding of the types and severity of environmental impacts that may occur as a result of license renewal, (2) to identify and assess those impacts that are expected to be generic to license renewal, and (3) to support rulemaking (10 CFR 51) to define the number and scope of issues that need to be addressed by the applicants in plant-by-plant license renewal proceedings

  16. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  17. Class I structures license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Deng, D.; Renfro, J.; Statton, J.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures, and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). This IR provides the technical basis for license renewal for U.S. nuclear power plant Class I structures, with the IR evaluating which structures are Class I. Seventeen structures are explicitly described and evaluated in this IR. These structures are not necessarily classified as Class I at all plants, therefore the license renewal applicant should consult this IR for correct identification

  18. Energy Security and the Role of Nuclear power

    International Nuclear Information System (INIS)

    Kim, Jinwoo

    2008-01-01

    Nuclear power is expected to play a more important role to cope with rapidly changing energy market environment. Recently re-evaluation on nuclear energy is taking place in major countries like USA, Japan, and Sweden. It is of particular interest in Korea to make out optimal level of nuclear power from energy security perspectives. This paper is aiming to derive options for optimal fuel mix and sets up scenarios on major premises such back-end costs and fuel price of nuclear, and CO 2 emission cost. Six scenarios are analyzed for optimal fuel mix and additional cases are examined for the effect on CO 2 emission. The model outcomes suggest to construct 3∼13 units of 1,400 MW nuclear reactors by 2030 to meet ever-growing power demand. It is found that base-load facilities are taking about 70% of total installed capacity in any case. As a reasonable option, 9 units (12.6 GW) of nuclear is recommended to be built, taking 37.0% of total installed capacity in 2030. CO 2 emission turns out to be largely affected by nuclear proportion, which is sensitive to environmental cost. However, expansion of renewable energy or demand side management is found to have rather on CO 2 emission. Energy security aspects need to be considered in developing an optimal fuel mix of power generation. But In-depth studies are needed to obtain a practical range of optimal level of nuclear power from energy security point of view

  19. Nuclear power worldwide: Status and outlook

    International Nuclear Information System (INIS)

    2008-01-01

    environmental constraints such as entry-into-force of the Kyoto Protocol and the European carbon trading scheme mean there is now a real financial benefit to avoiding greenhouse gas emissions, adding to the appeal of low-carbon electricity generation, including nuclear power and renewables. The complete nuclear power chain - including uranium mining, reactor construction and waste disposal - emits only 3 - 24 grams of carbon dioxide per kilowatt-hour, about the same as wind and hydro power, and well below coal, oil and natural gas, Mr. Rogner added. The IAEA provides energy planning assistance to its 145 member states. When a state considers launching a nuclear energy programme for the first time, the IAEA has established a set of milestones for it to follow. Audio Q and A with IAEA, is available here. For further information, please contact: IAEA Division of Public Information, Media and Outreach Section, tel. [43-1] 2600-21273. For further details on the current status of the nuclear industry, go to the IAEA's Power Reactor Information System (PRIS). Related Resources: Nuclear's Great Expectations; Energy, Electricity and Nuclear Power Estimates for the Period up to 2030, Report; Nuclear Power in Focus. (IAEA)

  20. Renewables 2018 - Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition - Highlights of the REN21 Renewables 2018 Global Status Report in perspective

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rutovitz, Jay; Dwyer, Scott; Teske, Sven; Murdock, Hannah E.; Adib, Rana; Guerra, Flavia; Murdock, Hannah E.; Blanning, Linh H.; Guerra, Flavia; Hamirwasia, Vibhushree; Misra, Archita; Satzinger, Katharina; Williamson, Laura E.; Lie, Mimi; Nilsson, Anna; Aberg, Emma; Weckend, Stephanie; Wuester, Henning; Ferroukhi, Rabia; Garcia, Celia; Khalid, Arslan; Renner, Michael; Taylor, Michael; Epp, Barbel; Seyboth, Kristin; Skeen, Jonathan; Kamiya, George; Munuera, Luis; Appavou, Fabiani; Brown, Adam; Kondev, Bozhil; Musolino, Evan; Brown, Adam; Mastny, Lisa; Arris, Lelani

    2018-06-01

    REN21's Renewables 2018 Global Status Report presents developments and trends through the end of 2017, as well as observed trends from early 2018 where available. Renewable power accounted for 70% of net additions to global power generating capacity in 2017, the largest increase in renewable power capacity in modern history, according to REN21's Renewables 2018 Global Status Report (GSR). But the heating, cooling and transport sectors - which together account for about four-fifths of global final energy demand - continue to lag far behind the power sector. The GSR, published today, is the most comprehensive annual overview of the state of renewable energy worldwide. New solar photovoltaic (PV) capacity reached record levels: Solar PV additions were up 29% relative to 2016, to 98 GW. More solar PV generating capacity was added to the electricity system than net capacity additions of coal, natural gas and nuclear power combined. Wind power also drove the uptake of renewables with 52 GW added globally. Investment in new renewable power capacity was more than twice that of net, new fossil fuel and nuclear power capacity combined, despite large, ongoing subsidies for fossil fuel generation. More than two-thirds of investments in power generation were in renewables in 2017, thanks to their increasing cost-competitiveness - and the share of renewables in the power sector is expected to only continue to rise. Investment in renewables was regionally concentrated: China, Europe and the United States accounted for nearly 75% of global investment in renewables in 2017. However, when measured per unit of gross domestic product (GDP), the Marshall Islands, Rwanda, the Solomon Islands, Guinea Bissau, and many other developing countries are investing as much as or more in renewables than developed and emerging economies. Both energy demand and energy-related CO 2 emissions rose substantially for the first time in four years. Energy-related CO 2 emissions rose by 1

  1. Nuclear power in future energy scenario

    International Nuclear Information System (INIS)

    Srinivasan, M.R.

    1981-01-01

    It is explained that even when the renewable energy sources like solar, biogas and biomass are developed to the maximum feasible extent, they will only be able to sustain a marginal level of economic activity. In India demand for coal is expected to rise at some 6% per annum and that for oil at about 4% per annum. It is doubtful whether the coal production can be raised to meet the demand of 2000 million tonnes of coal by the turn of century. Steadily increasing cost of oil will make it difficult to procure the necessary quota of oil. The only way, therefore, for large-scale increase in electricity generation is to use nuclear energy. At present, it accounts for only 3% of the electricity produced in the country. It is shown that with implementation of a proper nuclear programme, 10,000 MW of nuclear power representing 15% of electricity produced by the year 2000 can be produced. Safety aspect of nuclear power is discussed and it is mentioned that scare on these grounds is not justifiable. Need for a national consensus on this issue is emphasised. (M.G.B.)

  2. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  3. Dirty tricks: how the nuclear lobby stopped the development of wave power in Britain

    International Nuclear Information System (INIS)

    Jeffery, J.

    1990-01-01

    It is claimed that by misrepresentation of the economic analysis of wave power generation of electricity the nuclear lobby in Britain has prevented development work to continue on wave power, in favour of nuclear power generation. The United Kingdom Department of Energy and the Central Electricity Generating Board, in favour of nuclear power, have not allowed the cost estimation of electricity from wave power generators, especially Salter's Ducks (a wave power generator generated by Professor Salter at Ednburgh University) to be known. Instead the cost (estimated at 4-12p/kWh) has been deliberately exaggerated. This has resulted in wind power becoming the favoured alternative renewable energy source of the future. (UK)

  4. IAEA: up to 17% of nuclear power by 2050

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009 the contribution of nuclear energy to the world production of electricity reached 13.8%. Nearly two thirds of this production came from conventional fossil-fueled power plants, 18% from hydroelectric power plants and only 1.4% from renewable energy sources. The IAEA foresees: -) that about 55% of the primary energy used in the world in 2050 will be used to produce electricity, today this ratio is 37%; -) that the world demand for electricity will have increased threefold by 2050; and -) that the contribution of nuclear energy for electricity production at the world scale will be somewhere between 7.1 and 17 per cent. (A.C.)

  5. To eliminate or not. The minute of truth for nuclear power

    International Nuclear Information System (INIS)

    Edin, K.A.

    1995-01-01

    The book describes the political situation concerning nuclear power in Sweden. After the referendum 1980 the Swedish parliament has made a declaration that nuclear power should be phased out by 2010 and replaced by renewable energy, but no legislation or schedules have been proposed. In the meantime targets for reducing carbon dioxide emission have been set, that seem to be in conflict with the phaseout. The book goes through all the decisions that have to be made by the parliament and the different alternatives that should be available when a phaseout is planned. Financial compensation for the reactor owners, and lack of economic alternative power sources are seen as major obstacles. The author pleads that detailed governmental propositions for an elimination of nuclear power (including plans for substitutional power sources) should be made public to facilitate a realistic debate. 19 figs

  6. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  7. Modelling the energy future of Switzerland after the phase out of nuclear power plants

    Science.gov (United States)

    Diaz, Paula; Van Vliet, Oscar

    2015-04-01

    In September 2013, the Swiss Federal Office of Energy (SFOE) published the final report of the proposed measures in the context of the Energy Strategy 2050 (ES2050). The ES2050 draws an energy scenario where the nuclear must be substituted by alternative sources. This implies a fundamental change in the energy system that has already been questioned by experts, e.g. [Piot, 2014]. Therefore, we must analyse in depth the technical implications of change in the Swiss energy mix from a robust baseload power such as nuclear, to an electricity mix where intermittent sources account for higher rates. Accomplishing the ES2050 imply difficult challenges, since nowadays nuclear power is the second most consumed energy source in Switzerland. According to the SFOE, nuclear accounts for a 23.3% of the gross production, only surpassed by crude oil products (43.3%). Hydropower is the third source more consumed, representing approximately the half of the nuclear (12.2%). Considering that Switzerland has almost reached the maximum of its hydropower capacity, renewables are more likely to be the alternative when the nuclear phase out takes place. Hence, solar and wind power will play an important role in the future Swiss energy mix, even though currently new renewables account for only 1.9% of the gross energy consumption. In this study we look for realistic and efficient combinations of energy resources to substitute nuclear power. Energy modelling is a powerful tool to design an energy system with high energy security that avoids problems of intermittency [Mathiesen & Lund, 2009]. In Switzerland, energy modelling has been used by the government [Abt et. al., 2012] and also has significant relevance in academia [Mathys, 2012]. Nevertheless, we detected a gap in the study of the security in energy scenarios [Busser, 2013]. This study examines the future electricity production of Switzerland using Calliope, a multi-scale energy systems model, developed at Imperial College, London and

  8. Roundtable discussion: Materials management issues supporting licensing renewal

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of this technical session is to discussion the relationships between nuclear materials management/procurement engineering and plant license renewal. The basis for the discussion is DG-1009 'Standard format and content of technical information for applications to renew nuclear power plant operating licenses', dated 12/90

  9. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    Science.gov (United States)

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  10. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  11. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  12. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  13. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  14. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies

    International Nuclear Information System (INIS)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein

  15. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  16. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  17. Aging management review for license renewal and plant life management

    International Nuclear Information System (INIS)

    Rinckel, M.A.; Young, G.G.

    2002-01-01

    Full text: United States nuclear power plants are initially licensed for a period of 40-years. The 40-year term, which was established by the Atomic Energy Commission in the 1950s, is believed to be based on engineering judgement and is consistent with the typical amortization schedule for purchasing fossil power plants. Under 10 CFR Part 54, the license renewal rule, additional terms of 20-years may be obtained through the preparation of a license renewal application that must be reviewed and approved by the Nuclear Regulatory Commission (NRC). The license renewal rule requires that applicants perform ageing management reviews on passive long-lived structures and components to demonstrate that ageing will be managed during the period of extended operation (i.e., additional 20 years of operation). ageing of active components, which are excluded from 10 CFR Part 54, is accomplished through the Maintenance Rule, 10 CFR Part 65, using performance-based monitoring. The license renewal rule, 10 CFR Part 54, was initially published in 1991. After significant interaction with the nuclear industry from 1991 through 1994, the NRC revised the rule in 1995 to focus on passive long-lived structures and components. In 1998, the first two applications for license renewal were submitted to the NRC by Baltimore Gas and Electric for the two-unit Calvert Cliffs nuclear power plant and by Duke Energy for the three-unit Oconee nuclear power plant. In March 2000, the NRC approved the application for the two-unit Calvert Cliffs nuclear power plant for an additional 20 years. Two months later, the NRC approved the renewal of the operating licenses for the three-unit Oconee nuclear station. The NRC completed these reviews in a timely, predictable, and stable manner. As of February 2002, the NRC has approved renewal of operating licenses for eight nuclear units and has applications under review for 15 more units. Twelve additional companies have notified the NRC of their intention to seek

  18. Nuclear power unnecessary for climate protection. There are more cost-efficient alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Kemfert, Claudia; Oei, Pao-Yu [DIW Berlin (Germany). Dept. of Energy, Transportation, Environment; Burandt, Thorsten; Hainsch, Karlo [TU Berlin (Germany); Loeffler, Konstantin [TU Berlin (Germany); DIW Berlin (Germany); Hirschhausen, Christian von [DIW Berlin (Germany). International Infrastructure Policy and Industrial Organization

    2017-07-01

    The world needs to continue working to protect the climate - this is generally undisputed. However, there is no agreement on which technologies should be used to decarbonize the energy sector. Many international scenarios still assume a relevant role for nuclear power in the future. However, a study by the German Institute for Economic Research shows that the Paris climate protection target - limiting global warming to below two degrees - can be achieved inexpensively without nuclear power. The results of a global energy system model indicate that no new nuclear power plants have to be built in order to meet the global climate target. It would be cheaper to use a combination of renewable energy and energy storage systems.

  19. Renewable and nuclear sources of energy reduce the share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources reduce the share of fossil fuels.

  20. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  1. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  2. Generic environmental impact statement for license renewal of nuclear plants

    International Nuclear Information System (INIS)

    1996-05-01

    Volume 2 of the Generic Environmental Impact Statement for License Renewal of Nuclear Plants contains the appendices. These include: (A) General characterisitics and environmental settings of domestic nuclear plants, (B) Definition of impact initiators, (C) Socioeconomics and case studies, (D) Aquatic organisms and human health, (E) Radiation protection considerations, (F) Methodology for assessing impacts to aquatic ecology and water resources, (G) Postulated accidents, and (H) Environmental statutes and regulations affecting license renewal

  3. The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry

    Directory of Open Access Journals (Sweden)

    Yuzhuo Zhang

    2017-03-01

    Full Text Available Among the regulatory policies, feed-in tariffs (FIT and renewable portfolio standards (RPS are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. In this paper, we synthetically consider various important factors with the analysis of the existing literature, and use system dynamics (SD to establish models of long-term development of the renewable energy power industry under FIT and RPS schemes. The model not only clearly shows the complex logical relationship between the factors but also reveals the process of coordination between the two policy tools in the development of the renewable energy power industry. In addition, as an example of development of renewable energy industry, the paper studies the development of China’s photovoltaic power industry under different scenarios. The models proposed in this paper can provide a reference for scholars to study development of the renewable energy power industry in different countries, thereby facilitating an understanding of the renewable energy power’s long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China’s photovoltaic power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government.

  4. Berlin and nuclear power. Courage to assume responsibility?

    International Nuclear Information System (INIS)

    Knorr, Juergen

    2009-01-01

    On October 28, 2009, the Kerntechnische Gesellschaft e.V. (KTG) awarded to Professor Dr. Juergen Knorr its 32 nd honorary membership in recognition of his untiring commitment and his decades of work for the peaceful uses of, and research into, nuclear power in Germany. Between 1992 and 2006 the scientist, now retired, held the Nuclear Power Technology chair at the Technical University of Dresden and, temporarily, also headed the university's Institute for Power Technology at the same time. From 1990, Professor Knorr was a member of the Executive Board of the Kerntechnische Gesellschaft; he was KTG Chairman between 1993 and 2000. At the same time and beyond, until 2005, Professor Knorr was a member also of the Board of the Deutsches Atomforum. At the awarding ceremony in Berlin on October 28, KTG Chairman Dr. Helmut Blaesig welcomed the fact that, on the basis of the coalition agreement of CDU, CSU and FDP, the new federal government 'had clearly recognized the advantages of nuclear power.' It appreciated the safety of German plants and, in addition to the non-polluting characteristics due to CO 2 emissions saved and the security of supply, also the economic benefit of electricity generation from nuclear power. This supported the German economy in a situation which continued to be difficult. In his vote of thanks for the 32 nd honorary membership of KTG, Professor Knorr emphasized what he considered a key expectation of the re-evaluation of nuclear power by the new federal government: Creating framework conditions for a societal consensus that fair competition among conventional, renewable and nuclear power technologies will give rise to an optimum mix enabling sustainable development to be achieved. (orig.)

  5. Nuclear power failure signals end of an era

    International Nuclear Information System (INIS)

    Mariotte, M.

    1996-01-01

    In the United States, open-quotes the nuclear industry is dead, kaput, finishedclose quotes says Michael Mariotte, executive director of the Nuclear Information and Resource Service in Washington, D.C. Why? Investors are reluctant to gamble their money on a future generation of supposedly safe, economic nuclear power plants. open-quotes in 1979, the 'safe' Three Mile Island-2 reactor turned a several-hundred-million-dollar investment into a billion-dollar loss in a matter of hours,close quotes Mariotte says. open-quotes In fact, investing in nuclear power at this point would be like investing in the Titanic II.close quotes However, diehard proponents of nuclear energy persist in their optimism for a new nuclear age, Mariotte says. These nuclear backers see the need to replace aging plants with a new generation of safer plants. But would a new generation of reactors really be safer? open-quotes To date, the industry may spur some new nuclear plants, it is more likely to lead to alternative renewable sources of energy that are more economical. open-quotes The nuclear age has ended as a result of inefficiency and unacceptable risks...After 50 years of sustained abuse, the Earth has finally and deservedly entered the end of the nuclear age,close quotes Mariotte says

  6. Environment, renewable sources and NPPs: Strategy of Slovak Republic for the back end of nuclear power

    International Nuclear Information System (INIS)

    Timulak, J.

    2009-01-01

    The term 'back end of nuclear power' means set of activities corresponding to the final stage of utilizing the nuclear energy for peaceful purposes, or at the border of nuclear facilities with the environment. Strategy of back end of nuclear power is a basic document that specifies strategy of the Slovak Republic and all relevant subjects for the next five years in detail and for the period up to 2025 in general terms, with the prospect till the end of 21 st century. It provides proposals for implementation of the back end strategy in accordance with requirements for the health and environmental protection so that its consequences are not unacceptably transferred to next generations. The goal of the back end strategy is: - to set acceptable bases back end of nuclear power in Slovakia; - to create framework for decision-making in financial covering of the strategy activities; - to provide information on conceptual solutions of back end of nuclear power to all relevant subjects and to the public. (author)

  7. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  8. A survey of the underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.

    1979-12-01

    The idea of locating nuclear power plants underground is not new, since in the period of time between the late fifties and the early sixties, four small nuclear plants have been built in Europe in rock cavities. Safety has been, in general, the main motivation for such a siting solution. In the last years several factors such as increasing power transmission costs, decreasing number of suitable sites above ground, increased difficulties in obtaining site approval by the licensing authorities, increasing opposition to nuclear power, increasing concern for extreme - but highly improbable - accidents, together with the possibility of utilizing the waste heat and the urban siting concept have renewed the interest for the underground siting as an alternative to surface siting. The author presents a survey of the main studies carried out on the subject of underground siting. (Auth.)

  9. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  10. Field report-Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power

    International Nuclear Information System (INIS)

    Nakamura, Etsuji

    2011-01-01

    Although the accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. was foreseen to be an end with bringing the reactor a stable cooling condition and mitigating the release of radioactive materials, there would be various uncertainties and risks. The public was turned to 'nuclear power phase-out ' or 'nuclear power reduced' and Fukushima prefecture launched a restoration vision not dependent on nuclear power. In July editors joined the visit on Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was organized by Energy and Environmental Email Forum. This feature consisted of six articles based on interviews with respective mayor and discussion meeting of participants. Nuclear world would be responsible for the cooperation and support of Fukushima moving toward restoration with the same stance. Development of renewable energy utilizing damaged fields might be promoted. Respective district was tried to restore based on the trademark of 'Iidate-village in the world' or introduction of central facilities of decommission technology or medical care against radiation hazards. Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was 14.8 m above sea level, was not damaged so much by the tsunami of 13 m high and after the disaster many residents in a neighboring area came to the nuclear power plant office for the refuge. (T. Tanaka)

  11. The atomic power state and national security - the hazardous nuclear potential

    International Nuclear Information System (INIS)

    Damm, W.; Daniels, W.

    1989-01-01

    The authors have chosen the uranium/plutonium cycle, the problems involved in safety engineering of power plant, and the power industry's structural pattern in order to show and to prove the doubtfulness of safety philosophies developed for nuclear energy which in fact is not mastered by the country's technological, social, or economic capabilities. The party 'The Greens' considers nuclear energy to be a hazard to national security and therefore demands prompt abandonment of nuclear power in order to save man and the natural environment. Surplus power supply is to be replaced by the concept of demand-tailored power generation, which is to be placed on the following footing: (1) purposeful and intelligent utilisation of energy allowing dramatic reduction of energy consumption; (2) Use and promotion of renewable energy sources; (3) Abandonment of monopolistic and undemocratic structures in the energy sector of the economy. (orig./HSCH) [de

  12. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  13. On the present situation and future role of nuclear power

    International Nuclear Information System (INIS)

    1990-05-01

    The engaged public debate about the need for, and responsibility of, the continued use of nuclear power goes on unabated between the political parties and other groups of social relevance in the Federal Republic of Germany. And yet, some tentative changes seem to appear in the spectrum of opinions. In this situation, the German public utility companies operating nuclear power plants felt it necessary to express once more in a position paper their attitude with respect to nuclear power for the benefit of those bearing political responsibility at Federal and State Government level and the political parties. Their statements are guided by the responsibility the public utilities have for a reliable, sufficient, environmentally clean, and economic provision of electricity. They are convinced that nuclear power should remain a major constituent part of a comprehensive supply concept also in the future. This supply concept, which is based on the efficient use of power, relies on nuclear energy, run-of-river power, and lignite for the base load and on domestic hard coal for the medium load range; renewable energy sources are included. It underscores the social responsibility of the public utilities in ensuring electricity supply in a way which helps to conserve resources and is compatible with the environment. (orig.) [de

  14. A materials engineering view of license renewal at the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Banic, M.

    1999-01-01

    This paper discusses the treatment of license renewal at the US Nuclear Regulatory Commission (NRC) with emphasis on the review process by the staff of the Materials and Chemical Engineering Branch (EMCB). The paper covers the rules governing license renewal, the applications received, the schedule, the approach, and the technical issues. The NRC has a tight schedule of 30-36 months to renew a license. To date, Baltimore Gas and Electric (BG and E) and Duke Power have applied for license renewal. Expecting more applicants, the staff has taken steps to address the public's concern that the effects of aging will be adequately managed and the industry's concern that the reviews will be timely, efficient, and uniform. These steps include identifying aging effects and making the results available in a report and computerized database, approving topical reports and aging management programs for generic use, and reviewing aging management programs according to specific criteria. Materials Engineering staff have a major role because many of the aging issues are materials related. (author)

  15. Prospects of Nuclear Power for Developing Countries

    International Nuclear Information System (INIS)

    Mourogov, V. M.; Khan, A. M.; Rogner, H-H.; Kagramanian, V. S.

    1998-01-01

    The demand for electricity in developing countries of the world is expected to grow rapidly in the coming decades as these countries undergo the process of industrialization, accompanied by increased urbanization, and seek to improve the living standards of their growing population. The continued heavy reliance of the power sector on fossil fuels will result in an increased dependence of a number of the developing countries on energy imports, with consequentbalance of payment difficulties and implications in terms of reduced energy security, cause severe degradation of the local and regional environment, and will also lead to increasing emissions of greenhouse gases. Increasing the share of hydropower in most of the developing countries is constrained by the limited potential of hydro resources as well as environmental considerations. Other renewable energy technologies such as solar PV and wind power are not expected to play a significant role in the commercial supply of electricity in the foreseeable future in the most part of the developing world. Thus nuclear power as a non-fossil alternative with a proven and mature technology may be called upon to play an increasing role in the future supply of electricity to developing countries. The paper discusses the main factors that are likely to affect, both positively and negatively, the deployment of nuclear power in developing countries and presents the results of the recent IAEA projections on nuclear power capacity growth up to the 2020. The paper also briefly reviews the prospects of nuclear power in Central and Eastern European countries. (author)

  16. Nuclear power and climate change: The cost of adaptation

    International Nuclear Information System (INIS)

    Pailiere, H.

    2012-01-01

    For more than a decade, the international community has been voicing concern over growing greenhouse gas (GHG) emissions, which are believed to be the largest contributor to global warming and more generally to climate change. According to the Intergovernmental Panel on Climate Change (IPCC), an increase in the frequency of heat waves and droughts is expected in many parts of the world, as is that of storms, flooding and cold episodes. The potential consequences of this projected climate change have prompted calls to reduce the use of fossil fuels and to promote low-carbon energy sources such as renewables and nuclear power. At the same time, there has also been growing concern that without a rapid decrease in GHG emissions, climate change could occur at such a scale that it will have a significant impact on major economic sectors including the power generation sector. Although the expanded use of renewables will reduce emissions from the power sector, it will also increase the dependence of distribution systems and electricity production on climatic conditions. Thermal power plants, such as fossil fuel and nuclear, will be affected primarily by the diminishing availability of water and the increasing likelihood of heat waves, which will have an impact on the cooling capabilities and power output of plants. In its 2012 edition of the World Energy Outlook, the IEA underlined the need to address an additional challenge, the water-energy nexus: water needs for energy production are set to grow at twice the rate of energy demands over the next decades. It has thus become clear that the availability of water for cooling will be an important criterion for assessing the viability of energy projects. Given the long operating life of nuclear reactors (60 years for Generation III designs), the possible impact of climate change on the operation and safety of nuclear power plants needs to be addressed at the design and siting stages in order to limit costly adaptation measures

  17. The environmental imperative for renewable energy

    International Nuclear Information System (INIS)

    Serchuk, Adam

    2000-01-01

    This article assesses the report by the Renewable Energy Policy Project entitled 'The Environmental Imperative: A Driving Force in the Development and Deployment of Renewable Energy Technologies', and focuses on the environmental impacts of the generation of electricity including air pollution, climate change, land and water pollution, the threat to wildlife, and the risk of radiation from commercial nuclear power plants. A table is presented illustrating the air pollution, climate change, land use and degradation, water use and quality, wildlife and radiation effects from the use of coal, oil, natural gas, biomass, wind, photovoltaic, geothermal, hydroelectric and nuclear power

  18. MEX04/058 supporting the license renewal of the LVNPP

    International Nuclear Information System (INIS)

    Diaz, A.; Arganis, C.; Viais, J.; Mendoza, G.; Lucatero, M. A.; Contreras, A.

    2010-10-01

    Nuclear power plants in the United States are authorized to operate for 40 years. However, this 40-year period was chosen based on economic considerations and not on technological restrictions or safety aspects. In general, the operation of equipment, systems and components in a nuclear power plant is subject to rigorous maintenance and inspection monitoring under strict surveillance programs throughout their life. In fact, according to the Nuclear Energy Institute, in December 2009, 59 nuclear power plants in the United States had already reached the 40 years of the original operating license and carried out their renewal process, extending their operation for up to 20 more years. These 59 nuclear power plants carried out their renewal process, basing their operation mainly on safety reviews that validated the good working order of systems, structures and components, meeting the technical specifications required, as well as complying with the specific safety provisions for prolonging the use of a operating license. The owner is responsible for showing the Regulatory Agency that it is capable of effectively managing the aging of the systems, structures and components,guaranteeing their good working order during the renewal period. In the specific case of Mexico, Unit 1 of the Laguna Verde Nuclear Power Plant (LVNPP) has an original 30-year license, with almost 20 years of proper operation, for which, in order to request a license extension, it is necessary to begin management activities, which allow for constituting and submitting the license renewal application to the Regulatory Agency in order to continue its commercial operation. This paper presents some of most important activities carried out by Instituto Nacional de Investigaciones Nucleares and LVNPP in the international project MEX04/058, related to Plant Life Management as a support of the beginning of plant license renewal process. (Author)

  19. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  20. German energy turnaround and Poland's start in nuclear power? A survey

    International Nuclear Information System (INIS)

    Knopp, Lothar; Gorski, Marek

    2015-01-01

    The book includes contributions from two meetings: 1. Meeting in Berlin, October 8,2014: Energy transition in Poland - historical background, development and actual situation; legal boundary conditions of the entry into nuclear power in Poland; ecologic and economic causes motivation for the atomic energy entry in Poland; promotion systems for renewable energy in Poland, current status and political background; construction of a nuclear power plant in Northern Poland site specific impacts and social assessment. Meeting in Stettin on November 5, 2014: Energy turnaround in Germany -German nuclear phaseout under consideration of EU legislation; ecologic and economic motivation for the energy turnaround in Germany; energy turnaround in Germany - new legal boundary conditions, especially the amendment to tue renewable energy law; contribution of the industry to the energy turnaround - taking the example waste management and waste incineration plants; fracking as a factor of the energy turnaround? - legal boundary conditions and ecologic risks; ecological, ethical and sociopolitical aspects of the energy turnaround in Germany and Poland.

  1. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  2. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  3. Activities at ORNL in support of continuing the service of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Naus, D.J.

    2012-01-01

    In general, nuclear power plant concrete structure's performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if its effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided. (author)

  4. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  5. Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2017-01-01

    This manuscript analyzes an optimal power generation mix in Japan's nation-wide power grid by considering the post-Fukushima energy policy which puts a high priority on expanding renewable energy. The study is performed, employing an optimal power generation mix model which is characterized by detailed geographical resolution derived from 135 nodes and 166 high-voltage power transmission lines with 10-min temporal resolution. Simulated results reveal that renewable energy promotion policy underlies the necessity for capacity expansion of inter- or intra-regional power transmission lines in Japan in order to realize economical power system operation. In addition, the results show that the integration of massive variable renewable (VR) such as PV and wind decreases the capacity factor of power plant including ramp generator and possibly affects that profitability, which implies the challenge to ensure power system adequacy enough to control VR variability. - Highlights: • Authors analyze installable potential of renewable by Japan's power grid model. • Power grid of the model includes 135 nodes and 166 power transmission lines. • Renewable promotion underlies the necessity for capacity expansion of power lines. • Unremunerated power plants affect power grid adequacy under extensive renewable.

  6. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  7. Long term operation of nuclear power plants in the U.S

    International Nuclear Information System (INIS)

    Young, G.G.

    2015-01-01

    This series of slides shows that safety, performance, cost, environmental and public opinion factors are favorable for long term operation of U.S. nuclear power plants. In the U.S. 1 reactor has an operating life ranging between 10 and 19 years, 37 reactors have an operating life ranging between 20 and 29 years, 42 reactors between 30 and 39 years and 20 reactors have an operating life over 40 years. The original license term is 40 years and it can be extended by 20 years for each renewal. The application for renewal must be at least 5 years before expiration of the current license. 3 main areas are reviewed by NRC to get the renewal: safety, environmental and adjudicatory. A slide describes the NRC license renewal process and another slide lists the regulatory and industry guidance documents based on lessons learned and operating experience. Research and development efforts around materials aging and safety margin characterization by EPRI, DOE, NRC and industry groups are essential to support and maintain the option of long term operation of nuclear reactors. (A.C.)

  8. Effective policies for renewable energy - the example of China's wind power - lessons for China's photovoltaic power

    International Nuclear Information System (INIS)

    Wang, Qiang

    2010-01-01

    China, one of the global biggest emitter of CO 2 , needs promotion renewable energy to reduce air pollution from its surging fossil fuel use, and to increase its energy supply security. Renewable energy in its infancy needs policy support and market cultivation. Wind power installed capacity has boomed in recent year in China, as a series of effective support policies were adopted. In this paper, I review the main renewable energy policies regarding to China's wind power, including the Wind Power Concession Program, Renewable Energy Law, and a couple of additional laws and regulations. Such policies have effectively reduced the cost of wind power installed capacity, stimulated the localization of wind power manufacture, and driven the company investment in wind power. China is success in wind power installed capacity, however, success in wind-generated electricity has yet achieved, mainly due to the backward grid system and lack of quota system. The paper ends with the recommended best practice of the China's wind power installed capacity might be transferable to China's photovoltaic power generation. (author)

  9. Global warming and oil: Can nuclear power make a difference?

    International Nuclear Information System (INIS)

    Bodansky, D.

    1991-01-01

    A responsible energy policy, for the United States and the world, must address two needs: to restrain the rate of fossil fuel consumption, and to reduce the consumption of oil. Unless the first is accomplished, the world may experience major climate changes, some perhaps disastrous, from the buildup of carbon dioxide and other greenhouse gases. Unless the second is met, we face recurring threats of economic disruption and war, due to the dangerous concentration of the world's oil resources in the Persian Gulf region. Nuclear power has long been cited as a possible answer to these needs. Mr. Bodansky takes a fresh look at the contribution nuclear power could make, in the light of our increased awareness of global warming dangers and the renewed reminders of the instabilities of oil markets. He notes, however, that the basic objections to nuclear power remain. They are well-known, stemming from concerns about reactor safety, waste disposal, nuclear proliferation, and cost. These are old but continuing controversies, involving a tangle of technical, political, social, and economic issues. If nuclear power is to be revived, these concerns clearly must be addressed. 1 fig., 7 tabs

  10. Cost and prices of electricity. Fossil fuels, nuclear power and renewable energy sources in comparison; Kosten und Preise fuer Strom. Fossile, Atomstrom und Erneuerbare Energien im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2011-09-15

    Consumers of electricity pay for production, transport and distribution as well as for taxes and dues. Electricity rates depend on various influencing factors, e.g. different fuel and capital cost of the power plants and the ratio of supply and demand in the electricity stock markets. End user electricity rats also include taxes and dues as well as the cost of power transmission. The publication presents background information on the formation of electricity rates in Germany. In a second step, the different cost factors of fossil fuels, nuclear power and renewable energy sources are compared. In particular, the external cost is gone into which often tends to be neglected in the electricity markets.

  11. Smart grid and renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Guerrero, Josep M.

    2011-01-01

    conventional, fossil based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discus trends of the future grid infrastructure as well as the most emerging renewable energy...... as efficient as possible. Further, the recent challenges with nuclear power plants are arguing to find more sustainable energy generation solutions. Of many options, two major technologies will play important roles to solve parts of those future challenges. One is to change the electrical power production from...... sources, wind energy and photovoltaics. Then main focus is on the power electronics and control technology for wind turbines as they are the largest renewable power contributor, allowing their penetration into a SmartGrid to be even higher in the future....

  12. Challenges of nuclear power for the sustainable role in Korean energy policy

    International Nuclear Information System (INIS)

    Lee, Y. E.

    2007-01-01

    This study aims to introduce the current role of nuclear power of Korea as the economic and low carbon emitter in the long term expansion planning and to improve the public acceptance of nuclear as the environmentally friendliness energy source. Nuclear and coal have been selected as the major electricity sources due to the insufficient domestic energy resources, and will provide more than 60% of total electricity generation in Korea for quite some time. National energy policy addressing environmental friendliness, stable supply and least cost has made it difficult to decide which energy resource is the best for the long term energy planning. Climate change regime will diminish the coal power plants in generation amount, the public still keeps nuclear at a distance and insists to replace nuclear by renewable and renewable doesn't any guarantee of stable supply although its economics is fast being improved. Therefore, it is necessary to analyze the long-term power expansion planning in various points of view such as environmental friendliness, benefit of carbon reduction and system reliability as well as least cost operation. The objective and approach of this study are to analyze the proper role of nuclear power by comparing the different types of scenarios in terms of the system cost changes, CO 2 emission reduction and system reliability. The results from this analysis are useful for the Korean government in charge of long-term energy policy to go over what kinds of role can each electric resources play and what are the best way to solve the triangular dilemma as economics, environmental friendliness, stable supply of the electricity

  13. What's happening in 'renewable energy developed country: Germany'. Next step our country should learn

    International Nuclear Information System (INIS)

    Kitamura, Kazuya

    2012-01-01

    What's the next step our country should take? Japan could learn a lot of things such as success or failure examples from renewable energy developed country: Germany. This article reviewed present state of Feed-In Tariffs and renewable energy power in Germany. Share of renewable energy power amounted to 20% including 7.6% of wind power and 6.1% of biomass in 2011. Such trend caused increase of power cost, restructure of power system such as new installation of power transmission against north coast offshore wind power plant, and development of power storage system such as hydrogen production or pumped storage power plant. Efficient introduction of renewable energy should be planned in Japan based on appropriate share target of renewable energy share. As for nuclear power phaseout, Japan should learn German's experiences on decommissioning and decontamination of nuclear power plants, and policies of intermediate storage and final disposal of high-level radioactive wastes, which needed a long time and a great cost. (T. Tanaka)

  14. Power situation in German and lessons for Japan. Expanding renewable energy and fluctuating FIT system

    International Nuclear Information System (INIS)

    Kitamura, Kazuya

    2016-01-01

    In Germany, energy shift has now caused that a quarter of the total consumed power is obtained from renewable energy sources. There, a shift from nuclear energy has been achieved, and the dissemination of renewable energy as industrial creation has been demanded. However, the Renewable Energy Act, which was the promoter of the above process, was revised drastically in August 2014. Although evaluation on the revised Renewable Energy Act is a future work, it is said that this revision is quite severe for the parties who have promoted the renewable energy business in local regions and enjoyed the profiles locally. Regarding electricity, the German government has a strong industrial protection policy. This paper summarized the basic stance of the German government, by taking up the specific examples of actual electricity fee and the reduction/exemption system of levies on power consumption type companies. The German government clearly shows its willingness to adhere to be an industrial nation. In Germany, the wholesaling spot price of electricity declined due to the spread of renewable energy. This also comes from the mechanism of the FIT system. Unlike Germany where FIT system started in 2000, levies are still small affecting less in Japan where the FIT system has just begun. However, in Germany, it is a big problem. In order to discuss the ideal way of FIT system in Japan, it is necessary to know as accurately as possible what the reality is, including about overseas precedents. (A.O.)

  15. EDF launching a new advertising campaign for nuclear power

    International Nuclear Information System (INIS)

    Fouilloux, Jean-Michel; Chaussade, Jean-Pierre

    1998-01-01

    Full text: Starting on November 12 [art, Electricite de France launched its sixth advertising campaign for nuclear power, running in newspapers, magazines and on television. Inserts were published in 10 national daily newspapers and 7 magazines spread over a week period. A 40 second TV commercial will also be broadcast on 15 different channels between November 17 and December 7,1997. In a setting of renewed opposition to nuclear power, the 1997 campaign is a deliberate voicing of opinion and a response designed to instill responsibility and clearly inform the public over the results of the French nuclear electricity programme. The campaign, costing 22 million francs 9 million for the publication of inserts and 13 million for the TV spots) dwells heavily on the programme's comparative benefits for France. The TV commercial, created by the ad agency Callegari Berville, conveys communication based on proof. The rationale is informative in tone, stating that nuclear power ensures a part, of France's independence for energy, and that this is an inexpensive form of power, the results of which are visible on every electricity bill. What is more, nuclear power is a clean and non-polluting energy form. Through scenes of daily life and other imaginary scenes, the spot highlights the advantages nuclear power gives our country. The press campaign is a continuity of the campaign run in November 1996, with EDF using information developed in advertisements to respond to the major questions being asked by the public: how does nuclear power make the cost of electricity competitive? Why does, nuclear power create more jobs in France than other forms of energy? What is the impact of nuclear power on global warming? What do we do with nuclear waste? Why does nuclear power help put our trade balance in the black? The campaign also helps meet a demand by using a reply coupon to propose a number of documents such as 'Focus on the French Nuclear Electricity Programme' or 'Nuclear Waste in

  16. The need for nuclear power in Indonesia

    International Nuclear Information System (INIS)

    Subki, I.R.; Arbie, B.; Adiwardojo, M.S.; Tobing, M.L.

    2000-01-01

    Nuclear power generation is a well-proven technology for electricity production. World-wide, in both developed and developing countries, by mid May 1997, 443 Nuclear Power Plants (NPPs) have been in operation contributing around 18% to the world electricity supply with a total generating capacity of 351 GWe in 32 countries. There are 35 NPPs now under construction in 14 countries. Now, most of us have come to realize that an increasing demand and supply of energy is a reality and a necessity to support socio-economic development. This is especially true in developing countries where most of the population have a low consumption of energy and a low standard of living, and the need for a lot of energy to fuel the development and to improve the quality of life is imminent. In regard to electricity supply, this situation can be translated into the need for a large base load power generation. The electricity demand in Indonesia is very high due to the National Economic Development Plan based on industrialization and supported by a strong agriculture base. This situation calls for development and deployment of all energy technologies, including nuclear, fossil and renewables, to supply the energy needed. The need for nuclear power in Indonesia is in line with the national energy policy, which stresses diversification and conservation, economic competitiveness, and environmental cleanliness. The prepared Nuclear Science and Technology Base and its potential to support the high-tech industry development will lead Indonesia to a sustainable national development. (author)

  17. Lifetime management research trend of Kori-1 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, J. S.; Jeong, I. S.; Hong, S. Y.

    1998-01-01

    KEPRI launched the Nuclear Power Plant Lifetime Management Study(II) for the management of the latter half life of Kori-1. Main goal of LCM-IV study is the detail evaluation of main equipment life and establishment of aging management based on LCM-IV result. The result of LCM-IV on the kori-1 confirmed the technical and economical feasibility of life extension beyond the design life. Owing to absence of The regulatory policy for the life extension in korea, LCM-IV will focus on the minimum study which is essential for the actual lifetime management for the old nuclear power plant. License renewal study is expected after the establishment of Regulatory policy about the life extension of nuclear power plant. LCM trend in korea and abroad, result of technical and economical feasibility study and summary of LCM-IV is described on this paper

  18. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  19. Prospective economical study of the nuclear power file; Etude economique prospective de la filiere electrique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Charpin, J M [Commissariat General du Plan, 75 - Paris (France); Dessus, B [Ecodev-CNRS, 92 - Meudon (France); Pellat, R [CEA, 75 - Paris (France)

    2000-07-01

    On May 7, 1999 an economical study of the overall nuclear file, and in particular, of the back-end part of the fuel cycle and including the reprocessing, was requested by the French Prime Minister. This study includes the cost comparisons with the other means of power production and takes into consideration the environmental costs. The study is shared into five chapters dealing with: 1 - the legacy of the past: todays park of nuclear plants, economical and material status; 2 - the international evolution: the dynamics of nuclear policies worldwide (existing parks and R and D programs), the rise of environmental problems worldwide (CO{sub 2} and the climate convention, nuclear risks, attempts of including environment in the power costs), the choices made for the management of spent fuels in the main countries; 3 - the technological prospects for the power production and use: technologies for the mastery of power demand (residential, industrial and tertiary sectors, power transportation), technologies of power production (production from nuclear, fossil and renewable energies); 4 - prospective scenarios for France: two demand scenarios at the year 2050 vista (energy, electric power), power supply (supply structure with respect to scenarios, nuclear parks, power capacities), environmental aspects (CO{sub 2} emissions, plutonium and minor actinides production); 5 - the economical status of the different scenarios: data preparation, fossil fuel price scenarios, investment and operation costs of the different power production means (nuclear, fossil and renewable energies, natural gas and power distribution networks), comparison between fluxes and cumulated economic costs linked with the different scenarios (investments, exploitation, fuels, R and D, status for 2000 to 2050), time structure of expenditures with respect to the different scenarios (chronology, statuses, kWh costs, sensitivity with respect to the rate of discount, valorization of existing parks in 2050

  20. Overview of the role of economics in plant life management license renewal in the U.S

    International Nuclear Information System (INIS)

    Young, G.G.; Nelson, A.P.

    2002-01-01

    Full text: In 1995, the U.S. Nuclear Regulatory Commission (NRC) published a revised rule in 10 CFR Part 54 that provides the requirements for an operating nuclear plant to seek license renewal. U.S. nuclear power plants obtain a 40-year initial operating license, but under 10 CFR Part 54, additional terms of 20-years each may be obtained through license renewal. Prior to 1995, the estimated cost just to prepare a license renewal application was about $40 million. Under the revised rule, the cost to prepare an application was reduced to about $10 million or less. Although the revised rule generated considerable interest, the decision to seek license renewal is fundamentally an economic decision. In 1995, many people believed that only a select few operating nuclear plants would pursue license renewal and that most would operate for no more than 40 years. The primary reason for this belief was that the cost of keeping U.S. nuclear plants running did not appear to be competitive with other forms of electricity generation. By 1998, the economic conditions in the U.S. were changing dramatically. Electricity deregulation was moving ahead, the need for electricity was growing, and the operating costs for nuclear power plants were declining. Also, in 1998, the first two applications for license renewal were submitted to the NRC by Baltimore Gas and Electric for the two-unit Calvert Cliffs nuclear power plant and by Duke Energy for the three-unit Oconee nuclear power plant. The U.S. nuclear industry was somewhat skeptical that the NRC could complete the license renewal process in a timely and predictable manner. This skepticism was due to the protracted and unpredictable process used by the NRC to approve the original operating licenses, especially in the 1980's and early 1990's. In March 2000, the NRC approved the renewal of the 40-year operating licenses for the two-unit Calvert Cliffs nuclear power plant for an additional 20 years. Two months later, the NRC approved the

  1. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  2. 5. world inventory of the electric power produced by renewable energy

    International Nuclear Information System (INIS)

    2004-03-01

    This fifth edition of the electric power production in the world by renewable energies sources, has been realized by the renewable energies observatory for ''Electricite de France''. It proposes an evaluation of the situation, providing data and analysis for each renewable energy sources, hydro electric power, wind energy, biomass, geothermal energy, photovoltaic and the green energy. (A.L.B.)

  3. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  4. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....

  5. Nuclear power-accomplishments and prospects

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Nuclear energy is probably unique in being an international endeavor. The US was correct in 1973 in embracing nuclear energy, and is correct even today in continuing to champion and push this technology. Several major events justify this view. They include: the world's growing dependence on oil and America's increasing dependence on the unstable Middle East; steady high growth in electricity demand; culminated in this summer's record peak demands across the country, and while it was a hot summer, most of that increased demand was industrial activity-economic activity-not due to heat and renewed emphasis on the environment. The job of nuclear utilities and manufacturers is to work with continuity towards greater reliability, safety, and economy of our plants as they exist today. Nuclear power offers clear objective advantages if one is able to look beyond the illusions of the immediate situation. Taipower believes that nuclear power should be the major energy resource for Taiwan in the future. The first problem facing Taipower is the long lead time required for project approval. The second problem Taipower faces is the difficulty in obtaining a public consensus. Three main rational and irrational reasons are decisive for this future development of nuclear energy in Germany: energy structure, economics, and public acceptance. The use of nuclear energy is ethically not irresponsible, but it is ethically irresponsible not to use nuclear energy. A lot of modifications on the European plants have taken place to try to minimize the chance of having an accident and, in case it should happen, to limit the consequences. Another problem is waste deposits. As long as there is no answer to this question, the public will continue to debate on this issue

  6. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  7. Overview of electric power industry of main countries in the world

    International Nuclear Information System (INIS)

    2013-01-01

    The electric power supply system, power producer, regulation system, electricity liberalization, power demand and supply, electricity rate, development of electric power sources, nuclear power generation and renewable energy of six countries such as USA, England, German, France, Russia and China are reported. On USA, 3,754 x 10 9 kWh of total electric energy, 104 of nuclear reactors are running and giving careful consideration to safety of the plant. Shale gas production is increasing, and new technology of electric car, smart grid and demand response is developing. On England, 368 x 10 9 kWh of total electric energy, which consisted of 70.4% thermal power, 18.8% nuclear power and 10.8% renewable energy, 18 nuclear reactors are running, but almost nuclear power plants will be closed until 2023. Biomass and wind power have been developed. On German, 609 x 10 9 kWh of total electric energy, 9 nuclear reactors are running but closed till 2022, the renewable energy such as wind power and photovoltaic is introduced. On France, 542 x 10 9 kWh total electric energy, which consisted of 9% hydroelectricity, 9% thermal power, 78% nuclear power and 4% renewable energy. The renewable energy plan is formulated. On Russia, 1,052 x 10 9 kWh total electric energy consisted of 67.8% thermal power, 15.7% hydroelectricity and 16.4% nuclear power, 32 nuclear power plants are running and 9 nuclear reactors building. On China, 4,693 x 10 9 kWh power consumption, 6 nuclear power plants are running to generate 1.85% electric energy, the objects of nuclear power generation and renewable energy were announced. (S.Y.)

  8. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...... as a full-scale example. Different project examples will be given as well as important laboratories for adjustable speed drives and renewable energy systems which are used at the university are described.......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...

  9. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  10. CO2 emissions, nuclear energy, renewable energy and economic growth in the US

    International Nuclear Information System (INIS)

    Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This study explores the causal relationship between carbon dioxide (CO 2 ) emissions, renewable and nuclear energy consumption and real GDP for the US for the period 1960-2007. Using a modified version of the Granger causality test, we found a unidirectional causality running from nuclear energy consumption to CO 2 emissions without feedback but no causality running from renewable energy to CO 2 emissions. The econometric evidence seems to suggest that nuclear energy consumption can help to mitigate CO 2 emissions, but so far, renewable energy consumption has not reached a level where it can make a significant contribution to emissions reduction.

  11. France's Nuclear Arsenal: What Sort of Renewal?

    International Nuclear Information System (INIS)

    Brustlein, Corentin

    2017-01-01

    Over the course of the next few years, France will have to renew its nuclear arsenal to ensure that it remains a credible deterrent in the eyes of its potential enemies. This update must occur within an unfavourable context: the strategic environment, marked by the multiplication of Jihadi fronts, has deteriorated, and budgetary discipline is the order of the day. Sacrificing nuclear deterrence at the altar of the fight against terrorism would, however, be a fatal error

  12. Aging management guidelines for commercial nuclear power plant equipment

    International Nuclear Information System (INIS)

    Nakos, J.T.; Gazdzinski, R.F.; Toman, G.J.

    1994-01-01

    The US Department of Energy, in cooperation with the Electric Power Research Institute and nuclear power plant utilities, has prepared ''Aging Management Guidelines'' (AMGs) for commodity types of equipment (e.g., pumps, electrical switchgear) important to license renewal. For the most part, this is also consistent with the Maintenance Rule, 10 CFR 50.65 (1991). AMGs concentrate on technical, (not licensing) issues and are directed toward systems engineers and plant maintenance staff. AMGs include a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance practices that can be combined to create effective programs that manage aging. All aging mechanisms were addressed; no attempt was made to limit the evaluation to aging mechanisms ''unique to license renewal,'' as defined in the License Renewal Rule, 10 CFR 54 (1991). The first AMG on Electrical Switchgear was published in July 1993. Six (6) additional AMGs will be published by the first quarter of calendar year 1994. It is anticipated that two more AMGs will be started in 1994. The seven ongoing AMG topics are as follows: (1) battery chargers, inverters and uninterruptible power supplies; (2) batteries, stationary; (3) heat exchangers; (4) motor control centers; (5) pumps; (6) switchgear, electric; (7) transformers, power and distribution. In Section 7, industry feedback regarding AMGs is discussed. Overall, the response has been very positive

  13. Skills renewal in nuclear an industrialist's point of view

    International Nuclear Information System (INIS)

    Bonnet, Michel; Louvel, Dominique

    2010-01-01

    Global energy needs are increasing and at the same time, the use of fossil fuels for energy is being questioned for several reasons: the possible shortage of resources; the volatility of their prices; the impact of their use on global warming, to name but a few. Focusing on the demand for electricity, forecasts from the World Nuclear Association show a dramatically growing trend and a necessity for massive investments in response to this. Over the 2000-2030 period, the needs for extra electricity generation in Europe are estimated at 660 GW, in North America the forecasted level of needs is 850 GW, in China, it is 1,300 GW. Given the current fossil fuel situation, nuclear energy is undoubtedly part of the answer to the growing demand for electricity generation, along with renewable energies and energy efficiency. In most countries, nuclear power plants were commissioned over a relatively short period (1970-1985). Except maybe in some regions, the Chernobyl accident put this technology on hold for twenty years, meaning that an ageing workforce is now an issue for the nuclear industry. The recruitment of a significant number of engineers is thus necessary, both to launch new nuclear projects and to replace employees about to retire. In France, 40% of all nuclear engineers will retire over the next decade. During this period, around 1,200 engineers per year will be recruited, including 600 per year by EDF (a fourfold increase). In many countries, the recruitment of engineers has remained at a very low level for the past 15 years and consequently education programs have been cut back. Furthermore, teaching positions have not been renewed and only a few qualified individuals remain, most of whom are nearing retirement age. The revival of nuclear education is a key point for the success of the nuclear renaissance. In 2007-2008, the High Commissioner for Atomic Energy conducted a census of existing French nuclear teaching programs. By this time, capacity in France was

  14. Overview of renewable electric power in 2016 in Normandy

    International Nuclear Information System (INIS)

    Berg, Patrick

    2017-06-01

    This publication proposes an assessment of renewable electricity produced in 2016 in the Normandie region, and thus highlights how these territories are committed in an energy transition logics and in a positive evolution of the region energy mix. After a recall of national and regional objectives in terms of final consumption and of shares of renewable energies, definitions, figures, objectives, installed and connected powers, projects, evolutions, electric power production cover rate, numbers and locations of installations are given by graphs and maps and briefly commented for the different renewable sources: onshore wind energy, solar photovoltaic energy, hydroelectricity, bio-energies. A regional assessment which gathers some of these information is given, and modalities of support to renewable energies are briefly presented for onshore and offshore wind energy, photovoltaic, hydroelectricity and biogas

  15. Decentral amd renewable power generation; Dezentrale und erneuerbare Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Ulli [EWE AG, Oldenburg (Germany). Abt. Forschung und Entwicklung

    2011-07-01

    The inspiration for the design of an energy system of the future constitutes the necessary change of the power generation structure deriving from renewable energy sources such as wind power and solar energy. In Germany, the captured feeding volume of renewable energy amounts 89.1 TWh per annum in 2009. The high demands on a stable and efficient network operation require an intelligent networking of information and communication technology. This network enables the production facilities and consumption components to communicate with renewable energies. EWE AG (Oldenburg, Federal Republic of Germany) develops and implements an active smart grid as a distribution network with a virtual power plants and energy marketplaces, with network services and management algorithms and a new tariff system feedback sysem for the involvement of domestic consumers.

  16. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  17. A comparison of nuclear and renewable power plants with an AHP model: The case of Turkey

    International Nuclear Information System (INIS)

    Kara, Y.; Koene, C.

    2009-01-01

    Various selection criteria can be taken into account in determination of fuel mix by giving different priorities. In this paper, we present a multiple criteria decision-making model to evaluate five types of power plants -namely solar, wind, geothermal, biomass and nuclear power plants- for electricity generation in Turkey by means of Analytical Hierarchy Process (AHP). The proposed model implemented two alternative scenarios; each gives different relative importance to the control criteria (production costs, external costs, national and international acceptance) in the model. Under all alternative scenarios of our model, the highest value alternative is nuclear power plants. The share of nuclear energy is in the range of 36% - 32% in our model results although nuclear energy is not available yet. The calculated percentage of wind and solar power plants are 24% and 29% for Scenario 1 and 17% and 16% for Scenario 2 respectively.

  18. Life extension program initiation at Davis-Besse nuclear power station

    International Nuclear Information System (INIS)

    Staudinger, Deborah K.

    1991-01-01

    Davis-Besse is a 900 MW Babcock and Wilcox designed plant located in Northwest Ohio. Effective December 31, 1990, the construction period was recovered making the current license expiration 2007. The economic effects of this extension reduced the depreciation expense for 1990 by $9,790,000 and increased earnings per share by $.04. This positive impact has resulted in an evaluation of pursuing license renewal for Davis-Besse in accordance with the proposed rule on license renewal (10CFR54 'Requirements for renewal of operating licenses for nuclear power plants'). This paper reviews preliminary efforts to evaluate these actions and summarizes strategies planned to ensure continued operation of Davis-Besse remains a viable option for base load generation for Toledo Edison. (author)

  19. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  20. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  1. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  2. Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system

    International Nuclear Information System (INIS)

    Almansoori, Ali; Betancourt-Torcat, Alberto

    2015-01-01

    Highlights: • A design optimization model for the power sector has been developed. • We examine the influence of exogenous variables in the UAE power infrastructure. • Subsidizing fuel prices will stimulate fossil-based electricity generation. • Carbon tax and higher fuel prices are suitable options to decrease air emissions. • Accounting the social benefits of emissions avoidance incentivizes diversification. - Abstract: A Mixed Integer Linear Programming (MILP) formulation is presented for the optimal design of the United Arab Emirates’ (UAE) power system. The model was formulated in the General Algebraic Modeling System (GAMS), which is a mathematical modeling language for programming and optimization. Previous studies have either focused on the estimation of the UAE’s energy demands or the simulation of the operation of power technologies to plan future electricity supply. However, these studies have used international simulation tools such as “MARKAL” and “MESSAGE”; whereas the present work presents an optimization model. The proposed design optimization model can be used to estimate the most suitable combination of power plants under CO 2 emission and alternative energy targets, carbon tax, and social benefits of air emissions avoidance. Although the proposed model was used to estimate the future power infrastructure in the UAE, the model includes several standard power technologies; thus, it can be extended to other countries. The proposed optimization model was verified using historical data of the UAE power sector operation in the year 2011. Likewise, the proposed model was used to study the 2020 UAE power sector operations under three scenarios: domestic vs. international natural gas prices (considering different carbon tax levels), social benefits of using low emission power technologies (e.g., renewable and nuclear), and CO 2 emission constraints. The results show that the optimization model is a practical tool for designing the

  3. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  4. ELECNUC. Nuclear power plants in the world - 2012 edition, Status on 2011-12-31

    International Nuclear Information System (INIS)

    2012-01-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. Data come from the IAEA's PRIS database and from specific I-tese studies. The following aspects are reviewed: 2011 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2011/01/01; Worldwide status of nuclear power plants (12/31/2011); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2011; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear powe plants by country at the end 2011; Performance indicator of french PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2011; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2011; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2011; Long term shutdown units at 12/31/2011; COL (Combined Licence) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary

  5. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  6. Operation Strategy for a Power Grid Supplied by 100% Renewable Energy at a Cold Region in Japan

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-09-01

    Full Text Available This paper presents an operation strategy for a power system supplied from 100% renewable energy generation in Kitami City, a cold region in Japan. The main goal of this work is the complete elimination of the CO2 emissions of the city while keeping the power frequency within prescribed limits. Currently, the main energy related issue in Japan is the reduction of CO2 emissions without depending on nuclear generation. Also, there is a need for the adoption of distributed generation architecture in order to permit local autonomous operation of the system by the local generation of power. As a solution, this paper proposes a strategy to eliminate CO2 emissions that considers digital simulations using past hourly meteorological data and demand for one year. Results shows that Kitami City can be supplied entirely by renewable generation, reducing its CO2 emission to zero while keeping the quality of its power grid frequency within permitted limits.

  7. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  8. South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2014-01-01

    South Korea is an important case study for understanding the future role of nuclear power in countries with on-going economic growth, and limited renewable energy resources. We compared quantitatively the sustainability of two ‘future-mapping’ exercises (the ‘Governmental’ scenario, which relies on fossil fuels, and the Greenpeace scenario, which emphasises renewable energy and excludes nuclear power). The comparison was based on a range of environmental and technological perspectives, and contrasted against two additional nuclear scenarios that instead envisage a dominant role for nuclear energy. Sustainability metrics included energy costs, external costs (greenhouse-gas emissions, air pollutants, land transformation, water consumption and discharge, and safety) and additional costs. The nuclear-centred scenarios yielded the lowest total cost per unit of final energy consumption by 2050 ($14.37 GJ −1 ), whereas the Greenpeace scenario has the highest ($25.36 GJ −1 ). We used probabilistic simulations based on multi-factor distributional sampling of impact and cost metrics to estimate the overlapping likelihoods among scenarios to understand the effect of parameter uncertainty on the integrated recommendations. Our simulation modelling implies that, despite inherent uncertainties, pursuing a large-scale expansion of nuclear-power capacity offers the most sustainable pathway for South Korea, and that adopting a nuclear-free pathway will be more costly and produce more greenhouse-gas emissions. - Highlights: • Nuclear power has a key role to play in mitigating greenhouse-gas emissions. • The Greenpeace scenario has higher total external cost than the nuclear scenarios. • The nuclear-centred scenarios offer the most sustainable option for South Korea. • The similar conclusions are likely to apply to other Asian countries

  9. Renewables cannot be stored economically on a well-run power system

    Science.gov (United States)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  10. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  11. Energy demands, goal of energy independence drives renewed interest in nuclear power in the U.S. and elsewhere

    International Nuclear Information System (INIS)

    Tritch, S.

    2002-01-01

    Worldwide energy consumption is going to rise in step with population growth and economic development. Forecasts indicate a growth of the electricity sector alone from the present annual requirement of 12 500 TWh to approx. 28 000 TWh in 2042. This challenge requires governments all over the world to find appropriate solutions which include economic and ecological aspects as well as those of energy policy, among others. In the United States, the goal of a balanced energy mix is to be reached by including all sources of energy, inclusive of a larger share of nuclear power. Nuclear power offers considerable advantages in a number of important factors. Nuclear power plants generate electricity in a cost-effective way, thus ensuring low prices in the energy mix. The use of nuclear power contributes to the conservation of other, natural energy resources, which makes it the only source of energy available which still offers a considerable further potential for use. Moreover, climate protection requires the use of nuclear power. In the United States alone, nuclear power today reduces emissions of carbon dioxide on a level comparable to 100 million road vehicles. This makes nuclear power an important part of energy supply worldwide and will allow it to play a major role in the future energy mix. The nuclear industry is prepared to meet this challenge. (orig.)

  12. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  13. ADEME report: an analysis by a former nuclear plant manager. Renewable energies in France: a former nuclear plant manager and an expert of the International Energy Agency propose their analysis

    International Nuclear Information System (INIS)

    Marcade, Alain; Danielo, Olivier

    2015-01-01

    The first article is an answer to the second one. In the second one, in order to reply to the reaction of a former manager of a nuclear power plant to a report published by the ADEME on the perspective of 100 per cent renewable production of electricity, an expert of the EAI answers questions on hydraulic gravity storage and pump storage stations. In the first article the former manager of a nuclear plant gives his opinion on the ADEME report (its hypotheses, means of renewable production, evolution of investment costs), identifies three main shortcomings in this study (important under-sizing of production and storage means, insufficient compensation of renewable intermittency, no study of the capacities implemented to ensure an instantaneous balance of the electric system), discusses the possibility to reach the same energy mix while correcting these shortcomings. He discusses the possibility to obtain an economically profitable system, and finally wanders whether nuclear energy is unavoidable for the decades to come

  14. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources

  15. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-06-15

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  16. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  17. Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios

    International Nuclear Information System (INIS)

    Wang, Ge; Zhang, Qi; Mclellan, Benjamin C.; Li, Hailong

    2016-01-01

    Renewable energy is expected to play much more important role in future low-carbon energy system, however, renewable energy has problems with regard to load-following and regional imbalance. This study aims to plan the deployment of intermittent renewable energy in multiple regions considering the impacts of regional natural conditions and generation capacity mix as well as interregional transmission capacity using a multi-region dynamic optimization model. The model was developed to find optimized development paths toward future smart electricity systems with high level penetration of intermittent renewable energy considering regional differences and interregional transmission at national scale. As a case study, the model was applied to plan power generation in nine interconnected regions in Japan out to 2030. Four scenarios were proposed with different supporting policies for the interregional power transmission infrastructures and different nuclear power phase-out scenarios. The analysis results show that (i) the government's support for power transmission infrastructures is vital important to develop more intermittent renewable energy in appropriate regions and utilize renewable energy more efficiently; (ii) nuclear and renewable can complement rather than replace each other if enough interregional transmission capacity is provided. - Highlights: • Plan the optimal deployment of intermittent renewable energy in multiple regions. • A multi-region dynamic optimization model was developed. • The impacts of natural conditions and interregional transmission are studied. • The government's support for transmission is vital important for renewable energy. • Nuclear and renewable can complement rather than replace each other.

  18. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  19. The role of communications in achieving sound energy policy and excellence in nuclear power

    International Nuclear Information System (INIS)

    Harris, B.

    1988-01-01

    This paper highlights the renewed emphasis on excellence throughout the U.S. nuclear power industry. The author discusses the role of the industry's national communications programs in helping achieve excellence, and in helping maintain the viability of nuclear power as a major source of energy in America. The author discusses an industry report which emphasized that quality operational performance of all U.S. nuclear utilities is absolutely essential for public and regulatory trust. To achieve that trust, the public must know about operational excellence. According to the author, delivering that message is one of the industry's major assignments

  20. Public comments on the proposed 10 CFR Part 51 rule for renewal of nuclear power plant operating licenses and supporting documents: Review of concerns and NRC staff response. Volume 1

    International Nuclear Information System (INIS)

    1996-05-01

    This report documents the Nuclear Regulatory Commission (NRC) staff review of public comments provided in response to the NRC's proposed amendments to 10 Code of Federal Regulations (CFR) Part 51, which establish new requirements for the environmental review of applications for the renewal of operating licenses of nuclear power plants. The public comments include those submitted in writing, as well as those provided at public meetings that were held with other Federal agencies, State agencies, nuclear industry representatives, public interest groups, and the general public. This report also contains the NRC staff response to the various concerns raised, and highlights the changes made to the final rule and the supporting documents in response to these concerns

  1. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  2. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  3. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  4. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  5. Nuclear power and the third energy revolution. Interview of Anne Lauvergeon

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    The first energy revolution was the changeover from wood to coal, the second one from coal to oil and now we are facing the passage from oil to CO 2 -no-emitting energy sources. The global energy equation of the world implies a permanent growth of the energy demand so the combining of energy conservation measures and the development of renewable energies go in the right direction but it will not be enough. We have to develop energy sources that do not worsen the climatic change and stay competitive. Nuclear power is one of them, it has the advantage of existing and relying on a broad feedback experience. Areva has made large investment to face a renaissance of nuclear power worldwide. Nuclear power appears to have significant strategical, economical and environmental assets and recent opinion polls show a real general trend in favor of this energy. (A.C.)

  6. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  7. Nuclear power program and environment

    International Nuclear Information System (INIS)

    Subramanya, S.K.; Gupta, J.P.

    2012-01-01

    Access to energy is one of the basic requirements for human development. To meet these growing energy needs without creating negative side effects is a challenge. The possibility of global climate change resulting from an increase in GHG concentrations in the atmosphere due to developmental activities is a major global concern. India is passing through the process of economic growth. Although India has not created the problem of climate change, India stands ready to be a part of the solution. The largest chunk of emissions was from electricity generation amounting to 65 percent of the total CO 2 equivalent emissions from the energy sector. Nuclear energy and renewables stand as sources for electricity with minimum GHG emission. Production of electricity from any form of primary energy has some environmental effect. A balanced assessment is needed. Nuclear power is of importance to India because it has potentially unlimited resource base, does not emit GHGs and, depending on location, has potentially favourable economics versus coal. In the long term, if we are to preserve the environment, it will be necessary to tap this source to the maximum extent feasible, In nuclear power stations, all its wastes are contained. India being home to nearly a third of the entire world's thorium, the strategies for large scale deployment of nuclear energy is focused towards utilization of thorium. The electricity potential of 3-stage programme is estimated to be about 2 lakh GWe-yr. Nuclear Power Corporation of India Limited is currently operating 20 reactors and has accumulated more than 337 reactor-years of experience in safe operation. A defence-in-depth approach is at the heart of safety philosophy, where there are several lines of defence, one backing another. Radiation is relevant for nuclear, coal, oil, gas and geothermal power plants. The essential task is to prevent excessive amounts now or in the future. One of the guiding principles adopted is to ensure that radiation

  8. New Brunswick Power Nuclear Corporation update 2005

    International Nuclear Information System (INIS)

    White, R.M.; Eagles, E.R.; Pilkington, W.S.

    2005-01-01

    A brief presentation will be made on the operations and business activities over the previous year with a discussion of the current status of the NB Power group of companies. The New Brunswick Government has implemented the new 'Electricity Act' which has resulted restructuring of NB Power, opening of the electricity market to wholesale completion and the separation of the transmission system operation from NB Power. On October 1, 2005 the restructuring of NB Power was implemented to change NB Power from a single integrated utility into NB Power Holding Corporation with four subsidiary operating companies including NB Power Nuclear Corporation, NB Power Distribution and Customer Service Corporation, NB Power Transmission Corporation and NB Power Generation Corporation. As part of the Electricity Act, the transmission system reliability, operation and market control functions have been moved into a separate company, the NB System Operator, outside of the NB Power group of companies. A review of Point Lepreau's operational activities will include presentation of the capacity factor, availability and safety results with a summary of significant issues, planned outages and unplanned outages. An update on the current status of Power Reactor Operating License renewal and the strategies for renewal timing will be presented. Planning for refurbishment has continued with a major focus on addressing the recommendations made by Dr. Robin Jeffrey in his report to the Province of New Brunswick. These recommendations included three options for replacement of the Point Lepreau capacity and energy; 1) improve refurbishment contract arrangements with AECL, 2) solicit external investment in refurbishment and the station and 3) update the case for fossil fuel alternatives. The NB Power Holding Corporation Board of Directors have provided the appropriate information on the options to the owner (Province of New Brunswick) for consideration. A decision on the future of the Point Lepreau

  9. Summary of technical information and agreements from Nuclear Management and Resources Council industry reports addressing license renewal

    International Nuclear Information System (INIS)

    Regan, C.; Lee, S.

    1996-10-01

    In about 1990, the Nuclear Management and Resources Council (NUMARC) submitted for NRC review ten industry reports (IRs) addressing aging issues associated with specific structures and components of nuclear power plants ad one IR addressing the screening methodology for integrated plant assessment. The NRC staff had been reviewing the ten NUMARC IRs; their comments on each IR and NUMARC responses to the comments have been compiled as public documents. This report provides a brief summary of the technical information and NUMARC/NRC agreements from the ten IRs, except for the Cable License Renewal IR. The technical information and agreements documented herein represent the status of the NRC staffs review when the NRC staff and industry resources were redirected to address rule implementation issues. The NRC staff plans to incorporate appropriate technical information and agreements into the draft standard review plan for license renewal

  10. Aging management guideline for commercial nuclear power plants-pumps

    International Nuclear Information System (INIS)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  11. Aging management guideline for commercial nuclear power plants-pumps

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  12. Russian Energy Strategy and development of renewable power industry

    OpenAIRE

    Bazhanov, Andrei; Tyukhov, Igor

    2008-01-01

    We consider two scenarios of the development of renewable power industry in Russia on an example of the Dasgupta-Heal-Solow-Stiglitz model. We assume that the resource rent is being invested into capital in the form of renewable power technologies according to the standard Hartwick saving rule. We use the modified Hotelling rule that reflects externalities implying, in particular, growing rates of oil extraction. We have shown that the growing extraction, prescribed by the Russian Energy Stra...

  13. Power system and market integration of renewable electricity

    Science.gov (United States)

    Erdmann, Georg

    2017-07-01

    This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  14. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  15. Belgium postpones by 2025 the start of phasing out nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Belgium has two nuclear power plants at Doel and Tihange that supply 55% of electric power. These reactors should closed between 2015 and 2025 but an international group of experts established that the consumption reduction and the development of renewable energy sources in belgium from now to 2020-2030 will not be sufficient to adjust the lack of production. they proposed to extend at ten years the oldest reactors lifetime, that was accepted by the government. (N.C.)

  16. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    2015-06-01

    Full Text Available Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  17. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  18. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  19. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  20. The contribution of nuclear energy in the evolution of the electric power market

    International Nuclear Information System (INIS)

    Benavides, P.

    1999-01-01

    The third of electric power produced in the European Union comes from nuclear energy. This proportion favoured our diversification policy. The competitive aspect of nuclear energy has been decisive in energy supplies. The governments have to decide at the appropriate time, if they want to renew the nuclear park by building new economic and safe reactors. They can contribute to electric power supply without having effect on carbon dioxide emissions. But the future of nuclear energy needs a bigger acceptance of this energy by a large part of the population. So, that industry has to prove the safety of installation, to insure the non proliferation and to manage efficiency the radioactive wastes. A behaviour beyond reproach from industrialists is necessary to reinforce confidence. (N.C.)

  1. Nuclear energy and fuel mix. Impacts of new nuclear power plants after 2020 in the nuclear energy scenarios of the Energy Report 2008

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Snoep, H.J.M.; Van Deurzen, J.; Lako, P.; Poley, A.D.

    2010-03-01

    This report presents facts and figures on new nuclear energy in the Netherlands, in the period after 2020. The information is meant to support a stakeholder discussion process on the role of new nuclear power in the transition to a sustainable energy supply for the Netherlands. The report covers a number of issues relevant to the subject. Facts and figures on the following issues are presented: Nuclear power and the power market (including impact of nuclear power on electricity market prices); Economic aspects (including costs of nuclear power and external costs and benefits, impact on end user electricity prices); The role of nuclear power with respect to security of supply; Sustainability aspects, including environmental aspects; The impact of nuclear power in three 'nuclear energy scenarios' for the Netherlands, within the context of a Northwest European energy market. The scenarios are: (1a) No new nuclear power in the Netherlands ('Base case'); (1b) After closure of the existing Borssele nuclear power plant by the end of 2033, the construction of new nuclear power plant that will operate in 2040. That plant is assumed to be designed not to have a serious core melt down accident (e.g. PBMR) (200 to 500 MWe); (2) New nuclear power shortly after closure the Borssele nuclear power plant in 2033 (1000 to 1600 MWe, 3rd Generation); (3) New nuclear power plants shortly after 2020 (2000 to 5000 MWe, 3rd Generation). Two electricity demand scenario background scenario variants have been constructed based on an average GDP growth of about 2% per year up to 2040. The first variant is based on a steadily growing electricity demand and on currently established NL and EU policies and instruments. It is expected to be largely consistent with a new and forthcoming reference projection 'Energy and Emissions 2010-2020' for the Netherlands (published by ECN and PBL in 2010). A lower demand variant is based on additional energy savings and on higher shares of renewable

  2. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  3. Aging management guideline for commercial nuclear power plants - heat exchangers

    International Nuclear Information System (INIS)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  4. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  5. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  6. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    Science.gov (United States)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  7. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  8. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    Science.gov (United States)

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  9. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  10. Status Report on Modelling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yigitoglu, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, S. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Maronati, G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    This report summarizes the current status of the modeling and simulation capabilities developed for the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing penetration of variable renewables is altering the profile of the net demand, with which the other generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators and users is proposed to mitigate the increase in electricity cost and cost volatility through the production of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain level of variable renewable (wind) penetration. The optimization should entail both the sizing of the components/subsystems that comprise the system and the optimal dispatch strategy (output at any given moment in time from the different subsystems). Some of the capabilities here described have been reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and extension of those capabilities and to illustrate their integrated application in the economic assessment of N-R HES.

  11. The trend of energy and power situation in the world (2)

    International Nuclear Information System (INIS)

    2011-01-01

    It consists of four chapters such as nuclear power generation in the world, development of nuclear power and risk deduction policy at market liberalization, the trend of nuclear power generation in each country and the trend of renewable energy in each country. The nuclear power generation in the world was 432 units in operation and 66 units under construction and 38,916 million kW of total generating capacity, a decrease of 129 million kW compared with the previous year. Asian area and old U.S.S.R are building many units. The trends of nuclear power generation of USA, England, France, German, Sweden, Russia, East Europe, Korea, and China are stated. The renewable Energy of USA, England, France, German, and China are reported. The nuclear power plants in the world, risk deduction policy and raising capital for development of nuclear power, the nuclear power plants in operation in China, national renewable energy action plan for the United Kingdom, and the share of renewable energy in each field in German are illustrated. (S.Y.)

  12. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  13. U.S. regulators reject proposal to subsidize nuclear and coal power prices

    International Nuclear Information System (INIS)

    Kraemer, Jay R.

    2018-01-01

    On January 8, 2018, the U.S. Federal Energy Regulatory Commission (''FERC'') unanimously rejected a rulemaking proposed by Secretary of Energy Rick Perry designed to enable the owners of coal and nuclear power plants to charge higher prices for their output, and thereby to prevent further premature retirements of such plants. The FERC has exclusive authority, under the Federal Power Act, to establish rules for interstate wholesale sales of electricity. Although the FERC simultaneously initiated a new proceeding to consider how to enhance the resilience of electricity supply and delivery in the U.S., that proceeding seems unlikely to offer near-term relief to nuclear plants that are approaching closure due to their inability to compete economically both with facilities fueled by low-priced natural gas and with renewable power sources benefitting from favorable tax provisions. Accordingly, the American nuclear power industry will probably have to look elsewhere for relief from its present dire economic circumstances.

  14. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  15. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Dominik [Frankfurt Institute for Advanced Studies (FIAS) and Frankfurt International Graduate School for Science, Johann Wolfgang Goethe Universitaet, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany); von Bremen, Lueder [ForWind - Center for Wind Energy Research, University of Oldenburg, Marie-Curie-Str. 1, D-26129 Oldenburg (Germany); Greiner, Martin [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Aarhus School of Engineering and Institute of Mathematical Sciences, Aarhus University, Ny Munkegade 118, 8000 Aarhus C (Denmark); Hoffmann, Clemens [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Speckmann, Markus; Bofinger, Stefan [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Koenigstor 59, D-34119 Kassel (Germany)

    2010-11-15

    The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases. (author)

  16. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  17. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  18. Research on U.S. nuclear power plant major equipment aging

    International Nuclear Information System (INIS)

    Nakos, J.T.; Rosinski, S.T.

    1994-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), in cooperation with nuclear power plant utilities and the Nuclear Energy Institute, have prepared equipment aging evaluations of nuclear power plant equipment for life extension considerations. Specifically, these evaluations focused on equipment considered important for plant license renewal (U.S. Code of Federal Regulations 10CFR54). open-quotes Industry Reportsclose quotes (IRs), jointly funded by DOE and EPRI, evaluated the aging of major systems, structures, and components (e.g., reactor pressure vessels, Class I structures, PWR and BWR containments, etc.) and contain a mixture of technical and licensing information. open-quotes Aging Management Guidelinesclose quotes (AMGs), funded by DOE, evaluate aging for commodity types of equipment (e.g., pumps, electrical switchgear, heat exchangers, etc.) and concentrate on technical issues only. AMGs are intended for systems engineers and plant maintenance staff. A significant number of technical issues were resolved during IR interactions with the U.S. Nuclear Regulatory Commission (NRC). However, certain technical issues have not been resolved and are considered open-quotes openclose quotes. Examples include certain issues related to fatigue, neutron irradiation embrittlement, intergranular stress corrosion cracking (IGSCC) and electrical cable equipment qualification. Direct NRC interaction did not take place during preparation of individual AMGs due to their purely technical nature. The eventual use of AMGs in a future license renewal application will likely require NRC interaction at that time. With a few noted exceptions, the AMG process indicated that current aging management practices of U.S. utilities were effective in preventing age-related degradation. This paper briefly describes the IR and AMG processes and summarizes the unresolved technical issues identified through preparation of the documents

  19. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  20. Renewable energy and CCS in German and European power sector decarbonization scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ludig, Sylvie

    2013-11-06

    In order to avoid unmanageable impacts of anthropogenic climate change, it is necessary to achieve substantial CO{sub 2} emission reductions in all energy sectors. Due to salient decarbonization options such as renewable energy technologies and carbon capture and storage (CCS), the power sector plays a major role in climate change mitigation strategies. However, these options come with a set of challenges: the output of wind and solar energy varies in time and space and CCS faces technical challenges and public acceptance problems. This thesis develops power sector decarbonization scenarios for the EU and Germany while taking into account both the interplay of renewable energy technologies and CCS as mitigation options as well as the technical challenges of renewable energy integration. More specifically, a series of model based studies address the respective roles of CCS and renewable energy technologies in emission reduction strategies while evaluating technical integration options such as transmission, storage and balancing technologies. Results show that large-scale expansion of renewable energies will play the main role in power sector decarbonization scenarios, but the availability of CCS could lead to lower total costs and easier reaching of emission reduction targets through compensation of emissions generated by balancing technologies. Long-distance transmission enables better siting of renewable energy and thus higher achievable renewable shares in power generation and higher capacity factors. These indirect effects of delayed expansions induce additional power system costs, which are high relative to investment costs for new transmission lines. Results also reveal a preference for flexible technologies in combination with high shares of renewables for balancing purposes rather than inflexible baseload plants. A case study for the EU shows that a near-complete decarbonization is possible both with and without transmission expansions, but total power

  1. Governmental policy and prospect in electricity production from renewables in Lithuania

    International Nuclear Information System (INIS)

    Katinas, Vladislovas; Markevicius, Antanas; Erlickyte, Regina; Marciukaitis, Mantas

    2008-01-01

    In Lithuania, the generation of electricity is based on the nuclear energy and on the fossil fuels. After the decommissioning of Ignalina nuclear power plant in 2009, the Lithuanian Power Plant and other thermal plants will become the major sources of electricity. Consequently, the Lithuanian power sector must focus on the implementation of renewable energy projects, penetration of new technologies and on consideration of the future opportunities for renewables, and Government policy for promoting this kind of energy. Production of electricity from renewable energy is based on hydro, biomass and wind energy resources in Lithuania. Due to the typical climatic condition in Lithuania the solar photovoltaics and geothermal energy are not used for power sector. Moreover, the further development of hydropower plants is limited by environmental restrictions, therefore priority is given to wind energy development and installation of new biomass power plants. According to the requirements set out in the Directive 2001/77/EC of the European Parliament and of the Council of 27 September 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market [Official Journal L283, 33-40, 27 October 2001], 7% of gross consumption of electricity will be generated from renewable energy by 2010 in Lithuania. The aim of this paper is to show the estimation of the maximum renewable power penetration in the Lithuanian electricity sector and possible environmental impact

  2. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO_2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  3. The nuclear option: The case for using nuclear power to combat climate change

    International Nuclear Information System (INIS)

    Stone, Robert

    2015-01-01

    In December 2015, world leaders will gather in Paris to hammer out a global treaty designed to ratchet back emissions of CO 2 into the atmosphere caused by the burning of fossil fuels. I would urge each delegate, upon checking into his or her hotel room, to step out on to the balcony, take a deep breath, look out at the lights of nuclear-powered Paris and draw inspiration for what a clean energy future might look like. Thanks to France’s decision to deploy nuclear power in a big way some 30 years ago, the country’s electric grid is now almost entirely carbon free. What’s even more remarkable is that the vast majority of that transition was carried out in just 11 years (1969–1980), using the technology of the time. France today enjoys almost zero air pollution from the production of electricity and the cheapest electricity rates in western Europe. Will the climate activists and delegates take heed of what France has accomplished and look to it as a precursor of what might be possible globally? Preliminary negotiations in Lima in late 2014 have taken nuclear energy off the agenda of the climate talks. The world’s leading environmental groups, which are largely driving the agenda, posit that nuclear energy is an unnecessary distraction on the road to a renewable energy future. In making their case they argue that humanity can reduce overall energy demand while simultaneously providing adequate energy to the 3 billion people who currently live with little or no electricity at all, and take care of the additional 3 billion people to be born between now and 2050. They argue that we are on track to being able to replace the entire existing fossil fuel infrastructure, abandon nuclear energy altogether, and meet all the world’s energy needs by using renewable energy alone. And we’ve barely begun to talk about the additional energy that will be required to electrify the world’s transportation sector and meet the growing demand for energy-intensive water

  4. Our concept of the world is changed by nuclear power. Veraenderung unseres Weltbildes durch die Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Knizia, K. (Vereinigte Elektrizitaetswerke Westfalen AG (VEW), Dortmund (Germany). Vorstand)

    1993-01-01

    In the absence of a positive agreement on the use of nuclear power mankind will not be able to live in peace. Viability is endagered by worldwide battles for energy. In the long term, the peaceful utilization of nuclear power must be given priority because the reserves of fossil energy resources will have been consumed in a few generations' time and renewable energy sources do not produce a yield high enough to meet the demand for energy of a continuously increasing world population. Creativity and captial must ensure sufficient and sustainable supplies of energy and goods for everybody. Environmental protection is facilitated by the use of nuclear power, for nuclear power is a source of energy whose waste can be removed from the biosphere completely and safely. (orig.).

  5. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  6. Renewable energy strategies to overcome power shortage in Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Al-Din Salar Salah Muhy

    2017-01-01

    Full Text Available The aim of this paper is to investigate the possibility of applying renewable energy strategies in Kurdistan Region of Iraq to overcome the shortage of electricity supply. Finding alternative renewable sources could overcome the problem. The renewable energy will reduce CO2 emission in the cities which considers the main source of pollution. That will participate in reducing the effect of global warming. The study tries to investigate the direct solar renewable energy through two of the main renewable energy categories to produce electricity based on a survey of literature review. Photovoltaic and wind power technologies are possible to be conducted in the region to overcome power shortage.

  7. Carbon pricing, nuclear power and electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  8. Carbon pricing, nuclear power and electricity markets

    International Nuclear Information System (INIS)

    Cameron, R.; Keppler, J. H.

    2012-01-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  9. Renewable energy: power for a sustainable future

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2001-01-01

    By the end of the 21 century, according to United National projections, the number of people on the earth is likely to have approximately doubled. How can a world of 10 to 12 billion people be provided with adequate supplies of energy, cleanly, safely and substantially? There is a growing consensus that renewable energy sources will be a very important part of the answer. The growing interest in 'renewables' has been prompted in part, by increasing concern over the pollution, resource depletion and possible climate change implications of our continuing use of conventional fossil and nuclear fuels. But recent technological developments have also improved the cost-effectiveness of many of the renewables, making their economic prospects look increasingly attractive. It describes the achievements and progress made in hydropower, biomass conversion, geothermal, solar thermal technology, wind energy conversion and the increasing usage of photovoltaics. It is evident that global warming is setting in and is going to change the climate as well as the terrain of many countries unless drastic measures are taken. The Kyoto meeting emphasised the importance of limiting CO 2 emissions and to abide by some form of agreement to reduce emissions. Present study concludes that renewable energy penetration into the energy market is much faster than was expected in recent years and by 2030, 15-20 percent of our prime energy will be met by renewable energy. (Author)

  10. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Waldemar Fedak

    2017-12-01

    Full Text Available Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.

  11. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  12. Nuclear power development. South-Eastern Europe 3E Analysis

    International Nuclear Information System (INIS)

    Yanev, Y

    2010-01-01

    Objectives: 1.Assessments of the incremental costs to the energy system of different “development”and “closure”scenarios. 2.Evaluation of scenarios of the national electricity and centralized heat systems focusing on the economic feasibility of new nuclear power plant(s). General findings: The energy future of Bulgaria depends strongly on the development of the nuclear power sectorThe environmental commitments of Bulgaria drive the energy system towards a roadmap of increased use of renewable energy and maintaining or even strengthening virtually non-emitting hydro and nuclear power. Specific findings: The early closure of KNPP Units 3&4 (SHUTDOWN scenario) increased the system costs. The undiscounted difference in system costs estimated between €734 to €1,095 Million for the essential period 2007 to 2014 -a direct loss to the Bulgarian energy sector; Electricity exports and associated revenues are the key to the Bulgarian system even at revenues of €27.50 per MWh because exports drive rehabilitation schedules; exports affect the ability to finance new construction; exports allow for efficient capacity management and more optimaltiming of properly sized capacity investments; lower exports increase system costs; No net exports after 2007 results in substantial system loss

  13. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  14. Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Papakonstantinou, Athanasios; Pinson, Pierre

    2014-01-01

    Electricity is nowadays commonly exchanged through electricity markets, designed in a context where dispatchable generators, with non-negligible marginal costs, were dominating. By depending primarily on conventional (fossil, hydro and nuclear) power generation based on marginal pricing...... not designed to take into account the uncertainty brought by the substantial variability and limited predictability associated with stochastic sources, most notably wind power and solar energy. Due to these developments, the need for decision making models able to account for the uncertainty introduced by high...... from renewables, and on the adaption of electricity market designs and power system operations to the aforementioned characteristics of renewables. Additionally, the aim of the research group is supplemented by providing the appropriate frameworks for secure future investments in the field...

  15. Assessment of air pollution emissions and evaluation of renewable energy as mitigation option-power generation sector of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.H.; Uqaili, M.A.; Memon, M.

    2005-01-01

    Energy is an engine for growth and is linked with all aspects of development, poverty alleviation, and improvement of quality of life. The production, distribution and use of energy particularly fossil fuels have significant environmental impacts. Pakistan has total power generation capacity of 19.25 GW, with 63.9% thermal, 33.7% hydel and 2.4% nuclear share. The electricity generation increased by 7.5% per annum during the last three decades and future demand has been projected to grow at 7%-11 % per annum. This increasing power demand will depend mainly on power generation from fossil fuels. This paper presents the review of power generation situation and assesses the air pollution emissions from thermal power generation in Pakistan. The paper also investigates the prospects of renewable energy- sources for air pollution mitigation in the country. The study indicates that thermal power generation plants are the major source of air pollution emissions in the country. This air pollution has local, regional and global environmental impacts. The paper concludes that the use of renewables such as hydel, wind, solar and biomass energy for power generation can contribute substantially in air pollution mitigation in the country. (author)

  16. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  17. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  18. Seasonal shifting of surplus renewable energy in a power system located in a cold region

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-10-01

    Full Text Available The Fukushima nuclear disaster in 2011 changed Japan's strategy for reducing CO2 emissions. The government is now placing more emphasis on the development of nonCO2-emitting distributed generation systems such as wind, solar, and tidal power to reduce greenhouse gas emissions and guarantee electricity supply in the case of a natural disaster. This paper proposes a strategy for the exploitation of wind, solar, and tidal resources in a cold region in Japan by utilizing surplus energy from the summer and spring during winter. It also aims to determine the most favorable energy mix of these renewable sources and storage system types. The study is performed by calculating hourly demand and renewable energy supply for the city in one year, which is based on actual data of demand, solar irradiation, wind speeds, and tidal current speeds. The costs of the components of the renewable power plants and storage systems are considered, and different proportions of generation outputs are evaluated with different types of storage systems. According to results, the configuration containing the hydrogen storage system using organic chemical hydride methylcyclohexane (OCHM is the most economical but is still more expensive than one using a conventional generation system. Moreover, we confirm that the cost of CO2 emissions is the key element for leveling the playing field between conventional and renewable generation from an economic perspective. The cost of CO2 emissions to public health as well as those costs related to the interruption of services during a catastrophe must be carefully calculated with other issues from conventional power projects to perform a precise comparative evaluation between both types of generation systems.

  19. Experience curve analysis on South Korean nuclear technology and comparative analysis with South Korean renewable technologies

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Chang, Hyun Joon

    2012-01-01

    Increasing awareness on environmental damage and climate change has induced many nations to engage in green growth. South Korea, as one of the largest consumers of energy, is no exception and has shown its determination to pursue green growth in the future. In order to do so, South Korea plans to substitute fossil fuel with alternative sources in electricity generation. However, the key constraint to green growth is the high cost faced by renewable electricity generation. Fortunately, nuclear energy can serve as an economic alternative to fossil fuel. To achieve CO 2 emission reduction and faster economic growth, it is wise to analyze prospects of alternatives using experience curve framework. The results and industry background are consistent for nuclear technology, and the results suggest that nuclear should serve as the main substitute. Consideration of policy risk inherent in renewable also strengthens the argument. Renewable technologies, on the other hand, showed overstated learning capacity that is partially inconsistent with technological background. Nevertheless, the renewable (photovoltaic and fuel cell) should help nuclear marginally in substituting fossil fuel in South Korea's Electricity Generation. - Highlights: ► Progress ratios of renewable energy show great prospect. ► The policy risk is inherent in renewable and may overestimate its prospect. ► Nuclear sources are economic and less affected by policy risk. ► Fuel cell and photovoltaic should help nuclear marginally in green growth.

  20. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  1. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Section Manager Training; Klaus, Peter [Preussenelektra NPP, Essenbach (Germany). Production Engineering

    2017-03-15

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1500 MW, the general objectives are several automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of this operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity manage - ment in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  2. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  3. Hand-calculation technique for the evaluation of public risk from a severe accident at a nuclear power plant

    International Nuclear Information System (INIS)

    Linn, M.A.; Schmoyer, R.E.

    1993-01-01

    The Nuclear Regulatory Commission (NRC) is in the process of promulgating a proposed rule 10 CFR Part 54, ''Requirements for Renewal of Operating Licensees for Nuclear Power Plants,'' which will allow licenses to renew the operating licenses on their nuclear power plants for an additional 20 years beyond the original 40-year limit. A Generic Environmental Impact Statement (GEIS) prepared by the Oak Ridge National Laboratory (ORNL) in conjunction with and for the Nuclear Regulatory Commission to assess the environmental issues associated with this proposed rule. The evaluation of the environmental impact from postulated severe accidents was included in the GEIS. During this evaluation of postulated severe accidents, a method was developed to estimate the public health consequences of atmospheric releases from severe accidents that is much simpler to use than existing consequence computer codes. From the results of this work, it is concluded that the simplified methodology does provide reasonable and conservative estimates of public risk from atmospheric releases from severe accidents

  4. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  5. NPP License Renewal and Aging Management: Revised Guidance

    International Nuclear Information System (INIS)

    Hull, A.B.; Hiser, A.L.; Lindo-Talin, S.E.

    2012-01-01

    Based on the Atomic Energy Act, the NRC issues licenses for commercial power reactors to operate for up to 40 years and allows these licenses to be renewed for up to another 20 years. NRC has approved license renewal for well over 50% of U.S. located reactors originally licensed to operate for 40 years. Of these 104 reactors (69 PWRs, 35 BWRs), the NRC has issued renewed licenses for 71 units and is currently reviewing applications for another 15 units. As of May 1, 2012, ten plants at nine sites had entered their 41st year of operation and thus are in their first period of extended operation (PEO). Five more plants will enter the PEO by the end of 2012. One foundation of the license renewal process has been license renewal guidance documents (LRGDs). The U.S. Nuclear Regulatory Commission (NRC) revised key guidance documents used for nuclear power license renewal in 2010 and 2011. These include NUREG-1800, 'Standard Review Plan for Review of License Renewal Applications,' revision 2 (SRP-LR), and NUREG-1801, 'Generic Aging Lessons Learned (GALL) Report,' revision 2 (GALL Report). The guidance documents were updated to reflect lessons learned and operating experience gained since the guidance documents were last issued in 2005. (author)

  6. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  7. Research on the response of various persons to information about nuclear power generation

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko

    2014-01-01

    The author surveyed blogs readily available on the Internet for three purposes: (1) to grasp the public response to nuclear problems after the accident at the Fukushima Daiichi Nuclear Power Station, (2) to determine changes in the number of blogs based on an article search, and (3) to identify the stance of bloggers on the necessity of nuclear power generation based on reading contribution contents. Furthermore the author conducted a questionnaire survey of public response in reference to the results of the blog survey. From the blog survey, it was found that immediately after the accident, the number of blogs which were negative toward nuclear power generation drastically increased, but as time has passed, blogs which are positive are increasing in number somewhat in expectation of stabilized economic and living conditions. The main results of the questionnaire survey are as follows. (1) Many persons want power generation that is non-nuclear; this is because they have good expectations for renewable energy sources or new thermal power generation as an alternative energy and they strongly feel anxious about the issue of disposal of spent nuclear fuel. (2) Because of the risk of negative impacts which electricity shortages bring on the economy and lifestyles, some persons do not want immediate decommissioning of nuclear power reactors, they favor a phase-out of nuclear power generation. Though public opinion about nuclear problems includes the expectation that one alternative energy can be selected, there is a possibility that this opinion will shift to find an optimum energy mix of plural energy sources. (author)

  8. Aging management guideline for commercial nuclear power plants-stationary batteries

    International Nuclear Information System (INIS)

    Berg, R.; Shao, J.; Krencicki, G.; Giachetti, R.

    1994-03-01

    The Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant stationary batteries important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  9. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  10. Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Despite the increasing importance of variable renewable power generation, baseload, that is stable and predictable power generators, remain the backbone of many countries’ power systems. We here compare CSP (concentrating solar power) and nuclear power as baseload electricity providers for the case of South Africa, which is adding significant new generation capacity, has an abundant solar resource, but also one existing and additional planned nuclear power plants. Both of these technologies are considered baseload-capable with sufficient available fuel (sunlight or fissible material) to provide large amounts of nearly emissions-free electricity. We find that under a range of technological learning assumptions, CSP compares favorably against nuclear on costs in the period to 2030, and has lower investment and environmental risks. The results suggest that while nuclear power may be an important low-emissions power technology in regions with little sun, in the case of South Africa, CSP could be capable of providing a stable baseload supply at lower cost than nuclear power, and may have other non-cost benefits. - Highlights: • We compare nuclear and CSP (concentrating solar power) as baseload generators. • CSP could be competitive with nuclear by 2030 on providing baseload. • CSP plants producing above baseload when possible are more competitive. • On environmental and investment risks, CSP compares favorably. • Both options may have a role in different parts of the world

  11. The renewable and nuclear energies in the basquet of energy supply

    International Nuclear Information System (INIS)

    Martinez Corcoles, F.

    2008-01-01

    The share of nuclear and renewable sources in the energy portfolio yields great benefits to all stake holders and that both sources are not exclusive each other but offer multiple complementary features and synergy's, therefore both technologies should be part of the present and future energy mix. This portfolio should be enough and reliable all the time, guarantee the security of supply, protect the environment and give competitive prices. All these features are to a great extent met by nuclear and renewable technologies and therefore they should play an important role on world and national energy supply. (Author)

  12. Market stimulation of renewable-based power generation in Australia

    International Nuclear Information System (INIS)

    Kuwahata, Rena; Monroy, Carlos Rodriguez

    2011-01-01

    This paper attempts to identify the types of renewable-based power generation technologies available in Australia that have the capacity to contribute to the growth of the renewable energy sector and then suggest what type of economic incentive instruments could be applied in order to stimulate investment in that sector. Currently in Australia there are hydro, wind, bioenergy, solar, geothermal and ocean technologies being used to produce renewable power. Of these all except hydro power has large amounts of potentially useful resources. In the cases of wind, bioenergy, solar, and geothermal, the technology is mature enough to be immediately deployed in large-scale. However, only in the cases of wind and bioenergy the costs and return on investments are proven to be viable in the current market. What is required on all fronts is an improved return on investments. Within the current electricity market competition with fossil-fuel based power is very difficult considering the ample supply of coal available in Australia and the heavy subsidies it receives. To become more competitive with electricity generated from coal-fired power plants, a feed-in tariff scheme could be implemented, and subsidies to the coal industry should be reduced if not removed. Another aspect impeding the growth of certain renewable power technologies is the high capital cost. This issue could be addressed with direct subsidies or tax exemptions, or aiding with easier access of finance options. However for particular industries such as wind and solar, it would be a further benefit if some effort is made to encourage component manufacturing within Australia. For technologies that require further technical development, funding towards R and D or pilot projects, and support for international collaboration projects would accelerate their path to deployment. It is critical that the Australian government continues to be a leader. In addition to the Carbon Pollution Reduction Scheme (CPRS) and an

  13. Climate Change or Nuclear Power - Which Risk do we Prefer?

    International Nuclear Information System (INIS)

    Bruce, Donald

    2006-01-01

    Climate change and nuclear power provide two of the biggest technological risks of our times. Both involve widespread risks, long-term wastes and inter-generational equity, but in rather different ways. If it came to a choice, which is the worse set of risks to run? Serious doubts have been raised whether the implementation of renewable energies and energy saving are able in practice to deliver quickly enough the radical reductions of CO 2 emissions that are needed to tackle climate change. Some countries may face a dilemma - to continue another generation of nuclear power or to accept that its CO 2 emissions will rise when current nuclear stations finish their time? This paper compares the risks, and explores the ethical issues around which a society would have to weigh up such a choice, the role of the precautionary principle, and the place of expert and lay evaluations of risk (full text of contribution)

  14. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  15. Aging management guideline for commercial nuclear power plants - tanks and pools

    International Nuclear Information System (INIS)

    Blocker, E.; Smith, S.; Philpot, L.; Conley, J.

    1996-02-01

    Continued operation of nuclear power plants for periods that extend beyond their original 40-year license period is a desirable option for many U.S. utilities. U.S. Nuclear Regulatory Commission (NRC) approval of operating license renewals is necessary before continued operation becomes a reality. Effective aging management for plant components is important to reliability and safety, regardless of current plant age or extended life expectations. However, the NRC requires that aging evaluations be performed and the effectiveness of aging management programs be demonstrated for components considered within the scope of license renewal before granting approval for operation beyond 40 years. Both the NRC and the utility want assurance that plant components will be highly reliable during both the current license term and throughout the extended operating period. In addition, effective aging management must be demonstrated to support Maintenance Rule (10 CFR 50.65) activities

  16. Aging management guideline for commercial nuclear power plants - tanks and pools

    Energy Technology Data Exchange (ETDEWEB)

    Blocker, E.; Smith, S.; Philpot, L.; Conley, J.

    1996-02-01

    Continued operation of nuclear power plants for periods that extend beyond their original 40-year license period is a desirable option for many U.S. utilities. U.S. Nuclear Regulatory Commission (NRC) approval of operating license renewals is necessary before continued operation becomes a reality. Effective aging management for plant components is important to reliability and safety, regardless of current plant age or extended life expectations. However, the NRC requires that aging evaluations be performed and the effectiveness of aging management programs be demonstrated for components considered within the scope of license renewal before granting approval for operation beyond 40 years. Both the NRC and the utility want assurance that plant components will be highly reliable during both the current license term and throughout the extended operating period. In addition, effective aging management must be demonstrated to support Maintenance Rule (10 CFR 50.65) activities.

  17. The future energy supply in Germany in a common Europe with special emphasis on the role of nuclear power

    International Nuclear Information System (INIS)

    Kopp, G.

    2003-01-01

    The decision by the red-green federal government to opt out of the use of nuclear power has considerable consequences for the power industry and the national economy of Germany. In addition, there are additional burdens resulting from the Renewable Energies Act and the Cogeneration Act. Besides economic aspects, there are ecological benefits to be considered in favor of nuclear power. In addition to renewable energy sources, it is one of the important sources of energy which are free from CO 2 emissions. In opt-out decision also jeopardizes the role of Germany as a partner in international cooperation, with an acknowledged standard of nuclear know-how and a cutting-edge position in technical safety. The approaches towards a future energy supply system were put into specific terms together with the CDU/CSU within the activities of the parliamentary committee of inquiry on 'sustainable Energy Supply Under Conditions of Globalization and Deregulation'. The growing dependence on external energy sources, and the goals of climate protection, are other important tasks of future energy policy within the European framework. The Green Book by the EU Commission constitutes a remarkable basis for discussion in this respect. Current problems connected with nuclear power should be discussed seriously in order for nuclear power to continue successfully to contribute to energy supply in Europe. (orig.) [de

  18. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  19. Priority to renewable energies - on the amendment to the renewable energies act

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The Federal Ministry for the Environment, which has been the competent authority for renewable energies since the 2002 federal election, has presented draft legislation on the accelerated development of renewable energies in the electricity sector. This is to reduce, through internalization, the costs to the national economy arising from power supply, to conserve nature and the environment, avoid conflicts over fossil energy resources, and promote the advanced development of renewable energy technologies. Emphasis is put solely on protection of the climate and of the environment. The way towards sustainable energy supply by taking into account ecological, economic and social aspects is abandoned. The funding rates laid down in legislation are not going to offer major incentives for further plant improvement by technological development. The quantitative goals of this draft legislation onesidedly aimed at electricity production are doubtful. Renewable energies are hardly the right way to replace nuclear power plants operated in the baseload mode. What is missing in the draft legislation, though it would be urgently needed, is a clear time limit on the eligibility of renewable energy plants for subsidizing, as this would counteract the impression of permanent subsidizing. (orig.)

  20. Power from renewable resources - 'We want to find out how much we can squeeze out of the lemon'

    International Nuclear Information System (INIS)

    Aeberli, O. E.

    2005-01-01

    This interview with Swiss energy expert Kurt Wiederkehr presents his opinions on the promotion of renewable forms of energy and the model for their promotion proposed by the Swiss Association of Electric Utilities VSE. The topics discussed include the VSE's basic views on the promotion of renewable forms of energy, the association's criteria for its promotion and demands made on state support. In particular, the promotional measures proposed in new Swiss legislation are discussed and the association's ideas concerning concrete methods of promoting renewable forms of energy are discussed. These include the so-called 'call for tender' variant. Various technologies are discussed and alternative methods of promotion proposed by other organisations are looked at. The question of the replacement of nuclear power in the future is also discussed

  1. Optimal investment strategies in decentralized renewable power generation under uncertainty

    International Nuclear Information System (INIS)

    Fleten, S.-E.; Maribu, K.M.; Wangensteen, I.

    2007-01-01

    This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable. (author)

  2. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  3. A nuclear-powered North Africa: Just a desert mirage or is there something on the horizon?

    International Nuclear Information System (INIS)

    Jewell, Jessica

    2011-01-01

    All of the North African countries have plans to develop nuclear power. If successful, nuclear energy could supply up to 9-15% of all electricity consumption in the region by 2030. How realistic are these plans and under what conditions can they be implemented? This paper seeks to answer this question by analyzing the motivations and capacities for deploying nuclear energy in the five North African countries by examining both regional and national factors. These factors are compared to similar characteristics of the countries with existing nuclear power programs using a series of quantitative indicators. While all five countries have strong motivations to develop nuclear power, which result from the high growth rates in demand for electricity and energy security concerns, their financial and institutional capacities to deploy nuclear energy vary and are generally lower than in those countries which already operate nuclear power plants. Most likely, North Africa will need to rely on external assistance to implement its nuclear energy plans. The article identifies three scenarios of nuclear power development from the interplay between internal and external factors, particularly the success of renewable energy projects and the ability to attract international investment in nuclear power. - Research Highlights: → Nuclear power is an option to diversify electricity and meet demand in N. Africa. → With current plans, nuclear power could generate up to 15% of electricity by 2030. → Capacities in N. Africa are insufficient to launch nuclear power programs. → Deployment of nuclear power in N. Africa depends on external assistance and investment.

  4. Efficient and equitable spatial allocation of renewable power plants at the country scale

    Science.gov (United States)

    Drechsler, Martin; Egerer, Jonas; Lange, Martin; Masurowski, Frank; Meyerhoff, Jürgen; Oehlmann, Malte

    2017-09-01

    Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

  5. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth

    International Nuclear Information System (INIS)

    Apergis, Nicholas; Payne, James E.; Menyah, Kojo; Wolde-Rufael, Yemane

    2010-01-01

    This paper examines the causal relationship between CO 2 emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO 2 emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)

  6. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  7. Renewability and sustainability aspects of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Sümer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 İncek, Gölbaşı, Ankara (Turkey)

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  8. A market for renewable energy credits in the Indian power sector

    International Nuclear Information System (INIS)

    Singh, Anoop

    2009-01-01

    Electricity generation from renewable energy sources in India has been promoted through a host of fiscal policies and preferential tariff for electricity produced from the same. The fiscal policies include tax incentives and purchase of electricity generated through renewable energy sources. The enactment of the Electricity Act 2003 (the Act) has lent further support to renewable energy by stipulating purchase of a certain percentage of the power procurement by distribution utilities from renewable energy sources. The renewable portfolio obligation as well as the feed-in tariff for power procurement has been specified by a number of State Electricity Regulatory Commissions (SERCs) for the respective state under their jurisdiction. A feed-in tariff determined through a cost-plus approach under a rate of return framework lacks incentive for cost minimisation and does not encourage optimal utilisation of renewable energy resources in the country. Such regulatory provisions differ across states. The prevalent practice of fixing a renewable portfolio obligation along with cost-based feed-in tariffs disregards economic efficiency. The paper proposes nationally tradable renewable energy credits scheme for achieving the targets set by the respective SERCs as renewable portfolio obligation. This would reduce the cost of compliance to a renewable portfolio obligation, and would encourage efficient resource utilisation and investment in appropriate technologies. The paper highlights its advantages and implementation issues. This paper discusses regulatory developments for promotion of renewable energy in various Indian states. The paper also identifies a number of issues related to regulations concerning renewable portfolio obligation. (author)

  9. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  10. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  11. Status of long term operation of nuclear power plants in the US

    Energy Technology Data Exchange (ETDEWEB)

    Young, G., E-mail: gyoung4@entergy.com [Entergy Nuclear, License Renewal, New Orleans, LA (United States)

    2014-07-01

    As of early-2014, the U.S. Nuclear Regulatory Commission (NRC) has renewed the operating licenses for 73 of the 100 U.S. operating nuclear units, allowing for up to 60 years of safe operation. In addition, the NRC has license renewal applications under review for 18 more units and up to 8 additional units have announced plans to submit applications by 2018. This brings the total of renewed licenses and announced plans for renewal to 99% of the operating nuclear units in the U.S. In addition, by the end of 2014, there will be 38 nuclear plants that will have operated for more than 40 years and will be eligible to seek a subsequent license renewal to allow operation up to 80 years. Although some of the operating nuclear units are expected to shutdown due to economic issues, most of the remaining operating plant owners are keeping the option open for long term operation beyond 60 years. NRC and the U.S. nuclear industry have made significant progress in preparing the way for subsequent license renewal applications. This presentation covers the status of the U.S. license renewal process and issues being addressed for possible applications for subsequent renewals for up to 80 years of operation. (author)

  12. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  13. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  14. Power and choice[expanding use of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, Gerd

    2002-07-01

    As we face up to the increased insecurity and slowing global economy caused by the terrorist attacks of 11 September, tackling climate change may appear to be a separate goal. Yet, as environmentalists, we know all things are connected. These issues are directly and critically linked. If we are serious about tackling any of them we have to tackle them all. The British Prime Minister, Tony Blair, recently asked 'what is the lesson of the financial markets, climate change, international terrorism, nuclear proliferation or world trade?' He answered himself: 'It is that our self-interest and our mutual interests are today inextricably woven together - that power, wealth and opportunity must be in the hands of the many, not the few.' If we adopt a visionary and robust approach to tackling climate change we will also bring about real security, provide a boost for the economy, reduce poverty and make the world fairer. Massive expansion of wind and solar power - and other sources of renewable energy - would provide the energy security we so urgently need. We can replace both the fossil fuels that cause climate change and nuclear reactors with their dangerous legacy. In bringing renewable energy to the world's 2 billion poorest people we would reduce poverty, help fight disease, facilitate education, give hope and independence - and make a better environment for everyone, everywhere. Politicians, commentators and scientists the world over have described climate change as the most pressing environmental issue of the day. But it is not limited purely to the agendas of environment departments. Of course it has environmental effects - including floods, drought, dying coral reefs, melting Arctic and Antarctic ice and sea-level rise - which will both directly and indirectly affect people and economies. But its causes go to the heart of industrial society and its energy supply, almost entirely dependent on fossil fuels. Tackling climate change means phasing these out. The United

  15. Economical analysis of an alternative strategy for CO2 mitigation based on nuclear power

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Valle, Edmundo del

    2013-01-01

    Many countries are pursuing greenhouse gas (GHG) mitigation policies resulting in the increase of use of renewable sources in the electricity sector to mitigate CO 2 emissions. Nuclear energy is a non-emitting CO 2 source that could be used as part of that policy. However, its main drawback is the high investment required for its deployment. On the other hand, wind power is the clean source preferred option to mitigate CO 2 emissions. However, due to its intermittence backup power is needed, in most of the cases it must be provided with combined cycle thermal plants using natural gas. This study performs an economical comparison of a hypothetical implementation of a nuclear strategy to meet the same CO 2 emissions reduction goal that has been obtained by the actual Spaniard strategy (2005–2010) based on wind power. The investment required in both strategies is assessed under different investment scenarios and electricity production conditions for nuclear power. Also, the cost of electricity generation is compared for both strategies. - Highlights: ► Wind power electricity cost including its backup in Spain is assessed. ► Nuclear power is proposed as an alternative to produce the same CO 2 reduction. ► Nuclear power requires less installed capacity deployment. ► Investment to produce the same CO 2 reduction is smaller using nuclear power. ► Electricity generating cost is less expensive using the nuclear option

  16. Renewable and nuclear electricity: Comparison of environmental impacts

    International Nuclear Information System (INIS)

    McCombie, Charles; Jefferson, Michael

    2016-01-01

    Given the widely acknowledged negative impacts of fossil fuels, both on human health and on potential climate change, it is of interest to compare the impacts of low carbon alternative energy sources such as nuclear energy, hydropower, solar, wind and biomass. In this paper, we review the literature in order to summarise the impacts of the different technologies in terms of their materials and energy requirements, their emissions during operation, their health effects during operation, the accident risks, and the associated waste streams. We follow up these comparisons with some more anecdotal evidence on selected impacts that are either particularly topical or are important but less commonly addressed. These include impacts of wind turbines on persons and on bird life, the underestimated problems with biomass, and concerns about biodiversity reduction. Finally we address the public attitudes towards both renewable energy technologies and to nuclear power. The conclusion is drawn that energy policies of many countries are perhaps more strongly influenced by public and political perceptions of available technologies than they are by rational assessment of the actual benefits and drawbacks. Policy recommendations follow from this conclusion. - Highlights: •Given the acknowledged hazards of fossil fuels, it is important to compare the impacts of low-carbon alternatives. •This report reviews published data to compare nuclear with hydro, wind, solar and biomass electricity production. •Environmental impacts and risks to humans are compared. •Specific impacts of wind turbines on bird populations are examined. •Conclusions and recommendations for future energy choices are presented.

  17. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  18. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  19. Skills renewal in nuclear an industrialist's point of view

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, Michel; Louvel, Dominique [EDF Group Presidency, 22-30 Avenue de Wagram 75008 PARIS (France)

    2010-07-01

    Global energy needs are increasing and at the same time, the use of fossil fuels for energy is being questioned for several reasons: the possible shortage of resources; the volatility of their prices; the impact of their use on global warming, to name but a few. Focusing on the demand for electricity, forecasts from the World Nuclear Association show a dramatically growing trend and a necessity for massive investments in response to this. Over the 2000-2030 period, the needs for extra electricity generation in Europe are estimated at 660 GW, in North America the forecasted level of needs is 850 GW, in China, it is 1,300 GW. Given the current fossil fuel situation, nuclear energy is undoubtedly part of the answer to the growing demand for electricity generation, along with renewable energies and energy efficiency. In most countries, nuclear power plants were commissioned over a relatively short period (1970-1985). Except maybe in some regions, the Chernobyl accident put this technology on hold for twenty years, meaning that an ageing workforce is now an issue for the nuclear industry. The recruitment of a significant number of engineers is thus necessary, both to launch new nuclear projects and to replace employees about to retire. In France, 40% of all nuclear engineers will retire over the next decade. During this period, around 1,200 engineers per year will be recruited, including 600 per year by EDF (a fourfold increase). In many countries, the recruitment of engineers has remained at a very low level for the past 15 years and consequently education programs have been cut back. Furthermore, teaching positions have not been renewed and only a few qualified individuals remain, most of whom are nearing retirement age. The revival of nuclear education is a key point for the success of the nuclear renaissance. In 2007-2008, the High Commissioner for Atomic Energy conducted a census of existing French nuclear teaching programs. By this time, capacity in France was

  20. Power Electronics – Key Technology for Renewable Energy Systems – Status and Future

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Ma, Ke

    2013-01-01

    play an essential role. Using highly efficient power electronics in power generation, power transmission/ distribution and end-user application, together with advanced control solutions, can pave the way for renewable energies. In view of this, some of the most emerging renewable energies, e.g. wind......The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced. This requires that the production......, distribution and use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should also be streng-thened. In order to realize the transition smoothly and effectively, energy conversion systems, currently based on power electronics technology, will again...

  1. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  2. Overview of U.S. programs for hydrogen from renewables

    International Nuclear Information System (INIS)

    Lewis, M.

    2007-01-01

    This paper discusses US program for hydrogen from renewable energy sources. Renewable energy sources include biomass, wind, solar, hydropower, geothermal and ocean waves. Although nuclear power is not considered renewable, a case can be made that it is, but requires recycling of spent fuel. The paper also discusses hydrogen production, storage and delivery. It discusses fuel cells, safety codes and standards and system analysis

  3. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, Karaoli and Dimitriou 80, Piraeus, ATTIKI 18534 (Greece); Payne, James E. [Department of Economics, Illinois State University, Normal, IL 61790-4200 (United States); Menyah, Kojo [London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London, EC2M 6SQ (United Kingdom); Wolde-Rufael, Yemane

    2010-09-15

    This paper examines the causal relationship between CO{sub 2} emissions, nuclear energy consumption, renewable energy consumption, and economic growth for a group of 19 developed and developing countries for the period 1984-2007 using a panel error correction model. The long-run estimates indicate that there is a statistically significant negative association between nuclear energy consumption and emissions, but a statistically significant positive relationship between emissions and renewable energy consumption. The results from the panel Granger causality tests suggest that in the short-run nuclear energy consumption plays an important role in reducing CO{sub 2} emissions whereas renewable energy consumption does not contribute to reductions in emissions. This may be due to the lack of adequate storage technology to overcome intermittent supply problems as a result electricity producers have to rely on emission generating energy sources to meet peak load demand. (author)

  4. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  5. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  6. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  7. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  8. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Rabiti, Cristian; Suk Kim, Jong; McKellar, Michael; Sabharwall, Piyush; Chen, Jun; Cetiner, M. Sacit; Harrison, T. Jay; Qualls, A. Lou

    2016-01-01

    technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  9. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    renewable technologies will aid in achieving reduced GHG emissions, it also presents new challenges to grid management that must be addressed. These challenges primarily derive from the fundamental characteristics of variable renewable generators, such as wind and solar: non-dispatchability, variable production, and reduced electromechanical inertia. This document presents a preliminary research and development (R&D) plan for detailed dynamic simulation and analysis of nuclear-renewable hybrid energy systems (N-R HES), coupled with integrated energy system design, component development, and integrated systems testing. N-R HES are cooperatively-controlled systems that dynamically apportion thermal and/or electrical energy to provide responsive generation to the power grid.

  10. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  11. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  12. Rise and fall of nuclear power in the United States and the limits of regulation

    International Nuclear Information System (INIS)

    Del Sesto, S.L.

    1982-01-01

    This paper documents the rapid growth of nuclear power in the United States and its subsequent decline in the late 1970s. It demonstrates that the increase in numbers of new orders for nuclear plants created pressures for additional licensing complexity to insure safety and provide public intervenors with opportunities to participate in the regulatory process. The resulting protraction of the licensing process combined with increasing political opposition to nuclear power caused construction delays and bureaucratic bottlenecks at a time when soaring interest rates and double-digit inflation have pushed the cost of building new facilities out of the reach of the financially battered utility industry. Together with a downturn in demand for electricity and increasing uncertainty over nuclear power, no reactor orders have been placed since late 1978. It is argued that renewed growth of nuclear power in the United States is unlikely, especially in a regulatory environment which fosters increased costs of electricity to consumers and a simultaneous abrogation of the economies of scale. The consequences of the impending atrophication of the nuclear industry in America and its effects on future energy mixes and long-term national interests must be considered in future nuclear policies and reforms

  13. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  14. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  15. Future prospects for nuclear power in France

    International Nuclear Information System (INIS)

    Maïzi, Nadia; Assoumou, Edi

    2014-01-01

    Highlights: • Applies a bottom-up energy system optimization model to define future energy choices. • Derive scenarios to explore different combination of nuclear policy and emission target up to 2050. • Underline the resulting challenges in term of power capacity renewal rate and flexibility. - Abstract: Taking different nuclear policy options from a French perspective, we look at the issues that we were able to pinpoint thanks to the TIMES-FR model. The technico-economic analysis supported by the TIMES-FR model brings robust lessons, whichever technological options are selected: • The cliff effect puts the French system “up against the wall”: sustained investments must be made to renew electricity production facilities coming to the end of their lives. • This situation opens up opportunities to all industrial channels, with the main challenge being to sustain an ambitious pace of constructing new capacities and answering specific questions for each of them, such as acceptability and reliability. • In parallel, the current paradigm of increasing electricity consumption is likely to be challenged over the coming decades if environmental issues are still part of public policy. • These factors make it possible to consider that the question of political options in terms of long-term energy cannot be restricted to a technological choice and must go beyond pro- or anti-nuclear lobbying. This contribution, which is mainly based on a technical thought process, should fit into the wider framework of a debate on society and behavior choices. The issue of the electricity user will be unavoidable

  16. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  17. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  18. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  19. Consequences of EU enlargement for supply and demand in the electricity market with special emphasis on nuclear power

    International Nuclear Information System (INIS)

    Jaeger, G.

    2004-01-01

    After the enlargement of the European Union, Europe has acquired a new dimension which is reflected also on the electricity market. The aggregate European electricity requirement of 3 000 TWh in Europe constitutes approximately one quarter of the world electricity generation. Nuclear power contributes a major share of 966 TWh. In electricity generation from nuclear power, EU-25 is No. 1 in the world. The rising demand for electricity cannot be met by the existing power plant park in the next few decades. Insufficient possibilities of exchange among countries and, especially, the enormous requirement to replace more than 200,000 MW of electricity generating capacity in Europe by 2020, plus another 100,000 MW arising from growing demand, make a comprehensive renewal of the European power plant park indispensable. After the EU enlargement, the standards of the ''old'' European Union are the yardstick for the entire ''new'' Union. This gives rise to enormous efforts, especially in the accession countries, to curb emissions and increase safety. The need for modern power plant technology is becoming particularly apparent in these cases. The example of the ten new member countries clearly shows the options realistically available for electricity generation in the future and indispensable for a favorable infrastructure. The conventional energy resources, i. e. coal, gas, and nuclear power, will be the main sources of electricity generation in Europe over the next few decades. This finding does not meet the expectations of many members of the public who feel that renewables would make the largest contribution to power supply in twenty years' time. This makes it imperative to regain popular acceptance in order to ensure electricity generation at favorable conditions and at a high level of environmental protection in the whole of Europe, with enough leeway to further advance the expansion of renewables and support a positive economic development of Europe. (orig.)

  20. Overview of United States Department of Energy activities to support life extension of nuclear power plants

    International Nuclear Information System (INIS)

    Harrison, D.L.

    1993-01-01

    Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US The operating license of the first of these plants will expire in the year 2000; one-third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: establishment of regulations, technical standards, and procedures for the preparation and review of a license renewal application; development, verification, and validation of technical criteria and bases for monitoring, refurbishing, and/or replacing plant equipment; and demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE's Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues in the principal areas of reactor pressure vessel (RPV) integrity, fatigue, and environmental qualification (EQ)

  1. Study the feasibility of hydrogen assisted renewable power for off-grid communities

    International Nuclear Information System (INIS)

    Wu, S.H.; Fleetwood, M.; Roberston, R.; Nielsen, N.

    2004-01-01

    Most Renewable energy sources lack the controllability and availability of conventional fossil fuel-based energy sources and therefore cannot meet load requirements of a community without a backup or storage system. The advances of hydrogen technologies enable these renewable energy options to supply power to remote communities relying on independent sources of electrical and other energy. The hydrogen assisted renewable power (HARP) concept promises to make renewable energy more practical and mainstream through the use of hydrogen based electrical generation systems. The study herein is the first of a multiphase project to investigate the benefits of HARP as an environmentally friendly replacement for diesel in the supply of electricity to off-grid communities and analyse its feasibility and suitability as a back-up power supply. A small-scale pilot project was selected and this study assesses the major elements of a plant required to integrate electrical generation system, hydrogen storage and hydrogen generation into a renewable energy generation system. Based on the available renewable energy profiles, a simulation model was developed to assist in selecting, integrating, and evaluating various configurations and operational scenarios. This paper describes the components of the proposed HARP system as well as its cost, benefits and opportunities for other applications. (author)

  2. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  3. Promotion of direct marketing and supply on demand of electric power from renewable energy sources. Final report; Foerderung der Direktvermarktung und der bedarfsgerechten Einspeisung von Strom aus Erneuerbaren Energien. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-23

    The study investigates the promotion of direct marketing and supply on demand of electric power from renewable energy sources in Germany. the study shows that renewable energy sources are a good option for facing the challenges of the future. However, the potential is often left unused because of a lack of incentives in the current pricing system. To solve this problem, the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety authorized two studies that are to enable or improve the utilization of the integration potentials of the renewable energy sources. Two model proposals based on these studies are presented here. The model proposing a bonus for combined-cycle power plants is to ensure supply on demand of electric power from renewables with the aid of integrated power storage systems. However, it is found that this model will not generate significant effects for power supply on demand. The second model proposes financial incentives; it will work well for renewable power supply systems that can be controlled, e.g. bioenergy, run-of-river power plants with power storage, and biogas plants. On the other hand, supply-dependent technologies like wind power, photovoltaic power, run-of-river power plants without power storage, and geothermal power plants with very low variable cost, the goal is not fully reached. In contrast to the first model, the market incentives model will enhance the integration of renewable energy sources in the competitive market by largely eliminating market risks. (orig./RHM)

  4. Northwest power gamble: Washington utilities go for broke on nuclear; region's citizens make conservation bid

    International Nuclear Information System (INIS)

    Brummer, J.

    1981-01-01

    The Washington Public Power Supply System (WPPSS) is asking for a reactor construction moratorium in an effort to get fast relief from the Bonneville Power Administration (BPA), which is authorized to guarantee power purchases from new power plants. Supporters of nuclear power plants as well as those of the soft energy path are watching to see how BPA will handle its mandate against acquiring new thermal plants until conservation and renewable energy potentials are exhausted. BPA can subvert the Pacific Northwest Power Act with 20-year contracts based on conventional forecasts despite evidence that new plants are unneeded. There is also evidence that the public rejects the idea of a moral obligation to bail out nuclear power cost overruns at taxpayer expense. The negotiations involve not only WPPSS and BPA, but Moody's Investor Service and environmental groups

  5. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  6. Management quality in spanish nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez de Zabalza Ramos, F.

    1995-01-01

    This paper analyzes the reasons that lead nuclear power plants to require engineering support that is not usual in other types of industrial installations, namely the complexity of the plant and the economic consequences of a possible shutdown. At the time of unit startup, the need to use the services of experienced engineers for the technical support of nuclear power plants induced plant owners to turn to the engineering companies which had participated in the design of the plants. The paper lists the wide range of plant support services which these engineering companies can provide, both from their central offices and on site, especially in the field of change orders and documentation update. The paper also describes the satisfactory development of management parameters in Spanish nuclear power plants both in terms of load factor and comparison of operating and maintenance costs, and how engineering companies have contributed to this achievement, by reducing costs with no loss in the technical quality of their services. Finally, the paper describes how the engineering companies have had to adapt to a shrinking market without losing quality and how they achieved this by diversifying their services. In this context there are two areas of concern. the first area of concern is the competition from certain companies with oversized staff, who attempt to employ them in operation support for nuclear power stations, a field which does not correspond to the training and background of said staff. This could lead to a loss of quality or economic efficiency of nuclear power plants, whose operation up to now has proven satisfactory. The second area of concern is the operator's tendency to use their own resources for engineering support, making more difficult the renewal of human resources and thus leading to a decrease in productivity, and in the transfer of practical and theoretical experience from one plant to another, as well as in the transmission of the latest know

  7. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  8. Promotion strategies for renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Chi-Chuan, Wang; Chang, Yi-Lin

    2008-01-01

    To promote the development and application of renewable energy, under the planning and execution of Bureau of Energy of Ministry of Economical Affairs (BOEMOEA), Taiwan has implemented many measures for subsidizing the installation of RE apparatus since 2000. Besides subsidizing the installing expenses, Taiwanese government also provides incentive measures of finance/tax, such as investment deduction and accelerating depreciation. The successive growth of the amount of installing cases has apparently constructed the base of promotion and application of renewable energy; on the other hand, many barriers to be overcome were continuously discovered during the executing processes. To effectively remove these promoting barriers, the Energy Commission (the pre-BOE) issued 'Renewable Energy Development Plan' through the endorsement of Executive Yuan in January 2002. The purpose of this plan is to establish an inter-ministerial coordinating mechanism of a higher administrative level, which may focus all resources to be functioned as a working team. In the meantime, to further establish a systematically promoting mechanism, the Bureau of Energy then pushes the legislation of 'Renewable Energy Development Bill'. According to the drafted plan of this law, the power capacity of renewable energies will be 12% share of the national power installation capacity by 2020. Furthermore, in the Nuclear-free Homeland National Conference held in June 2003, government planned that the power capacity of renewable energy must reach 10% of the total power capacity in the nation by 2010. However, the share of the power capacity of renewable energy to the national power installation capacity is only 6.17%, currently, so there is still a lot of growing space for the development of renewable energy in Taiwan. (author)

  9. Global analysis of a renewable micro hydro power generation plant

    Science.gov (United States)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  10. PWR reactor pressure vessel internals license renewal industry report; revision 1. Final report

    International Nuclear Information System (INIS)

    Schwirian, R.; Robison, G.

    1994-07-01

    The U.S. nuclear power industry, through coordination by the Nuclear Management and Resources Council (NUMARC), and sponsorship by the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI), has evaluated age-related degradation effects for a number of major plant systems, structures and components, in the license renewal technical Industry Reports (IRs). License renewal applicants may choose to reference these IRs in support of their plant-specific license renewal applications, as an equivalent to the integrated plant assessment provisions of the license renewal rule (10 CFR Part 54). Pressurized water reactor (PWR) reactor pressure vessel (RPV) internals designed by all three U.S. PWR nuclear steam supply system vendors have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits; inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these internals can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR reactor pressure vessel internals for license renewal

  11. On FDP energy and nuclear power policies

    International Nuclear Information System (INIS)

    Hirche, W.

    2002-01-01

    A liberal energy policy as proclaimed by the FDP, the Free Democratic Party, is based on the principle of sustainability and, in equal measure, serves to ensure economic viability, continuity of supply, and environmental as well as societal compatibility. The possibilities open for national action are determined by the framework conditions of globalization and liberalization, and by the contribution of Germany to the implementation of the sustainability goals. Liberal policies take into account the protection of the environment and of the climate. Levies imposed to protect the environment and the climate must serve specific purposes; the present eco-tax has no controlling function whatsoever. Political measures must not seek to impose government conditions, but rather strengthen public awareness of sustainable action. Liberal research policy focuses on the four areas of fossil energy sources, nuclear fission and nuclear fusion, renewable energy sources, and new technologies. A balanced energy mix as seen by the FDP constitutes the basic of sufficient, safe, non-polluting, and low-cost energy supply. Nuclear power is, and will continue to be, a component of this energy mix. (orig.) [de

  12. Design and construction of nuclear power plants

    International Nuclear Information System (INIS)

    Meiswinkel, Ruediger; Meyer, Julian; Schnell, Juergen

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters of the German concrete yearbook ''Beton-Kalender'' are now available in English. The new English BetonKalender Series delivers internationally useful engineering expertise and industrial know-how from Germany.

  13. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  14. Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis

    International Nuclear Information System (INIS)

    Phan, Sebastien; Roques, Fabien

    2015-04-01

    European power markets have become more integrated and the implementation of market coupling has reinforced the efficiency of cross-border trading. This paper investigates empirically the impact of renewables growth in Germany on German and French power price volatility. We find that renewables depress power prices on average and increase volatility not only domestically but also across borders. We also leverage market resiliency data to investigate the impact of increases in interconnection capacity. We find that power price volatility would decrease in France despite some contagion effects of volatility from German renewables production. Our findings have important policy implications as they demonstrate the need to coordinate cross-border support policies for renewables in order to mitigate the impact of volatility on power prices in coupled power markets. (authors)

  15. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  16. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  17. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  18. The role of nuclear power in the new competitive era

    International Nuclear Information System (INIS)

    Pryor, C.W.

    1998-01-01

    As power generators around the world grapple with the challenges of deregulation and competition, there are those who suggest that ownership of an operating nuclear power plant may prove to be a liability. This is not the case for most plants. On the contrary, nuclear facilities that perform well will be important assets in competitive markets, whether as sources of competitively priced electricity, or as strategic factors in mergers and acquisitions. And, as the world focuses renewed attention on global climate change and the reduction of greenhouse gas emissions, nuclear power's significant environmental benefits further enhances its continued viability. The emergence of competitive markets will create a period of tremendous opportunity and enhanced value for nuclear plants. Nuclear plants, large coal plants, and hydro are the only types that can produce power at the bus bar with production costs close to one cent per kilowatt-hour. The challenge for all nuclear plants is to reduce costs and improve performance in order to improve their net earnings stream. Prospects for dramatic reductions are very high. In recent years, average nuclear plant performance figures worldwide have improved rapidly and substantially, and average costs are dropping. How will nuclear plants compare with alternative energy sources in an era of heightened competition? To evaluate nuclear plants in a competitive environment, this paper will look at three key areas: capital costs; operation and maintenance costs; and fuel costs, including spent fuel issues. The paper will examine innovative strategies to deal with capital or 'sunk costs' such as write-downs through securitization and regional operating companies, and will also focus on best practices in O and M and fuel where all nuclear plants have the potential to move to 'best in class'. The lessons that every nuclear plant can learn from other plants can contribute significantly to the performance improvement process. What has been

  19. A Game Theoretical Approach Based Bidding Strategy Optimization for Power Producers in Power Markets with Renewable Electricity

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-05-01

    Full Text Available In a competitive electricity market with substantial involvement of renewable electricity, maximizing profits by optimizing bidding strategies is crucial to different power producers including conventional power plants and renewable ones. This paper proposes a game-theoretic bidding optimization method based on bi-level programming, where power producers are at the upper level and utility companies are at the lower level. The competition among the multiple power producers is formulated as a non-cooperative game in which bidding curves are their strategies, while uniform clearing pricing is considered for utility companies represented by an independent system operator. Consequently, based on the formulated game model, the bidding strategies for power producers are optimized for the day-ahead market and the intraday market with considering the properties of renewable energy; and the clearing pricing for the utility companies, with respect to the power quantity from different power producers, is optimized simultaneously. Furthermore, a distributed algorithm is provided to search the solution of the generalized Nash equilibrium. Finally, simulation results were performed and discussed to verify the feasibility and effectiveness of the proposed non-cooperative game-based bi-level optimization approach.

  20. The World Nuclear Industry Status Report 2010-2011. Nuclear Power in a Post-Fukushima World. 25 years after the Chernobyl accident

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Thomas, Steve; Hazemann, Julie; Mastny, Lisa

    2011-04-01

    The report provides the reader with the basic quantitative and qualitative facts about nuclear power plants in operation, under construction, and in planning phases throughout the world. It assesses the economic performance of past and current nuclear projects and compares their development to that of leading renewable energy sources. An extensive annex provides a country-by-country analysis of nuclear programs around the world. The report also includes the first published overview of reactions to the catastrophe in Japan. But developments even prior to March 11, when the Fukushima crisis began, illustrate that the international nuclear industry has been unable to stop the slow decline of nuclear energy. Not enough new units are coming online, and the world's reactor fleet is aging quickly. Moreover, it is now evident that nuclear power development cannot keep up with the pace of its renewable energy competitors. Annual renewables capacity additions have been outpacing nuclear start-ups for 15 years. In the United States, the share of renewables in new capacity additions skyrocketed from 2 percent in 2004 to 55 percent in 2009, with no new nuclear coming on line. In 2010, for the first time, worldwide cumulated installed capacity of wind turbines (193 GW), small hydro (80 GW, excluding large hydro) biomass and waste-to-energy plants (65 GW), and solar power (43 GW) reached 381 GW, outpacing the installed nuclear capacity of 375 GW prior to the Fukushima disaster. Total investment in renewable energy technologies has been estimated at $243 billion in 2010. As of April 1, 2011, there were 437 nuclear reactors operating in the world-seven fewer than in 2002. The International Atomic Energy Agency (IAEA) currently lists 64 reactors as 'under construction' in 14 countries. By comparison, at the peak of the industry's growth phase in 1979, there were 233 reactors being built concurrently. In 2008, for the first time since the beginning of the nuclear age, no new unit was

  1. Nuclear power worldwide: Status and outlook. A report from the IAEA

    International Nuclear Information System (INIS)

    2007-01-01

    building two more. Nuclear power already supplies 39 percent of its electricity. Europe is a good example of 'one size does not fit all.' Altogether it had 166 reactors in operation and six under construction. But there are several nuclear prohibition countries like Austria, Italy, Denmark and Ireland. And there are nuclear phase-out countries like Germany and Belgium. There are also nuclear expansion programmes in Finland, France, Bulgaria and Ukraine. Finland started construction in 2005 on Olkiluoto-3, which is the first new Western European construction since 1991. France plans to start its next plant in 2007. Several countries with nuclear power are still pondering future plans. The UK, with 19 operating plants, many of which are relatively old, had been the most uncertain until recently. Although a final policy decision on nuclear power will await the results of a public consultation now underway, a White Paper on energy published in May 20071/ concluded that '...having reviewed the evidence and information available we believe that the advantages [of new nuclear power] outweigh the disadvantages and that the disadvantages can be effectively managed. On this basis, the Government's preliminary view is that it is in the public's interest to give the private sector the option of investing in new nuclear power stations.' The US had 103 reactors providing 19 percent of the country's electricity. For the last few decades the main developments have been improved capacity factors, power increases at existing plants and license renewals. Currently 48 reactors have already received 20-year renewals, so their licensed lifetimes are 60 years. Altogether three-quarters of the US reactors either already have license renewals, have applied for them, or have stated their intention to apply. There have been a lot of announced intentions (about 30 new reactors' worth) and the Nuclear Regulatory Commission is now reviewing four Early Site Permit applications. (IAEA)

  2. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  3. 77 FR 31895 - Energy Northwest, Columbia Generating Station; Record of Decision and Issuance of Renewed...

    Science.gov (United States)

    2012-05-30

    .... SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) has issued renewed facility... INFORMATION CONTACT: Mr. Arthur Cunanan, Project Manager, Office of Nuclear Reactor Regulation, U.S. Nuclear...; (11) hydroelectric power; (12) ocean wave and current energy; (13) geothermal power; (14) municipal...

  4. Nuclear and energy. Special issue on the Fukushima power plant

    International Nuclear Information System (INIS)

    2011-01-01

    This issue analyses the first consequences of the Fukushima accident at the world level, i.e. impacts which are either already noticeable or predictable. A first article proposes a portrait of Japan (its historical relationship with nature, the cultural education, the role of its bureaucracy, the Japanese business and political worlds) and evokes the nuclear safety organization at the institutional level. It also evokes the different companies involved in nuclear energy production. The second article discusses and comments the environmental and radiological impact of the accident (protection of the inhabitants, environment monitoring, comparison with Chernobyl, main steps of degradation of the reactors, releases in the sea, total release assessment, soil contamination, food contamination, radiation protection). A third article discusses the international impact, notably for the existing or projected power plants in different countries, in terms of public opinion, and with respect to negotiations on climate. The fourth article discusses the reactions of different countries possessing nuclear reactors. The last article questions the replacement of the lost production (that of Fukushima and maybe another power plant) by renewable energies

  5. Nuclear power in Australia: A comparative analysis of public opinion regarding climate change and the Fukushima disaster

    International Nuclear Information System (INIS)

    Bird, Deanne K.; Haynes, Katharine; Honert, Rob van den; McAneney, John; Poortinga, Wouter

    2014-01-01

    A nation-wide survey was conducted in 2010 to investigate the Australian public's attitudes to nuclear power in relation to climate change and in comparison to other energy alternatives. The survey showed a majority of respondents (42%) willing to accept nuclear power if it would help tackle climate change. Following the disaster at the Fukushima Daiichi Nuclear Power Complex in Japan, an event triggered by the 11 March 2011 Tohoku earthquake and tsunami, it was expected that support for nuclear power in Australia would change. In light of this, a follow-up survey was conducted in 2012. Indeed, the post-Fukushima results show a majority of respondents (40%) were not willing to accept nuclear power as an option to help tackle climate change, despite the fact that most Australians still believed nuclear power to offer a cleaner, more efficient option than coal, which currently dominates the domestic production of energy. Expanding the use of renewable energy sources (71%) remains the most popular option, followed by energy-efficient technologies (58%) and behavioural change (54%). Opposition to nuclear power will continue to be an obstacle against its future development even when posed as a viable solution to climate change. - Highlights: • Australia-wide survey assessed opinions of nuclear power in 2010 and 2012. • Study examined attitudes in relation to climate change and Fukushima disaster. • Australians believe nuclear power offers a cleaner, more efficient option to coal. • Australians are against nuclear power due to safety concerns and distrust. • Reluctant acceptance of nuclear power is a fragile attitudinal state easily swayed

  6. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  7. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  8. France under a microscope - Nuclear power in France

    International Nuclear Information System (INIS)

    2008-01-01

    The first French nuclear power plant was built in 1956, but it was only after the 1970's oil shock that nuclear power gained an important place in the French energy sector. Planning Act 2005-781 of 13 July 2005 laying down French energy policy orientations confirmed that nuclear energy was to remain the primary source of electricity supply in France. The Act also encourages diversification of sources of electricity production through renewable energies (wind power, biomass) and the security of electricity supply from oil, gas and coal. Nuclear energy accounted for 78.4% of electricity production in France in 2006. French nuclear capacity includes 58 pressurized water reactors (PWRs) that produced 450 billion nuclear kilowatt-hours (kWh) in 2006, i.e. 78.4% of total electricity production which is of 574 billion kWh. The lifetime of a third of currently operating nuclear plants will end in around 2020 and, with a view to the renewal of its nuclear capacity, France is about to deploy new-generation reactors that meet requirements in terms of production, environmental protection and enhanced nuclear safety. In April 2007, France started building a third-generation EPR reactor at Flamanville in the Manche Department. The EPR is to be operational by 2012. France is also devoting research programmes to fourth generation reactor technology with a view to those reactors being operational by 2040. There are a number of reasons for choosing nuclear power: it enables France to ensure its national energy independence (France imports less than 50% of its energy resources) and environmental protection (France is one of the European countries which emits the least greenhouse gases) at a stable and competitive price. Decree 2008-378 of 21 April 2008 instituted a council on nuclear policy presided by the President of the Republic. The council will define the broad lines of nuclear policy and monitor their implementation, particularly with regard to exports and international

  9. Comprehensive evaluation and study on energy saving and emission reduction of nuclear power based on the osculation value method

    International Nuclear Information System (INIS)

    Liu Zhihui; Wei Fangxin; Liu Xiaomin

    2014-01-01

    By means of osculation value method, several provinces are selected to study the energy saving and emission reduction effect of nuclear power from provincial range according to the statistic data in 2010. Theoretically, nuclear power effect is reducing the consumption of non-renewable energy such as coal and reducing the release of pollutants such as CO 2 . The result shows that the comprehensive evaluation of energy saving and emission reduction effect in Zhejiang and Jiangsu provinces are the best. In comparison, Guangdong province falls behind Hubei and Fujian provinces. Total consumption of coal per unit of GDP in Guangdong, Zhejiang, and Jiangsu provinces is apparently lower than that of Hebei, Shanxi, Liaoning, and Hubei provinces. However, total release of SO 2 and NOx, etc. is apparently reduced in provinces with nuclear power, compared with provinces without nuclear power. But total release of CO 2 from thermal power generation (coal) per unit of GDP is not apparently reduced in provinces with nuclear power than those without. (authors)

  10. Licence renewal in the United States - enhancing the process through lessons learned

    International Nuclear Information System (INIS)

    Walters, D.J.

    2000-01-01

    The Nuclear Energy Institute (NEI) is the Washington based policy organisation representing the broad and varied interests of the diverse nuclear energy industry. It comprises nearly 300 corporate members in 15 countries with a budget last year of about USD 26.5 million. It has been working for 10 years with the Nuclear Regulatory Commission (NRC), colleagues in the industry and others to demonstrate that license renewal is a safe and workable process. The first renewed license was issued on 24 March to BGE for the the Calvert Cliffs plant. One month later the NRC issued the renewed license for the Ocoenne plant. By 'Enhancing the process through lessons learned', we mean reducing the uncertainty in the license renewal process. This is achieved through lessons learned from the net wave of applicants and the reviews of the Calvert Cliffs and Ocoenne applications. Three areas will be covered: - Incentive for minimising uncertainty as industry interest in license renewal is growing dramatically. - Rigorous reviews by Nuclear Regulatory Commission assure continued safety: process put in place by the Nuclear Regulatory Commission to assure safety throughout the license renewal term, specifically areas where the lessons learned suggest improvements can be made. - Lessons learned have identified enhancements to the process: numerous benefits associated with renewal of nuclear power plant licenses for consumers of electricity, the environment, the nuclear operating companies and the nation. (author)

  11. The renaissance of Italian nuclear power; La renaissance du nucleaire italien

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C.; Cassuto, A. [CEA/Ambassade de France a Rome (Italy)

    2010-07-15

    In the fifties Italy was an advanced country in terms of nuclear electricity but as a consequence of the Chernobyl accident Italy changed drastically its energy policy and closed definitely all its nuclear plants. Now in order to be less dependent on energy imports and to reduce its CO{sub 2} emission, Italy has changed its mind and welcomes nuclear power in its future energy mix. The aim is to reach the following contributions for the production of electricity in 2030: 50% from fossil fuels, 25% from renewable energies and 25% from nuclear energy (13.000 MWe) and with a first reactor operating in 2020. The main actors of the renaissance of nuclear power in Italy are: -) ENEL (the second electricity producer in Europe), -) SOGIN, a company that is mainly in charge of the dismantling of nuclear plants, -) ENEA a state agency for the development of new technologies, energy and sustainable development, and -) companies working in the nuclear industry like ANSALDO. Various collaboration agreements have been signed between ENEL and EDF or between ENEA and CEA concerning staff training, nuclear safety or radioactive waste management. The main difficulties of this renaissance of the nuclear energy are to get the agreement of the national and local populations as well as that of the political class that is strongly marked by a division in 2 wings. (A.C.)

  12. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  13. Utilization of the simulators in I and C renewal project of Loviisa NPP

    International Nuclear Information System (INIS)

    Porkholm, K.; Ahonen, A.; Tiihonen, O.

    2006-01-01

    There are two VVER-440 type reactors in Loviisa Nuclear Power Plant. The first unit has been in operation since 1977 and the second since 1980. The availability of the plant as well as the operational experiences of the I and C systems are good. However it is obvious that the lifetime of the original I and C systems is not sufficient to guarantee the good availability of the plant in the future. Due to this fact a project for the renewal of the existing I and C systems has been started at Loviisa Nuclear Power Plant. In the project the analogue I and C systems will be renewed by digital I and C systems in four phases during 2005...2014. Simulators will be utilized extensively in the project to assure that the renewal of I and C systems can be realized safely and economically. An engineering simulator will be used in the design and validation of the modifications of the renewal I and C systems. A development simulator is aimed for the design, testing and acceptance of the new Man Machine Interface. A testing simulator will be used for the testing of the new I and C systems and retuning of the controllers mainly during the Factory Acceptance Tests. A training simulator will be used in training the operators and the other technical personnel in the operation of the new monitor-based control room facilities. All the simulators in the renewal project are based on APROS (Advanced PROcess Simulator) Simulation Software. Fortum Nuclear Services Ltd and the Technical Research Centre of Finland have developed APROS Simulation Software since 1986. APROS is a good example of the real multifunctional simulation software; i.e. it can be used in process and automation design, safety analysis and training simulator applications. APROS has been used extensively for various analysis and simulation tasks of the Loviisa Nuclear Power Plant in the past years. It has also been applied to various nuclear and thermal power plants elsewhere. First a short overview of Loviisa Nuclear Power

  14. Thoughts on nuclear power plants

    International Nuclear Information System (INIS)

    Rouze, Michel

    1996-01-01

    In this article published before the Chernobyl accident (and the greenhouse effect issue), the author comments the evolution of the perception people have on nuclear energy: it was supposed to be the beginning of a golden age, and is finally perceived as a source of thermal and radioactive pollution and a major industrial risk. He outlines and criticizes the various and more or less violent reactions and debates about the fact that choosing nuclear energy means choosing a certain type of society. He considers that this point of view refuses reality. He states that the emerging new and renewable energies cannot be the solution. He comments the emergence of an energy crisis after the first oil crisis, and the associated questions about a possible reduction of consumption, the replacement of oil, the potential of renewable energies. He criticizes the excessive fear about nuclear materials and energy, discusses the actual risks associated with electronuclear production, and discusses the energy issue in the international context to outline the importance of nuclear energy. He finally addresses issues related to the definition and implementation of an energy policy, with EDF as a major actor

  15. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  16. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  17. World energy supply and demand and the future of nuclear power

    International Nuclear Information System (INIS)

    Lantzke, U.

    1977-01-01

    The author discusses the OECD's report ''World Energy Outlook'', which concluded that a severe energy gap could, and probably would, develop by the mid-1980s if present energy policies continue. Should nuclear power fail to make a substantial contribution, this situation is predicted to become even worse. The author states that an energy gap can only be realistically avoided by a combination of (a) deep energy conservation, (b) even greater use of coal, and (c) nuclear power. New energy technologies cannot realistically be expected to make a significant contribution much before the end of the century. Conservation and coal alone, however, will not be sufficient. It is difficult to envisage energy savings of more than 10% without reducing economic activity to a degree that becomes politically unacceptable. Greater use of coal is undoubtedly feasible, but the potential is severely constrained in the medium term for economic, technological and environmental reasons. Nuclear power must also make a significant contribution. However, estimates of OECD nuclear energy supply for 1985 have been scaled drastically downwards during 1976 owing to: uncertainty in the utility sector over future growth in electricity demand; continued, and in some cases increased, opposition to nuclear power; and delays and uncertainties in government nuclear policies and programmes. The author concludes that we cannot afford any further shortfall and we must move urgently to: (a) give strong and unswerving support to thermal nuclear reactor programmes (requiring that governments adopt clear and coherent nuclear policies, taking into account the legitimate concern expressed by the public); (b) develop stable and long-term international arrangements so that the necessary nuclear fuel facilities can be made available on a secure basis for peaceful uses of nuclear power; (c) decide what the real proliferation risk is and agree on action to avoid it; and (d) make renewed and stronger efforts to solve

  18. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  19. Risk factors during construction of power plants using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Nefedova Lyudmila Veniaminovna

    2016-12-01

    Full Text Available The authors consider main characteristics of modern development of renewable energy sources (RES. It is dedicated that there are some technical and economic barriers to the widespread use of renewable energy. For example, RES are inconstancy in time and space and have low density of energy flow. High capital intensity and cost price, long-term construction, a considerable degree of different kinds of risk, lack of competitiveness with hydrocarbon species generation in the existing regulatory environment are also inherent to RES. The role of the regulatory framework is shown according to perspective plans of construction of power plants using renewable energy sources. The main requirements which are applied to measures of state support of construction industry of renewable energy development are formulated. Current condition of construction industry of RES in Russia is assessed. The problems of risks which arise during construction of renewable energy facilities according to results of practical use of RES are discussed. And it is rather important to use stage assessment for the construction phase of the project during risk analysis of construction of alternative energy sources. The main groups of RES risks are described. The importance of regulatory and resource risks for effective development of renewable energy in Russia according to the method of strategic planning with the identification of the adverse effects of gradation factors are determined. The analysis of financial risks types and methods of its management during construction power generation projects based on different types of renewable energy resources are made. In the end of the article the authors make a conclusion, that the development of projects for the construction of power plants with the use of innovative technical solutions to ensure minimal risks to the environment and safe operation in various climatic conditions is a priority.

  20. Distributed renewable power from biomass and other waste fuels

    Science.gov (United States)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  1. NPP License Renewal and Aging Management: Revised Guidance

    International Nuclear Information System (INIS)

    Hull, A.B.; Hiser, A.L.; Lindo-Talin, S.E.

    2012-01-01

    Based on the Atomic Energy Act, the NRC issues licenses for commercial power reactors to operate for up to 40 years and allows these licenses to be renewed for up to another 20 years. NRC has approved license renewal (LR) for well over 50% of U.S. located reactors originally licensed to operate for 40 years. Of these 104 reactors (69 PWRs, 35 BWRs), the NRC has issued renewed licenses for 71 units and is currently reviewing applications for another 15 units. As of May 1, 2012, ten plants at nine sites had entered their 41st year of operation and thus are in their first period of extended operation (PEO). Five more plants will enter the PEO by the end of 2012. One foundation of the license renewal process has been license renewal guidance documents (LRGDs). The U.S. Nuclear Regulatory Commission (NRC) revised key guidance documents used for nuclear power LR in 2010 and 2011. These include NUREG-1800, 'Standard Review Plan for Review of License Renewal Applications,' revision 2 (SRP-LR), and NUREG-1801, 'Generic Aging Lessons Learned (GALL) Report,' revision 2 (GALL Report). The guidance documents were updated to reflect lessons learned and operating experience gained since the guidance documents were last issued in 2005. The reactor LRGDs referenced in this poster can all be accessed at http://www.nrc.gov/reactors/operating/licensing/renewal/guidance.html (author)

  2. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  3. Perspectives on renewable energy and Village Power

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  4. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    1.2 DOD Renewable Energy Applications 1 1.3 Atmospheric Renewable Energy Research Strategy 2 1.4 Microgrid Definitions 3 1.4.1 Mobile Microgrid 4...1.4.2 Hybrid Microgrid 4 1.4.3 Smart Microgrid 4 1.5 Long-Term Atmospheric Renewable Energy Research Vision 5 2. Atmospheric Dependencies 5 2.1...developed-for-Army “ smart ” mobile hybrid microgrid that will incorporate both traditional and renewable energy power resources. A significant

  5. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  6. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  7. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  8. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  9. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    International Nuclear Information System (INIS)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco; Stark, Greg; Jenkin, Thomas

    2016-01-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  10. Colorado's Prospects for Interstate Commerce in Renewable Power

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.

    2009-12-01

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  11. Safety-evaluation report related to the license renewal and power increase for the National Bureau of Standards Reactor (Docket No. 50-184)

    International Nuclear Information System (INIS)

    1983-09-01

    This Safety Evaluation Report for the application filed by the National Bureau of Standards (NBS) for an increase in power from 10 MWt to 20 MWt and for a renewal of the Operating License TR-5 to continue to operate the test reactor has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Gaithersburg, Maryland, on the site of the National Bureau of Standards, which is a bureau of the Department of Commerce. The staff concludes that the NBS reactor can operate at the 20 MWt power level without endangering the health and safety of the public

  12. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  13. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  14. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  15. Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region

    International Nuclear Information System (INIS)

    Zoss, Toms; Dace, Elina; Blumberga, Dagnija

    2016-01-01

    Highlights: • A mathematical modeling framework developed for assessing power-to-methane systems. • An integrated system of wind power, electrolysis, biogas and methanation assessed. • Power system is more stable with methanizing biogas with H_2 from excess wind power. • Accumulation of H_2 limits production of renewable methane. • Large potential for wind power development in the Baltic States. - Abstract: The explicit tendency to increase the power generation from stochastic renewable resources forces to look for technological solutions of energy management and storage. In the recent years, the concept of power-to-gas, where the excess energy is converted into hydrogen and/or further methanized into renewable methane, is gaining high popularity among researchers. In this study, we assess the power-to-renewable methane system as the potential technology for power grid balancing. For the assessment, a mathematical model has been developed that assists in understanding of whether a power-to-renewable methane system can be developed in a region with specific installed and planned capacities of wind energy and biogas plants. Considering the varying amount of excess power available for H_2 production and the varying biogas quality, the aim of the model is to simulate the system to determine, if wind power generation meets the needs of biogas plants for storing the excess energy in the form of methane via the methanation process. For the case study, the Baltic States (Estonia, Latvia, and Lithuania) have been selected, as the region is characterized by high dependence on fossil energy sources and electricity import. The results show that with the wind power produced in the region it would be possible to increase the average CH_4 content in the methanized biogas by up to 48.4%. Yet, even with a positive H_2 net production rate, not in all cases the maximum possible quality of the renewable methane would be achieved, as at moments the necessary amount of H_2 for

  16. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  17. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  18. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  19. Scenarios for the popular initiatives 'Strom ohne Atom' (Electricity without nuclear power) and 'Moratorium Plus'

    International Nuclear Information System (INIS)

    Eckerle, K.; Haker, K.; Hofer, P.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on the possible effects of two Swiss Popular Initiatives which called for the shutdown of nuclear power stations in Switzerland ('Strom ohne Atom'), the restriction of their operating life and the abstention from building new atomic power stations ('Moratorium Plus'). The report examines the energetic and financial consequences of the initiatives. The approaches used for the analysis are described and the energy policy actions required to avoid gaps in the supply of power after the possible closure of the power stations are discussed. Apart from a reference scenario (long-term utilisation of nuclear energy), scenarios for power generation using co-generation are presented. The problems posed by the resulting CO 2 and NO x emissions are discussed. Further scenarios review the contribution to be made by renewable sources of energy and increasing energy-conservation efforts. The costs of the shutdown of nuclear power stations are discussed and the results of a sensitivity analysis are presented

  20. Aging Management Guideline for commercial nuclear power plants: Motor control centers

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; O'Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein