WorldWideScience

Sample records for renewable systems interconnection

  1. Renewable Systems Interconnection: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  2. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  3. Cross-border versus cross-sector interconnectivity in renewable energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    In the transition to renewable energy systems, fluctuating renewable energy, such as wind and solar power, plays a large and important role. This creates a challenge in terms of meeting demands, as the energy production fluctuates based on weather patterns. To utilise high amounts of fluctuating...... renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection....... The results show that while both measures increase the system utilisation of renewable energy and the system efficiency, the cross-sector interconnection gives the best system performance. To analyse the possible interaction between cross-sector and cross-border interconnectivity, two main aspects have...

  4. A new hybrid PLL for Interconnecting Renewable Energy Systems to the Grid

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2012-01-01

    of the phase angle of the grid voltage which may be estimated by using a Phase-Locked Loop (PLL) control circuit. The performance of the PLL under normal and abnormal operational conditions is a crucial aspect, since the RES is desired to operate to support the power system under grid fault conditions....... This paper investigates the performance of three different PLLs: a synchronous reference frame PLL (dqPLL), a stationary reference frame PLL (αβPLL), and a decoupled double synchronous reference frame PLL (ddsrfPLL). The results of this investigation motivate to the development of a new hybrid PLL which...... under unbalanced faults. Further, it has a lower deviation of the estimated phase after the fault occurs. The performance of the new hybrid dαβPLL is verified through simulations and experiments. Further the new PLL is used in an interconnected RES through experiments under normal and RTF operation....

  5. A New Hybrid PLL for Interconnecting Renewable Energy Systems to the Grid

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    of the phase angle of the grid voltage which may be estimated by using a phase-locked loop (PLL) control circuit. The performance of the PLL under normal and abnormal operational conditions is a crucial aspect, since the RES is desired to operate accurately to support the power system under grid fault...... conditions. This paper investigates the performance of three different PLLs: a synchronous reference frame (SRF) PLL, a stationary reference frame PLL, and a decoupled double SRF PLL. The results of this investigation motivate the development of a new hybrid PLL which is a combination of the aforementioned....... Furthermore, it has a lower deviation of the estimated phase after the fault occurs. This could be depicted as a faster response of the dαβPLL within the same frequency limits. The performance of the new hybrid dαβPLL is verified through simulations and experiments. Furthermore, the new PLL is used...

  6. Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  7. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  8. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  9. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geller, Nina [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliability while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.

  10. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  11. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac struc

  12. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  13. Renewable Energy Tracking Systems

    Science.gov (United States)

    Renewable energy generation ownership can be accounted through tracking systems. Tracking systems are highly automated, contain specific information about each MWh, and are accessible over the internet to market participants.

  14. Packaging considerations for planar optical interconnection systems.

    Science.gov (United States)

    Acklin, B; Jahns, J

    1994-03-10

    We discuss various aspects of building an integrated optoelectronic system that is based on the concept of planar optics. A particular optical interconnection system has been fabricated and demonstrated. It provides parallel interconnections with 1024 optical channels that could be useful as an optical backplane in an optoelectronic multichip module. We consider the design and the fabrication of the optical system, schemes for the hybrid integration with optoelectronic device arrays, and the thermal management of an integrated system. The proposed hybrid integration scheme is based on mature technologies such as thermal anodic bonding and flip-chip bonding. Possibilities for efficient heat sinking are described.

  15. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2014-01-01

    are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart......This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity...

  16. Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    This paper presents the learning of a series of studies that analyse the problems and perspectives of converting the present energy system into a 100 % renewable energy system using a smart energy systems approach. As opposed to, for instance, the smart grid concept, which takes a sole focus...... on the electricity sector, smart energy systems include the entire energy system in its approach to identifying suitable energy infrastructure designs and operation strategies. The typical smart grid sole focus on the electricity sector often leads to the conclusion that transmission lines, flexible electricity...... are to be found when the electricity sector is combined with the heating and cooling sectors and/or the transportation sector. Moreover, the combination of electricity and gas infrastructures may play an important role in the design of future renewable energy systems. The paper illustrates why electricity smart...

  17. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  18. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  19. Decentralized Control for a Class of Similar Composite Systems with Interconnections with Unsatisfying Interconnection Condition

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; LI Zhong-hai; ZHANG Si-ying; HOU Xue-zhang

    2001-01-01

    In this paper, a class of similar composite systems is discussed, whose interconnections areasymmetrical and mismatched. The interconnection condition is proposed. Based on it, the interconnectionsare divided into two parts. One satisfies the interconnection condition, by means of the two--step method,the decentralized controllers are designed. The other does not satisfy the interconnection condition, but thisis offsetted by good quality of the system itself. Based on these, a sufficient condition is given by some linearmatrix inequalities, which makes the studied systems quadratic stabile via linear decentralized controllers bymaking use of the information of interconnections better.

  20. Advancement of photonic interconnects for spaceborne systems

    Science.gov (United States)

    Bristow, Julian P.; Lehman, John A.; Morgan, Robert A.; Deruiter, John L.

    1997-07-01

    Optical interconnects have long promised significant advantages over their electrical counterparts. Specific advantages include increased bandwidths at long (ten meters or more) interconnection distances, immunity to EMI effects, negligible crosstalk, reduced size, and lower weight. Optical interconnects have been developed for, and are being used in, a range of ground based and aircraft applications, however they are only now beginning to gain acceptance in spaceborne systems. In addition to the maturity demanded from components destined for ground-based applications and the wider temperature excursions characteristic of airborne applications, spaceborne components must also be able to survive the radiation environments associated with their intended applications. The additional qualification required has resulted in delayed introduction of photonic interconnects. We describe the tradeoffs involved in implementing for the first time a spaceborne fiber optic data bus with a clock speed of 1.2 Gbps. The tradeoffs include emitter, detectors, fiber, connectors and packaging. We have selected a series of commercial grade optoelectronic devices which were then qualified for use in spaceborne environments and have developed a space quantifiable packaging scheme. We have designed and implemented the optoelectronic subsystem of the data bus and have simulated its operation. We also describe recent advances in Vertical Cavity Surface Emitting Lasers (VCSELs) for spaceborne databuses. VCSELs also offer advantages in simplicity of packaging and electronic control. We summarize available initial radiation data on these devices and project their impact on spaceborne photonic interconnects.

  1. Market Based Analysis of Power System Interconnections

    Science.gov (United States)

    Obushevs, Artjoms; Turcik, Mario; Oleinikova, Irina; Junghans, Gatis

    2011-01-01

    Analysis in this Article is focused on usage of transmission grid under liberalized market with implicit transmission capacity allocation method, e.g. Nordic market. Attention is paid on fundamental changes in transmission utilization and its economical effective operation. For interconnection and power flow analysis and losses calculation model of Nordic grid was developed and transmission losses calculation method was created. Given approach will improve economical efficiency of system operation in electricity market conditions.

  2. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution...... for interconnecting polymer microsystems in terms of cost, space and performance. Following this path we propose a new reversible, integrated fluidic interconnection composed of custom-made cylindrical rings integrated in a polymer house next to the fluidic network. This allows plug 'n' play functionality between...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  3. Functionality Inspection of Interconnected Fire Protection Systems

    DEFF Research Database (Denmark)

    Kærup, René; Jomaas, Grunde

    2014-01-01

    systems, such as a smoke detection system, sprinkler system, warning system and fire ventilation system. However, only smoke detections systems and sprinkler systems require inspection from an independent accredited company, whereas the other systems’ functionality is entirely up to the professionals...... that install them and the owner’s maintenance schedule, both of which do not require any supervision from the authorities. Herein, 12 complex buildings, in which all fire protections systems were inspected by an independent accredited company, were studied to see whether or not the buildings adhere to the fire...... safety design in their operational phase. The results showed that the functionality of the interconnected fire protection systems was not as designed in the performance-based analysis. Furthermore, due to the lack of this functionality the fire safety level is not at high as the authorities’ demand...

  4. Updating Interconnection Screens for PV System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  5. Algorithms for interconnection and decomposition problems with multidimensional systems

    NARCIS (Netherlands)

    Napp Avelli, Diego; Trentelman, Harry L.

    2007-01-01

    The notion of interconnection is the basis of control in the behavioral approach. In this setting, feedback interconnection of systems is based on the still more fundamental concept of regular interconnection, which has been introduced previously. In this paper, the following problem is addressed: g

  6. Parallel Interconnection of Broadcast Systems with Multiple FIFO Channels

    Science.gov (United States)

    de Juan Marín, Ruben; Cholvi, Vicent; Jiménez, Ernesto; Muñoz-Escoí, Francesc D.

    This paper proposes new protocols for the interconnection of FIFO- and causal-ordered broadcast systems, thus increasing their scalability. They use several interconnection links between systems, which avoids bottleneck problems due to the network traffic, since messages are not forced to go throughout a single link but instead through the several links we establish. General architectures to interconnect FIFO- and causal-ordered systems are proposed. Failure management is also discussed and a performance analysis is given, detailing the benefits introduced by these interconnection approaches that are able to easily increase the resulting interconnection bandwidth.

  7. Economic and environmental benefits of interconnected systems. The Spanish example

    Energy Technology Data Exchange (ETDEWEB)

    Chicharro, A.S.; Dios Alija, R. de [Red Electrica de Espana, Madrid (Spain)

    1996-12-31

    The interconnected systems provide large technical and economic benefits which, evaluated and contrasted with the associated network investment cost, usually produce important net savings. There are continental electrical systems formed by many interconnected subsystems. The optimal size of an interconnection should be defined within an economic background. It is necessary to take into account the global environmental effects. The approach and results of studies carried out by Red Electrica is presented, in order to analyse both economic and environmental benefits resulting from an increase in the present Spanish interconnection capacities. From both economic and environmental points of view, the development of the interconnected systems is highly positive. (author). 4 refs.

  8. Interconnection of systems : the network paradigm

    NARCIS (Netherlands)

    Maschke, B.M.; Schaft, A.J. van der

    1996-01-01

    In this paper we propose first to recall the different interconnection structures appearing in network models and to show their exact correspondence with Dirac structures. This definition of interconnection is purely implicit hence does not discriminate between inputs and outputs among the interconn

  9. 47 CFR 90.477 - Interconnected systems.

    Science.gov (United States)

    2010-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is...

  10. System Impacts from Interconnection of Distributed Resources: Current Status and Identification of Needs for Further Development

    Energy Technology Data Exchange (ETDEWEB)

    Basso, T. S.

    2009-01-01

    This report documents and evaluates system impacts from the interconnection of distributed resources to transmission and distribution systems, including a focus on renewable distributed resource technologies. The report also identifies system impact-resolution approaches and actions, including extensions of existing approaches. Lastly, the report documents the current challenges and examines what is needed to gain a clearer understanding of what to pursue to better avoid or address system impact issues.

  11. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  12. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  13. Interconnection of subsystems in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    The focus in this paper is analysis of stability and controller design for interconnected systems. This includes both the case with known and unknown interconnected sub-system. The key element in both the stability analysis and controller design is the application of the Youla-Jabr-Bongiorno-Kuce...

  14. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...

  15. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view....... It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production...

  16. Disturbance Attenuation State-Feedback Control for Uncertain Interconnected Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems viastate feedback. This class of systems are described by a state space model, which contains unknown nonlinear interactionand time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach wedesign state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the inter-connected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate theresults.

  17. Impulse free interconnection of dynamical systems

    NARCIS (Netherlands)

    Vinjamoor, Harsh; Belur, Madhu N.

    2010-01-01

    In this paper we address the problem that impulses might occur when a to-be-controlled plant is connected to a suitable controller. In the behavioral literature this issue is dealt when studying the so-called 'regular feedback interconnection' (RFI) of the plant and the controller behaviors. We addr

  18. Impulse free interconnection of dynamical systems

    NARCIS (Netherlands)

    Vinjamoor, Harsh; Belur, Madhu N.

    2010-01-01

    In this paper we address the problem that impulses might occur when a to-be-controlled plant is connected to a suitable controller. In the behavioral literature this issue is dealt when studying the so-called 'regular feedback interconnection' (RFI) of the plant and the controller behaviors. We addr

  19. Robust decentralized adaptive stabilization for a class of interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Zhaojing WU; Xuejun XIE; Siying ZHANG

    2004-01-01

    The robust decentralized adaptive output-feedback stabilization for a class of interconnected systems with static and dynamic interconnections by using the MT-filters and backstepping design method is studied. By introducing a new filtered tramformation, the adaptive laws were derived for measurement. Under the assumption of the nonlinear growth conditions imposed on the nonlinear interconnections and by constructing the error system and using a new proof method, the global stability of the closed-loop system was effectively analyzed, and the exponential convergence of all the signals except for parameter estimates were guaranteed.

  20. High Performance Interconnect Network for Tianhe System

    Institute of Scientific and Technical Information of China (English)

    廖湘科; 庞征斌; 王克非; 卢宇彤; 谢旻; 夏军; 董德尊; 所光

    2015-01-01

    In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features effectively supporting high performance communications, ranging over remote direct memory access, collective optimization, hardware-enable reliable end-to-end communication, user-level message passing services, etc. Measured hardware performance results are also presented.

  1. Very Large Scale Optical Interconnect Systems For Different Types of Optical Interconnection Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-04-01

    Full Text Available The need for scalable systems in market demands in terms of lower computing costs and protection of customer investment in computing: scaling up the system to quickly meet business growth is obviously a better way of protecting investment: hardware, software, and human resources. A scalable system should be incrementally expanded, delivering linear incremental performance with a near linear cost increase, and with minimal system redesign (size scalability, additionally, it should be able to use successive, faster processors with minimal additional costs and redesign (generation scalability. On the architecture side, the key design element is the interconnection network. The interconnection network must be able to increase in size using few building blocks and with minimum redesign, deliver a bandwidth that grows linearly with the increase in system size, maintain a low or (constant latency, incur linear cost increase, and readily support the use of new faster processors. The major problem is the ever-increasing speed of the processors themselves and the growing performance gap between processor technology and interconnect technology. Increased central processing unit (CPU speeds and effectiveness of memory latency-tolerating techniques.

  2. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  3. An adaptive Phase-Locked Loop algorithm for faster fault ride through performance of interconnected renewable energy sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    of the phase-locked loop algorithm. The adaptive parameters are adjusted in real time according to the proposed fault classification unit, which permits a fast estimation of the type of the grid fault. The outstanding performance of the proposed adaptive PLL is verified through simulation and experimental......Interconnected renewable energy sources require fast and accurate fault ride through operation in order to support the power grid when faults occur. This paper proposes an adaptive Phase-Locked Loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response of the grid...

  4. Decentralized impulsive control for a class of uncertain interconnected systems

    Institute of Scientific and Technical Information of China (English)

    成新明; 关治洪; 刘新芝

    2004-01-01

    A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The results obtained are usually based on continuous systems by state feedback. In this paper, decentralized impulsive control is presented to stabilize a class of uncertain interconnected systems based on Lyapunov theory. The system under consideration involves parameter uncertainties and unknown nonlinear interactions among subsystems. Some new criteria of stabilization under impulsive control are established. Two numerical examples are offered to prove the effectiveness and practicality of the proposed method.

  5. Simulation of wind power with front-end converter into interconnected grid system

    Directory of Open Access Journals (Sweden)

    Sharad W. Mohod

    2009-09-01

    Full Text Available In the growing electricity supply industry and open access market for electricity worldwide, renewable sources are getting added into the grid system. This affects the grid power quality. To assess the impact on grid due to wind energy integration, the knowledge of electrical characteristic of wind turbine and associated control equipments are required. The paper presents a simulation set-up for wind turbine in MATLAB / SIMULINK, with front end converter and interconnected system. The presented control scheme provides the wind power flow to the grid through a converter. The injected power in the system at the point of common coupling is ensured within the power quality norms.

  6. DECENTRALIZED STABILIZATION OF A CLASS OF INTERCONNECTED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concerned with the decentralized stabilization of continuous and discrete linear interconnected systems with the structural constraints about the interconnection matrices. For the continuous case,the main improvement in the paper as compared with the corresponding results in the literature is to extend the considered class of systems from S to S*(both will be defined in the paper)without resulting in high decentralized gain and difficult numerical computation. The algorithm for obtaining decentralized state feedback control to stable the overall system is presented. The discrete case and some very useful results are discussed as well.

  7. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we...... utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness...... to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment....

  8. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  9. On the Computation of Lyapunov Functions for Interconnected Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer

    2016-01-01

    This paper addresses the computation of additively separable Lyapunov functions for interconnected systems. The presented results can be applied to reduce the complexity of the computations associated with stability analysis of large scale systems. We provide a necessary and sufficient condition...

  10. Toward Interpreting Failure in Sintered-Silver Interconnection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Waters, Shirley B [ORNL

    2016-01-01

    The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silver interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.

  11. Communication issues in parallel systems with optical interconnections

    Science.gov (United States)

    Berthome, Pascal; Ferreira, A.

    1995-02-01

    In classical massively parallel computers, the complexity of the interconnection networks is much higher than the complexity of the processing elements themselves. Optical interconnections may provide a way to reconsider very large parallel architectures. We compare some optically interconnected parallel multicomputer models with regard to their communication capabilities. We first establish a distinction of such systems, based on the independence of the communication elements embedded in the processors (transmitters and receivers). Then, motivated by the fact that in multicomputers some communication operations have to be very efficiently performed, we study two fundamental communication problems, namely, one-to-all and all-to-all, under the hypothesis of bounded fanout. Our results take also into account a bounded number of available wavelengths.

  12. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  13. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  14. Discrete port-Hamiltonian systems : mixed interconnections

    NARCIS (Netherlands)

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  15. Nonexplicit Singular Perturbations and Interconnected Systems.

    Science.gov (United States)

    1982-09-01

    34 Econometrica, Vol. 29, pp. 111-138, 1963. 47. A. N. Michel and R. K. Miller, Qualitative Analysis of Large Scale Dynamical Systems, Academic Press...Illinois, 1977. 100 56. N. R. Sandell , Jr., P. Varaiya, M. Athans, and M. G. Safonov, "Survey of Decentralized Control Methods for Large Scale Systems

  16. Reliability of microtechnology interconnects, devices and systems

    CERN Document Server

    Liu, Johan; Sarkka, Jussi; Tegehall, Per-Erik; Andersson, Cristina

    2011-01-01

    This text discusses the reliability of microtechnology products from the bottom up, beginning with devices and extending to systems. It covers many topics, and it addresses specific failure modes in solder and conductive adhesives at great length.

  17. An Adaptive Tuning Mechanism for Phase-Locked Loop Algorithms for Faster Time Performance of Interconnected Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2015-01-01

    Interconnected renewable energy sources (RES) require fast and accurate fault ride through (FRT) operation, in order to support the power grid, when faults occur. This paper proposes an adaptive phase-locked loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response...... of the grid-side converter (GSC) control of a RES, particularly under FRT operation. The adaptive dαβPLL is based on modifying the tuning parameters of the dαβPLL, according to the type and voltage characteristics of the grid fault, with the purpose of accelerating the performance of the PLL algorithm....... The proposed adaptive tuning mechanism adjusts the PLL parameters in real time, according to the proposed fault classification unit, in order to accelerate the synchronization performance. The beneficial effect of the proposed adaptive tuning mechanism on the performance of dαβPLL is verified through...

  18. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  19. The Modeling and Control of a Wind Farm and Grid Interconnection in a multi-machine system

    OpenAIRE

    Skolthanarat, Siriya

    2009-01-01

    This dissertation focuses on the modeling and control of WECS (Wind Energy Conversion System) in a multi-machine system. As one of the fastest growing renewable energy resources, the trend of wind energy changes to variable speed wind turbines. The concept of the variable speed is based on the variable speed according to the instantaneous wind speed of wind turbines. Since the utility grid requires the stable frequency and magnitude voltages, there must be grid interconnection of the wind far...

  20. Nonlinear H∞ filtering for interconnected Markovian jump systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaomei; Zheng Yufan

    2006-01-01

    The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.

  1. Energetic diversification in the interconnected electric system; Diversificacion energetica en el sistema electrico interconectado

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva M, C.; Beltran M, H.; Serrano G, J.A. [UNAM, Facultad de Ingenieria, 04510 Mexico D.F. (Mexico)]. e-mail: cvillanueva@fi-b.unam.mx

    2007-07-01

    In the interconnected electric system of Mexico the demanded electricity in different timetable periods it is synthesized in the annual curve of load duration, which is characterized by three regions. The energy in every period is quantified according to the under curve areas in each region, which depend of the number of hours in that the power demand exceeds the minimum and the intermediate demands respectively that are certain percentages of the yearly maximum demand. In that context, the generating power stations are dispatched according to the marginal costs of the produced electricity and the electric power to be generated every year by each type of central it is located in some of the regions of the curve of load duration, as they are their marginal costs and their operation characteristic techniques. By strategic reasons it is desirable to diversify the primary energy sources that are used in the national interconnected system to generate the electricity that demand the millions of consumers that there are in Mexico. On one hand, when intensifying the use of renewable sources and of nucleo electric centrals its decrease the import volumes of natural gas, which has very volatile prices and it is a fuel when burning in the power stations produces hothouse gases that are emitted to the atmosphere. On the other hand, when diversifying the installed capacity of the different central types in the interconnected system, a better adaptation of the produced electricity volumes is achieved by each type to the timetable variation, daily, weekly and seasonal of the electric demand, as one manifests this in the curve of load duration. To exemplify a possible diversification plan of the installed capacity in the national interconnected system that includes nucleo electric centrals and those that use renewable energy, charts are presented that project of 2005 at 2015 the capacity, energy and ost of the electricity of different central types, located in each one of the

  2. 49 CFR 236.514 - Interconnection of cab signal system with roadway signal system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Interconnection of cab signal system with roadway signal system. 236.514 Section 236.514 Transportation Other Regulations Relating to Transportation... Interconnection of cab signal system with roadway signal system. The automatic cab signal system shall...

  3. High-bandwidth remote flat panel display interconnect system

    Science.gov (United States)

    Peterson, Darrel G.

    1999-08-01

    High performance electronic displays (CRT, AMLCD, TFEL, plasma, etc.) require wide bandwidth electrical drive signals to produce the desired display images. When the image generation and/or image processing circuitry is located within the same line replaceable unit (LRU) as the display media, the transmission of the display drive signals to the display media presents no unusual design problems. However, many aircraft cockpits are severely constrained for available space behind the instrument panel. This often forces the system designer to specify that only the display media and its immediate support circuitry are to be mounted in the instrument panel. A wide bandwidth interconnect system is then required to transfer image data from the display generation circuitry to the display unit. Image data transfer rates of nearly 1.5 Gbits/second may be required when displaying full motion video at a 60 Hz field rate. In addition to wide bandwidth, this interconnect system must exhibit several additional key characteristics: (1) Lossless transmission of image data; (2) High reliability and high integrity; (3) Ease of installation and field maintenance; (4) High immunity to HIRF and electrical noise; (5) Low EMI emissions; (6) Long term supportability; and (7) Low acquisition and maintenance cost. Rockwell Collins has developed an avionics grade remote display interconnect system based on the American National Standards Institute Fibre Channel standard which meets these requirements. Readily available low cost commercial off the shelf (COTS) components are utilized, and qualification tests have confirmed system performance.

  4. Overvoltages related to distributed generation-power system interconnection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Zamanillo, G.R.; Gomez, J.C.; Florena, E.F. [Rio Cuarto National University (IPSEP/UNRC), Cordoba (Argentina). Electric Power Systems Protection Institute], Email: jcgomez@ing.unrc.edu.ar

    2009-07-01

    The energy crisis that experiences the world drives to carry to an extreme, the use of all energy sources which are available. The sources need to be connected to the electric network in their next point, requiring of electric-electronic interfaces. The traditional electric power systems are changing their characteristics, in what concerns to structure, operation and on overvoltage generation. This change is not taking place in coordinated form among the involved sectors. The interconnection of a Distributed Generator (DG) directly with the power system is objectionable and risky. It is required of an interconnection transformer which performs several functions. Rigid specifications do not exist in this respect, for the variety of systems in use in the world, nevertheless there are utilities recommendations. Overvoltages caused by the DG, which arise due to the change of structure of the electric system, are explained. The transformer connection selection, presents positive and negative aspects that impact the utility and the user in a different or many times in an antagonistic way. The phenomenon of balanced and unbalanced ferroresonance overvoltage is studied. This phenomenon can takes place when using DG, either with synchronous or asynchronous generator, and for any type of connection of the transformer. The necessary conditions so that the phenomenon appears are presented. Eight interconnection transformer connection ways were studied. It is concluded that the solutions to reach by means of the employment of the DG, offer technical-economic advantages so much to the utility as to the user. It is also concluded in this work that the more advisable interconnection type is function of the system connection type. (author)

  5. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    Energy Technology Data Exchange (ETDEWEB)

    Greacen, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Engel, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quetchenbach, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additional resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”

  6. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy......, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously...

  7. Internet Renewable energy Information System (IRIS)

    DEFF Research Database (Denmark)

    Bäurle, Britta; Nielsen, Vilhjalmur; Ménard, Lionel

    1999-01-01

    Even though the Internet is now a widely accessible data source, the unorganised flood of information makes a specific request e.g. for renewable energy products inefficient. In addition, existing databases on renewable energies are often old and incomplete. The objective of IRIS has been...... to organise and retrieve renewable energy product information on the Internet instead of collecting it manually. Updating coincides with the self interestself-interest of manufacturers to present their latest renewable energy products on their own HTML documents. IRIS is based on a set of powerful tools...... on biogas systems in order to become part of IRIS. IRIS has been developed in the context of the project „AVALANCHE" which is partly funded under the JOULE programme of the European Commission DGXII.Keywords: Renewable Energy Technologies - Electronic Commerce - Information System - META-tags...

  8. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.

    2013-02-01

    This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  9. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...

  10. 75 FR 12536 - Midwest Independent Transmission System Operator, Inc. Complainant v PJM Interconnection, LLC...

    Science.gov (United States)

    2010-03-16

    ... Interconnection, LLC Respondent; Notice of Complaint March 9, 2010. Take notice that on March 8, 2010, pursuant to... System Operator, Inc. (Complainant) filed a formal complaint against PJM Interconnection, LLC...

  11. Decentralized control and filtering in interconnected dynamical systems

    CERN Document Server

    Mahmoud, Magdi S

    2011-01-01

    Based on the many approaches available for dealing with large-scale systems (LSS), Decentralized Control and Filtering in Interconnected Dynamical Systems supplies a rigorous framework for studying the analysis, stability, and control problems of LSS. Providing an overall assessment of LSS theories, it addresses model order reduction, parametric uncertainties, time delays, and control estimator gain perturbations. Taking readers on a guided tour through LSS, the book examines recent trends and approaches and reviews past methods and results from a contemporary perspective. It traces the progre

  12. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  13. Implementation of Renewable Energy Systems in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1997-01-01

    Denmark has been one of the first countries in the world to commit itself to a sustainable energy development. This has been substantiated by two official action plans from 1990 and 1996 with emphasis on energy efficiency and supply systems based on renewable energy. In year 2005, renewable energy...... sources are planned to cover 12-14% and in year 2030 about 35% of total Danish energy demand. This paper reviews the experiences with implementation of renewable energy in Denmark with a focus on wind power and biomass....

  14. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, Per

    2007-01-01

    transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy......Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...

  15. Implementation of Renewable Energy Systems in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I

    1997-01-01

    Denmark has been one of the first countries in the world to commit itself to a sustainable energy development. This has been substantiated by two official action plans from 1990 and 1996 with emphasis on energy efficiency and supply systems based on renewable energy. In year 2005, renewable energy...... sources are planned to cover 12-14% and in year 2030 about 35% of total Danish energy demand. This paper reviews the experiences with implementation of renewable energy in Denmark with a focus on wind power and biomass....

  16. Health systems in an interconnected world: a view from Nigeria.

    Science.gov (United States)

    Abimbola, Seye

    2011-07-01

    The benefits of an interconnected world for health care remain untapped. As a result of the politics of inequality between rich and poor countries, one or a few health systems are set up as models. Every country, irrespective of political or economic status, should be open to learning from others to build relevant and cost-effective systems. To combat the current global challenge of chronic non-communicable diseases, poor countries have the advantage of flexible health systems that are veritable laboratories of health systems research. Not only can research conducted in these health systems help harness the potential of mobile communication technologies and informal health providers, it can also help rich country health systems adapt to meet the chronic disease challenge.

  17. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  18. NIRVANA GOSIP (Government Open Systems Interconnect Profile) requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B.J.

    1990-08-01

    NIRVANA is an effort to standardize electrical computer-aided design workstations at Sandia National Laboratories in Albuquerque, New Mexico. The early effect of this project will be the introduction of at least 60 new engineering workstations at Sandia National Laboratories, Albuquerque, and at Allied Signal, Kansas City Division. These workstations are expected to begin arriving in September 1990. This paper outlines the requirements that a NIRVANA Network must satisfy to comply with the Government Open Systems Interconnect Profile (GOSIP). The author also identifies several issues involved in achieving GOSIP compliance. 4 refs., 1 fig.

  19. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  20. The renewable electric plant information system

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  1. Security analysis of interconnected AC/DC systems

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2015-01-01

    This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid. The red......This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... voltage control design consider the power distribution for a converter outage. By proper design and utilizing the proposed method increases the N-1 security and the secure transfer limits. This article proposes a method which minimizes the 2-norm of the sum of the PTDFs with constraints of not violating...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage....

  2. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M.; Yokoyama, R.; Yasuda, K. [Tokyo Metropolitan Univ. (Japan); Sasaki, H. [Hiroshima Univ. (Japan); Ogimoto, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  3. Middleware Architecture for the Interconnection of Distributed and Parallel Systems

    Directory of Open Access Journals (Sweden)

    Ovidiu Gherman

    2012-01-01

    Full Text Available Grid computing is a fast evolving technology, bringing more computing power to its users. Two main directions are observable: creating dedicated supercomputers for scientific and commercial tasks and creating distributed commodity-based systems. The first ones are usually much expensive, but have the advantage of performance, better control and uniformity in platforms. The second one is more affordable but lacks in flexibility and easy maintenance. The computing necessities that often require supplementary computing power for certain time periods are better satisfied by interconnecting available resources than buying new, expensive ones. But interconnecting platforms – sometimes radically different – can be a difficult task. The proliferation of hybrid parallel computing systems can be even more complicated because it puts in contact systems with various operating flows at the parallelism level. In this frame, the present article proposes a new middleware architecture that can connect multiple parallel or distributed resources, of different types, allowing unitary resource utilization and reservation for the user’s jobs. The new architecture is described functionally and structurally.

  4. Optimal Multilevel Control for Large Scale Interconnected Systems

    Directory of Open Access Journals (Sweden)

    Ahmed M. A. Alomar,

    2014-04-01

    Full Text Available A mathematical model of the finishing mill as an example of a large scale interconnected dynamical system is represented. First the system response due to disturbance only is presented. Then,the control technique applied to the finishing hot rolling steel mill is the optimal multilevel control using state feedback. An optimal controller is developed based on the integrated system model, but due to the complexity of the controllers and tremendous computational efforts involved, a multilevel technique is used in designing and implementing the controllers .The basis of the multilevel technique is described and a computational algorithm is discussed for the control of the finishing mill system . To reduce the mass storage , memory requirements and the computational time of the processor, a sub-optimal multilevel technique is applied to design the controllers of the finishing mill . Comparison between these controllers and conclusion is presented.

  5. Career Directions--Renewable Energy Systems Integrator

    Science.gov (United States)

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  6. Career Directions--Renewable Energy Systems Integrator

    Science.gov (United States)

    Fleeman, Stephen R.

    2012-01-01

    Renewable energy systems are beginning to appear everywhere. Solar modules are creating "blue roofs" that convert the energy from the sun into household electricity. Solar thermal systems on roofs can generate hot water. Wind turbines catch breezes to provide even more electricity. Recommendations for saving energy, specifying systems for…

  7. Security Constrained Distributed Optimal Power Flow of Interconnected Power Systems

    Institute of Scientific and Technical Information of China (English)

    BINKOU Alhabib; YU Yixin

    2008-01-01

    The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PCIPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.

  8. Optimizing the U.S. Electric System with a High Penetration of Renewables

    Science.gov (United States)

    Corcoran, B. A.; Jacobson, M. Z.

    2012-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic

  9. Renewable Energy Systems: Technology Overview and Perspectives

    DEFF Research Database (Denmark)

    2017-01-01

    In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system...... topologies are included. Also, the increasing role of power electronics is explained as an enabler for renewable energy integration and for future power systems and smart grids. Recent examples of research and development, including new devices and system installations for utility power plants......, including PV and concentrating solar power; wave energy; fuel cells; and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in the final section....

  10. Decentralized Output-Feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

    Energy Technology Data Exchange (ETDEWEB)

    Shim, D.S. [Chung-Ang University, Seoul (Korea, Republic of)

    1998-04-01

    We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H{infinity} control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system. (author). 9 refs.

  11. Optical Filters, Modulators and Interconnects for Optical Communication Systems

    Science.gov (United States)

    Han, Sang-Kook

    This dissertation describes the theoretical and experimental studies on the guided wave optical devices in the InGaAlAs/InP material system and the integration of the optical devices which utilize single quantum well (SQW) as well as multi-quantum well (MQW) structures. This study encompasses the fabrication and characterization of passive ridge waveguides, efficient phase modulators using the quadratic electro-optic effect, as well as efficient, narrow bandwidth wavelength filters. For the purpose of the monolithic integration of an SQW laser diode with an MQW modulator in GaAs/AlGaAs without a complex regrowth process, an impurity-induced layer disordering (IILD) technique is used to facilitate a novel tapered waveguide interconnect structure. The narrow bandwidth and widely tunable wavelength filters are essential for the implementation of highly dense wavelength-division-multiplexers/demultiplexers (WDM) in multi-wavelength optical networks and systems. The vertically stacked directional coupler structure wavelength filter device operating at 1.55 μm which permits the maximum asymmetry possible in directional coupler devices to achieve a narrow bandwidth is presented. The quaternary InGaAlAs layers grown on InP substrate are used and it facilitates larger tunability due to material dispersion. The spectral index method and coupled mode theory are used for theoretical calculations of the filter response. The characteristics of the filter are measured and the tunability of the device is discussed. An array of many filters with different center wavelength in a single chip is studied and a relatively broad range of center wavelength is easily obtained by a small variation in the design of the structure. To achieve an integration of a high gain SQW laser diode and an MQW electroabsorption intensity modulator with a high on/off ratio, we utilize a tapered waveguide interconnect using an IILD technique which permits transfer of the energy generated in an SQW laser

  12. Interconnected hydro-thermal systems - Models, methods, and applications

    DEFF Research Database (Denmark)

    Hindsberger, Magnus

    2003-01-01

    , it has been analysed how the Balmorel model can be used to create inputs related to transmissions and/or prices to a more detailed production scheduling model covering a subsystem of the one represented in the Balmorel model. As an example of application of the Balmorel model, the dissertation presents...... results of an environmental policy analysis concerning the possible reduction of CO2, the promotion of renewable energy, and the costs associated with these aspects. Another topic is stochastic programming. A multistage stochastic model has been formulated of the Nordic power system. This allows analyses...

  13. Hot Chips and Hot Interconnects for High End Computing Systems

    Science.gov (United States)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  14. A robust decentralized load frequency controller for interconnected power systems.

    Science.gov (United States)

    Dong, Lili; Zhang, Yao; Gao, Zhiqiang

    2012-05-01

    A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, an ADRC-based LFC solution is developed for systems with turbines of various types, such as non-reheat, reheat, and hydraulic. The simulation results verified the effectiveness of the ADRC, in comparison with an existing PI-type controller tuned via genetic algorithm linear matrix inequalities (GALMIs). The comparison results show the superiority of the proposed solution. Moreover, the stability and robustness of the closed-loop system is studied using frequency-domain analysis.

  15. Financial Economy and Financial System: Basis of Structural Interconnection

    Directory of Open Access Journals (Sweden)

    Khorosheva Olena I.

    2014-02-01

    Full Text Available The goal of the article lies in identification of grounds of interconnection of the financial economy and financial system. The study was conducted with consideration of main provisions of the theory of finance and concept of financial economy, which is a set of means used in the process of reproduction of finance by their owner for formation and / or maintenance of the own system of values in the viable state. For the first time ever the structure of the financial system is identified as an aggregate of financial economies and financial market. The article justifies a necessity of expansion of boundaries of perception of the state financial economy, which is offered to include public financial economy of the state level and the set of financial economies of the state as a subject of economic activity. Such an approach forms a base for justification of the synthesis of participation of the state in financial relations as the owner and as the basic macro-economic regulator. Prospects of further study in this direction are: development of classification of financial economies; revelation of specific features of impact of shadow finance on development of the national financial economy; and assessment of possibilities of inclusion of structured financial products into the system of values of financial economies in Ukraine.

  16. Micro-financing of renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bunse, Maike; Wallbaum, Holger [triple innova (Germany); Dienst, Carmen [Wuppertal Inst. for Climate, Environment, Energy (Germany)

    2007-07-01

    While improved energy services have many quality of life benefits like lighting or television, the productive use of electricity can also help to reduce poverty, leading to increased profitability and productivity for micro, small and medium enterprises, and small industries. The remoteness of rural locations usually makes it difficult to expand electricity supply through a centralised grid system. Therefore people living in off-grid regions often rely on expensive fossil fuels like diesel and kerosene. People in remote areas often do not have the financial background to afford the initial costs for renewable energy applications. Micro-financing of renewable energy systems is a possible answer to provide financial services and support productive activities in a sustainable manner for low-income people. There are various types of microfinance institutions (MFIs), ranging from local cooperatives, NGOs, credit unions, private commercial banks and non-bank financial institutions as well as parts of state-owned banks.To underline the benefits of micro financing renewable energy systems, good practice projects of local microfinance activities are presented. These projects have been identified in the course of WISIONS, an initiative of the Wuppertal Inst. for Climate, Environment and Energy with support of ProEvolution, a Swiss-based foundation. The two different approaches of the project support on one side the realisation of new project ideas (SEPS - Sustainable Energy Project Support) and on the other spread successful examples (PREP - Promotion of Resource Efficiency Projects). Through the PREP field of action, good practices in energy and resource efficiency are spread worldwide through the Internet and brochures. In the 5th PREP-brochure of WISIONS on 'Microfinance and Renewable Energy' five good-practice examples are shown that link this promising financing system with modern and sustainable renewable energy technologies.

  17. A Quality-of-Service Mechanism for Interconnection Networks in System-on-Chips

    CERN Document Server

    Weber, Wolf-Dietrich; Swarbrick, Ian; Wingard, Drew

    2011-01-01

    As Moore's Law continues to fuel the ability to build ever increasingly complex system-on-chips (SoCs), achieving performance goals is rising as a critical challenge to completing designs. In particular, the system interconnect must efficiently service a diverse set of data flows with widely ranging quality-of-service (QoS) requirements. However, the known solutions for off-chip interconnects such as large-scale networks are not necessarily applicable to the on-chip environment. Latency and memory constraints for on-chip interconnects are quite different from larger-scale interconnects. This paper introduces a novel on-chip interconnect arbitration scheme. We show how this scheme can be distributed across a chip for high-speed implementation. We compare the performance of the arbitration scheme with other known interconnect arbitration schemes. Existing schemes typically focus heavily on either low latency of service for some initiators, or alternatively on guaranteed bandwidth delivery for other initiators. ...

  18. Optimised Hybrid Integrated Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Dr. Arun Sandilya

    2012-10-01

    Full Text Available A hybrid integrated renewable energy system for an isolated small community, where grid extension is considered uneconomical. This paper proposed cost optimization through dynamic matching between load and proper equipment sizing. The Matlab based computer program developed for determining the most cost effective energy source to supply required load any given time of the day. Integrated system based on green energy utilization and rural electricity development.

  19. Linear State-Space Identification of Interconnected Systems: A structured approach

    NARCIS (Netherlands)

    Torres Tapia, P.I.

    2014-01-01

    In this thesis, three novel state-space identification algorithms for linear interconnected systems are proposed. The computational complexity and the topology reconstruction of the interconnected system are addressed. Possible applications of this theory can be found in Biology, Economics, Transpor

  20. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, communication, sensing, medicine, security, imaging, energy, lighting etc.

  1. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  2. Communication Systems for Grid Integration of Renewable Energy Resources

    CERN Document Server

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  3. Policies for 100% Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hvelplund, Frede

    2014-01-01

    The official Danish energy policy goal is both to increase the wind power share of electricity consumption from 33% in 2014 to 50% by 2020 and to have a 100% renewable energy based energy system by 2050. This is a huge technological change from stored, scarce and polluting fossil fuels...... to fluctuating, abundant and clean energy sources. “Stored” fossil fuels can be used when needed; fluctuating energy sources must be captured when available and transformed to meet the energy needs of society in the right amounts and at the right time. We are amidst this change. Renewable energy has come of age...... and is no longer a minor technology experimenting in the corner of the energy scene, but has become a large new technology taking away considerable market shares from the old fossil fuel technologies....

  4. Policies for 100% Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hvelplund, Frede

    2014-01-01

    The official Danish energy policy goal is both to increase the wind power share of electricity consumption from 33% in 2014 to 50% by 2020 and to have a 100% renewable energy based energy system by 2050. This is a huge technological change from stored, scarce and polluting fossil fuels...... to fluctuating, abundant and clean energy sources. “Stored” fossil fuels can be used when needed; fluctuating energy sources must be captured when available and transformed to meet the energy needs of society in the right amounts and at the right time. We are amidst this change. Renewable energy has come of age...... and is no longer a minor technology experimenting in the corner of the energy scene, but has become a large new technology taking away considerable market shares from the old fossil fuel technologies....

  5. Interconnection of the power systems of the far east by using line HVDC transmission

    Directory of Open Access Journals (Sweden)

    Ilya Dydchenko

    2014-04-01

    Full Text Available The possibility of the interconnection continental part of the Russian Far East with the energy systems of Sakhalin and Japan. Indicate the technical possibility of this decision. The comparative analysis of the prospects for the construction of transmission lines of AC and DC. Proved the advantage of applying the lines of direct current for the interconnection of the Far East.

  6. 14 CFR 121.1111 - Electrical wiring interconnection systems (EWIS) maintenance program.

    Science.gov (United States)

    2010-01-01

    ... Airworthiness and Safety Improvements § 121.1111 Electrical wiring interconnection systems (EWIS) maintenance... unless the maintenance program for that airplane includes inspections and procedures for electrical... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Electrical wiring interconnection...

  7. 76 FR 42534 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits; System...

    Science.gov (United States)

    2011-07-19

    ... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its Wide-Area... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term...

  8. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    Science.gov (United States)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  9. Non-fragile guaranteed cost control for uncertain neutral large-scale interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Dan Zhao; Qingling Zhang; Heli Hu; Chunyuan Zhao

    2010-01-01

    This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.

  10. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  11. The RenewElec Project: Variable Renewable Energy and the Power System

    Energy Technology Data Exchange (ETDEWEB)

    Apt, Jay

    2014-02-14

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  12. Integrated interconnect technologies for 3D nanoelectronic systems

    CERN Document Server

    Bakir, Muhannad S

    2008-01-01

    This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source.

  13. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  14. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  15. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    Science.gov (United States)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  16. Impulsive Controllability/Observability for Interconnected Descriptor Systems with Two Subsystems

    Directory of Open Access Journals (Sweden)

    Qingling Zhang

    2015-01-01

    Full Text Available The problem of decentralized impulse controllability/observability for large-scale interconnected descriptor systems with two subsystems by derivative feedback is studied. Necessary conditions for the existence of a derivative feedback controller for the first subsystem of the large-scale interconnected descriptor systems ensuring the second subsystem to be impulse controllable and impulse observable are derived, respectively. Based on the results, a derivative feedback controller for the first subsystem of the large-scale interconnected descriptor systems is constructed easily such that the second subsystem is impulse controllable or impulse observable. Finally, examples are given to illustrate the effectiveness of the results obtained in this paper.

  17. Renewable energy systems a smart energy systems approach to the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2014-01-01

    In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology and offering a freely available accompanying software tool, EnergyPLAN, which automates and simplifies the calculations supporting such a detailed comparative analysis. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at ...

  18. Decentralized state observer scheme for uncertain time-delay T-S fuzzy interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Yanxin ZHANG; Zhongsheng HOU; Xiaofan WANG

    2006-01-01

    This paper focuses on a class of T-S fuzzy interconnected systems with time delays and time-varying parameter uncertainties. Observer-based output feedback decentralized controller is designed such that the closed-loop interconnected system is asymptotically stable in the Lyapunov sense in probability for all admissible uncertainties and time delays. Sufficient conditions for robustly asymptotically stability of the systems are given in terms of a set of linear matrix inequalities (LMIs).

  19. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  20. Renewable Energy Laboratory for Lighting Systems

    CERN Document Server

    Cristian, Dumitru

    2010-01-01

    Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

  1. Decentralized automatic generation control of interconnected power systems incorporating asynchronous tie-lines.

    Science.gov (United States)

    Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed

    2014-01-01

    This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.

  2. Identifying The Most Applicable Renewable Energy Systems Of Iran

    Directory of Open Access Journals (Sweden)

    Nasibeh Mousavi

    2015-08-01

    Full Text Available These years because of energy crisis all of country try to find a new way to reduce energy consumptions and obtain maximum use of renewable energy. Iran also is not an exception of this progress. Renewable energy is energy that is provided by renewable sources such as the sun or wind. In general renewable energies are not adaptable to every single community. Because of location and special climate conditions of Iran most applicable renewable energy systems in Iran are solar and wind energy. Main purpose of this paper is to review and identify most applicable renewable energy systems of Iran and also review on traditional and current methods that utilized to obtain maximum use of these renewable energies.

  3. Energy System Analysis of 100 Per cent Renewable Energy Systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2007-01-01

    renewable energy supply based on domestic resources is physically possible, and that the first step toward 2030 is feasible to Danish society. However, Denmark will have to consider to which degree the country shall rely mostly on biomass resources, which will involve the reorganisation of the present use......This paper presents the methodology and results of the overall energy system analysis of a 100 per cent renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed...... the electricity supply and demand and to exchange electricity productions on the international electricity markets. The results are detailed system designs and energy balances for two energy target years: year 2050 with 100 per cent renewable energy from biomass and combinations of wind, wave and solar power...

  4. Renewable energy systems the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2009-01-01

    How can society quickly convert to renewable energy? Can worldwide energy needs ever be met through 100% renewable sources? The answers to these questions rest largely on the perception of choice in the energy arena. It is of pivotal importance that engineers, researchers and policymakers understand what choices are available, and reasonable, when considering the design and deployment of new energy systems. The mission of this new book, written by one of the world's foremost experts in renewable power, is to arm these professionals with the tools and methodologies necessary to make smart choic

  5. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...... with large amounts of fluctuating sources as it enables fuel efficient and low cost energy systems with thermal heat storages. DH increases the efficiency with the use of combined heat and power production (CHP), while reducing the biomass demand by enabling the use of other renewable resources such as large...

  6. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  7. The Palm Desert Renewable Hydrogen Transportation System

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P. [Humboldt State Univ., Arcata, CA (United States)

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  8. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    , one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  9. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  10. The Linked System Project : a network interconnection project between three major bibliographic utilities and LC

    Science.gov (United States)

    Kurihara, Shin'ichi

    The Linked Systems Project (LSP) is the first network project based on the Open Systems Interconnection (OSI) in the world. The purpose of the project is to interconnect between three major bibliographic utilities and LC, and to perform as one system on the whole. The first application developed for the LSP is the sharing of name authority data based on the Name Authority Cooperative (NACO) Project. In 1985, LC began to send name authority records to RLG/RLIN. Since 1987, RLG/RLIN and OCLC send name authority records to LC. Bibliographic records will be sent mutually between three major bibliographic utilities and LC near future.

  11. Design for reliability in power electronics in renewable energy systems – status and future

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede; Ma, Ke

    2013-01-01

    Advances in power electronics enable efficient and flexible interconnection of renewable sources, loads and electric grids. While targets concerning efficiency of power converters are within reach, recent research endeavors to predict and improve their reliability to ensure high availability, low......, the lifetime prediction of reliability-critical components IGBT modules is discussed in a 2.3 MW wind power converter. Finally, the challenges and opportunities to achieve more reliable power electronic converters are discussed....... maintenance costs, and herefore, low Levelized-Cost-of-Energy (LCOE) of renewable energy systems. This paper presents the prior-art Design for Reliability (DFR) process for power converters and addresses the paradigm shift to Physics-of-Failure (PoF) approach and mission profile based analysis. Moreover...

  12. Distributed-dispersed renewable energy systems and novel control strategies

    Science.gov (United States)

    Aljankawey, Abdualah S.

    Renewable green-energy systems are re-emerging as viable economic alternative sources of environmentally safe power generation in place of conventional fossil fuels. In terms of power quality and safety, this research investigates a number of renewable green-energy (wind, photovoltaic and fuel cells) interface schemes and control strategies that ensure maximum energy utilization, voltage and frequency stabilization and minimum impact on the host electric grid systems. The research key objectives are to study efficient and robust renewable energy converter schemes with associated control strategies and validate their operations for both stand-alone and electric utility grid interfacing. The research work investigates both stand-alone and grid connected renewable green-energy utilization schemes with a number of power electronic converter topologies and robust control schemes for both dispersed and hybrid renewable energy systems. Different sample study systems and control strategies are digitally simulated and fully validated using the MATLAB-Simulink-SimPower environment.

  13. Decentralized Robust Adaptive Output Feedback Stabilization for Interconnected Nonlinear Systems with Uncertainties

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2016-01-01

    Full Text Available Based on adaptive nonlinear damping, a novel decentralized robust adaptive output feedback stabilization comprising a decentralized robust adaptive output feedback controller and a decentralized robust adaptive observer is proposed for a large-scale interconnected nonlinear system with general uncertainties, such as unknown nonlinear parameters, bounded disturbances, unknown nonlinearities, unmodeled dynamics, and unknown interconnections, which are nonlinear function of not only states and outputs but also unmodeled dynamics coming from other subsystems. In each subsystem, the proposed stabilization only has two adaptive parameters, and it is not needed to generate an additional dynamic signal or estimate the unknown parameters. Under certain assumptions, the proposed scheme guarantees that all the dynamic signals in the interconnected nonlinear system are bounded. Furthermore, the system states and estimate errors can approach arbitrarily small values by choosing the design parameters appropriately large. Finally, simulation results illustrated the effectiveness of the proposed scheme.

  14. Accurate one-end fault location for overhead transmission lines in interconnected power systems

    Energy Technology Data Exchange (ETDEWEB)

    Eisa, Amir A.A.; Ramar, K. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2010-06-15

    This paper presents a new one-end fault location method for overhead transmission lines embedded in a general n-bus interconnected power system. High accuracy in fault location is achieved by using both an accurate distributed parameters model for the faulted transmission line, and a two-bus Thevenin equivalent network model for the power system that accurately accounts for its interconnectivity. The method has been tested using transient fault data obtained from PSCAD/EMTDC simulations of an 11-bus interconnected power system. The results obtained indicate that the method is capable of estimating the fault distance with high accuracy for various fault conditions. They also indicate that method is sensitive to errors in the value of the local bus impedance, but is insensitive to errors in the value of the remote bus impedance. (author)

  15. Performance optimization of a free space optical interconnect system with a metal-semiconductor-metal detector

    Science.gov (United States)

    Al-Ababneh, Nedal; Khader, Ateka

    2011-08-01

    In this paper we study the possibility and the potentiality of using metal semiconductor-metal photodetector (MSM-PD) in three-dimensional parallel free space optical interconnect (FSOI) systems. The signal-to-noise ratio (SNR) and time response are used as performance measures to optimize the geometry of MSM-PD used in FSOI systems. Both SNR and time response are evaluated, analyzed, and their dependence on feature parameters of the MSM-PD, including finger size, spacing, and number of fingers, are considered. Based on the results obtained, we show that the use of MSM-PD in FSOI improves the interconnect speed at a given acceptable SNR.

  16. Open system LANs and their global interconnection electronics and communications reference series

    CERN Document Server

    Houldsworth, Jack; Caves, Keith; Mazda, FF

    2014-01-01

    Open System LANs and Their Global Interconnection focuses on the OSI layer 1 to 4 standards (the OSI bearer service) and also introduces TCP/IP and some of the proprietary PC Local Area Network (LAN) standards.The publication first provides an introduction to Local Area Networks (LANs) and Wide Area Networks (WANs), Open Systems Interconnection (OSI), and LAN standards. Discussions focus on MAC bridging, token bus, slotted ring, MAC constraints and design considerations, OSI functional standards, OSI model, value of the transport model, benefits and origins of OSI, and significance of the tran

  17. 14 CFR 26.11 - Electrical wiring interconnection systems (EWIS) maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical wiring interconnection systems (EWIS) maintenance program. 26.11 Section 26.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Enhanced Airworthiness Program for Airplane Systems § 26.11 Electrical wiring...

  18. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  19. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  20. Integration of Renewable Generation in Power System Defence Plans

    OpenAIRE

    Das, Kaushik; Sørensen, Poul Ejnar; Anca Daniela HANSEN; Abildgaard, Hans

    2016-01-01

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conventional controllable generations to minimum. In such operation hours, the system is typically more vulnerable to disturbances in general and major disturbances in particular. This was the case in the m...

  1. Smart grid and renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Guerrero, Josep M.

    2011-01-01

    The electrical energy consumption continues growing and more applications relay on electricity. We can expect that more 60 % of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done as effici...... sources, wind energy and photovoltaics. Then main focus is on the power electronics and control technology for wind turbines as they are the largest renewable power contributor, allowing their penetration into a SmartGrid to be even higher in the future....... conventional, fossil based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discus trends of the future grid infrastructure as well as the most emerging renewable energy...

  2. Preliminary investigation of interconnected systems interactions for the safety injection system of Indian Point-3

    Energy Technology Data Exchange (ETDEWEB)

    Alesso, H.P.; Lappa, D.A.; Smith, C.F.; Sacks, I.J.

    1983-03-04

    The rich diversity of ideas and techniques for analyzing interconnected systems interaction has presented the NRC with the problem of identifying methods appropriate for their own review and audit. This report presents the findings of a preliminary study using the Digraph Matrix Analysis method to evaluate interconnected systems interactions for the safety injection system of Indian Point-3. The analysis effort in this study was subjected to NRC constraints regarding the use of Boolean logic, the construction of simplified plant representations or maps, and the development of heuristic measures as specified by the NRC. The map and heuristic measures were found to be an unsuccessful approach. However, from the effort to model and analyze the Indian Point-3 safety injection system, including Boolean logic in the model, singleton and doubleton cut-sets were identified. It is recommended that efforts excluding Boolean logic and utilizing the NRC heuristic measures not be pursed further and that the Digraph Matrix approach (or other comparable risk assessment technique) with Boolean logic included to conduct the audit of the Indian Point-3 systems interaction study.

  3. Renewable energy systems in Mexico: Installation of a hybrid system

    Science.gov (United States)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  4. The Property of Dichotomy for a Class of Interconnected Pendulum-like Systems%一类组合类摆系统的双态性

    Institute of Scientific and Technical Information of China (English)

    李鑫滨; 段志生; 年晓红; 窦春霞

    2006-01-01

    The property of dichotomy of interconnected second-order pendulum-like systems with multiple equilibria is investigated. This interconnection can be viewed as harmonic control of independent sub-systems. Linear interconnections and a class of input and output interconnections are considered in this paper. The effects of input and output interconnections are shown through a permutation matrix. Frequency domain and linear matrix inequality (LMI) conditions of dichotomy of interconnected pendulum-like systems are derived. It is shown that global properties of two coupled systems can be changed significantly through interconnections. Examples are given to illustrate the results.

  5. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    Science.gov (United States)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  6. The system architecture for renewable synthetic fuels

    DEFF Research Database (Denmark)

    Ridjan, Iva

    To overcome and eventually eliminate the existing heavy fossil fuels in the transport sector, there is a need for new renewable fuels. This transition could lead to large capital costs for implementing the new solutions and a long time frame for establishing the new infrastructure unless a suitab...

  7. Asymptotic stabilization via control by interconnection of port-Hamiltonian systems

    NARCIS (Netherlands)

    Castaños, Fernando; Ortega, Romeo; Schaft, Arjan van der; Astolfi, Alessandro

    2009-01-01

    We study the asymptotic properties of control by interconnection, a passivity-based controller design methodology for stabilization of port-Hamiltonian systems. It is well-known that the method, in its basic form, imposes some unnatural controller initialization to yield asymptotic stability of the

  8. A GA-fuzzy automatic generation controller for interconnected power system

    CSIR Research Space (South Africa)

    Boesack, CD

    2011-10-01

    Full Text Available This paper presents a GA-Fuzzy Automatic Generation Controller for large interconnected power systems. The design of Fuzzy Logic Controllers by means of expert knowledge have typically been the traditional design norm, however, this may not yield...

  9. A Methodology to Enable Automatic 3D Routing of Aircraft Electrical Wiring Interconnection Systems

    NARCIS (Netherlands)

    Zhu, Z.; La Rocca, G.; Van Tooren, M.J.L.

    2015-01-01

    Harness 3D routing in aircraft Electrical Wiring Interconnection System (EWIS) design is very complex because of both the intrinsic complexity of EWIS and the increasing number of design constraints. The complexity hinders the improvement of the design efficiency and makes the design error prone. Co

  10. Decentralized Fault Tolerant Control for a Class of Interconnected Nonlinear Systems.

    Science.gov (United States)

    Shao, Shuai; Yang, Hao; Jiang, Bin; Cheng, Shuyao

    2016-11-22

    This paper proposes a decentralized fault tolerant methodology for a class of interconnected nonlinear systems. The key novelty of our proposed method is that fault tolerant control can be achieved without necessarily exchanging the state information between the subsystems and the couplings' effect can be dealt with utilizing the cyclic-small-gain methodology. Simulation results demonstrate effectively the validity of our proposed approach.

  11. 14 CFR 129.111 - Electrical wiring interconnection systems (EWIS) maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Electrical wiring interconnection systems (EWIS) maintenance program. 129.111 Section 129.111 Aeronautics and Space FEDERAL AVIATION... ENGAGED IN COMMON CARRIAGE Continued Airworthiness and Safety Improvements § 129.111 Electrical...

  12. Decomposition and Projection Methods for Distributed Robustness Analysis of Interconnected Uncertain Systems

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard;

    2013-01-01

    We consider a class of convex feasibility problems where the constraints that describe the feasible set are loosely coupled. These problems arise in robust stability analysis of large, weakly interconnected uncertain systems. To facilitate distributed implementation of robust stability analysis o...

  13. Wide-area monitoring of interconnected power systems

    CERN Document Server

    Messina, Arturo Román

    2015-01-01

    This book provides a compact yet comprehensive treatment of advanced data-driven signal processing techniques for the analysis and characterization of both ambient power system data and transient oscillations resulting from major disturbances. Inspired by recent developments in multi-sensor data fusion, multi-temporal data assimilation techniques for power system monitoring are proposed and tested in the context of modern wide-area monitoring system architectures. Recent advances in understanding and modeling nonlinear, time-varying power system processes are reviewed and factors affecting the

  14. INTERCONNECTIONS AND SYMMETRIES OF LINEAR-DIFFERENTIAL SYSTEMS

    NARCIS (Netherlands)

    FAGNANI, F; WILLEMS, JC

    1994-01-01

    In this paper we study the interplay between control problems and symmetries in the context of linear systems. In particular, we establish sufficient conditions under which it is possible to control a symmetric system in order to make it achieve control objectives, without ''breaking'' its symmetry.

  15. The behavioral approach as a paradigm for modeling interconnected systems

    NARCIS (Netherlands)

    Trentelman, HL; Willems, JC

    2003-01-01

    This article contains the outline of a 3-h course that will be given by the authors at the ECC 2003. The course consists of four parts: 1. The basic concepts, 2. Linear differential systems, 3. Control in a behavioral setting, and 4. The synthesis of dissipative systems.

  16. Soft computing in green and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Iowa Bioeconomy Inst.; US Department of Energy, Ames, IA (United States). Ames Lab; Kalogirou, Soteris [Cyprus Univ. of Technology, Limassol (Cyprus). Dept. of Mechanical Engineering and Materials Sciences and Engineering; Khaitan, Siddhartha Kumar (eds.) [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Electrical Engineering and Computer Engineering

    2011-07-01

    Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful. (orig.)

  17. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Collins, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  18. 100% Renewable energy systems, climate mitigation and economic growth

    DEFF Research Database (Denmark)

    Vad Mathiesen, Brian; Lund, Henrik; Karlsson, Kenneth Bernard

    2011-01-01

    that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socio-economic effects, create employment and potentially lead to large earnings on exports. If externalities such as health effects are included, even more benefits can be expected. 100% Renewable energy...... systems will be technically possible in the future, and may even be economically beneficial compared to the business-as-usual energy system. Hence, the current debate between leaders should reflect a combination of these two main challenges....

  19. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    Science.gov (United States)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  20. Delay-dependent decentralized H∞ filtering for uncertain interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Chen Ning; Gui Weihua; Zhang Xiaofeng

    2008-01-01

    This article considers delay dependent decentralized H∞ filtering for a class of uncertain intercon nected systems,where the uncertainties are assumed to be time varying and satisfy the norm-bounded conditions.First,combining the Lyapunov-Krasovskii functional approach and the delay integral inequality of matrices,a sufficient condition of the existence of the robust decentralized H∞ filter is derived,which makes the error systems asymptotically stable and satisfies the H∞ norm of the transfer function from noise input to error output less than the specified up-bound on the basis of the form of uncertainties.Then,the above sufficient condition is transformed to a system of easily solvable LMIs via a series of equivalent transformation.Finally,the numerical simulation shows the efficiency of the main results.

  1. Dynamics of Complex Interconnected Systems: Networks and Bioprocesses

    CERN Document Server

    Skjeltorp, Arne T

    2006-01-01

    The book reviews the synergism between various fields of research that are confronted with networks, such as genetic and metabolic networks, social networks, the Internet and ecological systems. In many cases, the interacting networks manifest so-called emergent properties that are not possessed by any of the individual components. This means that the detailed knowledge of the components is insufficient to describe the whole system. Recent work has indicated that networks in nature have so-called scale-free characteristics, and the associated dynamic network modelling shows unexpected results such as an amazing robustness against accidental failures. Modelling the signal transduction networks in bioprocesses as in living cells is a challenging interdisciplinary research area. It is now realized that the many features of molecular interaction networks within a cell are shared to a large degree by the other complex systems mentioned above, such as the Internet, computer chips and society. Thus knowledge gained ...

  2. Re-usable quick-release interconnect for characterization of microfluidic systems

    Science.gov (United States)

    Bhagat, Ali Asgar S.; Jothimuthu, Preetha; Pais, Andrea; Papautsky, Ian

    2007-01-01

    In this work, we present a simple method for establishing re-usable quick-release compression-based fluidic connections for characterization of microfluidic systems. Our interconnect scheme uses O-rings to form a compression seal against the upper surface of the microfluidic device and around the inlet/outlet tubing, thus establishing connections to the macroworld and preventing any leaks at the ports. With this approach, fabrication is inexpensive and easy, not requiring time-consuming or specialized fabrication procedures. The connections to the real world can be established and removed numerous times without damaging the microfluidic device, and since the approach is adhesive-free there is no danger of microchannel blockage. The demonstrated interconnect is also flexible enough to permit tube bending parallel to the device and makes it possible to place input ports close together to minimize dimensions of complex microfluidic systems. In leakage tests, the interconnect was measured to withstand pressures up to 1.7 MPa, which is enough for most microfluidic applications, and probably nanofluidic applications. This interconnect makes connecting inlets and outlets faster and easier, saving hours of processing time. It can be quickly and easily reconfigured to match device port positions, and is compatible with microfluidic systems fabricated in polymer, plastic, glass or silicon. Further, the flexible nature of the developed compression-based interconnect, both with regard to tubing flexibility and the ability to re-use numerous times, makes it ideal for rapid prototyping of research systems and potentially for quality control in large-scale production.

  3. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe;

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  4. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    James M. Rakowski

    2006-09-30

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost

  5. Interconnection of the development strategy and motivation system at enterprises

    OpenAIRE

    Yermolenko Oleksiy A.

    2013-01-01

    Personnel is the most important resource of an enterprise, under conditions of limited resources and for ensuring competitive advantages in the market, which allows, by means of the efficient system of motivation (which should be a component of the enterprise strategic development), solution of main strategic tasks of an enterprise - increase of efficiency and effectiveness of the personnel labour, which, in its turn, is an important factor of the enterprise development in general. The articl...

  6. New challenges to electrical interconnection systems in Central America; Nuevos retos que plantea la integracion electrica Centroamericana

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Pinzon, Luz Amalia [IRHE, Panama (Panama)

    1996-07-01

    The electrical interconnection between Central America countries is a project of regional integration, whose purpose is to optimize the advantage of interconnecting of six electrical systems of their respective countries. This require the establishment of legal procedures to operate the high voltage transmission grid from Guatemala to Panama. The mid and long term planning of the interconnected electrical grid, is a new challenge for the electrical companies, considering that as up to now, they have been satisfying small markets. The possibility to use nuclear energy to satisfy a bigger market is now feasible and deserves to be considered since the beginning of the interconnection project. (author)

  7. Complex dynamic and static structures in interconnected particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Kai de Lange

    2004-07-01

    Observations in the magnetic hole system under different conditions have generated many different patterns and dynamical phenomena which have generated even more ideas on how to attack and analyze them on a firm physical basis. Some of these problems are described in paper 4. In this thesis we have studied the dynamics of the few body system. The braid theory provides a compact description of this motion and enables a better real-time analysis with a minimum of information needed for computation. Also the amount of data to store on disks can then be reduced. Another aspect is that braid theory provides new topological invariants which can bring new light on the phenomena under study. The world lines from the few body system can also be closed into a knot. In knot theory several invariant quantities have been developed the last two decades, where the Jones polynomial is one powerful invariant, as pointed out in Appendix B. The diffusive processes of a few body systems can take super diffusive behaviour, as shown in paper 3. Apparently intermittent states of the same system display a large variety of different modes. By analyzing these modes using rank-ordering statistics, we find that they obey the so-called Zipf-Mandelbrot relation, as discussed in papers 1, 2, 3 and 4. Numerical calculations based on Stokes' drag and magnetic dipole-dipole interactions resemble the behaviour of the experiments well. In sections 3.2 and A.1 we presented a possible derivation of the exponent {gamma} in the Zipf-Mandelbrot relation. The derived values of {gamma} are within the same order of magnitude as the values of {gamma} obtained in the experiments. However, the derived values of {gamma} have high uncertainties. These uncertainties may be reduced with a more refined definition of the work of a mode. This refinement has to take into account the correlation between the modes. The physical meaning behind the exponent {gamma} and the correction term {zeta} in the Zipf

  8. Complex dynamic and static structures in interconnected particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Kai de Lange

    2004-07-01

    Observations in the magnetic hole system under different conditions have generated many different patterns and dynamical phenomena which have generated even more ideas on how to attack and analyze them on a firm physical basis. Some of these problems are described in paper 4. In this thesis we have studied the dynamics of the few body system. The braid theory provides a compact description of this motion and enables a better real-time analysis with a minimum of information needed for computation. Also the amount of data to store on disks can then be reduced. Another aspect is that braid theory provides new topological invariants which can bring new light on the phenomena under study. The world lines from the few body system can also be closed into a knot. In knot theory several invariant quantities have been developed the last two decades, where the Jones polynomial is one powerful invariant, as pointed out in Appendix B. The diffusive processes of a few body systems can take super diffusive behaviour, as shown in paper 3. Apparently intermittent states of the same system display a large variety of different modes. By analyzing these modes using rank-ordering statistics, we find that they obey the so-called Zipf-Mandelbrot relation, as discussed in papers 1, 2, 3 and 4. Numerical calculations based on Stokes' drag and magnetic dipole-dipole interactions resemble the behaviour of the experiments well. In sections 3.2 and A.1 we presented a possible derivation of the exponent {gamma} in the Zipf-Mandelbrot relation. The derived values of {gamma} are within the same order of magnitude as the values of {gamma} obtained in the experiments. However, the derived values of {gamma} have high uncertainties. These uncertainties may be reduced with a more refined definition of the work of a mode. This refinement has to take into account the correlation between the modes. The physical meaning behind the exponent {gamma} and the correction term {zeta} in the Zipf

  9. Transurban interconnectivities

    DEFF Research Database (Denmark)

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued......, radicalism and nationalism in 1848. In the concluding paragraph, the limitations of the notion of urban–rural nterconnectivity are discussed in order to clarify the nature of transurban interconnectivity. 1848 revolutions; European history; interconnectivity; transurban; urban political movements...

  10. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  11. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  12. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system.

    Science.gov (United States)

    Cristino, A S; Williams, S M; Hawi, Z; An, J-Y; Bellgrove, M A; Schwartz, C E; Costa, L da F; Claudianos, C

    2014-03-01

    Many putative genetic factors that confer risk to neurodevelopmental disorders such as autism spectrum disorders (ASDs) and X-linked intellectual disability (XLID), and to neuropsychiatric disorders including attention deficit hyperactivity disorder (ADHD) and schizophrenia (SZ) have been identified in individuals from diverse human populations. Although there is significant aetiological heterogeneity within and between these conditions, recent data show that genetic factors contribute to their comorbidity. Many studies have identified candidate gene associations for these mental health disorders, albeit this is often done in a piecemeal fashion with little regard to the inherent molecular complexity. Here, we sought to abstract relationships from our knowledge of systems level biology to help understand the unique and common genetic drivers of these conditions. We undertook a global and systematic approach to build and integrate available data in gene networks associated with ASDs, XLID, ADHD and SZ. Complex network concepts and computational methods were used to investigate whether candidate genes associated with these conditions were related through mechanisms of gene regulation, functional protein-protein interactions, transcription factor (TF) and microRNA (miRNA) binding sites. Although our analyses show that genetic variations associated with the four disorders can occur in the same molecular pathways and functional domains, including synaptic transmission, there are patterns of variation that define significant differences between disorders. Of particular interest is DNA variations located in intergenic regions that comprise regulatory sites for TFs or miRNA. Our approach provides a hypothetical framework, which will help discovery and analysis of candidate genes associated with neurodevelopmental and neuropsychiatric disorders.

  13. Decentralized adaptive fuzzy output feedback control of nonlinear interconnected systems with time-varying delay

    Science.gov (United States)

    Wang, Qin; Chen, Zuwen; Song, Aiguo

    2017-01-01

    A robust adaptive output-feedback control scheme based on K-filters is proposed for a class of nonlinear interconnected time-varying delay systems with immeasurable states. It is difficult to design the controller due to the existence of the immeasurable states and the time-delay couplings among interconnected subsystems. This difficulty is overcome by use of the fuzzy system, the K-filters and the appropriate Lyapunov-Krasovskii functional. Based on Lyapunov theory, the closed-loop control system is proved to be semi-global uniformly ultimately bounded (SGUUB), and the output tracking error converges to a neighborhood of zero. Simulation results demonstrate the effectiveness of the approach.

  14. Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system

    Directory of Open Access Journals (Sweden)

    Umesh Kumar Rout

    2013-09-01

    Full Text Available This paper presents the design and performance analysis of Differential Evolution (DE algorithm based Proportional-Integral (PI controller for Automatic Generation Control (AGC of an interconnected power system. A two area non-reheat thermal system equipped with PI controllers which is widely used in literature is considered for the design and analysis purpose. The design problem is formulated as an optimization problem control and DE is employed to search for optimal controller parameters. Three different objective functions using Integral Time multiply Absolute Error (ITAE, damping ratio of dominant eigenvalues and settling time with appropriate weight coefficients are derived in order to increase the performance of the controller. The superiority of the proposed DE optimized PI controller has been shown by comparing the results with some recently published modern heuristic optimization techniques such as Bacteria Foraging Optimization Algorithm (BFOA and Genetic Algorithm (GA based PI controller for the same interconnected power system.

  15. Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Ravindra [Argonne National Lab. (ANL), Argonne, IL (United States); Lu, Xiaonan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such a way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.

  16. Fuzzified PSO Algorithm for OPF with FACTS Devices in Interconnected Power Systems

    Science.gov (United States)

    Jothi Swaroopan, N. M.; Somasundaram, P.

    This paper presents a new computationally efficient improved stochastic algorithm for solving Optimal Power Flow (OPF) in interconnected power systems with FACTS devices. This proposed technique is based on the combined application of Fuzzy logic strategy incorporated in Particle Swarm Optimization (PSO) algorithm, hence named as Fuzzified PSO (FPSO). The FACTS devices considered here include Static Var Compensator (SVC), Static Synchronous Compensator (STATCOM), Thyristor Controlled Series Capacitor (TCSC) and Unified Power Flow Controller (UPFC). The proposed method is tested on single area IEEE 30-bus system and interconnected two area systems. The optimal solutions obtained using Evolutionary Programming (EP), PSO and FPSO are compared and analyzed. The analysis reveals that the proposed algorithm is relatively simple, efficient and reliable.

  17. Operation planning studies for the integration of the 60 Hz Itaipu units in the Brazilian interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Chipp, H.J.; Oliveira, J.C.C. [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Correa, L.R.A. [FURNAS, Rio de Janeiro, RJ (Brazil); Mendonca, W.C.; Marchi, R.D. [Itaipu Binacional, Foz do Iguacu, PR (Brazil); Botelho, M.J. [ELETROSUL, Curitiba, PR (Brazil)

    1987-12-31

    This paper describes the operation planning studies necessary to interconnect the first two 60 Hz generator units of the Itaipu power plant to the Brazilian interconnected system. The criteria, main problems identified and operative solutions encountered are presented in this paper. 10 refs., 4 figs., 5 tabs.

  18. The Potential of Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    This paper discusses the prospective of renewable energy in the process of sustainable development in China. Along with the high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand....... Such sustainable energy strategy typical involves three technologies issue: energy conservation, efficiency improvement and replacement fossil fuel by renewable energy sources. Denmark is an example of such strategy can be implemented and it shows the possibility of converting into a 100% renewable energy system...... as well as reduce environmental pollution. To ensure energy security and mitigate climate changes the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable possibility...

  19. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  20. Interconnected delay and state observer for nonlinear systems with time-varying input delay

    OpenAIRE

    Léchappé, V; Moulay, Emmanuel; Plestan, F; Glumineau, A.

    2016-01-01

    International audience; This work presents a general framework to estimate both state and delay thanks to two interconnected observers. This scheme can be applied to a large class of nonlinear systems with time-varying input delay. In order to illustrate this approach, a new delay observer based on an optimization technique is proposed. Theoretical results are illustrated and compared with existing works in simulation.

  1. Decentralized observers for optimal stabilization of large class of nonlinear interconnected systems

    OpenAIRE

    BEL HAJ FREJ, GHAZI; Thabet, Assem; Boutayeb, Mohamed; Aoun, Mohamed

    2016-01-01

    International audience; This paper focuses on the design of decentralized state observers based on optimal guaranteed cost control for a class of systems which are composed of linear subsystems coupled by non-linear time-varying interconnections. One of the main contributions lies in the use of the differential mean value theorem (DMVT) to simplify the design of estimation and control matrices gains. This has the advantage of introducing a general condition on the nonlinear time-varying inter...

  2. A practical functional observer scheme for interconnected time-delay systems

    Science.gov (United States)

    Leong, W. Y.; Trinh, H.; Fernando, T.

    2015-10-01

    This paper proposes a partially distributed functional observer scheme for a class of interconnected linear systems with very strong non-instantaneous subsystems interaction and with time delays in the local states and in the transmission of output information from the remote subsystems. A set of easily verifiable existence conditions is established and upon its satisfaction, simple distributed observers are designed using a straightforward design procedure. Simulation results of a numerical example are given to substantiate the feasibility of the approach.

  3. Optimisation and Integration of Hybrid Renewable Energy Storage Systems

    Science.gov (United States)

    Eriksson, E. L. V.; MacA Gray, E.

    2017-07-01

    This paper discusses renewable energy system concepts and integration techniques, and reviews modelling and optimization techniques for hybrid renewable energy systems for electricity provision. A proposal to use design criteria that are not limited to performance- and cost-related factors is introduced and forms a background to the following discussion. Optimization techniques in relation to constraints, reliability analysis and algorithms are discussed as well as software tools available for modelling/simulation, component sizing and optimization. The focus is on systems incorporating hydrogen, but the ideas presented have general relevance.

  4. 100% Renewable Energy Systems in Project Future Climate

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2009-01-01

    , create employment and potentially lead to large earnings on exports. If externalities such as health effects etc. are included, even more benefits can be expected. 100 per cent renewable energy systems will be technically possible in the future, and may even be economically beneficial compared...... energy system by the year 2050 are presented. Two short term transition target years in the process towards this goal are analysed for 2015 and 2030. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socioeconomic effects...... to the business-as-usual energy system. Hence the current debate between leaders should reflect a combination of these two main challenges....

  5. Early experience of an interconnected system in the Yemen Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, W.M.; Warham, T.J.

    1987-07-01

    Gives details of a new 132 kV interconnecting power system being built to link existing distribution systems in major cities and a new oil fired power plant at Ras Katenib on the Red Sea coast. During commissioning, the expected loading was not available, and there was also an unexpected shift in demand away from the coast to the interior. Outlines the performance assessment undertaken to overcome the practical problems of commissioning and initial operation of the power system, and also the further analysis needed to tackle anticipated power system problems due to the geographic shift in demand growth. 4 refs.

  6. Renewables within the German Electricity System - Experiences and Needs

    Directory of Open Access Journals (Sweden)

    Martin Kaltschmitt

    2017-06-01

    Full Text Available During the last two decades renewable sources of energy as an environmentally friendly alternative to fossil fuel energy have gained more and more importance within the German electricity system. Their share has increased from less than 4 % to roughly one third of the gross electricity production in the last 25 years. Against this background, the goal of this paper is to present briefly the current status of the use of renewables within the German electricity system, to assess selected developments taking place during this development process as well as to identify given challenges and needs as well as necessary actions to pave the road for a further use of renewable sources of energy within the German electricity provision system. The political driver for the latter is the overarching goal to reduce Greenhouse Gas (GHG emissions which has been confirmed within the Paris agreement signed by the end of 2015.

  7. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  8. On the reliability of a renewable multiple cold standby system

    Directory of Open Access Journals (Sweden)

    Vanderperre E. J.

    2005-01-01

    Full Text Available We present a general reliability analysis of a renewable multiple cold standby system attended by a single repairman. Our analysis is based on a refined methodology of queuing theory. The particular case of deterministic failures provides an explicit exact result for the survival function of the duplex system.

  9. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria;

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...... pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require...

  10. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  11. A novel lithography process for 3D (three-dimensional) interconnect using an optical direct-writing exposure system

    Science.gov (United States)

    Azuma, T.; Sekiguchi, M.; Matsuo, M.; Kawasaki, A.; Hagiwara, K.; Matsui, H.; Kawamura, N.; Kishimoto, K.; Nakamura, A.; Washio, Y.

    2010-03-01

    A novel lithography process for 3D (Three-dimensional) interconnect was developed using an optical direct-writing exposure tool. A reflective IR (Infra-red) alignment system allows a direct detection of alignment marks both on front-side and back-side of wafer, and consequently allows feasible micro-fabrication for 3D interconnect using the reversed wafer. A combination of the optical direct-writing exposure tool of Dainippon Screen MFG. Co., Ltd. with the reflective IR alignment system and a high aspect chemically amplified resist of Tokyo Ohka Kogyo Co., Ltd. provides the lithography process exclusively for 12-inch wafer level 3D interconnect.

  12. Decentralised robust stabilisation of uncertain large-scale interconnected time-delay systems with unknown upper bounds of uncertainties

    Science.gov (United States)

    Wu, Hansheng

    2016-09-01

    The problem of decentralised robust stabilisation is considered for a class of uncertain large-scale time-delay interconnected dynamical systems. In the paper, the upper bounds of delayed state perturbations, uncertainties, interconnection terms, and external disturbances are assumed to be completely unknown, and the delays are assumed to be any non-negative constants. For such a class of uncertain large-scale time-delay interconnected systems, a new method is presented whereby a class of adaptation-free decentralised local robust state feedback controllers can be constructed. In addition, it is also shown that the solutions of uncertain large-scale time-delay interconnected systems can be guaranteed to be uniformly ultimately bounded. Finally, as an application to the practical mechanical systems, some simulations of a numerical example are provided to demonstrate the validity of the theoretical results.

  13. Current Utility Screening Practices, Technical Tools, Impact Studies, and Mitigation Strategies for Interconnecting PV on the Electric Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-12-19

    This report summarizes common best practices of photovoltaic system interconnection procedures based on interviews held with 19 electric utilities located in the state of California and in the southwestern, central, and northeastern regions of the United States.

  14. A DSP based power electronics interface for alternate/renewable energy systems. Quarterly report 3.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-31

    This report is an update on the research project involving the implementation of a DSP based power electronics interface for alternate/renewable energy systems that was funded by the Department of Energy under the Inventions and Innovations program 1998. The objective of this research is to develop a utility interface (dc to ac converter) suitable to interconnect alternate/renewable energy sources to the utility system. The DSP based power electronics interface in comparison with existing methods will excel in terms of efficiency, reliability and cost. Moreover DSP-based control provides the flexibility to upgrade/modify control algorithms to meet specific system requirements. The proposed interface will be capable of maintaining stiffness of the ac voltages at the point of common coupling regardless of variation in the input dc bus voltage. This will be achieved without the addition of any extra components to the basic interface topology but by inherently controlling the inverter switching strategy in accordance to the input voltage variation.

  15. Comparison between hybrid renewable energy systems in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Hisham El Khashab

    2015-05-01

    This paper investigates RE sources applications at Yanbu, Saudi Arabia, besides a simulation using HOMER software to three proposed systems newly erected in Yanbu Industrial College Renewable Energy (RE lab. The lab represents a hybrid system, composed of PV, wind turbine, and Fuel cell systems. The cost of energy is compared in the three systems to have an actual estimation for RE in developing countries. The climatic variations at Yanbu that is located on the west coast of Saudi Arabia are considered.

  16. Decentralized H∞ state feedback control for large-scale interconnected uncertain systems with multiple delays

    Institute of Scientific and Technical Information of China (English)

    陈宁; 桂卫华; 谢永芳

    2004-01-01

    Decentralized H∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed--loop system decentralized asymptotically stable with H∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H∞ state feedback controller.

  17. Optimum line reclosing time for the enhancement of interconnected power system stability

    Institute of Scientific and Technical Information of China (English)

    CAI Guo-wei蔡国伟; K. W. CHAN; SUN Xin孙鑫; XIE Dong-yan谢东岩

    2003-01-01

    Automatic line reclosing schemes used in an extra-high-voltage power system is an economical and effective means to maintain transient stability. A novel method is proposed in the paper to adaptively optimize the automatic line reclosing time after a transient fault for enhancement of interconnected power system transient stability. Both the study on the transient energy over network and the structure-preserving multi-machines power system model illustrate that the excessive convergence of potential energy on the lines with a certain cutset deteriorate power system stability, and therefore, an optimum line reclosing strategy can be established by minimizing the change in transient potential energy distribution across a cutsct lines in the vicinity of the faulty line as an optimization target, and the optimal reclosure time is set to the time of minimum line phase angle difference.Without any pre-determined knowledge, the method is adaptive to various power system operation modes and fault conditions, and easy to implement because only a limited number of data measured at one location on a tieline linking sub-networks are required. Simulations have been performed with the OMIB( One Machine and Infinite Bus System) and a real inter-connected power system to verify the applicability of the method proposed.

  18. Automatic Generation Control in Multi Area Interconnected Power System by using HVDC Links

    Directory of Open Access Journals (Sweden)

    Yogendra Arya

    2012-01-01

    Full Text Available This paper investigates the effects of HVDC link in parallel with HVAC link on automatic generation control (AGC problem for a multi-area power system taking into consideration system parameter variations. A fuzzy logic controller is proposed for four area power system interconnected via parallel HVAC/HVDC transmission link which is also referred as asynchronous tie-lines. The linear model of HVAC/HVDC link is developed and the system responses to sudden load change are studied. The simulation studies are carried out for a four area interconnected thermal power system. Suitable solution for automatic generation control problem of four area electrical power system is obtained by means of improving the dynamic performance of power system under study. Robustness of controller is also checked by varying parameters. Simulation results indicate that the scheme works well. The dynamic analyses have been done with and without HVDC link using fuzzy logic controller in Matlab-Simulink. Further a comparison between the two is presented and it has been shown that the performance of the proposed scheme is superior in terms of overshoot and settling time.

  19. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  20. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  1. Special issue on advancing grid-connected renewable generation systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2017-01-01

    Renewables are heavily involved in power generation, as an essential component for today’s energy paradigm. Energy structure—both national and international—has been undergoing significant changes over the past few decades. For instance, in Denmark, power generation is shifting from fossil......-fuel-based to renewable-based in terms of energy sources, from centralized to decentralized in terms of architectures, and from sole to miscellaneous in terms of energy varieties [1]. In this energy evolution, the power electronic technology plays an enabling role in the integration and advancements of renewables......—such as wind turbine, photovoltaics, fuel cells, and other emerging energy systems. At the same time, various control strategies are necessary to guide the energy integration (i.e., to enhance the energy transition), and on the other hand, to flexibly, reliably, and efficiently utilize the energy. Tremendous...

  2. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  3. Current Trends of High capacity Optical Interconnection Data Link in High Performance Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2013-02-01

    Full Text Available Optical technologies are ubiquitous in telecommunications networks and systems, providing multiple wavelength channels of transport at 2.5 Gbit/sec to 40 Gbit/sec data rates over single fiber optic cables. Market pressures continue to drive the number of wavelength channels per fiber and the data rate per channel. This trend will continue for many years to come as electronic commerce grows and enterprises demand higher and reliable bandwidth over long distances. Electronic commerce, in turn, is driving the growth curves for single processor and multiprocessor performance in data base transaction and Web based servers. Ironically, the insatiable taste for enterprise network bandwidth, which has driven up the volume and pushed down the price of optical components for telecommunications, is simultaneously stressing computer system bandwidth increasing the need for new interconnection schemes and providing for the first time commercial opportunities for optical components in computer systems. The evolution of integrated circuit technology is causing system designs to move towards communication based architectures. We have presented the current tends of high performance system capacity of optical interconnection data transmission link in high performance optical communication and computing systems over wide range of the affecting parameters.

  4. Interconnections 180

    CERN Multimedia

    180

    2013-01-01

    The LHC's main magnets operate at a temperature of 1.9 K (-271.3°C), colder than the 2.7 K (-270.5°C) of outer space. This ensures that the cables supplying power to the magnets operate in a superconducting state; they conduct electricity with no resistance. The cold magnets are insulated from the surrounding tunnel – kept at room temperature – with multiple layers of thermal insulation. Over the next 18 months, 1695 interconnections between LHC magnets will be opened and their insulation consolidated. In the video above, narrated by Jean-Philippe Tock of the Technology department, technicians demonstrate the process on an interconnection between spare LHC magnets. A "W bellows" system slides out of the way to reveal accelerator components inside. The technicians add aluminium sheeting and further insulating material before closing the W bellows for a leak-proof connection. The section is then brought to a pressure of 10-6 mbar, to further limit the possibility of heat leaks from the cold magnets. Insul...

  5. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  6. 78 FR 73112 - Monitoring System Conditions-Transmission Operations Reliability Standards; Interconnection...

    Science.gov (United States)

    2013-12-05

    ..., performance, and maintenance of real-time monitoring and analysis capabilities for reliability coordinators... Reliability Standards; Interconnection Reliability Operations and Coordination Reliability Standards AGENCY... Transmission Operations and Interconnection Reliability Operations and Coordination Reliability Standards...

  7. 75 FR 12535 - Midwest Independent Transmission System Operator, Inc., Complainant v. PJM Interconnection, LLC...

    Science.gov (United States)

    2010-03-16

    ... Interconnection, LLC Respondent; Notice of Complaint March 9, 2010. Take notice that on March 8, 2010, pursuant to... complaint against PJM Interconnection, LLC (Respondent) alleging that the Respondent is in violation of...

  8. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.

    Science.gov (United States)

    Hughes, David J; Kostrzewski, Tomasz; Sceats, Emma L

    2017-01-01

    Liver disease represents a growing global health burden. The development of in vitro liver models which allow the study of disease and the prediction of metabolism and drug-induced liver injury in humans remains a challenge. The maintenance of functional primary hepatocytes cultures, the parenchymal cell of the liver, has historically been difficult with dedifferentiation and the consequent loss of hepatic function limiting utility. The desire for longer term functional liver cultures sparked the development of numerous systems, including collagen sandwiches, spheroids, micropatterned co-cultures and liver microphysiological systems. This review will focus on liver microphysiological systems, often referred to as liver-on-a-chip, and broaden to include platforms with interconnected microphysiological systems or multi-organ-chips. The interconnection of microphysiological systems presents the opportunity to explore system level effects, investigate organ cross talk, and address questions which were previously the preserve of animal experimentation. As a field, microphysiological systems have reached a level of maturity suitable for commercialization and consequent evaluation by a wider community of users, in academia and the pharmaceutical industry. Here scientific, operational, and organizational considerations relevant to the wider adoption of microphysiological systems will be discussed. Applications in which microphysiological systems might offer unique scientific insights or enable studies currently feasible only with animal models are described, and challenges which might be addressed to enable wider adoption of the technologies are highlighted. A path forward which envisions the development of microphysiological systems in partnerships between academia, vendors and industry, is proposed. Impact statement Microphysiological systems are in vitro models of human tissues and organs. These systems have advanced rapidly in recent years and are now being

  9. Foundations for Protecting Renewable-Rich Distribution Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brahma, Sukumar [New Mexico State Univ., Las Cruces, NM (United States); Ranade, Satish [New Mexico State Univ., Las Cruces, NM (United States)

    2016-11-01

    High proliferation of Inverter Interfaced Distributed Energy Resources (IIDERs) into the electric distribution grid introduces new challenges to protection of such systems. This is because the existing protection systems are designed with two assumptions: 1) system is single-sourced, resulting in unidirectional fault current, and (2) fault currents are easily detectable due to much higher magnitudes compared to load currents. Due to the fact that most renewables interface with the grid though inverters, and inverters restrict their current output to levels close to the full load currents, both these assumptions are no longer valid - the system becomes multi-sourced, and overcurrent-based protection does not work. The primary scope of this study is to analyze the response of a grid-tied inverter to different faults in the grid, leading to new guidelines on protecting renewable-rich distribution systems.

  10. Improvement of system security with unified-power-flow controller at suitable locations under network contingencies of interconnected systems

    OpenAIRE

    Thukaram, D; Jenkins, L.; Visakha, K

    2005-01-01

    The operation and planning of large interconnected power systems are becoming increasingly complex. To maintain security of such systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. The paper presents an approach for selection of unified-power-flow-controller (UPFC-) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated u...

  11. Broad Frequency LTCC Vertical Interconnect Transition for Multichip Modules and System on Package Applications

    Science.gov (United States)

    Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.

    2013-01-01

    Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.

  12. Broad Frequency LTCC Vertical Interconnect Transition for Multichip Modules and System on Package Applications

    Science.gov (United States)

    Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.

    2013-01-01

    Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.

  13. Decentralized H∞ Control for Uncertain Interconnected Systems of Neutral Type via Dynamic Output Feedback

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2014-01-01

    Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.

  14. Differential evolution algorithm based automatic generation control for interconnected power systems with

    Directory of Open Access Journals (Sweden)

    Banaja Mohanty

    2014-09-01

    Full Text Available This paper presents the design and performance analysis of Differential Evolution (DE algorithm based Proportional–Integral (PI and Proportional–Integral–Derivative (PID controllers for Automatic Generation Control (AGC of an interconnected power system. Initially, a two area thermal system with governor dead-band nonlinearity is considered for the design and analysis purpose. In the proposed approach, the design problem is formulated as an optimization problem control and DE is employed to search for optimal controller parameters. Three different objective functions are used for the design purpose. The superiority of the proposed approach has been shown by comparing the results with a recently published Craziness based Particle Swarm Optimization (CPSO technique for the same interconnected power system. It is noticed that, the dynamic performance of DE optimized PI controller is better than CPSO optimized PI controllers. Additionally, controller parameters are tuned at different loading conditions so that an adaptive gain scheduling control strategy can be employed. The study is further extended to a more realistic network of two-area six unit system with different power generating units such as thermal, hydro, wind and diesel generating units considering boiler dynamics for thermal plants, Generation Rate Constraint (GRC and Governor Dead Band (GDB non-linearity.

  15. Risk management of non-renewable energy systems

    CERN Document Server

    Verma, Ajit Kumar; Muruva, Hari Prasad

    2015-01-01

    This book describes the basic concepts of risk and reliability with detailed descriptions of the different levels of probabilistic safety assessment of nuclear power plants (both internal and external). The book also maximizes readers insights into time dependent risk analysis through several case studies, whilst risk management with respect to non renewable energy sources is also explained. With several advanced reactors utilizing the concept of passive systems, the reliability estimation of these systems are explained in detail with the book providing a reliability estimation of components through mechanistic model approach. This book is useful for advanced undergraduate and post graduate students in nuclear engineering, aerospace engineering, industrial engineering, reliability and safety engineering, systems engineering and applied probability and statistics. This book is also suitable for one-semester graduate courses on risk management of non renewable energy systems in all conventional engineering bran...

  16. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R. [Univ. of Texas, Dallas, TX (United States); Cho, K. J. [Univ. of Texas, Dallas, TX (United States); Ferraris, John [Univ. of Texas, Dallas, TX (United States); Balkus, Ken [Univ. of Texas, Dallas, TX (United States); Chabal, Yves [Univ. of Texas, Dallas, TX (United States); Gnade, Bruce [Univ. of Texas, Dallas, TX (United States); Rotea, Mario [Univ. of Texas, Dallas, TX (United States); Vasselli, John [Univ. of Texas, Dallas, TX (United States)

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  17. Decentralized adaptive fuzzy control of time-delayed interconnected systems with unknown backlash-like hysteresis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.

  18. Pressure retarded osmosis as a controlling system for traditional renewables

    Science.gov (United States)

    Carravetta, Armando; Fecarotta, Oreste; La Rocca, Michele; Martino, Riccardo

    2015-04-01

    Pressure retarded osmosis (PRO) is a viable but still not diffused form of renewable energy (see Maisonneuve et al., 2015 for a recent literature review). In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution, giving rise to a positive pressure drop; then energy is obtained by depressurizing the permeate through a hydro-turbine and brackish water is discharged. Many technological, environmental and economical aspects are obstacles in the diffusion of PRO, like the vulnerability of the membranes to fouling, the impact of the brackish water on the local marine environment, the high cost of membranes, etc. We are interested in the use of PRO as a combined form of energy with other renewable energy source like solar, wind or mini hydro in water supply networks (WSN). For the wide diffusion of renewables one of the major concerns of commercial power companies is to obtain very stable form of energy to comply with prescriptions of electricity grid operators and with the instant energy demand curve. Renewables are generally very variable form of energy, for the influence of climatic conditions on available power, and of the fluctuation in water demand in WSN. PRO is a very flexible technology where with appropriate turbines and control system power can be varied continuously to compensate for variation of other source of energy. Therefore, PRO is suitable to be used as a balancing system for commercial power system. We will present a simulation of the performance of a PRO used in combination with three different renewables. In the first two scenarios PRO compensate the difference between energy demand and energy production of a solar power plant and hydro power plant in a WSN. In the third scenario PRO is used to compensate daily variation of energy production in a wind power plant. Standard curves of energy production and energy demand for southern Italy are used. In order to control PRO production an

  19. 100% Renewable energy systems, climate mitigation and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, Brian Vad; Lund, Henrik [Department of Development and Planning, Aalborg University (Denmark); Karlsson, Kenneth [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark (Denmark)

    2011-02-15

    Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100% renewable energy system by the year 2050 are presented for a complete energy system including transport. Two short-term transition target years in the process towards this goal are analysed for 2015 and 2030. The energy systems are analysed and designed with hour-by-hour energy system analyses. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socio-economic effects, create employment and potentially lead to large earnings on exports. If externalities such as health effects are included, even more benefits can be expected. 100% Renewable energy systems will be technically possible in the future, and may even be economically beneficial compared to the business-as-usual energy system. Hence, the current debate between leaders should reflect a combination of these two main challenges. (author)

  20. Electrical Energy Storage for Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  1. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...... solutions, can pave the way for renewable energies. In light of this, some of the most emerging renewable energies, e.g. wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored in this paper. Issues like technology...... development, implementation, power converter technologies, control of the systems, and synchronization are addressed. Special focuses are paid on the future trends in power electronics for those systems like how to lower the cost of energy and to develop emerging power devices and better reliability tool....

  2. Tribological design constraints of marine renewable energy systems.

    Science.gov (United States)

    Wood, Robert J K; Bahaj, AbuBakr S; Turnock, Stephen R; Wang, Ling; Evans, Martin

    2010-10-28

    Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to convert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present-day issues related to the tribology of offshore energy conversion technologies.

  3. The role of district heating in future renewable energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Möller, Bernd; Mathiesen, Brian Vad

    2010-01-01

    heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating...... or a more efficient individual heat source. In such overall perspective, the best solution will be to combine a gradual expansion of district heating with individual heat pumps in the remaining houses. Such conclusion is valid in the present systems, which are mainly based on fossil fuels, as well......Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted...

  4. Towards fully renewable energy systems - Experience and trends in Denmark

    DEFF Research Database (Denmark)

    Pinson, Pierre; Mitridati, Lesia Marie-Jeanne Mariane; Ordoudis, Christos;

    2016-01-01

    the way operational practice has evolved, also shifting towards a liberalized electricity market environment, and more generally going along with other technological and societal evolution. Our aim here is to give an overview of recent and current initiatives in Denmark which contribute towards a goal.......g., wind and solar. Denmark is a country that invested early in wind energy, rapidly proposing very ambitious goals for the future of its energy system and global energy usage. While the case of Denmark is specific due to its limited size and good interconnections, there may still be a lot to learn from...

  5. Renewable energy for sustainable electrical energy system in India

    Energy Technology Data Exchange (ETDEWEB)

    Mallah, Subhash; Bansal, N.K. [Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir (India)

    2010-08-15

    Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO{sub 2} emissions can be reduced by 72% as compared to the base case scenario. (author)

  6. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems

    Science.gov (United States)

    De Domenico, Manlio; Lancichinetti, Andrea; Arenas, Alex; Rosvall, Martin

    2015-01-01

    To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.

  7. Design of smart power grid renewable energy systems

    CERN Document Server

    Keyhani, Ali

    2011-01-01

    To address the modeling and control of smart grid renewable energy system into electric power systems, this book integrates three areas of electrical engineering: power system engineering, control systems engineering and power electronics  The approach to the integration of these three areas differs from classical methods. Due to complexity of this task, the author has decided to present the basic concepts, and then present a simulation test bed in matlab to use these concepts to solve a basic problem in development of smart grid energy system. Therefore, each chapter has three parts: first a

  8. DC Distributed Power Systems. Analysis, Design and Control for a Renewable Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Per

    2002-12-01

    Renewable energy systems are likely to become wide spread in the future due to environmental demands. As a consequence of the dispersed nature of renewable energy systems, this implies that there will be a distributed generation of electric power. Since most of the distributed electrical energy sources do not provide their electric power at line frequency and voltage, a DC bus is a useful common connection for several such sources. Due to the differences in output voltage among the sources, depending on both the type of source and their actual operating point, the sources are connected to the DC power system via power electronic converters. The intention behind the presented work is not to replace the existing AC power system, but to include local DC power systems. The AC and DC power systems are connected at some points in the network. The renewable energy sources are weak compared to the present hydro power and nuclear power plants, resulting in a need of power conditioning before the renewable energy is fed to the transmission lines. The benefit of such an approach is that power conditioning is applied on a central level, i.e. at the interface between the AC and DC power systems. The thesis starts with an overview of related work. Present DC transmission systems are discussed and investigated in simulations. Then, different methods for load sharing and voltage control are discussed. Especially, the voltage droop control scheme is examined thoroughly. Since the droop control method does not require any high-speed communication between sources and loads, this is considered the most suitable for DC distributed power systems. The voltage feed back design of the controller also results in a specification of the DC bus capacitors (equivalents to DC link capacitors of single converters) needed for filtering. If the converters in the DC distribution system are equipped with capacitors selected from this design criterion and if the DC bus impedance is neglected, the

  9. DC Distributed Power Systems. Analysis, Design and Control for a Renewable Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Per

    2002-12-01

    Renewable energy systems are likely to become wide spread in the future due to environmental demands. As a consequence of the dispersed nature of renewable energy systems, this implies that there will be a distributed generation of electric power. Since most of the distributed electrical energy sources do not provide their electric power at line frequency and voltage, a DC bus is a useful common connection for several such sources. Due to the differences in output voltage among the sources, depending on both the type of source and their actual operating point, the sources are connected to the DC power system via power electronic converters. The intention behind the presented work is not to replace the existing AC power system, but to include local DC power systems. The AC and DC power systems are connected at some points in the network. The renewable energy sources are weak compared to the present hydro power and nuclear power plants, resulting in a need of power conditioning before the renewable energy is fed to the transmission lines. The benefit of such an approach is that power conditioning is applied on a central level, i.e. at the interface between the AC and DC power systems. The thesis starts with an overview of related work. Present DC transmission systems are discussed and investigated in simulations. Then, different methods for load sharing and voltage control are discussed. Especially, the voltage droop control scheme is examined thoroughly. Since the droop control method does not require any high-speed communication between sources and loads, this is considered the most suitable for DC distributed power systems. The voltage feed back design of the controller also results in a specification of the DC bus capacitors (equivalents to DC link capacitors of single converters) needed for filtering. If the converters in the DC distribution system are equipped with capacitors selected from this design criterion and if the DC bus impedance is neglected, the

  10. Adaptive Output Feedback Sliding Mode Control for Complex Interconnected Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Van Van Huynh

    2015-01-01

    Full Text Available We extend the decentralized output feedback sliding mode control (SMC scheme to stabilize a class of complex interconnected time-delay systems. First, sufficient conditions in terms of linear matrix inequalities are derived such that the equivalent reduced-order system in the sliding mode is asymptotically stable. Second, based on a new lemma, a decentralized adaptive sliding mode controller is designed to guarantee the finite time reachability of the system states by using output feedback only. The advantage of the proposed method is that two major assumptions, which are required in most existing SMC approaches, are both released. These assumptions are (1 disturbances are bounded by a known function of outputs and (2 the sliding matrix satisfies a matrix equation that guarantees the sliding mode. Finally, a numerical example is used to demonstrate the efficacy of the method.

  11. A distributed inverse iteration method for eigenvalue analysis of interconnected power systems

    Institute of Scientific and Technical Information of China (English)

    SHEN; Chen; CHEN; Ying; ZHANG; Xu

    2007-01-01

    Since China power grids have a hierarchical architecture in operation and management, centralized computation patterns are difficult to meet the demands of small-signal-stability analysis of the bulk interconnected power systems. A distributed eigenvalue algorithm derived from the inverse iteration method is proposed. It can not only obtain eigenvalues and eigenvectors from power system state matrix but also provide participation factors of all generators. In the computing process, the algorithm only requires exchanging data of boundary nodes and a small amount of other information of different regions. Therefore, it is very suitable to be deployed in a WAN (wide area network) based distributed environment. The algorithm has been tested on an IEEE39 system.

  12. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  13. Power System Transformation toward Renewables: Investment Scenarios for Germany

    OpenAIRE

    2014-01-01

    We analyze distinctive investment scenarios for the integration of fluctuating renewables in the German power system. Using a combined model for dispatch, transmission, and investment, three different investment options are considered, including gas-fired power plants, pumped hydro storage, and transmission lines. We find that geographically optimized power plant investments dominate in the reference scenarios for 2024 and 2034. In scenarios with decreasedrenewable curtailment, storage and tr...

  14. Energy Storage Needs in Interconnected Systems Using the Example of Germany and Austria

    Directory of Open Access Journals (Sweden)

    Thomas Weiss

    2014-09-01

    Full Text Available The share of renewable energies on the net electricity consumption is rising steadily. Especially intermittent, non-controllable sources like wind and sun are gaining importance. With an installed amount of non-controllable power that exceeds the yearly peak load, situations can occur with a surplus of energy in electricity supply systems. This surplus will rise strongly with the share of fluctuating renewable energies on the net electricity consumption. A lot of studies and experts come to the conclusion that energy storage will be needed to handle these surpluses. The questions that still have to be answered are when and how. Especially the German electricity system will have very high storage needs because of a very strong and fast development of wind and solar power. There are a lot of technologies and approaches to overcome this problem. However, Pumped Hydro Energy Storage (PHES systems are up to date the most efficient and economic bulk energy storage technology. On the one side there are no high potentials in natural sites for the installation of PHES schemes in Germany. On the other side the Austrian PHES system has still a very high potential. Up so far, the prospects are used just to a small amount. Especially the seasonal Hydro Energy Storage (HES still holds a very high potential. In this paper the combination of the Austrian and the German energy supply system will be investigated with respect to the development of renewable energies. The overall energy storage needs are evaluated for each country as well as in the combined system, taking also into account the development and the influence of the transmission system capacity between the two countries.

  15. Renewable energy systems the earthscan expert guide to renewable energy technologies for home and business

    CERN Document Server

    Jenkins, Dilwyn

    2013-01-01

    This book is the long awaited guide for anyone interested in renewables at home or work. It sweeps away scores of common misconceptions while clearly illustrating the best in renewable and energy efficiency technologies. A fully illustrated guide to renewable energy for the home and small business, the book provides an expert overview of precisely which sustainable energy technologies are appropriate for wide-spread domestic and small business application. The sections on different renewable energy options provide detailed descriptions of each technology along with case studies, installatio

  16. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  17. Decentralized direct adaptive neural network control for a class of interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Tianping; Mei Jiandong

    2006-01-01

    The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconnections is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized direct adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local information. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.

  18. Easy Solar Photovoltaic Panel as Renewable Energy System Device

    Directory of Open Access Journals (Sweden)

    Kalaivani D/O Ramachandran

    2016-04-01

    Full Text Available Solar power is energy from the sun that is converted into electrical energy. Solar energy is the abundant renewable energy source available, and the Malaysia has some of the richest solar resources in the world. Electric energy is becoming one of the source energy which is required daily. However, electric power outages always happened. Easy Solar Photovoltaic Panel as Renewable Energy System Device isimplemented as an electric power source by using solar as a help and support. It is used by providing charge through solar panel from sunlight. Then, the charge is flowing through the solar controller to charges battery that will flow to the load. Since energy that obtained from the battery are shaped in direct current (DC, then the inverter used to change direct current (DC to alternating current (AC for purpose of using device or application that using alternating current (AC to operate.

  19. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... are changing and challenging the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus in the paper is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have the potential...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy...

  20. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  1. The Eastern Renewable Generation Integration Study: Insights on System Stress: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Aaron; Novacheck, Josh

    2017-04-12

    The Eastern Renewable Generation Integration Study (ERGIS) explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in North America's Eastern and Quebec Interconnections. We explore the impact of large scale adoption of wind and solar generation on the unit commitment and economic dispatch of the largest coordinated power system in the world by simulating hourly and five-minute operations. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the modeled system, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and solar PV at a five-minute level under a variety of conditions. Our simulations achieve instantaneous penetrations that exceed 50% of load while meeting an annual penetration of 30% on an energy basis. The system meets balanced load and supply in all intervals, with modest curtailment, using technologies and practices that are widely available today. However, a variety of the conditions present in these simulations deviate substantially from historical practice. In this work, we analyze potentially stressful system conditions that occur in the simulations and identify opportunities for innovation, regulatory reform, and changes in operating practices that require further analysis to enable the transition to a system with more wind and solar PV.

  2. Neural-Network-Based Adaptive Decentralized Fault-Tolerant Control for a Class of Interconnected Nonlinear Systems.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2016-10-26

    This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.

  3. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W. (Sandia National Labs., Albuquerque, NM (USA)); O' Sullivan, G. (Abacus Controls, Inc., Somerville, NJ (USA))

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  4. 77 FR 131 - Charter Renewal for the National Park System Advisory Board

    Science.gov (United States)

    2012-01-03

    ... National Park Service Charter Renewal for the National Park System Advisory Board AGENCY: Department of the... renew the charter for the National Park System Advisory Board, in accordance with section 14(b) of the... reauthorized legislatively within 2 years of the date of the renewal charter, the Board will revert to...

  5. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  6. Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Alessandro; Salza, Pasquale [Dipartimento di Energetica ' ' L. Poggi' ' , Universita di Pisa, Largo Lucio Lazzarino, 2, 56126 PISA (Italy)

    2011-02-15

    Renewable energy sources (RES) are mainly used in the electrical sector. Electricity is not a storable commodity. Hence it is necessary to produce the requested quantity and distribute it through the system in such a way as to ensure that electricity supply and demand are always evenly balanced. This constraint is actually the main problem related to the penetration of new renewables (wind and photovoltaic power) in the context of complex energy systems. Moreover the design of optimal energy resource mixes in climate change mitigation actions is a challenge faced in many places. The paper analyzes the problem of new renewable energy sources penetration. The case of Italian scenario is considered as a meaningful reference due to the characteristic size and the complexity of the same. The various energy scenarios are evaluated with the aid of a multipurpose software taking into account the interconnections between the different energetic uses. In particular it is shown how the penetration of new renewable energy sources is limited at an upper level by technological considerations and it will be more sustainable if an integration of the various energy uses (thermal, mobility and electrical) will be considered. A series of optimized scenarios are developed. In each case the maximum RES penetration feasible with the constraints was defined. Then analysis is applied to an energy system model of Italy showing how an integrated development of CHP and electric mobility can aid a further integration of wind and photovoltaic energy power. Finally the primary energy consumption saving possible in case of consistent penetration of intermittent renewables and CHP was identified. (author)

  7. Renewal of the waterpipe system at Norrköping

    OpenAIRE

    Kalm, Rickard

    2007-01-01

    The work with renewal of the water pipe system in Norrköpings municipality has during the last couple years been intensified due to disturbances in the pipe network. My task was to connect disturbances with their geographic position in a database and use the database to establish a priority list for measures. This paper will only examine the water pipe system and the disturbances that are depending on reports of leak in the pipes. The already existing database that was supposed to be the inpu...

  8. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  9. Interconnections 180

    CERN Multimedia

    CERN Visual Media Office; Noemi Caraban Gonzales

    2013-01-01

    Throughout the LS1 (Long Shutdown 1 planned for 2013-14), the consolidation of the 13 kA splices consists of the opening of M sleeves to access the bus-bars and install the consolidation system features (shunt, electrical insulation and mechanical restraint system). Once the features are installed, the sleeves are rewelded (10000 welds in total). The interconnect regions between adjacent cryomagnets consist of a number of lines spanning from one machine element to another. Within a magnet-to-magnet connection several welds are made. An automatic orbital weld without filler material closes the three main bus-bar lines M1, M2 and M3 (M1 and M2 for the main quadrupole bus-bars and M3 for the main dipole bus-bars). These welds are performed in a radial clearance of only 45 mm. A very reliable weld process is required. The weld configuration shall also ease future interventions. Automatic orbital TIG welding associated to specific weld geometry meets all these requirements. Edge weld preparation has the following ...

  10. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  11. Application of GA optimization for automatic generation control design in an interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Golpira, H., E-mail: hemin.golpira@uok.ac.i [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416, Kurdistan (Iran, Islamic Republic of); Bevrani, H. [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416, Kurdistan (Iran, Islamic Republic of); Golpira, H. [Department of Industrial Engineering, Islamic Azad University, Sanandaj Branch, PO Box 618, Kurdistan (Iran, Islamic Republic of)

    2011-05-15

    Highlights: {yields} A realistic model for automatic generation control (AGC) design is proposed. {yields} The model considers GRC, Speed governor dead band, filters and time delay. {yields} The model provides an accurate model for the digital simulations. -- Abstract: This paper addresses a realistic model for automatic generation control (AGC) design in an interconnected power system. The proposed scheme considers generation rate constraint (GRC), dead band, and time delay imposed to the power system by governor-turbine, filters, thermodynamic process, and communication channels. Simplicity of structure and acceptable response of the well-known integral controller make it attractive for the power system AGC design problem. The Genetic algorithm (GA) is used to compute the decentralized control parameters to achieve an optimum operating point. A 3-control area power system is considered as a test system, and the closed-loop performance is examined in the presence of various constraints scenarios. It is shown that neglecting above physical constraints simultaneously or in part, leads to impractical and invalid results and may affect the system security, reliability and integrity. Taking to account the advantages of GA besides considering a more complete dynamic model provides a flexible and more realistic AGC system in comparison of existing conventional schemes.

  12. 75 FR 20590 - PJM Interconnection, L.L.C., Complainant, v. Midwest Independent Transmission, System Operator...

    Science.gov (United States)

    2010-04-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PJM Interconnection, L.L.C., Complainant, v. Midwest Independent....S.C. 824(e), 825(e) and 825(h), PJM Interconnection, L.L.C. (PJM or Complainant) filed a...

  13. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  14. Control via interconnection and damping assignment of linear time-invariant systems: a tutorial

    Science.gov (United States)

    Ortega, Romeo; Liu, Zhitao; Su, Hongye

    2012-05-01

    Interconnection and damping assignment is a controller design methodology that regulates the behaviour of dynamical systems assigning a desired port-Hamiltonian structure to the closed-loop. A key step for the application of the method is the solution of the so-called matching equation that, in the case of nonlinear systems, is a partial differential equation. It has recently been shown that for linear systems the problem boils down to the solution of a linear matrix inequality that, moreover, is feasible if and only if the system is stabilisable - making the method universally applicable. It has also been shown that if we narrow the class of assignable structures - e.g. to mechanical instead of the larger port-Hamiltonian - the problem is still translated to a linear matrix inequality, but now stabilisability is not sufficient to ensure its feasibility. It is additionally required that the uncontrolled modes are simple and lie on the jω axis, which is consistent with the considered scenario of mechanical systems without friction. The purpose of this article is to present these important results in a tutorial, self-contained form - invoking only basic linear algebra methods.

  15. A Parallel Implementation of Unscheduled Flow Control in Interconnected Power Systems

    Directory of Open Access Journals (Sweden)

    G. Ozdemir Dag

    2012-01-01

    Full Text Available The unscheduled power flow problem needs to be minimized or controlled as soon as possible in a deregulated power system since the transmission systems are mostly operated at their power-carrying limits or very close to it. The time spent for simulations to determine the current states of all the system and control variables of the interconnected power system is important. Taking necessary action in case of any failure of equipment or any other occurrence of an undesired situation could be critical. Using supercomputing facilities and parallel computing techniques together decreases the computation time greatly. In this study, a parallel implementation of a multiobjective optimization approach based on both genetic algorithms and fuzzy decision making to manage unscheduled flows is presented. Parallel computation techniques are applied using supercomputers (high-performance computers. The proposed method is applied to the IEEE 300 bus test system. Two different cases for some parameters of GA are considered to see the power of parallel computation technique. Then the simulation results are presented.

  16. Use of hybrid renewable energy systems for small communities

    Directory of Open Access Journals (Sweden)

    Bandoc Georgeta

    2016-01-01

    Full Text Available The purpose of this article is to present how the sizing of a hybrid renewable energy system is done for a community of three hundred and five households located in a Delta, starting from the optimization of hybrid energy system for a single household. The methodology used in solving this problem is based on multiple options. The first option consists in determined energy needs, maximum power consumption in cold season and in adapting the solution for the production of electricity by a hybrid plant. The second option consists of energy needs resulted in average consumption of electricity in warm season and in adapting the solution for the production of electricity from a hybrid plant. In conjunction with the demand for electricity for the entire community one will get energy demand by aggregating household level (kWh/household. The novelty of this approach lies in the method used by these hybrid systems for obtaining electricity in small communities, isolated from this case study. Based on the results obtained the method can be expanded the implementation of these projects that use hybrid renewable energy systems.

  17. Intra-Chip Free-Space Optical Interconnect: System, Device, Integration and Prototyping

    Science.gov (United States)

    Ciftcioglu, Berkehan

    Currently, on-chip optical interconnect schemes already proposed utilize circuit switching using wavelength division multiplexing (WDM) or all-optical packet switching, all based on planar optical waveguides and related photonic devices such as microrings. These proposed approaches pose significant challenges in latency, energy efficiency, integration, and scalability. This thesis presents a new alternative approach by utilizing free-space optics. This 3-D integrated intra-chip free-space optical interconnect (FSOI) leverages mature photonic devices such as integrated lasers, photodiodes, microlenses and mirrors. It takes full advantages of the latest developments in 3-D integration technologies. This interconnect system provides point-to-point free-space optical links between any two communication nodes to construct an all-to-all intra-chip communication network with little or no arbitration. Therefore, it has significant networking advantages over conventional electrical and waveguide-based optical interconnects. An FSOI system is evaluated based on the real device parameters, predictive technology models and International Roadmap of Semiconductor's predictions. A single FSOI link achieves 10-Gbps data rate with 0.5-pJ/bit energy efficiency and less than 10--12 bit-error-rate (BER). A system using this individual link can provide scalability up to 36 nodes, providing 10-Tbps aggregate bandwidth. A comparison analysis performed between a WDM-based waveguide interconnect system and the proposed FSOI system shows that FSOI achieves better energy efficiency than the WDM one as the technology scales. Similarly, network simulation on a 16-core microprocessor using the proposed FSOI system instead of mesh networks has been shown to speed up the system by 12% and reduce the energy consumption by 33%. As a part of the development of a 3-D integrated FSOI system, operating at 850 nm with a 10-Gbps data rate per optical link, the photonics devices and optical components are

  18. Transition to 100% renewable energy systems in Denmark

    DEFF Research Database (Denmark)

    Meyer, Niels I; Hvelplund, Frede; Karnø, Peter;

    2012-01-01

    The world is faced with urgent and complex climate problems manifested by increasing global warming due to emission of greenhouse gases. A major part of the greenhouse gases arise in the form of CO2 from combustion of fossil fuels. So far, however, international negotiations aiming at commitments...... the commercial market can offer. As a consequence, it is proposed that the balance between the commercial market and societal planning is shifted to the advantage of societal planning. It is an extra benefit from the proposed transition to a renewable energy system that it significantly improves the Danish...

  19. High Efficiency Bi-Directional Converter Used For Renewable System

    Directory of Open Access Journals (Sweden)

    M. Desal Raja

    2014-02-01

    Full Text Available This paper presents an Isolated bi-directional converter for renewable system. Voltage stress and current stress was decreses in switches. Power flows in both side. The proposed converter three phase ac voltage to dc voltage, dc voltage to three phase a.c voltage and synchronous the two voltage source. Silicon carbide diodes and bi-directional switches Mosfet’s are used for decreases the switching loss. LC Series resonant converter connected to the high efficiency. This converter power conversion control by the output voltage information.

  20. Issues in dynamic analysis and design of interconnected DC-DC power supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Karppanen, M.

    2008-07-01

    This thesis studies issues in dynamic analysis and design of interconnected DC-DC power supply systems. The history of the dynamic analysis dates back to the 1970s, when the modeling method for an individual switched-mode converter was introduced. Later on, the methods to analyze stability and performance of interconnected systems have been widely discussed in literature. However, a full understanding of many issues regarding the impedance interactions within the systems still seems to be missing. Therefore, the main objective of the thesis is to show that the minor-loop gain, which is commonly used in the interaction analysis, contains perfect information on the stability of the interconnected system but not necessarily much information on the robustness of the stability and the interactions taken place inside the converters. As a consequence of this, the second objective is to introduce techniques with which the interactions can be reduced or totally removed, thus making the dynamic analysis and design of the systems deterministic. The thesis utilizes two-port networks and the concept of dynamic profile introduced recently in the analyses of converters. Comprehensive formalism is derived to analyze also the effect of output-voltage remote sensing on converter dynamics. Such formalism is not found in literature, although remote sensing is widely used to improve voltage regulation of a converter. The effect of source and load interactions on the converter dynamics are discussed by the general interaction formalisms and the minor-loop gains defined at the input and output of the converter. Peak-current-mode, input-voltage feedforward and output-current feedforward controls are treated in the thesis as an example of the methods with which the interactions can be reduced. It is shown that a converter under peak-current-mode or input-voltage feedforward control can have ideal input-voltage noise attenuation. Dynamically, this means that the converter would be invariant

  1. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.

    Science.gov (United States)

    Shen, Mingya; Xiao, Feng; Alameh, Kamal

    2009-12-07

    A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below -36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

  2. On the Fault Tolerance and Hamiltonicity of the Optical Transpose Interconnection System of Non-Hamiltonian Base Graphs

    CERN Document Server

    Ghosh, Esha; Rangan, C Pandu

    2011-01-01

    Hamiltonicity is an important property in parallel and distributed computation. Existence of Hamiltonian cycle allows efficient emulation of distributed algorithms on a network wherever such algorithm exists for linear-array and ring, and can ensure deadlock freedom in some routing algorithms in hierarchical interconnection networks. Hamiltonicity can also be used for construction of independent spanning tree and leads to designing fault tolerant protocols. Optical Transpose Interconnection Systems or OTIS (also referred to as two-level swapped network) is a widely studied interconnection network topology which is popular due to high degree of scalability, regularity, modularity and package ability. Surprisingly, to our knowledge, only one strong result is known regarding Hamiltonicity of OTIS - showing that OTIS graph built of Hamiltonian base graphs are Hamiltonian. In this work we consider Hamiltonicity of OTIS networks, built on Non-Hamiltonian base and answer some important questions. First, we prove tha...

  3. An Energy-Efficient High-Throughput Mesh-Based Photonic On-Chip Interconnect for Many-Core Systems

    OpenAIRE

    Achraf Ben Ahmed; Abderazek Ben Abdallah

    2016-01-01

    Future high-performance embedded and general purpose processors and systems-on-chip are expected to combine hundreds of cores integrated together to satisfy the power and performance requirements of large complex applications. As the number of cores continues to increase, the employment of low-power and high-throughput on-chip interconnect fabrics becomes imperative. In this work, we present a novel mesh-based photonic on-chip interconnect, named PHENIC-II, for future high-performance many-co...

  4. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  5. Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures and Robustness

    CERN Document Server

    Yagan, Osman; Zhang, Junshan; Cochran, Douglas

    2012-01-01

    We consider a cyber-physical system consisting of two interacting networks, i.e., a cyber-network overlaying a physical-network. It is envisioned that these systems are more vulnerable to attacks since node failures in one network may result in (due to the interdependence) failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. The robustness of interdependent systems against this sort of catastrophic failure hinges heavily on the allocation of the (interconnecting) links that connect nodes in one network to nodes in the other network. In this paper, we characterize the optimum inter-link allocation strategy against random attacks in the case where the topology of each individual network is unknown. In particular, we analyze the "regular" allocation strategy that allots exactly the same number of bi-directional inter-network links to all nodes in the system. We show, both analytically and experimentally, that this strategy yields b...

  6. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices......, magnetics, electrical machines, power systems, analogue and digital control, materials, power converters, electronics, materials, thermal design and EMC. However, those fields may not be enough in order to give the students enough skills. It is also necessary to learn about systems and for the moment one...... of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...

  7. The role of Photovoltaics towards 100% Renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; David, Andrei; Petersen, Silas

    for the future energy mix. The purpose of this report is to describe what will be role of photovoltaics in a future 100% renewable energy system in Denmark towards the year 2050, but also to propose how the future public regulation schemes should adapt to intake the correct type and capacity for PV. The report...... builds on a literature review of the global and Danish trends in capacity, costs and types of support schemes, but also develops a GIS and energy system analysis supported by a set of economic calculations to inquire on the recommended pathway for the future investments in photovoltaics in Denmark....... The review and analysis are focused on the integration of photovoltaics from a system perspective, analysed in the light of socio-economics. By building on this approach, a set of recommendations is proposed, which are structured on the system benefits and feasibility of photovoltaics, the land use...

  8. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  9. Truncated adaptation design for decentralised neural dynamic surface control of interconnected nonlinear systems under input saturation

    Science.gov (United States)

    Gao, Shigen; Dong, Hairong; Lyu, Shihang; Ning, Bin

    2016-07-01

    This paper studies decentralised neural adaptive control of a class of interconnected nonlinear systems, each subsystem is in the presence of input saturation and external disturbance and has independent system order. Using a novel truncated adaptation design, dynamic surface control technique and minimal-learning-parameters algorithm, the proposed method circumvents the problems of 'explosion of complexity' and 'dimension curse' that exist in the traditional backstepping design. Comparing to the methodology that neural weights are online updated in the controllers, only one scalar needs to be updated in the controllers of each subsystem when dealing with unknown systematic dynamics. Radial basis function neural networks (NNs) are used in the online approximation of unknown systematic dynamics. It is proved using Lyapunov stability theory that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. The tracking errors of each subsystems, the amplitude of NN approximation residuals and external disturbances can be attenuated to arbitrarily small by tuning proper design parameters. Simulation results are given to demonstrate the effectiveness of the proposed method.

  10. Space Weather Impact on the European Interconnected Power Transmission System at High Latitudes

    Science.gov (United States)

    Piccinelli, Roberta; Krausmann, Elisabeth

    2016-04-01

    High voltage power transmission grids can suffer outages or blackouts during geomagnetic storms (GMS). More specifically, GMS can inject geomagnetically induced currents (GICs) into the power network. Transformers were identified as the most vulnerable components of the power networks: GICs cause transformers to work in saturation regions generating voltage instabilities and eventually driving the system to collapse. Since GMS are expected to cause more pronounced disturbances at high latitudes, we addressed the effects of extreme GMS on the Scandinavian 400 kV interconnected power transmission grid, including Finland, Sweden and Norway. By applying extreme 100-year-benchmark scenarios, we analyzed potential space-weather triggered voltage instabilities in the power grid considering mono-phase transformers, which are known to be more vulnerable to GIC injection, and three-phase transformers, which are more resistant. We assumed that every node of the grid included either transformers of the mono-phase type, or three-phase transformers.Our simulations indicate that the three-phase configuration of the network is significantly more robust than the mono-phase one. Our study indicates that for a system with only three-phase transformers the likelihood of grid collapse is very low, and collapse only occurs for the worst-case scenario with extremely high geoelectric field intensities. In such a case, the increase in reactive power demand caused by transformer saturation is too high for the system to continue to provide power. Our results indicate that lines that experience higher reactive power losses during normal operation are more likely to increase losses during a GMS event. According to our study, the portion of the Scandinavian interconnected power transmission grid most vulnerable to extreme space weather is the part where the highest reactive losses in transmission lines and in voltage magnitudes are observed. This corresponds to the southern parts of Sweden and

  11. IEA PVPS Task 5 'Grid interconnection of building integrated and other dispersed photovoltaic power systems'; IEA PVPS Task 5 'Grid interconnection of building integrated and other dispersed photovoltaic power systems'

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D. [Enecolo AG, Moenchaltorf (Switzerland); Taiano, S. [Elektrizitaetswerk der Stadt Zuerich, Zuerich (Switzerland)

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the Task 5 project, a task originally set up by the International Energy Agency (IEA) in 1993 to study the effects of photovoltaic (PV) systems that are interconnected via the electricity grid. The task's subtasks are described that reviewed existing PV interconnection guidelines, grid structures and experience made with previously installed PV, studied theoretical aspects of grid interconnection and which carried out experimental tests in various test facilities. The report discusses the results of a further subtask that studied issues concerning the interconnection of highly concentrated PV systems and the problem of islanding. The effectiveness of co-operation between the task's international participators from inverter manufacturers, electricity utilities, engineering companies and testing institutes is emphasised. The authors are of the opinion that the IEA Task 5 has made a significant contribution to a better understanding of the islanding problem and will help enable the widespread deployment of solar energy.

  12. The Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Sari [Exeter Associates, Inc., Columbia, MD (United States); Porter, Kevin [Exeter Associates, Inc., Columbia, MD (United States); Rogers, Jennifer [Exeter Associates, Inc., Columbia, MD (United States)

    2010-10-01

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15–20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  13. Relevance of Generation Interconnection Procedures to Feed-in Tariffs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.; Porter, K.; Rogers, J.

    2010-10-01

    Feed-in tariffs (FITs) have been used to promote renewable electricity development in over 40 countries throughout the past two decades. These policies generally provide guaranteed prices for the full system output from eligible generators for a fixed time period (typically 15-20 years). Due in part to the success of FIT policies in Europe, some jurisdictions in the United States are considering implementing similar policies, and a few have already put such policies in place. This report is intended to offer some guidance to policymakers and regulators on how generator interconnection procedures may affect the implementation of FITs and how state generator interconnection procedures can be formulated to support state renewable energy objectives. This report is based on a literature review of model interconnection procedures formulated by several organizations, as well as other documents that have reviewed, commented on, and in some cases, ranked state interconnection procedures.

  14. USING REGIONAL RENEWABLE ENERGY RESOURSES FOR HEATING SUPPLY SYSTEMS

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2017-02-01

    Full Text Available Purpose. The study analyzed the possibility and conditions for the effective operation of heating systems during the transition of the heat-generating capacity to biofuels energy. The straw of cereal crops, which are prevailing in Dnipro region, is used for this. The main purpose is scientific calculation of opportunities and cost of specific measures for such a transition. As an example it was taken the boiler-room of campus at Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT that consumes natural gas. Methodology. The work analyses the legislative base of Ukraine, which promotes the using of renewable energy sources as fuel, as well as the incentive mechanisms for the development of this trend. The paper identifies opportunities of Prydniprovsk region to ensure straw supply for the boiler-room. Cost parameters of cargo transportation on the territory of Ukraine in 2016, which depend on the distance and the size of the trucks, are analysed. These indicators, as well as indicators related to its purchase, are considered together with energy potential of using the straw as fuel. Findings. With existing in Ukraine (as of 2016 the grain yielding capacity in the agriculture and cost indicators in the field of transportations, the transition of capacity share to biofuel is sufficiently profitable. The thermal power unit cost can be reduced fourfold. Originality. For the first time it is proposed to use the new integrated approaches to assess the cost of thermal power unit boiler with its transition to the use of renewable energy sources. The authors also proposed a new logistics delivery of these sources to the place of their application. From a technical and cost points of view it was determined the optimal order of capacity transfer for new renewable sources of energy in a given region depending on the structure of areas under crops and their productivity. Originality. The introduction of the

  15. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  16. Interconnection and Damping Assignment Passivity-Based Control for Port-Hamiltonian mechanical systems with only position measurements

    OpenAIRE

    2008-01-01

    A dynamic extension for position feedback of port-Hamiltonian mechanical systems is studied. First we look at the consequences for the matching equations when applying Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). Then we look at the possibilities of asymptotically stabilizing a class of port-Hamiltonian mechanical systems without having to know the velocities, as once presented for Euler-Lagrange (EL) systems. Here it is shown how the idea of damping injection by ...

  17. On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Bačeković, I.; Sveinbjörnsson, D.

    2017-01-01

    assessed. Moreover, the impact of industrial waste heat on the DH supply was also assessed. In the reference year (2013) two out of four interconnections proved to be economically viable. The results for the future energy system (2029) showed that interconnecting geographically distributed DH grids reduces...... primary energy supply by 9.5%, CO2 emissions by 11.1% and total system costs by 6.3%. Inclusion of industrial waste heat in the fully interconnected DH grid reduced primary energy supply for an additional 3%, CO2 emissions for an additional 2.2% and total system costs for an additional 1.3%. The case...... of the future energy supply system with interconnected DH grids and installed industrial waste heat recuperation results in the lowest primary energy demand, emissions and costs. Finally, the benefits of the interconnected DH grid, in terms of system flexibility, CO2 emissions, total costs and energy efficiency...

  18. Performance Evaluation of Antlion Optimizer Based Regulator in Automatic Generation Control of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Esha Gupta

    2016-01-01

    Full Text Available This paper presents an application of the recently introduced Antlion Optimizer (ALO to find the parameters of primary governor loop of thermal generators for successful Automatic Generation Control (AGC of two-area interconnected power system. Two standard objective functions, Integral Square Error (ISE and Integral Time Absolute Error (ITAE, have been employed to carry out this parameter estimation process. The problem is transformed in optimization problem to obtain integral gains, speed regulation, and frequency sensitivity coefficient for both areas. The comparison of the regulator performance obtained from ALO is carried out with Genetic Algorithm (GA, Particle Swarm Optimization (PSO, and Gravitational Search Algorithm (GSA based regulators. Different types of perturbations and load changes are incorporated to establish the efficacy of the obtained design. It is observed that ALO outperforms all three optimization methods for this real problem. The optimization performance of ALO is compared with other algorithms on the basis of standard deviations in the values of parameters and objective functions.

  19. Capturing buried defects in metal interconnections with electron beam inspection system

    Science.gov (United States)

    Xiao, Hong; Jiang, Ximan; Trease, David; Van Riet, Mike; Ramprasad, Shishir; Bhatia, Anadi; Lefebvre, Pierre; Bastard, David; Moreau, Olivier; Maher, Chris; MacDonald, Paul; Campochiaro, Cecelia

    2013-04-01

    In this paper we present a novel mode of electron beam inspection (EBI), entitled super wide optics (SWO) mode, which can effectively detect buried defects in tungsten (W) plugs and copper (Cu) wires. These defects are defects of interest (DOI) to integrated circuit (IC) manufacturers because they are not detectable in optical inspection, voltage contrast (VC) mode EBI or physical mode EBI. We used engineering systems to study two samples, a tungsten chemical mechanical polish (CMP) wafer and a copper CMP wafer with a silicon carbon nitride (SiCN) cap layer. EBI with our novel SWO mode was found to capture many dark defects on these two wafers. Furthermore, defect review with all three EBI modes found some of these dark defects were unique to SWO mode. For verification, physical failure analysis was performed on some SWO-unique DOI. The cross-sectional scanning electron microscope (SEM) images and transmission electron microscope (TEM) images confirmed that the unique DOI were buried voids in W-plugs and copper wire thinning caused by either buried particles or buried particle induced metal trench under-etch. These DOI can significantly increase the resistance of metal interconnects of IC chip and affect the chip yield. This new EBI mode can provide an in-line monitoring solution for these DOI, which does not exist before this study.

  20. COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea Hydrothermal Vent

    Science.gov (United States)

    Bemis, K. G.; Xu, G.; Lee, R.

    2015-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea hydrothermal vent clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto vent in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of hydrothermal plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea hydrothermal plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a hydrothermal vent field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor hydrothermal system with geological processes. These findings demonstrate the intimate interconnections of seafloor hydrothermal systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor hydrothermal

  1. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [The University of Tennessee, Knoxville; Gracia, Jose R [ORNL; Hadley, Stanton W [ORNL; Liu, Yilu [ORNL

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  2. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  3. Passive hybrid technique for the vibration mitigation of systems of interconnected stays

    Science.gov (United States)

    Caracoglia, Luca; Jones, Nicholas P.

    2007-11-01

    The problem of stay oscillation mitigation in cable-stayed bridges, usually induced by wind or wind and rain, may require the introduction of passive devices, such as dampers on individual stays or the use of transverse restrainers (cross-ties). The damper performance is often affected by the geometrical constraints of the bridge deck that limit the installation of such devices to locations very close to the end of the cable. On the other hand, cross-ties are generally incapable of direct energy dissipation. Therefore, the authors have proposed and analyzed a hybrid passive system in which the advantages of both techniques are applied to the oscillation mitigation of complex interconnected systems with multiple external dampers at the deck level, in correspondence with the cross-tie lines. This paper summarizes the relevant findings of a research program involving the authors' efforts focused on the in-plane free-vibration analysis of stay-cable systems. This research is also based upon some recent results associated with the analytical solution of a taut-cable with two attached viscous dampers. These findings are initially extended to a simplified network with reduced number of connectors and one damper, for which the derivation of analytical solution is still possible. Subsequently, an existing multistay multidamped arrangement on a real bridge is considered, in which a fully numerical approach is required. The modal behavior is compared to the simplified examples, also enabling the interpretation of the results in the context of more general guidelines for potential future application.

  4. Leader-following consensus criteria for multi-agent systems with time-varying delays and switching interconnection topologies

    Institute of Scientific and Technical Information of China (English)

    M.J.Park; O.M.Kwon; Ju H.Park; S.M.Lee; E.J.Cha

    2012-01-01

    We consider multi-agent systems with time-varying delays and switching interconnection topologies.By constructing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach,new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs),which can be easily solved by using various effective optimization algorithms.Two numerical examples are given to illustrate the effectiveness of the proposed methods.

  5. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    In the past few decades, the energy paradigms in many countries are experiencing significant change from fossil-based resources to cleaner renewables. It is expected that the scenario of highly penetrated renewables is going to be further enhanced. This requires that the production, distribution...... electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...

  6. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference

    Energy Technology Data Exchange (ETDEWEB)

    Deline, Chris [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dann, Geoff [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-01

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of the switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.

  7. Fast voltage stability assessment and reinforcement in an interconnected power system

    Science.gov (United States)

    Hsiao, Wen-Ta

    1998-12-01

    economic benefits, and reducing the number of must-run units to eliminate monopoly profits. A load shedding method is designed to provide protection from fatal voltage collapses occurring outside of prior planning and operating studies. Two practical large-scale power systems and their interconnections are used to study voltage stability throughout this dissertation.

  8. Comparison study between a Renewable Energy Supply System and a supergrid for achieving 100% from renewable energy sources in Islands

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    Numerous efforts have been done for achieving the maximum penetration of renewable energy sources (RESs) in the autonomous grids of Greek islands, which never exceeded 10%, despite the exceptional wind and solar potential. Large fluctuations on demand during summer, winter, and 24-h period...... in combination with the technical restrictions of diesel generators of the existing conventional power stations are a major concern of power supply system. Reversing the roles of diesel generators and wind farms (WFs), to use WF as the basic energy source and diesel generators as stand-by system changed in fact...... the stochastic behavior of wind energy to the demand, to provide the system with guaranteed power. This Wind–Hydro Plants in combination with the most adequate RES forming an Renewable Energy Supply System (RESS), increase further the economical penetration of RES into autonomous grids up to 90% or even 100...

  9. Renewal processes

    CERN Document Server

    Mitov, Kosto V

    2014-01-01

    This monograph serves as an introductory text to classical renewal theory and some of its applications for graduate students and researchers in mathematics and probability theory. Renewal processes play an important part in modeling many phenomena in insurance, finance, queuing systems, inventory control and other areas. In this book, an overview of univariate renewal theory is given and renewal processes in the non-lattice and lattice case are discussed. A pre-requisite is a basic knowledge of probability theory.

  10. Artificial Cooperative Search Algorithm based Load Frequency Control of Interconnected Power Systems with AC-DC Tie-lines

    Directory of Open Access Journals (Sweden)

    S. Ramesh kumar

    2014-05-01

    Full Text Available A maiden effort for optimal tuning of load frequency controller parameters using Artificial Cooperative Search (ACS algorithm for a two area interconnected power system with AC-DC parallel tie-lines has been presented in this paper. ACS is a recent swarm intelligence algorithm developed for solving numerical optimization problems. The swarm intelligence philosophy behind ACS algorithm is based on the migration of two artificial superorganisms as they biologically interact to achieve the global minimum value pertaining to the problem. The HVDC link in parallel with AC tie-line is used as system interconnection to effectively damp the frequency oscillations of the AC system. An integral square error criterion (ISE has been used as performance index to design the optimal parameters. A comparative study of tuned values has been presented to show the effectiveness of the Artificial Cooperative Search algorithm. The results demonstrate the success of ACS algorithm in solving Load frequency control (LFC optimization problem.

  11. Modeling sustainability in renewable energy supply chain systems

    Science.gov (United States)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  12. Is Every Irreducible Shift of Finite Type Flow Equivalent to a Renewal System?

    DEFF Research Database (Denmark)

    Johansen, Rune

    2013-01-01

    systems of finite type. In particular, it is shown that the Bowen–Franks group is cyclic for every member of a class of renewal systems known to attain all entropies realised by shifts of finite type, and several classes of renewal systems with non-trivial values of the invariant are constructed....

  13. Renewable energy in energy efficient, low-pollution systems

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1997-03-01

    Energy use accounts for the dominating fraction of total sulphur dioxide (SO{sub 2}), nitrogen oxide (NO{sub x}), volatile organic compounds (VOCs) and carbon dioxide (CO{sub 2}) emissions. In this thesis, different strategies for reducing these emissions are evaluated, using a bottom-up approach. CO{sub 2} emissions from electricity and heat production in western Scania, Sweden, can be reduced by 25% and the emissions of acidifying gases (SO{sub 2} and NO{sub x}) by 50% by the year 2010, compared with 1988 levels, using energy systems based on efficient end-use technologies, cogeneration of heat and electricity, renewable energy sources and low-pollution energy conversion technologies. Exhaust-pipe NO{sub x} emissions from the Swedish transportation sector can be reduced by 50 percent by the year 2015, compared with 1991, by implementing the best available vehicle technologies. Exhaust-pipe emissions of CO{sub 2} can be stabilized at the 1991 level. With further technical development and the use of fuels from renewable sources of energy, NO{sub x} emissions can be reduced by 75 percent and CO{sub 2} emissions by 80 percent compared with 1991 levels. Swedish biomass resources are large, and, assuming production conditions around 2015, about 200 TWh/year could be utilised for energy. Major reductions in CO{sub 2} emissions could be achieved by substituting biomass for fossil fuels in heat, electricity and transportation fuel production. Transportation fuels produced from cellulosic biomass are likely to be less expensive than transportation fuels from conventional biomass feedstocks such as oil plants, sugar-beet and cereals. 90 refs, 3 figs, 5 tabs

  14. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources...

  15. The feasibility of synthetic fuels in renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, D.

    2013-01-01

    While all other sectors had significant renewable energy penetrations, transport is still heavily dependent on oil displaying rapid growth in the last decades. There is no easy renewable solution to meet transport sector demand due to the wide variety of modes and needs in the sector. Nowadays, b...

  16. On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems

    Science.gov (United States)

    Chang, Dong Eui

    2014-09-01

    Interconnection and damping assignment passivity-based control (IDA-PBC) is an excellent method to stabilize mechanical systems in the Hamiltonian formalism. In this paper, several improvements are made on the IDA-PBC method. The skew-symmetric interconnection submatrix in the conventional form of IDA-PBC is shown to have some redundancy for systems with the number of degrees of freedom greater than two, containing unnecessary components that do not contribute to the dynamics. To completely remove this redundancy, the use of quadratic gyroscopic forces is proposed in place of the skew-symmetric interconnection submatrix. Reduction of the number of matching partial differential equations in IDA-PBC and simplification of the structure of the matching partial differential equations are achieved by eliminating the gyroscopic force from the matching partial differential equations. In addition, easily verifiable criteria are provided for Lyapunov/exponential stabilizability by IDA-PBC for all linear controlled Hamiltonian systems with arbitrary degrees of underactuation and for all nonlinear controlled Hamiltonian systems with one degree of underactuation. A general design procedure for IDA-PBC is given and illustrated with examples. The duality of the new IDA-PBC method to the method of controlled Lagrangians is discussed. This paper renders the IDA-PBC method as powerful as the controlled Lagrangian method.

  17. Heating technologies for limiting biomass consumption in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2011-01-01

    district heating enables the use of combined heat and power production (CPH) and other renewable resources than biomass such as large-scale solar thermal, large-heat pumps, geothermal heat, industrial surplus heat etc. which is important for reducing the biomass consumption. Where the energy density......The utilisation of biomass poses large challenges in renewable energy systems and buildings account for a substantial part of the energy supply also in 100% renewable energy systems. The analyses of heating technologies show that district heating systems are especially important in limiting...... the dependence on biomass resources and to create cost effective systems. District heating systems are especially important in renewable energy systems with large amounts of fluctuating renewable energy sources as it enables fuel efficient and lower cost energy systems with thermal heat storages. And also...

  18. Fluxless Bonding Processes Using Silver-Indium System for High Temperature Electronics and Silver Flip-Chip Interconnect Technology

    OpenAIRE

    Wu, Yuan-Yun

    2015-01-01

    In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. Due to large CTE mismatch, high quality joints are important to ma...

  19. System-Level Operational and Adequacy Impact Assessment of Photovoltaic and Distributed Energy Storage, with Consideration of Inertial Constraints, Dynamic Reserve and Interconnection Flexibility

    Directory of Open Access Journals (Sweden)

    Lingxi Zhang

    2017-07-01

    Full Text Available The growing penetration of solar photovoltaic (PV systems requires a fundamental understanding of its impact at a system-level. Furthermore, distributed energy storage (DES technologies, such as batteries, are attracting great interest owing to their ability to provide support to systems with large-scale renewable generation, such as PV. In this light, the system-level impacts of PV and DES are assessed from both operational and adequacy perspectives. Different control strategies for DES are proposed, namely: (1 centralised, to support system operation in the presence of increasing requirements on system ramping and frequency control; and (2 decentralised, to maximise the harnessing of solar energy from individual households while storing electricity generated by PV panels to provide system capacity on request. The operational impacts are assessed by deploying a multi-service unit commitment model with consideration of inertial constraints, dynamic reserve allocation, and interconnection flexibility, while the impacts on adequacy of supply are analysed by assessing the capacity credit of PV and DES through different metrics. The models developed are then applied to different future scenarios for the Great Britain power system, whereby an electricity demand increase due to electrification is also considered. The numerical results highlight the importance of interconnectors to provide flexibility. On the other hand, provision of reserves, as opposed to energy arbitrage, from DES that are integrated into system operation is seen as the most effective contribution to improve system performance, which in turn also decreases the role of interconnectors. DES can also contribute to providing system capacity, but to an extent that is limited by their individual and aggregated energy availability under different control strategies.

  20. Analysis of a hybrid renewable energy system on the Mures valley using Homer

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragoş

    2011-12-01

    Full Text Available Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth, and plants. Virtually all regions of the world have renewable resources of one type or another. This paper deals with the modeling and analysis of a hybrid system based on renewable energy resources, located on the Mureş valley, using a dedicated software named HOMER. Different types and topologies of renewable resources for the energy supply are analyzed; a small consumer situated on the Mureş Valley is modeled based on a load curve. Finally, the energy flows between the renewable energy system and the local supplying network are analyzed.

  1. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim

    2015-08-01

    Full Text Available Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid energy systems and an overview of energy storage technologies for renewable energy systems are presented. This paper also highlights the future trends of Hybrid energy systems, which represent a promising sustainable solution for power generation.

  2. The design of Smart Energy Systems for 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2013-01-01

    In this paper we launch the design of Smart Energy Systems through the 100% renewable energy system analyses and research behind the CEESA research project. The transition from fossil fuels towards the integration of more and more renewable energy requires rethinking and redesign of the energy...

  3. 78 FR 79005 - Charter Renewal for the National Park System Advisory Board

    Science.gov (United States)

    2013-12-27

    ... National Park Service Charter Renewal for the National Park System Advisory Board AGENCY: National Park... charter for the National Park System Advisory Board, in accordance with section 14(b) of the Federal... reauthorized legislatively within 2 years of the date of the renewal charter, the Board will revert to...

  4. The Evolution of Power System Planning with High Levels of Variable Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of the Greening the Grid introduces the evolution of power system planning with high levels of variable renewable generation.

  5. Scales of renewability exemplified by a case study of three Danish pig production systems

    DEFF Research Database (Denmark)

    Wright, Christina; Østergård, Hanne

    2015-01-01

    (C)) exemplifies the use of this set of indicators. The results show that at the on-site scale the pig production systems had about the same fraction of renewable inputs of less than 0.5%. However, when the renewability fraction of inputs was accounted for at the global scale, the two organic systems...

  6. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  7. Characterization of Hybrid Systems for Rural Electrification with Renewable Energies Using Geographic Information Systems (GIS)

    Energy Technology Data Exchange (ETDEWEB)

    Borda Angel, J. P.; Dominguez, J.; Amador, J.; Arribas, L.; Pinedo Pascua, I.

    2011-07-01

    The objective of this project is to redefine the algorithm of wind-diesel hybrid system implemented in IntiGIS. This methodology was developed by CIEMAT for the evaluation of rural electrification projects, comparing different renewable and conventional technologies based on their LEC or equivalent electrification cost. The analysis considers the social and geographical particularities of the study area. The core of the new model is the definition of renewable fraction in the wind-diesel hybrid system. To this end, it was assumed that the fraction of renewable will depend, first of all, of the wind speed. In this case, the objectives were to find a relationship between the renewable fraction and wind speed, expressed as a function, and also trying to demonstrate the influence of other parameters such as fuel price and consumption. The methodology used to achieve these objectives was to use HOMER to simulate technology and size of system components in order to obtain the optimal fraction renewable scenarios. Next, we examined how it varied with wind speed; we assessed the influence of other parameters and, finally, it is represented as a function of wind speed. After the redefinition of the algorithm, the changes were planned for inclusion in IntiGIS and tests were performed to validate the new model. (Author)

  8. A Stochastic Calculus for Network Systems with Renewable Energy Sources

    CERN Document Server

    Wu, Kui; Marinakis, Dimitri

    2011-01-01

    We consider the performance modeling and evaluation of network systems powered with renewable energy sources such as solar and wind energy. Such energy sources largely depend on environmental conditions, which are hard to predict accurately. As such, it may only make sense to require the network systems to support a soft quality of service (QoS) guarantee, i.e., to guarantee a service requirement with a certain high probability. In this paper, we intend to build a solid mathematical foundation to help better understand the stochastic energy constraint and the inherent correlation between QoS and the uncertain energy supply. We utilize a calculus approach to model the cumulative amount of charged energy and the cumulative amount of consumed energy. We derive upper and lower bounds on the remaining energy level based on a stochastic energy charging rate and a stochastic energy discharging rate. By building the bridge between energy consumption and task execution (i.e., service), we study the QoS guarantee under...

  9. The first step towards a 100% renewable energy-system for Ireland

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    In 2007 Ireland supplied 96% of the total energy demand with fossil fuels (7% domestic and 89% imported) and 3% with renewable energy, even though there are enough renewable resources to supply all the energy required. As energy prices increase and the effects of global warming worsen......, it is essential that Ireland begins to utilise its renewable resources more effectively. Therefore, this study presents the first step towards a 100% renewable energy-system for Ireland. The energy-system analysis tool used was EnergyPLAN, as it accounts for all sectors of the energy-system that need...... resource: biomass, hydrogen, and electricity. These energy-systems were compared so that the benefits from each could be used to create an ‘optimum’ scenario called combination. Although the results illustrate a potential 100% renewable energy-system for Ireland, they have been obtained based on numerous...

  10. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Joao [Centre of Mechatronics Engineering - CEM/Institut of Mechanical Engineering - IDMEC, University of Evora, R. Romao Ramalho, 59, 7000-671 Evora (Portugal); Martins, Joao [Centre of Technology and Systems/Faculdade de Ciencias e Tecnologia, Universidade Nova Lisboa, 1049-001 Lisboa (Portugal)

    2010-06-15

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the ''heart and soul'' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems. (author)

  11. The Impact of Strong Climate Change on Inter-state Balancing in a Fully-renewable Simplified European Electricity System

    Science.gov (United States)

    Wohland, Jan; Witthaut, Dirk

    2017-04-01

    Electricity systems with a high penetration of renewables are strongly affected by weather patterns. Due to the variability of the climate system, a substantial fraction of energy supply needs to be provided by dispatchable power plants even if the consumption is on average balanced by renewables (e.g. Rodriguez et al. [2014]). In an interconnected system like the European electricity grid, benefits can arise from balancing generation mismatches spatially as long as overproduction in one region coincides with lack of generation in another region. These benefits might change as the climate changes and we thus investigate alterations of correlations between wind timeseries and Backup energy requirements. Our analysis is based on a five member model-ensemble from the EUROCORDEX initiative and we focus on onshore wind energy. We use the highest temporal (3h) and spatial (0.11°) resolution available to capture the intermittent and spatially diverse nature of renewable generation. In view of inter-model spread and other uncertainties, we use the strong climate change scenario rcp8.5 in order to obtain a high signal-to-noise ratio. We argue that rcp8.5 is best suited to reveal interesting interactions between climate change and renewable electricity system despite the fact that is in contradiction to the UNFCCC temperature goals (e.g. Schleussner et al. [2016]). We report spatially inhomogeneous alterations of correlations. In particular, we find increasing correlations between central and northern European states and decreasing correlations at the south-western and south-eastern margins of Europe. This hints to a lowering of balancing potentials within central and northern Europe due to climate change. A possible explanation might be associated to polar amplification and increasing frequencies of blocking events (Coumou [2015]). Moreover, we compute wind energy generation using a single-turbine model and a semi-random deployment procedure as developed in Monforti et al

  12. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  13. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...molten salt. On a grid scale, off-peak electricity, converted by ohmic heating, and thermal energy from a concentrated solar power (CSP) plant ...heat energy originating from renewable sources explored. These heat sources are waste heat from the chilling plant , wind electric power from the wind

  14. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    Science.gov (United States)

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  15. Study on application of a high-speed trigger-type SFCL (TSFCL) for interconnection of power systems with different reliabilities

    Science.gov (United States)

    Kim, Hye Ji; Yoon, Yong Tae

    2016-11-01

    Interconnection of power systems is one effective way to improve power supply reliability. However, differences in the reliability of each power system create a greater obstacle for the stable interconnection of power systems, as after interconnection a high-reliability system is affected by frequent faults in low reliability side systems. Several power system interconnection methods, such as the back-to-back method and the installation of either transformers or series reactors, have been investigated to counteract the damage caused by faults in the other neighboring systems. However, these methods are uneconomical and require complex operational management plans. In this work, a high-speed trigger-type superconducting fault current limiter (TSFCL) with large-impedance is proposed as a solution to maintain reliability and power quality when a high reliability power system is interconnected with a low reliability power system. Through analysis of the reliability index for the numerical examples obtained from a PSCAD/EMTDC simulator, a high-speed TSFCL with a large-impedance is confirmed to be effective for the interconnection between power systems with different reliabilities.

  16. Renewable building energy systems and passive human comfort solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-08-15

    With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised

  17. Markov Renewal Methods in Restart Problems in Complex Systems

    DEFF Research Database (Denmark)

    Asmussen, Søren; Lipsky, Lester; Thompson, Stephen

    A task with ideal execution time L such as the execution of a computer program or the transmission of a file on a data link may fail, and the task then needs to be restarted. The task is handled by a complex system with features similar to the ones in classical reliability: failures may...... be mitigated by using server redundancy in parallel or k-out-of-n arrangements, standbys may be cold or warm, one or more repairmen may take care of failed components, etc. The total task time X (including restarts and pauses in failed states) is investigated with particular emphasis on the tail P(X > x......). A general alternating Markov renewal model is proposed and an asymptotic exponential form P(X > x) ∼ Ce−γx identified for the case of a deterministic task time L ≡ `. The rate γ is given by equating the spectral radius of a certain matrix to 1, and the asymptotic form of γ = γ(`) as ` → ∞ is derived...

  18. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  19. Electrical interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  20. Photovoltaic systems interconnected to the electric network; Sistemas fotovoltaicos interconectados a la red electrica

    Energy Technology Data Exchange (ETDEWEB)

    Agredano Diaz, Jaime [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-06-15

    This presentation is about the project carried out in the State of Baja California, Mexico, more specifically in the region called Mexicalli. In the first part, there are given the reasons and the effects developed in this region due to the climatologic changes occurred every summer. In effect, there are described both the cause and the economic impact representing for those families that live around there, the summer's arrival. Next, it is shown the solution found by the State government participating the Mexican Electric Research Institute (IIE). Such participation is translated on a project that shows the feasibility of installing photovoltaic systems on households. Such systems are interconnected to the Mexico's Federal Commission of Electricity's (CFE) electric network. Next, it is given a description of both its methodology and its performance. Then, it is firstly given the positive effect in both issues economic and environmental and secondly the general parameters of the installation of the system on the 220 households of the complex Valle de las Misiones. In addition, it is mentioned the method that would be used in order to get a bigger impact as well as better coverage of the system. Finally, there are presented the project's sponsors, among there can be found: the Mexican Energy Secretariat (SENER), the CFE, the Mexican Energy Regulatory Commission (CRE), the Universidad Autonoma de Baja California (UABC), the IIE, the North American Development Bank (NADB), and the Government of the State of Baja California. [Spanish] Esta ponencia es acerca del proyecto de sistemas fotovoltaicos desarrollado en el Estado de Baja California, mas especificamente en Mexicalli. En la primera parte, se presentan las causas y las consecuencias que ocasionan los cambios climatologicos desarrollados en esta region durante el verano; es decir, se describe la razon y el impacto economico que representa para las familias de esta region la llegada del verano

  1. QCD Interconnection Effects

    CERN Document Server

    Sjöstrand, Torbjörn

    1999-01-01

    Heavy objects like the W, Z and t are short-lived compared with typical hadronization times. When pairs of such particles are produced, the subsequent hadronic decay systems may therefore become interconnected. We study such potential effects at Linear Collider energies.

  2. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... the integration of intermittent renewable energy. Such integration is one of the major barriers in implementing an overall renewable energy system. Some vehicles using electricity and hydrogen have the ability to assist this integration. However, the ability is not enough to achieve the large-scale renewable...... energy development in China. The transport technologies have to be part of a broader solution which also involves improving the transmission grid capacity, developing more flexible energy conversion and storage technologies. Electricity is the most promising alternative in the development of sustainable...

  3. Fuel Consumption Analysis and Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    . In case of renewable energies, one main challenge is the discontinuity of generation which can be solved with planning and control optimization methods. The results of the economic analysis and the feasibility of the sustainable energy system for a 100% renewables SH show that this could be possible...

  4. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... additional discrete-valued state variables for which the stochastic equations are also formulated....

  5. A Review of Hybrid Renewable Energy Systems for Electric Power Generation

    OpenAIRE

    Md. Ibrahim; Abul Khair

    2015-01-01

    Integration and combined utilization of renewable energy sources are becoming increasingly attractive. This paper is a review of hybrid renewable energy systems technologies for power generation, important issues and challenges in their design stage. Generation technology selection and unit sizing, System configurations and Energy management and control are discussed. Applications of hybrid energy systems, advantages of hybrid energy systems, issues and problems related to hybrid ...

  6. Analysing Renewable Energy Source Impacts on Power System National Network Code

    Directory of Open Access Journals (Sweden)

    Georgiana Balaban

    2017-08-01

    Full Text Available This paper analyses the impact on renewable energy sources integrated into the Romanian power system on the electrical network operation considering the reduction of electricity consumption with respect to the 1990s. This decrease has led to increased difficulties in integrating the renewable energy sources into the power system (network reinforcements, as well as issues concerning the balance of production/consumption. Following the excess of certain proportions of the energy mix, intermittent renewable energy sources require the expansion of networks, storage, back-up capacities and efforts for a flexible consumption, in the absence of which renewable energy sources cannot be used or the grid can be overloaded. To highlight the difficulty of connecting some significant capacities installed in wind power plants and photovoltaic installation, the paper presents a case study for Dobrogea area that has the most installed capacity from renewable energy sources in operation.

  7. Evaluation of a Functional Interconnect System for SOFC's

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bender; James Rakowski

    2010-12-31

    The overall objective of this project was to validate the concept and application of a functional interconnect, based on a ferritic stainless steel, for a solid oxide fuel cell through manufacturing trials, laboratory testing, and field experience. The materials of construction and their surfaces were to be optimized for the particular service conditions and include low-cost ferritic stainless steels, novel postprocess treatments, and third-party coatings. This work aimed to optimize specific aspects of substrate alloy chemistry and to study the effects of long-term exposures on resistive oxide film structure and chemistry, interaction with applied surface coatings, and effectiveness of novel surface treatments.

  8. Optimal configuration of power generating systems in isolated island with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Senjyu, Tomonobu; Hayashi, Daisuke; Yona, Atsushi; Urasaki, Naomitsu [Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, 36-2 Nihonbashi Hakozakicho, Chuo-ku, Tokyo 103-8515 (Japan)

    2007-09-15

    In isolated islands, usually diesel generators supply electric power. However, there are problems, e.g., a lack of fossil fuel, environmental pollution etc. So, isolated island, e.g. Miyako island, installs renewable energy power production plants. However, renewable energy power production plants are very costly. This paper presents an optimal configuration of power system in isolated island installing renewable energy power production plants. The generating system consists of diesel generators, wind turbine generators, PV system and batteries. Using the proposed method, operation cost can be reduced about 10% in comparison with diesel generators only from simulation results. (author)

  9. 14 CFR 23.701 - Flap interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system must— (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that...

  10. Energy efficiency and renewable energy systems in Portugal and Brazil

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Soares, Isabel; Ferreira, Paula

    2014-01-01

    This article presents a review of the energy situation in Brazil and Portugal; two countries which are both characterised by high utilisation of renewable energy sources though with differences between them. The article also introduces contemporary energy research conducted on the two countries...

  11. The feasibility of synthetic fuels in renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    2012-01-01

    The transport sector is the only sector in which there have been no significant renewable energy penetrations, it is heavily dependent on oil with rapid growth in the last decades. Moreover, it is challenging to obviate the oil dependence due to the wide variety of modes and needs in the sector. ...

  12. Feasibility of synthetic fuels in renewable energy systems

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    The transport sector is the only sector in which there have been no significant renewable energy penetrations and it is heavily dependent on oil with rapid growth in the last decades. Moreover, it is challenging to obviate the oil dependence due to the wide variety of modes and needs in the secto...

  13. The integration of renewable energy sources into electric power transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  14. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    edu, Janet. twomey@wichita. [Wichita State Univ., KS (United States)

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  15. Low power interconnect design

    CERN Document Server

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  16. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  17. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  18. Systems dynamics modelling to assess the sustainability of renewable energy technologies in developing countries

    CSIR Research Space (South Africa)

    Brent, AC

    2011-04-01

    Full Text Available supply, and the related cost implications, for water supply; concentrated solar thermal technology options are currently considered. In this paper a systems dynamics approach is used to assess the sustainability of these types of renewable energy...

  19. A DSP based power electronics interface for alternative /renewable energy system.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-28

    This report is an update on the research project involving the implementation of a DSP-based power electronics interface for alternate/renewable energy systems, that was funded by the Department of Energy under the Inventions and Innovations program.

  20. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  1. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  2. Interconnection networks

    Science.gov (United States)

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  3. Interconnected network of cameras

    Science.gov (United States)

    Hosseini Kamal, Mahdad; Afshari, Hossein; Leblebici, Yusuf; Schmid, Alexandre; Vandergheynst, Pierre

    2013-02-01

    The real-time development of multi-camera systems is a great challenge. Synchronization and large data rates of the cameras adds to the complexity of these systems as well. The complexity of such system also increases as the number of their incorporating cameras increases. The customary approach to implementation of such system is a central type, where all the raw stream from the camera are first stored then processed for their target application. An alternative approach is to embed smart cameras to these systems instead of ordinary cameras with limited or no processing capability. Smart cameras with intra and inter camera processing capability and programmability at the software and hardware level will offer the right platform for distributed and parallel processing for multi- camera systems real-time application development. Inter camera processing requires the interconnection of smart cameras in a network arrangement. A novel hardware emulating platform is introduced for demonstrating the concept of the interconnected network of cameras. A methodology is demonstrated for the interconnection network of camera construction and analysis. A sample application is developed and demonstrated.

  4. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  5. Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System

    OpenAIRE

    Schaefer, Andrea; Broeckmann, A.; Richards, B.S.

    2007-01-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalinati...

  6. WAMS – based Control of Phase Angle Regulator Installed in Tie-lines of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Łukasz Nogal

    2012-09-01

    Full Text Available This paper addresses the state-variable stabilising control of the power system using such series FACTS devices as TCPAR installed in the tie-line connecting control areas in an interconnected power system. This stabilising control is activated in the transient state and is supplementary with respect to the main steady-state control designed for power flow regulation. Stabilising control laws, proposed in this paper, have been derived for a linear multi-machine system model using the direct Lyapunov method with the aim of maximising the rate of energy dissipation during power swings and therefore maximising their damping. The proposed control strategy is executed by a multi-loop controller with frequency deviations in all control areas used as the input signals. Validity of the proposed state-variable control has been confi rmed by modal analysis and by computer simulation for a multi-machine test system.

  7. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... and demonstrate how the power electronics is loaded under different stressors. Further, some systematic methods to design the power electronics technology for reliability will be given and demonstrated with two cases—one is a wind power and the other is photovoltaic application....

  8. Transmission needs across a fully renewable European power system

    CERN Document Server

    Rodriguez, Rolando A; Andresen, Gorm B; Heide, Dominik; Greiner, Martin

    2013-01-01

    The residual load and excess power generation of 27 European countries with a 100% penetration of variable renewable energy sources are explored in order to quantify the benefit of power transmission between countries. Estimates are based on extensive weather data, which allows for modelling of hourly mismatches between the demand and renewable generation from wind and solar photovoltaics. For separated countries, balancing is required to cover around 24% of the total annual energy consumption. This number can be reduced down to 15% once all countries are networked together with uncon- strained interconnectors. The reduction represents the maximum possible benefit of transmission for the countries. The total Net Transfer Capacity of the unconstrained interconnectors is roughly twelve times larger than current values. However, constrained interconnector capacities six times larger than the current values are found to provide 97% of the maximum possible benefit of cooperation. This motivates a detailed investig...

  9. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  10. Energy efficiency and renewable energy systems in Portugal and Brazil

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Soares, Isabel; Ferreira, Paula

    2014-01-01

    This article presents a review of the energy situation in Brazil and Portugal; two countries which are both characterised by high utilisation of renewable energy sources though with differences between them. The article also introduces contemporary energy research conducted on the two countries...... and presented at The 1st International Congress on Energy & Environment ranging from electricity end-use analyses, electricity production analyses to socio-economic assessment and large-scale energy scenarios....

  11. Matching renewable energy systems to village-level energy needs

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  12. ROBUST SLIDING MODE DECENTRALIZED CONTROL FOR A CLASS OF NONLINEAR INTERCONNECTED LARGE-SCALE SYSTEM WITH NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    CHENMou; JIANGChang-sheng; CHENWen-hua

    2004-01-01

    A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.

  13. Planning renewable energy systems as part of Cradle-to-Cradle thinking on islands

    DEFF Research Database (Denmark)

    Smink, Carla; Hong, Lixuan; Kerndrup, Søren

    In a recently started EU Interreg IVB project ‘Cradle to Cradle Islands’, the cradle-to-cradle concept is going to be applied to a number of islands in the North Sea region, aiming at 100% renewable energy supply. The transformation of island energy systems is a challenging task, although islands...... of renewable energies. Furthermore, islands often lack the economic capabilities of large scale investments. Therefore the introduction of renewable energy sources requires a careful planning process facilitated by social learning. This paper describes how the Cradle to Cradle Islands project develops...

  14. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  15. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  16. Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.P.; Tan, Q. [Environmental Systems Engineering Program, Faculty of Engineering, Unversity of Regina, Regina, Saskatchewan (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, Unversity of Regina, Regina, Saskatchewan (Canada)]|[Chinese Research Academy of Environmental Science, Beijing Normal University, Beijing 100012-100875 (China); Yang, Z.F. [State Key Laboratory of Water Environment Simulation, School of Enviroment, Beijing Normal University, Beijing 100875 (China)

    2009-07-15

    In this study, an interval-parameter superiority-inferiority-based two-stage programming model has been developed for supporting community-scale renewable energy management (ISITSP-CREM). This method is based on an integration of the existing interval linear programming (ILP), two-stage programming (TSP) and superiority-inferiority-based fuzzy-stochastic programming (SI-FSP). It allows uncertainties presented as both probability/possibilistic distributions and interval values to be incorporated within a general optimization framework, facilitating the reflection of multiple uncertainties and complexities during the process of renewable energy management systems planning. ISITSP-CREM can also be used for effectively addressing dynamic interrelationships between renewable energy availabilities, economic penalties and electricity-generation deficiencies within a community scale. Thus, complexities in renewable energy management systems can be systematically reflected, highly enhancing applicability of the modeling process. The developed method has then been applied to a case of long-term renewable energy management planning for three communities. Useful solutions for the planning of renewable energy management systems have been generated. Interval solutions associated with different energy availabilities and economic penalties have been obtained. They can be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The generated solutions can also provide desired energy resource/service allocation plans with a minimized system cost (or economic penalties), a maximized system reliability level and a maximized energy security. Tradeoffs between system costs and energy security can also be tackled. Higher costs will increase potential energy generation amount, while a desire for lower system costs will run into a risk of energy deficiency. They are helpful for supporting

  17. Renewable energy resources for distributed generation systems in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Szewczuk, Stefan

    2010-09-15

    The South African Government has objective to provide universal access of electricity for its citizens and its electrification programme has been successful but focus has moved from numbers of connections to one of achieving sustainable socio-economic benefits. First-hand understanding was obtained of the complexity of socio-economic development where CSIR undertook a project in the rural areas of South Africa to identify electrification opportunities using renewable energy linked to economic activities. Lessons formed basis of a government funding implementation of pilot hybrid mini-grids to inform a future rollout. Results informed the development of distributed generation concepts and an integrated methodology.

  18. Organizational precedents for ownership and management of decentralized renewable-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, R.; Silversmith, J.A.

    1981-03-01

    Three existing organizational types that meet the decentralization criteria of local consumer ownership and control - cooperatives, Rural Electric Cooperatives, and municipal utilities - are examined. These three organizational precedents are analyzed in terms of their histories, structures, legal powers, sources of capital, and social and political aspects. Examples of related experiments with renewable energy technologies are given, and inferences are drawn regarding the organizations' suitability as vehicles for future implementation of decentralized renewable energy systems.

  19. Second life battery energy storage system for enhancing renewable energy grid integration

    OpenAIRE

    Koch-Ciobotaru, Cosmin; Saez-de Ibarra, Andoni; Martinez-Laserna, Egoitz; Stroe, Daniel-Ioan; Swierczynski, Maciej; Rodríguez Cortés, Pedro

    2015-01-01

    Connecting renewable power plants to the grid must comply with certain codes and requirements. One requirement is the ramp rate constraint, which must be fulfilled in order to avoid penalties. As this service becomes compulsory with an increased grid penetration of renewable, all possible solutions must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is i...

  20. An Interconnected Wind Driven SEIG System Using SVPWM Controlled TL Z-Source Inverter Strategy for Off-Shore WECS

    Directory of Open Access Journals (Sweden)

    Ajin Sekhar CS

    2013-09-01

    Full Text Available This paper discuss about  the interconnection of wind driven SEIG for drive applications by using TL Z-source inverter strategy .TL Z-source consists of two coupled inductors having turns ratio γTL and four diodes are used . The wind energy system uses a two Self Excited Induction generator (SEIG connected parallel in order to increase the reliability. The proposed system components like wind turbine SEIG, rectifier, SVM Controlled TL Z-source inverter, are modeled by matlab Simulink. The maximum power can be extracted and supplied to the load efficiently by using TL Z-source inverter with a proper value of modulation index. The simulation output is analysed experimentally using 500 W experimental setup.

  1. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    Science.gov (United States)

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  2. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  3. Power system and market integration of renewable electricity

    Science.gov (United States)

    Erdmann, Georg

    2017-07-01

    This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  4. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  5. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo [Center for Environmental Studies, Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  6. Interconnectivity: Benefits and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  7. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  8. Conditions for a 100% Renewable Energy Supply System in Japan and South Korea

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2017-01-01

    renewable energy have proposed the use of photovoltaic power as the main source of electricity supply, in combination with diurnal battery storage and supplemented by other renewable sources such as wind, hydro, and geothermal power. Here, an alternative approach is explored, with wind and derived hydrogen...... full renewable energy reliance, and then for possible synergetic effects of connecting the Korean and the Japanese energy systems, in order to be able to better cope with the intermittency of renewable energy source flows.......In the wake of the Fukushima nuclear accident, alternative energy paths have been discussed for Japan, but except for a few studies the assumption is usually made that Japan is too densely populated to be suited for a near-100% sustainable, indigenous energy provision. The studies emphasizing...

  9. The Economic Potential of Three Nuclear-Renewable Hybrid Energy Systems Providing Thermal Energy to Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenkin, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report is one of a series of reports that Idaho National Laboratory and National Renewable Energy Laboratory are producing to investigate the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). Previous reports provided results of an analysis of two N-R HES scenarios. This report builds that analysis with a Texas-synthetic gasoline scenario providing the basis in which the N-R HES sells heat directly to an industrial customer. Subsystems were included that convert electricity to heat, thus allowing the renewable energy subsystem to generate heat and benefit from that revenue stream. Nuclear and renewable energy sources are important to consider in the energy sector's evolution because both are considered to be clean and non-carbon-emitting energy sources.

  10. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  11. SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE

    Directory of Open Access Journals (Sweden)

    FIRINCĂ S.D.

    2015-06-01

    Full Text Available This paper simulates by using the Homer software, a distributed energy system with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.

  12. SIMULATION OF THE SYSTEMS WITH RENEWABLE ENERGY SOURCES USING HOMER SOFTWARE

    Directory of Open Access Journals (Sweden)

    FIRINCĂ S.D.

    2015-12-01

    Full Text Available This paper simulates by using the Homer software, distributed energy systems with capacity below 1 MW. Among the renewable energy sources are used wind and solar energy. For photovoltaic panels, we are considering two situations: fixed panels, oriented at 45 ° and panels with tracking system with two axis. Simulation results contain information regarding operation hours of the system throughout the year, energy produced from the renewable energy sources, energy consumption for the load, and excess of electrical energy. The Homer software also allows an economic analysis of these systems.

  13. Numerical and experimental study of a cascaded microelectromechanical system-based all-optical data center interconnect

    Science.gov (United States)

    Kong, Qian; Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Min; Zhao, Yongli; Zhang, Jie; Gu, Wanyi

    2016-07-01

    As the scale of the intra-data center network (DCN) grows even larger, the traditional electrical switching has reached a bottle neck in terms of energy consumption, bandwidth provision, and end-to-end latency. Different approaches have been made by employing the optical switch instead of the electrical ones to solve the bandwidth as well as the energy efficiency and the latency problem. We propose a DCN architecture based on cascaded microelectromechanical systems switches for dynamic DCN connectivity provisioning. This architecture provides high port count, which attributes to the demands of the intradata center traffic. Multiple points to one point switching scenario is experimentally demonstrated through this data center interconnect. Numerical simulation is employed to investigate the performance of the proposed architecture. The results show that the blocking probability and latency decrease as the scale of the architecture is upgraded.

  14. Simplified Method of Optimal Sizing of a Renewable Energy Hybrid System for Schools

    Directory of Open Access Journals (Sweden)

    Jiyeon Kim

    2016-11-01

    Full Text Available Schools are a suitable public building for renewable energy systems. Renewable energy hybrid systems (REHSs have recently been introduced in schools following a new national regulation that mandates renewable energy utilization. An REHS combines the common renewable-energy sources such as geothermal heat pumps, solar collectors for water heating, and photovoltaic systems with conventional energy systems (i.e., boilers and air-source heat pumps. Optimal design of an REHS by adequate sizing is not a trivial task because it usually requires intensive work including detailed simulation and demand/supply analysis. This type of simulation-based approach for optimization is difficult to implement in practice. To address this, this paper proposes simplified sizing equations for renewable-energy systems of REHSs. A conventional optimization process is used to calculate the optimal combinations of an REHS for cases of different numbers of classrooms and budgets. On the basis of the results, simplified sizing equations that use only the number of classrooms as the input are proposed by regression analysis. A verification test was carried out using an initial conventional optimization process. The results show that the simplified sizing equations predict similar sizing results to the initial process, consequently showing similar capital costs within a 2% error.

  15. Tie-Line Bias Control Applicability to Load Frequency Control for Multi-Area Interconnected Power Systems of Complex Topology

    Directory of Open Access Journals (Sweden)

    Chunyu Chen

    2017-01-01

    Full Text Available The tie-line bias control (TBC method has been widely used in the load frequency control (LFC of multi-area interconnected systems. However, it should be questioned whether the conventional TBC can still apply to LFC when considering the complication of structures of power systems. LFC, in essence, is to stabilize system frequency/tie-line power by controlling controlled outputs’ area control error (ACE. In this paper, relations between LFC control variables and controlled outputs are expressed as a system of equations, based on which an exemplary ring network is studied. Sufficient and necessary conditions for TBC applicability is presented, and a novel LFC mode is proposed for a general ring network where TBC cannot work. Finally, TBC applicability to multi-area systems with general topology is studied, and a general LFC mode is proposed for systems where TBC is not definitely applicable, thus rendering routines that may guide LFC design of future power systems with more complex topologies.

  16. Momentum is increasing towards a flexible electricity system based on renewables

    Science.gov (United States)

    Mitchell, Catherine

    2016-02-01

    Total global energy use is rising, and remains based on fossil fuels. Yet, the challenge of climate change requires a deep decarbonization of our energy system. Here I argue that the global energy policy discourse is moving rapidly towards one of renewable, energy-efficient and flexible electricity systems. This is primarily because of a rapid take-up within a few countries of variable renewable electricity sources over the past decade, resulting from falling renewable electricity prices, new and more economic means of flexible system operation, and changing social preferences. This in turn has led to widespread and supportive public policy announcements. I also argue that a ‘no-regrets’ energy policy is one that increases the energy system flexibility. Although the changing discourse is welcome, it is not to say that the challenge of climate change has been met. Policy statements must be backed up by more effective governance support and pressure to speed up change.

  17. A 100% renewable power system for Europe - Let the weather and physics decide!

    DEFF Research Database (Denmark)

    Greiner, Martin; Heide, Dominik; Rasmussen, Morten Grud

    The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system....... This approach is based on weather data with good spatio-temporal resolution, which is first converted into wind and solar power generation and then used to derive estimates on the optimal mix between the renewable resources and the storage needs.......The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system...

  18. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    J.C. Brezet

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  19. Generic Energy Matching Model and Figure of Matching Algorithm for Combined Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    S. Y. Kan

    2009-08-01

    Full Text Available In this paper the Energy Matching Model and Figure of Matching Algorithm which originally was dedicated only to photovoltaic (PV systems [1] are extended towards a Model and Algorithm suitable for combined systems which are a result of integration of two or more renewable energy sources into one. The systems under investigation will range from mobile portable devices up to the large renewable energy system conceivably to be applied at the Afsluitdijk (Closure- dike in the north of the Netherlands. This Afsluitdijk is the major dam in the Netherlands, damming off the Zuiderzee, a salt water inlet of the North Sea and turning it into the fresh water lake of the IJsselmeer. The energy chain of power supplies based on a combination of renewable energy sources can be modeled by using one generic Energy Matching Model as starting point.

  20. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  1. The integration of renewable energies into the electricity systems of North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Bernhard

    2015-11-01

    How can renewable energy sources be efficiently integrated into the North African electricity systems? By using techno-economic modeling methods, this book explores optimized electricity system expansion pathways until the year 2030 for the five North African countries - Morocco, Algeria, Tunisia, Libya and Egypt. The results indicate that renewable energy integration is actually a viable business case for the entire region, if wind and solar capacities are properly planned in conjunction with the conventional generation system and under consideration of the country-specific electricity supply-/demand patterns. Further aspects featured in this publication are the impact of renewable power on the transnational electricity transmission system and the question how decision making processes about renewable energy strategies can be improved in the North African context. The book is a contribution to the scientific literature about energy issues in the Middle East and North Africa (MENA), but also seeks to address political and industrial practitioners concerned with the development of the region's renewable energy future.

  2. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  3. The Demand Side Management Potential to Balance a Highly Renewable European Power System

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-11-01

    Full Text Available Shares of renewables continue to grow in the European power system. A fully renewable European power system will primarily depend on the renewable power sources of wind and photovoltaics (PV, which are not dispatchable but intermittent and therefore pose a challenge to the balancing of the power system. To overcome this issue, several solutions have been proposed and investigated in the past, including storage, backup power, reinforcement of the transmission grid, and demand side management (DSM. In this paper, we investigate the potential of DSM to balance a simplified, fully renewable European power system. For this purpose, we use ten years of weather and historical load data, a power-flow model and the implementation of demand side management as a storage equivalent, to investigate the impact of DSM on the need for backup energy. We show that DSM has the potential to reduce the need for backup energy in Europe by up to one third and can cover the need for backup up to a renewable share of 67%. Finally, it is demonstrated that the optimal mix of wind and PV is shifted by the utilisation of DSM towards a higher share of PV, from 19% to 36%.

  4. EUROPEAN ENERGY INTERCONNECTION EFFECTS ON THE ROMANIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionescu Mihaela

    2014-07-01

    Full Text Available In this paper the author wants to exemplify the extent to which economic growth in Romania is influenced by the current power system infrastructure investments in Europe. Electricity transmission infrastructure in Romania is at a turning point. The high level of security of supply, delivery efficiency in a competitive internal market are dependent on significant investment, both within the country and across borders. Since the economic crisis makes investment financing is increasingly difficult, it is necessary that they be targeted as well. The European Union has initiated the “Connecting Europe” through which investments are allocated to European energy network interconnection of energy. The action plan for this strategy will put a greater emphasis on investments that require hundreds of billions of euro in new technologies, infrastructure, improve energy intensity, low carbon energy technologies. Romania's energy challenge will depend on the new interconnection modern and smart, both within the country and other European countries, energy saving practices and technologies. This challenge is particularly important as Romania has recovered severe gaps in the level of economic performance compared to developed countries. Such investment will have a significant impact on transmission costs, especially electricity, while network tariffs will rise slightly. Some costs will be higher due to support programs in renewable energy nationwide.Measures are more economically sustainable to maintain or even reinforce the electricity market, which system can be flexible in order to address any issues of adequacy. These measures include investments in border infrastructure (the higher the network, so it is easier to evenly distribute energy from renewable sources, to measure demand response and energy storage solutions.An integrated European infrastructure will ensure economic growth in countries interconnected and thus Romania. Huge energy potential of

  5. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Directory of Open Access Journals (Sweden)

    M. A. Islam

    2014-01-01

    Full Text Available Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  6. A review of computer tools for analysing the integration of renewable energy into various energy systems

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad

    2010-01-01

    This paper includes a review of the different computer tools that can be used to analyse the integration of renewable energy. Initially 68 tools were considered, but 37 were included in the final analysis which was carried out in collaboration with the tool developers or recommended points...... to integrating renewable energy, but instead the ‘ideal’ energy tool is highly dependent on the specific objectives that must be fulfilled. The typical applications for the 37 tools reviewed (from analysing single-building systems to national energy-systems), combined with numerous other factors...... of contact. The results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration of renewable energy into various energy-systems under different objectives. It is evident from this paper that there is no energy tool that addresses all issues related...

  7. Development and commercialization of renewable energy technologies in Canada: An innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Jagoda, Kalinga; Lonseth, Robert; Lonseth, Adam [Bissett School of Business, Mount Royal University, 4825 Mount Royal Gate SW, Calgary AB T3E 6K6 (Canada); Jackman, Tom [Simple Solar Heating Limited, P.O. Box 988, Okotoks AB T1S 1B1 (Canada)

    2011-04-15

    The increased environmental awareness coupled with the recent changes in the oil prices triggered the necessity of focusing on effective management of energy systems. Global climate change has caused many people to consider ways of reducing greenhouse gases Renewable energy has become an essential feature in curtailing emission of Green House Gases, while meeting the demand for energy. This paper presents an innovation system framework for development and diffusion of renewable energy technologies. The framework is used to identify opportunities for small and medium enterprises in the renewable energy sector. A case study on a successful development, installation and implementation of solar thermal systems households in Calgary, Alberta, by an entrepreneurial firm, is also presented. (author)

  8. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    Science.gov (United States)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  9. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Conolly, David

    2015-01-01

    (such as wind, solar, wave power and low value heat sources) to utilise new sources of flexibility such as solid, gaseous, and liquid fuel storage, thermal storage and heat pumps and battery electric vehicles. Smart Energy Systems also enable a more sustainable and feasible use of bioenergy than......The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity...

  10. Global renewable energy-based electricity generation and smart grid system for energy security.

    Science.gov (United States)

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration.

  11. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    Energy Technology Data Exchange (ETDEWEB)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  12. Sizing of Energy Storage Systems for Output Smoothing of Renewable Energy Systems

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Renewable energy sources (RESs), such as photovoltaic (PV) and wind power generation, have the characteristics of random fluctuation and intermittence. The output of RESs should be smoothed to inhibit the adverse effects of RESs fluctuations on the power grid. The energy storage system (ESS) is playing a more and more important role in the application of RESs due to its discharge/charge characteristic. Therefore, the optimal planning and design of ESS is of vital importance because of the expensive cost of ESS.

  13. Small-Scale Renewable Energy Systems in the Development of Distributed Generation in Poland

    Directory of Open Access Journals (Sweden)

    Chodkowska-Miszczuk Justyna

    2014-07-01

    Full Text Available Small-scale renewable energy systems in the context of the development of distributed generation, are discussed for the case of Poland. A distributed energy system is efficient, reliable and environmentally friendly, and is one of the most recent trends in the development of the energy sector in Poland. One of the important dimensions of this process is the creation of micro- and small-power producers based on renewable, locally-available energy sources. It is clear that the development of small-scale renewable energy producers takes place in two ways. One of these is through small hydropower plants, which are the aftermath of hydropower development in areas traditionally associated with water use for energy purposes (northern and western Poland. The second is through other renewable energy sources, mainly biogas and solar energy and located primarily in southern Poland, in highly urbanized areas (e.g. Śląskie Voivodship. In conclusion, the development of small-scale renewable energy systems in Poland is regarded as a good option with respect to sustainable development.

  14. Renewable Energy Use in Smallholder Farming Systems: A Case Study in Tafresh Township of Iran

    Directory of Open Access Journals (Sweden)

    Hossein Shabanali Fami

    2010-03-01

    Full Text Available This study was conducted to investigate use of renewable energy and materials in smallholder farming system of the Tafresh township of Iran. The population of the study consisted of 2,400 small farmers working in the smallholder farming systems of the area, in which 133 people were selected as sample using Cochran formula and simple random sampling technique. In order to gather the information, a questionnaire was developed for the study and validated by the judgment of the experts in agricultural development and extension. The reliability of the main scales of the questionnaire was examined by Cronbach Alpha coefficients, which ranged from 0.7 to 0.93, indicating the tool of study is reliable. The findings revealed that the majority of the respondents use renewable energy and materials directly in its traditional forms without enabling technologies, and they lack the access to renewable technologies to improve the efficiency of energy use. They preferred fossil energy for many activities due to its lower cost and ease of access. The overall conclusion is that there are potentials and capacities for using renewable energies and materials in the farming systems of the Tafresh township. The government has to support and encourage the adoption of renewable technologies and abandon fossil fuels wherever possible.

  15. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    for two energy target years: year 2050 with 100% renewable energy from biomass and combinations of wind, wave and solar power; and year 2030 with 50% renewable energy, emphasising the first important steps on the way. The conclusion is that a 100% renewable energy supply based on domestic resources......This paper presents the methodology and results of the overall energy system analysis of a 100% renewable energy system. The input for the systems is the result of a project of the Danish Association of Engineers, in which 1600 participants during more than 40 seminars discussed and designed...... is physically possible, and that the first step towards 2030 is feasible to Danish society. However, Denmark will have to consider to which degree the country shall rely mostly on biomass resources, which will involve the reorganisation of the present use of farming areas, or mostly on wind power, which...

  16. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  17. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  18. Power system and market integration of renewable electricity

    Directory of Open Access Journals (Sweden)

    Erdmann Georg

    2017-01-01

    Full Text Available This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the “Merit order effect of renewables”. According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  19. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  20. A global renewable energy system: A modelling exercise in ETSAP/TIAM

    DEFF Research Database (Denmark)

    Føyn, Tullik Helene Ystanes; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2011-01-01

    This paper aims to test the ETSAP2-TIAM global energy system model and to try out how far it can go towards a global 100% renewable energy system with the existing model database. This will show where limits in global resources are met and where limits in the data fed to the model until now are met...

  1. Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model

    NARCIS (Netherlands)

    de Boer, Harmen Sytze (H S.).; van Vuuren, Detlef (D P.).|info:eu-repo/dai/nl/11522016X

    2017-01-01

    The power system is expected to play an important role in climate change mitigation. Variable renewable energy (VRE) sources, such as wind and solar power, are currently showing rapid growth rates in power systems worldwide, and could also be important in future mitigation strategies. It is

  2. Renewables in future power systems implications of technological learning and uncertainty

    CERN Document Server

    Wagner, Fabian

    2014-01-01

    The book examines the future deployment of renewable power from a normative point of view. It identifies properties characterizing the cost-optimal transition towards a renewable power system and analyzes the key drivers behind this transition. Among those drivers, particular attention is paid to technological cost reductions and the implications of uncertainty. From a methodological perspective, the main contributions of this book relate to the field of endogenous learning and uncertainty in optimizing energy system models. The primary objective here is closing the gap between the strand of l

  3. A 100% renewable power system for Europe - Let the weather and physics decide!

    DEFF Research Database (Denmark)

    Greiner, Martin; Heide, Dominik; Rasmussen, Morten Grud;

    The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system....... This approach is based on weather data with good spatio-temporal resolution, which is first converted into wind and solar power generation and then used to derive estimates on the optimal mix between the renewable resources and the storage needs....

  4. Design, analysis, operation, and advanced control of hybrid renewable energy systems

    Science.gov (United States)

    Whiteman, Zachary S.

    Because using non-renewable energy systems (e.g., coal-powered co-generation power plants) to generate electricity is an unsustainable, environmentally hazardous practice, it is important to develop cost-effective and reliable renewable energy systems, such as photovoltaics (PVs), wind turbines (WTs), and fuel cells (FCs). Non-renewable energy systems, however, are currently less expensive than individual renewable energy systems (IRESs). Furthermore, IRESs based on intermittent natural resources (e.g., solar irradiance and wind) are incapable of meeting continuous energy demands. Such shortcomings can be mitigated by judiciously combining two or more complementary IRESs to form a hybrid renewable energy system (HRES). Although previous research efforts focused on the design, operation, and control of HRESs has proven useful, no prior HRES research endeavor has taken a systematic and comprehensive approach towards establishing guidelines by which HRESs should be designed, operated, and controlled. The overall goal of this dissertation, therefore, is to establish the principles governing the design, operation, and control of HRESs resulting in cost-effective and reliable energy solutions for stationary and mobile applications. To achieve this goal, we developed and demonstrated four separate HRES principles. Rational selection of HRES type: HRES components and their sizes should be rationally selected using knowledge of component costs, availability of renewable energy resources, and expected power demands of the application. HRES design: by default, the components of a HRES should be arranged in parallel for increased efficiency and reliability. However, a series HRES design may be preferred depending on the operational considerations of the HRES components. HRES control strategy selection: the choice of HRES control strategy depends on the dynamics of HRES components, their operational considerations, and the practical limitations of the HRES end-use. HRES data

  5. Regional Energy Planning Tool for Renewable Integrated Low-Energy District Heating Systems

    DEFF Research Database (Denmark)

    Tol, Hakan; Dincer, Ibrahim; Svendsen, Svend

    2013-01-01

    Low-energy district heating systems, operating at low temperature of 55 °C as supply and 25°C as return, can be the energy solution as being the prevailing heating infrastructure in urban areas, considering future energy schemesaiming at increased exploitation of renewable energy sources together...... with low-energy houses in focus with intensified energy efficiency measures. Employing low-temperature operation allows the ease to exploit not only any type of heat source but also low-grade sources, i.e., renewable and industrial waste heat, which would otherwise be lost. In this chapter, a regional...... energy planning tool is described considered with various energy conversion systems based on renewable energy sources to be supplied to an integrated energy infrastructure involving a low-energy district heating, a district cooling, and an electricity grid. The developed tool is performed for two case...

  6. Strategies towards a 100% renewable energy system for Denmark in the Future Climate Project

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2009-01-01

    energy system by the year 2050 are presented. Two short term transition target years in the process towards this goal are analysed for 2015 and 2030. The analyses reveal that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socioeconomic effects......, create employment and potentially lead to large earnings on exports. If externalities such as health effects etc. are included, even more benefits can be expected. 100 per cent renewable energy systems will be technically possible in the future, and may even be economically beneficial compared......Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100 per cent renewable...

  7. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  8. The impact of increased interconnection on electricity systems with large penetrations of wind generation: A case study of Ireland and Great Britain

    DEFF Research Database (Denmark)

    Denny, E.; Tuohy, A.; Meibom, Peter

    2010-01-01

    Increased interconnection has been highlighted as potentially facilitating the integration of wind generation in power systems by increasing the flexibility to balance the variable wind output. This paper utilizes a stochastic unit commitment model to simulate the impacts of increased interconnec...

  9. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the ti...

  10. Decentralized control of continuous time interconnected stochastic systems based on successive pole assignment

    Science.gov (United States)

    Ray, G.; Yadaiah, N.

    1992-12-01

    A simple decentralized Kalman filter based regulator problem is proposed to achieve sub-system closed-loop eigenvalues at desired locations and subsequently to minimize the local quadratic performance index of each decoupled sub-system. The proposed scheme reduces the information exchange, telemetry and instrumentation costs and computational burden compared to a centralized control scheme. A consideration of the stability of the global decentralized control system is included. The effectiveness of the proposed control scheme is tested by considering a load-frequency control problem of a two-area power system.

  11. Interconnection of electronic medical record with clinical data management system by CDISC ODM.

    Science.gov (United States)

    Matsumura, Yasushi; Hattori, Atsushi; Manabe, Shiro; Takeda, Toshihiro; Takahashi, Daiyo; Yamamoto, Yuichiro; Murata, Taizo; Mihara, Naoki

    2014-01-01

    EDC system has been used in the field of clinical research. The current EDC system does not connect with electronic medical record system (EMR), thus a medical staff has to transcribe the data in EMR to EDC system manually. This redundant process causes not only inefficiency but also human error. We developed an EDC system cooperating with EMR, in which the data required for a clinical research form (CRF) is transcribed automatically from EMR to electronic CRF (eCRF) and is sent via network. We call this system as "eCRF reporter". The interface module of eCRF reporter can retrieves the data in EMR database including patient biography data, laboratory test data, prescription data and data entered by template in progress notes. The eCRF reporter also enables users to enter data directly to eCRF. The eCRF reporter generates CDISC ODM file and PDF which is a translated form of Clinical data in ODM. After storing eCRF in EMR, it is transferred via VPN to a clinical data management system (CDMS) which can receive the eCRF files and parse ODM. We started some clinical research by using this system. This system is expected to promote clinical research efficiency and strictness.

  12. Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application

    Directory of Open Access Journals (Sweden)

    Eun-Chul Kang

    2016-09-01

    Full Text Available Micro polygeneration utilizing renewable energy is a suitable approach to reduce energy consumption and carbon emission by offering high-efficiency performance, offsetting the need for centrally-generated grid electricity and avoiding transmission/distribution losses associated with it. This paper investigates the energy and environmental potential of a renewable trigeneration system in a residential application under Incheon (Korea and Ottawa (Canada weather conditions. The trigeneration system consists of a ground-to-air heat exchanger (GAHX, photovoltaic thermal (PVT panels and an air-to-water heat pump (AWHP. The study is performed by simulations in TRNSYS (Version 17.02 environment. The performance of the trigeneration system is compared to a reference conventional system that utilizes a boiler for space and domestic hot water heating and a chiller for space cooling. Simulation results showed substantial annual primary energy savings from the renewable trigeneration system in comparison to the reference system—45% for Incheon and 42% for Ottawa. The CO2eq emission reduction from the renewable trigeneration system is also significant, standing at 43% for Incheon and 82% for Ottawa. Furthermore, trigeneration systems’ capability to generate electricity and thermal energy at the point of use is considered as an attractive option for inclusion in the future smart energy network applications.

  13. Performance comparison of TCSC with TCPS and SSSC controllers in AGC of realistic interconnected multi-source power system

    Directory of Open Access Journals (Sweden)

    Javad Morsali

    2016-03-01

    Full Text Available The primary goals of employing series flexible ac transmission system (FACTS in automatic generation control (AGC studies of interconnected power systems are mitigating area frequency and tie-line power oscillations. This paper compares dynamic performance of thyristor controlled series capacitor (TCSC as damping controller with thyristor controlled phase shifter (TCPS and static synchronous series compensator (SSSC which are series FACTS damping controllers. Commonly used lead-lag controllers are used in structure of damping controllers. The effect of TCSC in tie-line power exchange is modeled mathematically based on the Taylor series expansion for small-signal load disturbance. The performance of the proposed TCSC controller in coordination with integral AGC is compared with cases of TCPS–AGC and SSSC–AGC. An improved particle swarm optimization (IPSO algorithm and integral of time multiplied squared error (ITSE performance index are used to design the damping controllers. A two-area power system having generations from reheat thermal, hydro, and gas units in each area is evaluated regarding nonlinearity effects of generation rate constraint (GRC and governor dead band (GDB. The simulations results in MATLAB/SIMULINK environment show that the proposed TCSC–AGC yields superior performance than others in damping of area frequencies and tie-line oscillations. Furthermore, sensitivity analyses are performed to show greater robustness of TCSC–AGC.

  14. Last electrical interconnections

    CERN Multimedia

    CERN audiovisual service

    2009-01-01

    Sector 3-4 was closely followed by Sector 5-6, where interconnections were completely closed two days later. All the helium pressure release ports were installed in the sector back in April, but the sector remained open so that tests and repairs could be made on the copper stabilized busbar interconnections: in total ten busbar interconnections were repaired.

  15. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems

    NARCIS (Netherlands)

    Ortega, Romeo; Schaft, Arjan van der; Maschke, Bernhard; Escobar, Gerardo

    2002-01-01

    Passivity-based control (PBC) is a well-established technique that has shown to be very powerful to design robust controllers for physical systems described by Euler–Lagrange (EL) equations of motion. For regulation problems of mechanical systems, which can be stabilized “shaping” only the potential

  16. Port Hamiltonian Formulation of Infinite Dimensional Systems II. Boundary Control by Interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multi-variable case by ex

  17. Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection

    NARCIS (Netherlands)

    Macchelli, Alessandro; Schaft, van der Arjan J.; Melchiorri, Claudio

    2004-01-01

    In this paper, some new results concerning the boundary control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system has been generalized to the distributed parameter and multivariable case by ext

  18. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M.A.

    2004-01-01

    Stabilization of nonlinear feedback passive systems is achieved assigning a storage function with a minimum at the desired equilibrium. For physical systems a natural candidate storage function is the difference between the stored and the supplied energies—leading to the so-called energy-balancing c

  19. On Factorization, Interconnection and Reduction of Collocated Port-Hamiltonian Systems

    NARCIS (Netherlands)

    Lopezlena, Ricardo; Scherpen, Jacquelien M.A.

    2004-01-01

    Based on a geometric interpretation of nonlinear balanced reduction some implications of this approach are analyzed in the case of collocated port-Hamiltonian systems which have a certain balance in its structure. Furthermore, additional examples of reduction for this class of systems are presented.

  20. Energy storage systems for renewable island systems. An enormous global market potential

    Energy Technology Data Exchange (ETDEWEB)

    Blechinger, Philipp [Reiner Lemoine Institut gGmbH, Berlin (Germany); Berlin Institute of Technology, Berlin (Germany). Dept. of Engineering; Howe, Enrico; Cader, Catherina; Plessmann, Guido; Hlusiak, Markus; Seguin, Robert; Breyer, Christian [Reiner Lemoine Institut gGmbH, Berlin (Germany)

    2012-07-01

    Mini-grids with high shares of renewable energies usually require energy storage systems based on technological and economic reasons. According to natural conditions battery storage is often the only applicable storage technology and thus hybrid mini-grids can be considered as very attractive niche market in substitution of diesel minigrids. Unfortunately these mini-grids are difficult to identify in terms of location and size. Thus within this study small islands are analyzed to determine the market potential for energy storage systems. The focus is on tropical islands as they seem to be the most favourable islands due to their natural conditions. After simulating one hybrid energy system of Bequia, St Vincent, as case study, similar islands are identified via GIS analysis. The overall market potential for battery storage on tropical islands between 1,000 and 10,000 inhabitants ranges between 1.2 and 2.4 billion USD.

  1. Integration of large wind farms into weak power grids. Emphasis on the Ethiopian interconnected system (ICS)

    Energy Technology Data Exchange (ETDEWEB)

    Bantyirga Gessesse, Belachew

    2013-07-18

    The impact of increased wind power on the steady state and dynamic behavior of the Ethiopian power system is the main focus of this thesis. The integration of wind power to the existing grid with conventional generators introduces new set of challenges regarding system security and operational planning, the main cause of the difference arising from the uncertainty of the primary source of energy and the response time following a disturbance. For incorporating wind turbine models into the overall dynamic model of the system and investigating the effect of wind on the dynamic behavior of the wind first models of wind turbine components were put together by reviewing the current state of the art in wind turbine modeling and control concepts. The theoretical insight thus gained was applied to the Ethiopian power system as a case study. Since the models of the installed turbines were either not available or incomplete, an alternative modeling approach based on generic models was adopted. The generic model, in addition to obviating the need for technology or manufacturer specific models, reduces the complexity the dynamic model. Using this procedure, generic dynamic models for wind farm in the system were developed. The capability of dynamic models to reproduce the dynamic response of the system has been verified by comparing simulation results obtained with a detailed and generic wind farm model. It could be shown that the generic wind turbine model is simple, but accurate enough to represent any wind turbine types or entire wind farms for power system stability analysis. The next task was the study of the effect of increased wind power level on the general behavior of the Ethiopian system. It is observed that overall the impact of wind turbines on the operational indices of the system was -as could be expected- more pronounced in the vicinity of the wind farm. But the power angle oscillation following a disturbance was observed across the whole system. Further, as a

  2. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Sabahi, Kamel; Teshnehlab, Mohammad; Shoorhedeli, Mahdi Aliyari [Department of Electrical Engineering, K.N. Toosi University of Technology, Intelligent System Lab, Tehran (Iran)

    2009-04-15

    In this study, a new adaptive controller based on modified feedback error learning (FEL) approaches is proposed for load frequency control (LFC) problem. The FEL strategy consists of intelligent and conventional controllers in feedforward and feedback paths, respectively. In this strategy, a conventional feedback controller (CFC), i.e. proportional, integral and derivative (PID) controller, is essential to guarantee global asymptotic stability of the overall system; and an intelligent feedforward controller (INFC) is adopted to learn the inverse of the controlled system. Therefore, when the INFC learns the inverse of controlled system, the tracking of reference signal is done properly. Generally, the CFC is designed at nominal operating conditions of the system and, therefore, fails to provide the best control performance as well as global stability over a wide range of changes in the operating conditions of the system. So, in this study a supervised controller (SC), a lookup table based controller, is addressed for tuning of the CFC. During abrupt changes of the power system parameters, the SC adjusts the PID parameters according to these operating conditions. Moreover, for improving the performance of overall system, a recurrent fuzzy neural network (RFNN) is adopted in INFC instead of the conventional neural network, which was used in past studies. The proposed FEL controller has been compared with the conventional feedback error learning controller (CFEL) and the PID controller through some performance indices. (author)

  3. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  4. An Optimization Framework for Investment Evaluation of Complex Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    David Olave-Rojas

    2017-07-01

    Full Text Available Enhancing the role of renewable energies in existing power systems is one of the most crucial challenges that society faces today. However, the high variability of their generation potential and the temporal disparity between the demand and the generation potential represent technological and operational gaps that burden the massive incorporation of renewable sources into power systems. Energy storage technologies are an alternative to tackle this gap; nonetheless, their incorporation within large-scale power grids calls for decision-making tools that ensure an appropriate design and sizing of power systems that exploit the benefits of incorporating storage facilities along with renewable generation power. In this paper, we present an optimization framework for aiding the evaluation of the strategic design of complex renewable power systems. The developed tool relies on an optimization problem, the generation, transmission, storage energy location and sizing problem, which allows one to compute economically-attractive investment plans given by the location and sizing of generation and storage energy systems, along with the corresponding layout of transmission lines. Results on a real case study (located in the central region of Chile, characterized by carefully-curated data, show the potential of the developed tool for aiding long-term investment planning.

  5. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  6. Dynamic equivalent method of interconnected power systems with consideration of motor loads

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The existing equivalent methods usually only deal with static load models and neglect the dynamic characteristics of loads such as induction motors.This paper presents a dynamic equivalent method which considers motor dynamics.At first,the clustering criterion of motor loads is given.The motors with similar dynamic characteristics are classified into one group.Then,reduction of motors in the same group is carried out.Finally,parameters of the equivalent motor are calculated and the equivalent system is thus obtained.This aggregation method is applied to the New England system of 39-buses and 10-generators.Simulation results show that the equivalent system retains the dynamic performance of the original system with good accuracy.Compared with the 1-motor equivalent scheme,the 2-motor equivalent scheme can improve equivalent precision effectively.

  7. Probabilistic evaluation of the Brazilian interconnected power systems; Avaliacao probabilistica do desempenho do sistema interligado brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Melo, A.C.G.; Mello, J.C.O.; Romero, S.P.; Oliveira, G.C. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Fontoura Filho, R.N. [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper describes the main features of the NH{sub 2} model, developed for the probabilistic evaluation of the adequacy of large scale power systems. The system analysis is carried out through a full set of indicators, including reliability indices and probability distributions of selected variables, such as area interchanges, power flow in circuits, voltage in buses etc. These indicators are calculated in two stages: before and after the introduction of remedial actions. Also, the model yields the representation of system hourly load curve, with uncertainty around the load levels. The flexibility and performance of the NH2 model are illustrated in case studies with a 1400-bus, configuration of the Brazilian system. (author) 12 refs., 11 figs., 6 tabs.

  8. Risk Assessment and Management for Interconnected and Interactive Critical Flood Defense Systems

    OpenAIRE

    Hamedifar, Hamed

    2012-01-01

    The current State-of-the-Practice relies heavily in the deterministic characterization and assessment of performance of civil engineering infrastructure. In particular, flood defense systems, such as levees, have been evaluated within the context of Factor of Safety where the capacity of the system is compared with the expected demand. Uncertainty associated with the capacity and demand render deterministic modeling inaccurate. In particular, two structures with the same Factor of Safety can ...

  9. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  10. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.

    2013-10-01

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  11. Interactions and interconnectivity of neighboring volcanic systems in southern Japan (Kyūshū)

    Science.gov (United States)

    Brothelande, E.; Amelung, F.; Zhang, Y.

    2016-12-01

    The global volcanic eruption record contains about 60 volcano pairs that erupted the same day and 30 pairs that erupted within 3 days. However, neighboring volcano interactions are still poorly understood, in mafic as well as in felsic systems. Here, we use GPS time series of Japan's Aira caldera and Kirishima volcanic system (andesitic systems) to search for interactions between the two neighboring plumbing systems. Aira caldera (17 km x 23 km), also known as Kagoshima Bay, was formed by a massive eruption about 22,000 years ago and is often considered as the world's most active caldera volcano. The center of the caldera is occupied by Sakurajima volcano, a volcanic island that emerged about 13,000 years ago. Today, the caldera hosts more than 1 million people living along the shore and in the city of Kagoshima. The Kirishima volcanoes are a group of 18 eruption cones located 20 km north of Aira caldera. An eruption, the largest in more than 50 years, occurred in 2011 at Shinmoe-dake volcano. The magmatic system of Kirishima volcano was considered to be independent of Aira caldera, but our preliminary results suggest that this may not be the case: it seems that subtle uplift of the Aira caldera occurring during at least the first decade of this century ceased with the 2011 eruption of the Kirishima system. Using deformation data and finite element modeling, we explore possible interactions between magma reservoirs at depth.

  12. Review of the Optimal Design on a Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Wu Yuan-Kang

    2016-01-01

    Full Text Available Hybrid renewable energy systems, combining various kinds of technologies, have shown relatively high capabilities to solve reliability problems and have reduced cost challenges. The use of hybrid electricity generation/storage technologies is reasonable to overcome related shortcomings. While the hybrid renewable energy system is attractive, its design, specifically the determination of the size of PV, wind, and diesel power generators and the size of energy storage system in each power station, is very challenging. Therefore, this paper will focus on the system planning and operation of hybrid generation systems, and several corresponding topics and papers by using intelligent computing methods will be reviewed. They include typical case studies, modeling and system simulation, control and management, reliability and economic studies, and optimal design on a reliable hybrid generation system.

  13. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  14. Multilevel Control System of Regional Power Consumption: Analysis of Infrastructure Elements Interconnections, Efficiency Evaluation

    Directory of Open Access Journals (Sweden)

    Marina Nikolaevna Myznikova

    2016-10-01

    Full Text Available Fundamental strategic programs in the spheres of power and economics adopted at various levels of management, are not always capable to solve the problem of power efficiency. The changes of systemic connections of economy and power elements are one of the basic problems of management at the regional level. The development of market relations has caused the growth of uncertainty factors at all levels of power consumption management. An insufficient estimation of system infrastructural interrelations and an individualization of organizational-economic relations of economic subjects and their localization, have generated the intersystem conflictness in distribution of power resources and have aggravated the problem of estimating power consumption efficiency at a systemic level. The restriction of application of the traditional management methods based on the principles of technological efficiency of the processes of energy manufacture and consumption, is connected with the information ruptures caused by the growth of factors of uncertainty and inconsistency of efficiency criteria. Application of modern methods of power consumption forecasting has a number of essential restrictions. At the present stage the management of power consumption in multilevel systems is aimed at realisation of system integrity and economic coordination of manufacture elements, transfer and consumption at regional level and demands working out of the new effective management methods based on the analysis of system interrelations. Allocation of system interrelations depends on features of development of electropower sector, active and passive elements of the structure of consumption, power balance. The analysis and estimation of interrelations of power and economic sphere allow to improve methodology of management of power consumption at the regional level in the conditions of uncertainty.

  15. Transmission Needs In A Fully Renewable Pan-European Electricity System

    DEFF Research Database (Denmark)

    Rodriguez, Rolando A.; Bruun Andresen, Gorm; Becker, Sarah;

    2012-01-01

    Based on high-resolution weather and electrical load data, the transmission needs for a fully renewable pan-European electricity system are determined. The ideal cross-border transmission capacities turn out to be a factor 10 larger than those of today. A reduction of cross-border transmission...... capacities lead to a non-linear increase of balancing needs. A good compromise turns out to be a capacity layout, which is a factor 5 larger than today’s one. On average each country will only be able to import / export 40% of its residual demand / renewable excess generation....

  16. Decentralized model predictive based load frequency control in an interconnected power system

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, T.H., E-mail: tarekhie@yahoo.co [High Institute of Energy, South Valley University (Egypt); Bevrani, H., E-mail: bevrani@ieee.or [Dept. of Electrical Engineering and Computer Science, University of Kurdistan (Iran, Islamic Republic of); Hassan, A.A., E-mail: aahsn@yahoo.co [Faculty of Engineering, Dept. of Electrical Engineering, Minia University, Minia (Egypt); Hiyama, T., E-mail: hiyama@cs.kumamoto-u.ac.j [Dept. of Electrical Engineering and Computer Science, Kumamoto University, Kumamoto (Japan)

    2011-02-15

    This paper presents a new load frequency control (LFC) design using the model predictive control (MPC) technique in a multi-area power system. The MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. Each local area controller is designed independently such that stability of the overall closed-loop system is guaranteed. A frequency response model of multi-area power system is introduced, and physical constraints of the governors and turbines are considered. The model was employed in the MPC structures. Digital simulations for both two and three-area power systems are provided to validate the effectiveness of the proposed scheme. The results show that, with the proposed MPC technique, the overall closed-loop system performance demonstrated robustness in the face of uncertainties due to governors and turbines parameters variation and loads disturbances. A performance comparison between the proposed controller and a classical integral control scheme is carried out confirming the superiority of the proposed MPC technique.

  17. An Interconnection of Armed Conflict and Health Service system in Rolpa District of Nepal

    Directory of Open Access Journals (Sweden)

    Sachin Kumar Ghimire

    2009-08-01

    Full Text Available The health service system is the part of the political system. Likewise, political systems should be an integral part of the health system. Contrary to this, local political tussle, national level power conflicts, long-term civil war, and crises in the bureaucracy have led to the continuous ignorance of people’s health issues in Rolpa. War is always detrimental for people's health, health service system and social well-being of the population. The chronic condition of exclusion prevalent in large section of the society is the “favorable” fertile ground to capitalize the expectations toward inclusive and healthy condition in Rolpa. The process of capitalizing such historical exclusion in the name of “revolution” gives rise to new sects of political actors. However, rising expectations and aspirations toward “equitable society” have been resulting in severe frustrations because no significant changes have been done to address the general living conditions of people. The continuous rise and fall of expectations after all lead to infinitive journey of producing ill health that could be extremely detrimental to people's expectation, even to live a normal life as a human.

  18. Techno-Economic Optimization of a Sustainable Energy System for a 100% Renewables Smart House

    DEFF Research Database (Denmark)

    Craciun, Vasile Simion; Blarke, Morten; Trifa, Viorel

    2012-01-01

    , and hot tap water demand, balancing fluctuating wind power and both solar power and solar thermal supply utilizing advanced heat pump and both electro-chemical electricity storage, and hot and cold thermal storages. Our research is basically concerned with the question of how to design 100 % renewable...... for a sustainable energy system for a 100% renewables based Smart House (SH). We have devised and analysed an innovative high-efficiency approach to residential energy supply. The analysis involves detailed technical specifications and considerations for providing optimal supply of electricity, heating, cooling...... technical and economic challenges. One such challenge is the discontinuity, or intermittency, of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization strategies. This paper presents a model and optimization...

  19. Overview of Power Generation Sector of Bangladesh and Proposed Grid Connected Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Md. Raju Ahmed

    2014-11-01

    Full Text Available Electricity is the most usable form of energy, and one of the most crucial strategic issues for the sustainable development of a country. The projection of demand of electricity is an integral part of the planning process. Severe power crisis compelled the government to enter into contractual agreements for high-cost temporary solution such as rental power and small IPPS, on an emergency basis, most of these are diesel or liquid-fuel based. Load shading is an acute problem for the country. The country is confronting a simultaneous shortage of electricity. However, the country has substantial amount of renewable energy resources. The overview of power generation section of Bangladesh is presented; the potentiality of renewable energy sources in Bangladesh is discussed. Finally, a grid connected hybrid renewable energy system is proposed to overcome the problem of power crisis using sustainable clean energy at rural area.

  20. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  1. Resilience and challenges of marine social-ecological systems under complex and interconnected drivers.

    Science.gov (United States)

    Villasante, Sebastián; Macho, Gonzalo; Antelo, Manel; Rodríguez-González, David; Kaiser, Michel J

    2013-12-01

    In this paper, we summarize the contributions made by an interdisciplinary group of researchers from different disciplines (biology, ecology, economics, and law) that deal with key dimensions of marine social-ecological systems. Particularly, the local and global seafood provision; the feasibility and management of marine protected areas; the use of marine ecosystem services; the institutional dimension in European fisheries, and the affordable models for providing scientific advice to small-scale fisheries. This Special Issue presents key findings from selected case studies around the world available to educators, policy makers, and the technical community. Together, these papers show that a range of diverse ecological, economic, social, and institutional components often mutually interact at spatial and temporal scales, which evidence that managing marine social-ecological systems needs a continuous adaptability to navigate into new governance systems.

  2. Why does renewable energy diffuse so slowly? A review of innovation system problems

    NARCIS (Netherlands)

    Negro, S.O.; Alkemade, F.; Hekkert, M.P.

    2012-01-01

    In this paper we present a literature review of studies that have analysed the troublesome trajectory of different renewable energy technologies (RETs) development and diffusion in different, mainly European countries. We present an overview of typical systemic problems in the development of

  3. Swiss pumped hydro storage potential for Germany's electricity system under high penetration of intermittent renewable energy

    NARCIS (Netherlands)

    van Meerwijk, Aagje J. H.; Davila-Martinez, Alejandro; Laugs, Gideon A. H.

    2016-01-01

    In order to cut greenhouse-gas emissions and increase energy security, the European Commission stimulates the deployment of intermittent renewable energy sources (IRES) towards 2050. In an electricity system with high shares of IRES implemented in the network, energy balancing like storage is needed

  4. Model documentation Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  5. Redesign Electricity Market for the Next Generation Power System of Renewable Energy and Distributed Storage Technologies

    DEFF Research Database (Denmark)

    Feng, Donghan; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    This paper proposes a stochastic time-series based method to simulate the volatility of intermittent renewable generation and distributed storage devices along timeline. The proposed method can calculate the optimal timeline for different electricity markets and power systems. In practice...

  6. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  7. Evaluating the Validity of Classroom Observations in the Head Start Designation Renewal System

    Science.gov (United States)

    Mashburn, Andrew J.

    2017-01-01

    Classroom observations are increasingly common in education policies as a means to assess the quality of teachers and/or education programs for purposes of making high-stakes decisions. This article considers one policy, the Head Start Designation Renewal System (DRS), which involves classroom observations to assess the quality of Head Start…

  8. Swiss pumped hydro storage potential for Germany's electricity system under high penetration of intermittent renewable energy

    NARCIS (Netherlands)

    van Meerwijk, Aagje J. H.; Davila-Martinez, Alejandro; Laugs, Gideon A. H.

    2016-01-01

    In order to cut greenhouse-gas emissions and increase energy security, the European Commission stimulates the deployment of intermittent renewable energy sources (IRES) towards 2050. In an electricity system with high shares of IRES implemented in the network, energy balancing like storage is needed

  9. Why does renewable energy diffuse so slowly? A review of innovation system problems

    NARCIS (Netherlands)

    Negro, S.O.; Alkemade, F.; Hekkert, M.P.

    2012-01-01

    In this paper we present a literature review of studies that have analysed the troublesome trajectory of different renewable energy technologies (RETs) development and diffusion in different, mainly European countries. We present an overview of typical systemic problems in the development of innovat

  10. Applicability of Superconducting Interconnection Technology for High Speed ICs and Systems

    Science.gov (United States)

    1992-10-01

    34, Addison-Wesley Publishing Co., Reading, MA, 1990 (ISBN 0-201-06008-6). 5. H. Piel and G. Muller , "The Microwave Surface Impedance of High Tc...IC’s and Systems DARPA 90-06 June 1992 QUARTERLY REPORT Rac(coax) - Rc(center conducto ) l+-1 Eq. 36 and Lint (coax) - L, (center conducto ) I + k Eq. 37

  11. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, A., E-mail: a-uchi@riken.jp; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-02-15

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  12. I-TNT: PHONE NUMBER EXPANSION AND TRANSLATION SYSTEM FOR MANAGING INTERCONNECTIVITY ADDRESSING IN SIP PEERING

    Directory of Open Access Journals (Sweden)

    A. A. KHUDHER

    2015-02-01

    Full Text Available Voice over IP (VoIP subscribers is growing vastly in the recent years due to the ever increase in smartphones, 3G, WiFi, etc. This growth leads the VoIP service providers to peer with each other through Session Initiation Protocol (SIP peering for low/free cost of voice communication. Naturally, this growth is not without challenges, especially in phone addressing. This paper proposes an I-TNT (Infrastructure-Phone Number Translation numbering system to expand the range of the existing E.164 numbers and mapping between private and public number at the edge of the signalling path. As a result, I-TNT numbering system is successfully implemented and able to allocate the expanded phone numbers to end-users in one service provider.

  13. Controllability analysis of second-order multi-agent systems with directed and weighted interconnection

    Institute of Scientific and Technical Information of China (English)

    Di GUO; Rong-hao ZHENG; Zhi-yun LIN; Gang-feng YAN

    2015-01-01

    This article investigates the controllability problem of multi-agent systems. Each agent is assumed to be governed by a second-order consensus control law corresponding to a directed and weighted graph. Two types of topology are considered. The fi rst is concerned with directed trees, which represent the class of topology with minimum information exchange among all controllable topologies. A very simple necessary and suffcient condition regarding the weighting scheme is obtained for the controllability of double integrator multi-agent systems in this scenario. The second is concerned with a more general graph that can be reduced to a directed tree by contracting a cluster of nodes to a component. A similar necessary and suffcient condition is derived. Finally, several illustrative examples are provided to demonstrate the theoretical analysis results.

  14. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    Science.gov (United States)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  15. Technology, science, and environtmental impact of a novel Cu-Ag core-shell solderless interconnect system

    Science.gov (United States)

    Kammer, Milea Joy

    processing of the final flux/particle paste combination was optimized at a commercial test facility for printing on test boards containing a wide variety of pad shapes, sizes, and pitches and thus, validated the ability of the Cu-Ag core-shell paste to be a drop-in replacement for traditional solder paste using conventional manufacturing techniques. The second study addresses the fundamental mechanisms behind interconnect formation. An assessment of the kinetics and microstructure evolution during silver thin film dewetting and defect formation provides essential materials science knowledge to understand and control the functionality of the Cu-Ag core-shell system. From an interrupted annealing study used to quantify dewetting kinetics, a range of surface diffusion coefficients were calculated from the experimental results, assuming that surface diffusion controlled dewetting. The two order of magnitude range in calculated diffusion coefficient demonstrates that the diffusion-limited kinetic models traditionally used to quantify hillock and hole growth kinetics during thin film relaxation and dewetting do not apply to the dewetting of Ag films. The presence of interface-limited kinetics was then validated through the non-uniform growth of individual hillocks over time. Lastly, an environmental assessment compares the impacts associated with the manufacturing and materials for the Cu-Ag core-shell particle system and SAC 305, the most commonly used lead-free solder alloy that contains 96.5% tin, 3% silver, and 0.5% copper. By comparing the impacts on global warming, acidification, eutrophication, ozone depletion, ecotoxicity, smog, carcinogenics, non-carcinogenics, and respiratory effects associated with each technology, the environmental advantages and disadvantages of each system are clearly communicated. By utilizing this information and the versatility of the core-shell system, possible methods for reducing impacts of the Cu-Ag core-shell system are addressed in order to

  16. Enterprise System Renewal : The Divergence between Perception and Reality

    NARCIS (Netherlands)

    Haake, Phillip; Schacht, Silvia; Mueller, Benjamin; Maedche, Alexander

    2017-01-01

    E-commerce based companies critically rely on the effective use of the information system used to support their processes. Accordingly, managers place a great emphasis on the success of projects to introduce such systems. However, research increasingly suggests that project success may not be as obj

  17. Enterprise System Renewal : The Divergence between Perception and Reality

    NARCIS (Netherlands)

    Haake, Phillip; Schacht, Silvia; Mueller, Benjamin; Maedche, Alexander

    2017-01-01

    E-commerce based companies critically rely on the effective use of the information system used to support their processes. Accordingly, managers place a great emphasis on the success of projects to introduce such systems. However, research increasingly suggests that project success may not be as obj

  18. Renewable energy systems for distributed generation in South Africa

    CSIR Research Space (South Africa)

    Szewczuk, S

    2010-10-01

    Full Text Available that the hybrid mini-grid demonstration projects are meant to provide the experience and information necessary to inform a nationwide implementation of hybrid mini-grid systems. In support of hybrid mini-grid systems this paper describes the research undertaken...

  19. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.

    Science.gov (United States)

    Bodenmiller, Bernd; Wanka, Stefanie; Kraft, Claudine; Urban, Jörg; Campbell, David; Pedrioli, Patrick G; Gerrits, Bertran; Picotti, Paola; Lam, Henry; Vitek, Olga; Brusniak, Mi-Youn; Roschitzki, Bernd; Zhang, Chao; Shokat, Kevan M; Schlapbach, Ralph; Colman-Lerner, Alejandro; Nolan, Garry P; Nesvizhskii, Alexey I; Peter, Matthias; Loewith, Robbie; von Mering, Christian; Aebersold, Ruedi

    2010-12-21

    The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery-and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.

  20. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    Energy Technology Data Exchange (ETDEWEB)

    Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  1. Gbps wireless transceivers for high bandwidth interconnections in distributed cyber physical systems

    Science.gov (United States)

    Saponara, Sergio; Neri, Bruno

    2015-05-01

    In Cyber Physical Systems there is a growing use of high speed sensors like photo and video camera, radio and light detection and ranging (Radar/Lidar) sensors. Hence Cyber Physical Systems can benefit from the high communication data rate, several Gbps, that can be provided by mm-wave wireless transceivers. At such high frequency the wavelength is few mm and hence the whole transceiver including the antenna can be integrated in a single chip. To this aim this paper presents the design of 60 GHz transceiver architecture to ensure connection distances up to 10 m and data rate up to 4 Gbps. At 60 GHz there are more than 7 GHz of unlicensed bandwidth (available for free for development of new services). By using a CMOS SOI technology RF, analog and digital baseband circuitry can be integrated in the same chip minimizing noise coupling. Even the antenna is integrated on chip reducing cost and size vs. classic off-chip antenna solutions. Therefore the proposed transceiver can enable at physical layer the implementation of low cost nodes for a Cyber Physical System with data rates of several Gbps and with a communication distance suitable for home/office scenarios, or on-board vehicles such as cars, trains, ships, airplanes

  2. Nuclear-Renewable Hybrid Energy Systems: 2016 Technology Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cetiner, M. Sacit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, T. Jay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. Lou [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    The United States is in the midst of an energy revolution, spurred by advancement of technology to produce unprecedented supplies of oil and natural gas. Simultaneously, there is an increasing concern for climate change attributed to greenhouse gas (GHG) emissions that, in large part, result from burning fossil fuels. An international consensus has concluded that the U.S. and other developed nations have an imperative to reduce GHG emissions to address these climate change concerns. The global desire to reduce GHG emissions has led to the development and deployment of clean energy resources and technologies, particularly renewable energy technologies, at a rapid rate. At the same time, each of the major energy sectors—the electric grid, industrial manufacturing, transportation, and the residential/commercial consumers— is increasingly becoming linked through information and communications technologies, advanced modeling and simulation, and controls. Coordination of clean energy generation technologies through integrated hybrid energy systems, as defined below, has the potential to further revolutionize energy services at the system level by coordinating the exchange of energy currency among the energy sectors in a manner that optimizes financial efficiency (including capital investments), maximizes thermodynamic efficiency (through best use of exergy, which is the potential to use the available energy in producing energy services), reduces environmental impacts when clean energy inputs are maximized, and provides resources for grid management. Rapid buildout of renewable technologies has been largely driven by local, state, and federal policies, such as renewable portfolio standards and production tax credits that incentivize investment in these generation sources. A foundational assumption within this program plan is that renewable technologies will continue to be major contributors to the future U.S. energy infrastructure. While increased use of clean

  3. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Ridjan, Iva

    2014-01-01

    Identifying renewable energy alternatives in transport is particularly complicated, since the end-user can vary from a single-person car to a cargo ship. The aim of this paper is to aid this process by comparing 7 different methods for producing transport fuels in terms of the resources required...... for these fuels. Based on the assumptions in this study, some of the renewable fuels proposed here would be cheaper than oil in the year 2050. However, this is based on fuel production costs only and does do not consider other key costs, such as the infrastructure costs, which will be considered in the future...

  4. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection.

    Science.gov (United States)

    Takasago, K; Takekawa, M; Shirakawa, A; Kannari, F

    2000-05-10

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M-sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M-sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of ~5.

  5. CAN BUS and Ethernet Interconnect System%CAN总线与以太网互连系统

    Institute of Scientific and Technical Information of China (English)

    邬思奇; 戴瑜兴; 肖彬; 王卫国

    2011-01-01

    In order to realize Ethernet and CAN bus's data conversion, Constructed a interconnect system based on embedded technology between CAN bus and Ethernet. Hardware platform of the system let LPC2119 ARM7 as the core,including Ethernet interface module based on ENC28J60, CAN interface module and HMI interface module; Software platform used real-time operating system uC/OS-Ⅱ and embedded LwIP protocol stack. The PC user interface was designed by VC++. Experimental debugging results showed, stable and reliable operation of system on voltage circuit breaker, will have certain practicability and commercial worth.%为了实现以太网与CAN总线的数据交换,构建了一个基于嵌入式的CAN总线与以太网互连系统.系统硬件平台以LPC2119 ARM7为核心,包括由ENC28J60构成的以太网接口模块、CAN接口模块、HMI接口模块;系统软件平台使用了实时操作系统μ C/OS-Ⅱ和嵌入了LwIP协议栈,并用VC++设计了上位机人机界面.实验调试结果表明,该系统在智能断路器上运行稳定可靠,具有一定的实用性和推广价值.

  6. A technical and economic analysis of one potential pathway to a 100% renewable energy system

    Directory of Open Access Journals (Sweden)

    David Connolly

    2014-02-01

    Full Text Available This paper outlines how an existing energy system can be transformed into a 100% renewable energy system. The transition is divided into a number of key stages which reflect key radical technological changes on the supply side of the energy system. Ireland is used as a case study,but in reality this reflects many typical energy systems today which use power plants for electricity, individual boilers for heat, and oil for transport. The seven stages analysed are 1 reference, 2 introduction of district heating, 3 installation of small and large-scale heat pumps,4 reducing grid regulation requirements, 5 adding flexible electricity demands and electric vehicles, 6 producing synthetic methanol/DME for transport, and finally 7 using synthetic gas to replace the remaining fossil fuels. For each stage, the technical and economic performance of the energy system is calculated. The results indicate that a 100% renewable energy system can provide the same end-user energy demands as today’s energy system and at the same price. Electricity will be the backbone of the energy system, but the flexibility in today’s electricity sector will be transferred from the supply side of the demand side in the future. Similarly, due to changes in the type of spending required in a 100% renewable energy system, this scenario will result in the creation of 100,000 additional jobs in Ireland compared to an energy system like today’s. These results are significant since they indicate that the transition to a 100% renewable energy system can begin today, without increasing the cost of energy in the short- or long-term, if the costs currently forecasted for 2050 become a reality.

  7. Interconnection between flowering time control and activation of systemic acquired resistance.

    Science.gov (United States)

    Banday, Zeeshan Z; Nandi, Ashis K

    2015-01-01

    The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.

  8. An Approach to Develop Embedded System For Web Based Monitoring & Controlling of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Akansha S. Fating

    2013-06-01

    Full Text Available The widespread application of Renewable Energy Sources (RESrequires centralized monitoring and controlling System. To makethese operations control room independent, there is need todevelop smart servers and web based applications. Cost is anessential factor of any embedded system design. This paperdiscusses a novel concept of designing of cost effective server/client embedded system Renewable Energy sources. Hereembedded server is developed with ARM9 controller loaded withwindows CE operating system. Low cost client are designedusing Atmega32 microcontroller with LAN connection. Server/client are connected in LAN system and server basedapplications has been developed to monitor/ controlling the clientoperation. The server has web based applications that can beaccessed via internet. Author has presented developed systemand results.

  9. Empowering Variable Renewables - Options for Flexible Electricity Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, Hugo [Renewable Energy Unit, International Energy Agency, Paris (France)

    2008-07-01

    A flexible electricity system is one that can respond reliably, and rapidly, to large fluctuations in supply and demand. Flexibility is already present in all power systems, in order to manage fluctuations in demand, and it is crucial for high performance and economic and reliable operation. This paper looks at measures to increase flexibility. but careful cost/benefit analysis is essential, and specific national and regional circumstances will influence the choice of option(s).

  10. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  11. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  12. Renewing the Future: Social Innovation Systems, Sector Shift, and Innoweave

    Directory of Open Access Journals (Sweden)

    Stephen Huddart

    2012-07-01

    Full Text Available Against a backdrop of various “occupy” movements signifying civic dissatisfaction with the social contract, and in an era of fiscal restraint affecting governments and communities in many parts of the world, we need new and more effective ways to address complex social challenges. While continuous innovation is commonly understood to be a source of growth, productivity improvement, and competitive advantage in the technology and manufacturing sectors, the author’s focus is on social innovation systems, designed to replace maladaptive institutions and obsolete policy frameworks with novel and disruptive means for improving outcomes on issues such as population health and climate change. This article proposes a definition of such systems, and examines how system-level tools including impact investing, open data platforms, and “change labs” are fostering collaboration among the private, public, and community sectors. We argue that a key priority at this time is to make these and other tools and processes for social innovation available to community organizations and their government and business partners everywhere, in a manner that allows for continuous cycles of implementation and learning. The author describes one such project currently being developed in Canada by Social Innovation Generation and other partners, called Innoweave. Innoweave is a technology-enabled social innovation system for sharing the tools and processes of social innovation with the community sector. The article concludes with a call for multi-sectoral participation in social innovation systems as an investment in society’s adaptive capacity and future wellbeing.

  13. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    Science.gov (United States)

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  14. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo L.; Ganju, Neil K.; Butman, Bradford; Signell, Richard P.

    2017-04-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (˜0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  15. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil Kamal; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  16. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  17. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system.

    Science.gov (United States)

    Anantharaman, Karthik; Brown, Christopher T; Hug, Laura A; Sharon, Itai; Castelle, Cindy J; Probst, Alexander J; Thomas, Brian C; Singh, Andrea; Wilkins, Michael J; Karaoz, Ulas; Brodie, Eoin L; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F

    2016-10-24

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  18. Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference

    Science.gov (United States)

    2015-04-01

    DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To) 10-04-2015 Contract Report Dec 2014 – Mar 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER...equipped with inductor -capacitor (LC) filters that are optimized for system efficiency and cost, aftermarket LC filters can be installed to attenuate RF

  19. Geographic Information System Incorporated into Earth Science Classrooms to Enhance Individual Learning Development with Interconnected Concepts

    Science.gov (United States)

    Garifo, Mary Anna

    2017-04-01

    Geographic Information System, GIS, is a powerful tool and when incorporated into Earth Science classrooms, can enhance and empower students' engagement in their learning. Through utilization of GIS, students can process what they are learning in a spatially orientated method, which allows them to make connections among different related concepts. For example, if students are given a map in a GIS software with multiple layers of data on earthquakes, plate technics, and volcanoes then they can manipulate this information to come up with their own patterns. Through allowing students to develop their spatial recognition of where the Earth's plate boundaries are and where earthquakes have occurred, students can see how these two concepts are connected. In a guided but exploratory activity, students would be given multiple different websites that they could explore to research what different type of plates there are while they are working simultaneously with the GIS software. Using a plate technics layer, including data on type of boundary, students can explore and estimate which direction the plates are moving. When they look up convergent boundaries and see that the oceanic plates submerge under continental plates they can see where volcanic chains might be. Once they understand this in a spatial way, students can predict where they think volcanoes could be, based on where convergent boundaries are. When they manipulate the volcanic layer and see abnormalities to what they just learned, it will cause them to have cognitive dissonance, which will force them into seeking further understanding. The concept of a hot spot can then be introduced to resolve the cognitive dissonance and emphasis the idea that plates we live on are moving. Concepts can further be developed through GIS by showing how the strength and frequency of earthquakes are related to the level of activity at the plate boundary. This can be done by manipulating the map layer that represents earthquakes so

  20. Designing Human and Kitchen Waste Based Biogas & Solar Plant for PabnaUniversity of Science & Technology (PUSTCampus and Cost Benefit Analysis after Renewable Energy Interconnection on PUST Campus’s Grid Network

    Directory of Open Access Journals (Sweden)

    M. F. Ali

    2014-09-01

    Full Text Available Bangladesh is facing serious energy crisis which is a great barrier for development and poverty alleviation. Shortage of electric power generation causes a significant amount of load shedding and which causes a great loss, discomfort and inconvenience in Domestic life. Students suffer most as it hampers their studies, examination and regular activities. Important University activities remain halted during load shedding, which have a severe effect in overall national development. Some of the Universities in Bangladesh use Gas or Diesel generators to alleviate this irritate situation and expense a lot of money, whereas most of the Universities all works come to a halt during load shedding hours. But there is a huge opportunity to backup load shedding using renewable energy sources (Solar energy, human and kitchen waste to generate biogas energy. This paper presents a design and analysis of solar plant and human and kitchen waste based biogas plant for load shedding backup at PabnaUniversity of Science and Technology (PUST, Bangladesh. And the cost analysis focus that the system is economically feasible for not only a University campus but also whole Country

  1. Power Take-off System for Marine Renewable Devices, CRADA Number CRD-14-566

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    Ocean Renewable Power Company (ORPC) proposes a project to develop and test innovative second-generation power take-off (PTO) components for the U.S. Department of Energy's 2013 FOA: Marine and Hydrokinetic System Performance Advancement, Topic Area 2 (Project). Innovative PTO components will include new and improved designs for bearings, couplings and a subsea electrical generator. Specific project objectives include the following: (1) Develop components for an advanced PTO suitable for MHK devices; (2) Bench test these components; (3) Assess the component and system performance benefits; (4) Perform a system integration study to integrate these components into an ORPC hydrokinetic turbine. National Renewable Energy Laboratory (NREL) will participate on the ORPC lead team to review design of the generator and will provide guidance on the design. Based on inputs from the project team, NREL will also provide an economic analysis of the impacts of the proposed system performance advancements.

  2. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    Science.gov (United States)

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on

  3. Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites

    Directory of Open Access Journals (Sweden)

    Josip Lorincz

    2014-11-01

    Full Text Available Base station sites (BSSs powered with renewable energy sources have gained the attention of cellular operators during the last few years. This is because such “green” BSSs impose significant reductions in the operational expenditures (OPEX of telecom operators due to the possibility of on-site renewable energy harvesting. In this paper, the green BSSs power supply system parameters detected through remote and centralized real time sensing are presented. An implemented sensing system based on a wireless sensor network enables reliable collection and post-processing analyses of many parameters, such as: total charging/discharging current of power supply system, battery voltage and temperature, wind speed, etc. As an example, yearly sensing results for three different BSS configurations powered by solar and/or wind energy are discussed in terms of renewable energy supply (RES system performance. In the case of powering those BSS with standalone systems based on a fuel generator, the fuel consumption models expressing interdependence among the generator load and fuel consumption are proposed. This has allowed energy-efficiency comparison of the fuel powered and RES systems, which is presented in terms of the OPEX and carbon dioxide (CO2 reductions. Additionally, approaches based on different BSS air-conditioning systems and the on/off regulation of a daily fuel generator activity are proposed and validated in terms of energy and capital expenditure (CAPEX savings.

  4. Limitations on hydrogen production in a renewable regenerative energy system due to thermal transients

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, A.; Djilali, N.; Pitt, L.; Rowe, A.; Wild, P. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2007-07-01

    The integrated renewable energy experiment (IRENE) was developed to aid in the development of simulation tools for renewable energy-based distributed residential-scale hydrogen systems. This study focused on evaluating the interactions between system components that influence hydrogen production. The principal components of IRENE included a controllable input power source, power conversion elements; AC load devices; a hydrogen storage system; a fuel cell loop; and, a control and data acquisition system. The system was fully instrumented to measure mass and energy flows between system elements. A simplified power conditioning unit was used to allow throttling of the current to the electrolyser by passively reducing the input voltage. Power transfer to the electrolyser was limited at low bus voltages. A power input profile was used to validate the modelling electrolyser step function response predictions with IRENE's experimental data. Preliminary experimental results showed that some modelling assumptions made for renewable hydrogen systems over-estimate hydrogen production capabilities. Values obtained were between 10 to 20 per cent lower than values typically reported in the literature. It was concluded that the thermal characteristics and bus limiting interactions should be considered if accurate modelling of hydrogen production capacity is required. 11 refs., 1 tab., 4 figs.

  5. Dispatchable Renewable Energy Model for Microgrid Power System

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Fred; Gentle, Jake P.; McJunkin, Timothy R.

    2017-04-01

    Over the years, many research projects have been performed and focused on finding out the effective ways to balance the power demands and supply on the utility grid. The causes of the imbalance could be the increasing demands from the end users, the loss of power generation (generators down), faults on the transmission lines, power tripped due to overload, and weather conditions, etc. An efficient Load Frequency Control (LFC) can assure the desired electricity quality provided to the residential, commercial and industrial end users. A simulation model is built in this project to investigate the contribution of the modeling of dispatchable energy such as solar energy, wind power, hydro power and energy storage to the balance of the microgrid power system. An analysis of simplified feedback control system with proportional, integral, and derivative (PID) controller was performed. The purpose of this research is to investigate a simulation model that achieves certain degree of the resilient control for the microgrid.

  6. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  7. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  8. RESRO: A spatio-temporal model to optimise regional energy systems emphasising renewable energies

    OpenAIRE

    2012-01-01

    RESRO (Reference Energy System Regional Optimization) optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing heat demand and renewable energy potentials (e.g. biomass, solar energy, ambient heat). Power demand is handled spatially aggregated in an hourly time resolution within 8 type days. The major idea is...

  9. Advancing System Flexibility for High Penetration Renewable Integration

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  10. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  11. Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Griesser, Helmut; Wei, Jinlong

    2016-01-01

    Real-time transmission with 26-GBaud PAM-4 as a promising modulation format for data-center interconnects with operation in C-band is evaluated. For an OSNR penalty below 2 dB a dispersion tolerance of up to 10 km of SSMF is achieved......Real-time transmission with 26-GBaud PAM-4 as a promising modulation format for data-center interconnects with operation in C-band is evaluated. For an OSNR penalty below 2 dB a dispersion tolerance of up to 10 km of SSMF is achieved...

  12. Seasonal shifting of surplus renewable energy in a power system located in a cold region

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-10-01

    Full Text Available The Fukushima nuclear disaster in 2011 changed Japan's strategy for reducing CO2 emissions. The government is now placing more emphasis on the development of nonCO2-emitting distributed generation systems such as wind, solar, and tidal power to reduce greenhouse gas emissions and guarantee electricity supply in the case of a natural disaster. This paper proposes a strategy for the exploitation of wind, solar, and tidal resources in a cold region in Japan by utilizing surplus energy from the summer and spring during winter. It also aims to determine the most favorable energy mix of these renewable sources and storage system types. The study is performed by calculating hourly demand and renewable energy supply for the city in one year, which is based on actual data of demand, solar irradiation, wind speeds, and tidal current speeds. The costs of the components of the renewable power plants and storage systems are considered, and different proportions of generation outputs are evaluated with different types of storage systems. According to results, the configuration containing the hydrogen storage system using organic chemical hydride methylcyclohexane (OCHM is the most economical but is still more expensive than one using a conventional generation system. Moreover, we confirm that the cost of CO2 emissions is the key element for leveling the playing field between conventional and renewable generation from an economic perspective. The cost of CO2 emissions to public health as well as those costs related to the interruption of services during a catastrophe must be carefully calculated with other issues from conventional power projects to perform a precise comparative evaluation between both types of generation systems.

  13. Centrality in Interconnected Multilayer Networks

    CERN Document Server

    De Domenico, Manlio; Omodei, Elisa; Gómez, Sergio; Arenas, Alex

    2013-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases, they require to be modeled by interconnected multilayer networks, characterizing interactions on several levels simultaneously. It is of crucial importance in many fields, from economics to biology, from urban planning to social sciences, to identify the most (or the less) influent nodes in a network. However, defining the centrality of actors in an interconnected structure is not trivial. In this paper, we capitalize on the tensorial formalism, recently proposed to characterize and investigate this kind of complex topologies, to show how several centrality measures -- well-known in the case of standard ("monoplex") networks -- can be extended naturally to the realm of interconnected multiplexes. We consider diagnostics widely used in different fields, e.g., computer science, biology, communication and social sciences, to cite only some of them. We show, both theoretically and numerically, that using the weighted monoplex obta...

  14. Optical Backplane Interconnection

    Science.gov (United States)

    Hendricks, Herbert D.

    1991-01-01

    Optical backplane interconnection (OBIT), method of optically interconnecting many parallel outputs from data processor to many parallel inputs of other data processors by optically changing wavelength of output optical beam. Requires only one command: exact wavelength necessary to make connection between two desired processors. Many features, including smallness advantageous to incorporate OBIT into integrated optical device. Simplifies or eliminates wiring and speeds transfer of data over existing electrical or optical interconnections. Computer hookups and fiber-optical communication networks benefit from concept.

  15. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  16. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    to evaluate year-to-year variation of wind power generation through a sensitivity analysis and to forecast very short-term wind power through a model-based prediction method. The stochastic load model is established on the basis of a seasonal autoregressive moving average (ARMA) process. It is demonstrated...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...... that minimizes the expectation of power losses of a 69-bus distribution system by controlling the power factor of WTs. The optimization is subjected to the probabilistic constraints of bus voltage and line current. The algorithm combines a constrained nonlinear optimization algorithm and a Monte Carlo based PLF...

  17. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  18. How to Establish Local Renewable Energy Scenarios in the Context of National Energy Systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck

    2014-01-01

    In the transition to 100% renewable energy systems, the local and regional implementation of renewable energy becomes essential. To implement energy systems that fulfill national targets, local investments have to be made creating a need for local energy planning. However, challenges emerge when...... local energy plans must be related to each other and to national targets. For instance, in terms of the division of resources between the countryside and cities, the amount of biomass to be used, and the placement of wind turbines. If local plans do not include the context of surrounding energy systems...... and only optimise locally, the consequences might be national sub-optimisation, including excessive biomass use, wind turbines in non-favourable positions, and the misalignment of resources between the open land and the cities. Thus, there is a risk that these necessary local plans can lead...

  19. Stochastic Optimization of Power System Operation in Presence of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Dumbrava V.

    2016-12-01

    Full Text Available The liberalization process of the energy market structure determined significant changes in the electric utility industry, from both generating and transmission perspectives, and new generation technologies emerged, deeply influencing the industry profile. Nowadays, based on the governmental incentives and free access to the power systems, the share of renewable energy sources in the bulk power system generation is increasing. With respect to the classical fuel-based sources, the renewable energy sources (like photovoltaic and wind turbines have an intermittent character determined by the meteorological conditions. Their production cannot be known exactly, but can be forecasted with some degree of accuracy. Thus, within the power system, network measures must be adopted for ensuring its safe operation.

  20. Renewable energy sources monitoring systems; Sistema de monitoramento de fontes de energias renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Teofilo Miguel de; Canto, Mario Afonso Ribeiro do [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    The development of techniques and products for use of sources of energy renewed it depends on economic and technical parameters that result of revenue analyses and acting for its improvement. With the objective of to provide and to facilitate the access the information on the future acting of products and techniques of generation of energy of alternative sources and you renewed of energy, it was developed a collection project and storage of data of reduced cost and of facilitated visualization. The system developed in platform of software LabView controls a system of acquisition of data through interface RS-232 and it stores the data in files Excel or Files text, depending on the application type. The system of acquisition of data consists of a circuit of conditioning of analogic signs for digital signs, a control circuit and a circuit of communication type interface serial asynchronous RS-232. (author)