WorldWideScience

Sample records for renewable hydrogen economy

  1. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  2. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  3. Bridging the European Wind Energy Market and a Future Renewable Hydrogen-Inclusive Economy. A Dynamic Techno-economic Assessment

    International Nuclear Information System (INIS)

    Shaw, S.; Peteves, S.D.

    2006-01-01

    The study establishes the link between the growing wind market and the emerging hydrogen market of the European Union, in a so-called 'wind-hydrogen strategy'. It considers specifically the diversion of wind electricity, as a wind power control mechanism in high wind penetration situations, for the production of renewable electrolytic hydrogen - a potentially important component of a renewable hydrogen-inclusive economy. The analysis examines the long-term competitiveness of a wind-hydrogen strategy via cost-benefit assessment. It indicates the duration and extent to which (financial) support, if any, would need to be provided in support of such a strategy, and the influence over time of certain key factors on the outcome

  4. A green hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.W. II [Clark Communications, Beverly Hills, CA (United States). Green Hydrogen Scientific Advisory Committee; Rifkin, J. [The Foundation on Economic Trends (United States)

    2006-11-15

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand. (author)

  5. A green hydrogen economy

    International Nuclear Information System (INIS)

    Clark, Woodrow W.; Rifkin, Jeremy

    2006-01-01

    This paper is the result of over a dozen scholars and practitioners who strongly felt that a hydrogen economy and hence the future is closer than some American politicians and bureaucrats state. Moreover, when seen internationally, there is strong evidence, the most recent and obvious ones are the proliferation of hybrid vehicles, that for any nation-state to be energy independent it must seek a renewable or green hydrogen future in the near term. The State of California has once again taken the lead in this effort for both an energy-independent future and one linked strongly to the hydrogen economy. Then why a hydrogen economy in the first instance? The fact is that hydrogen most likely will not be used for refueling of vehicles in the near term. The number of vehicles to make hydrogen commercially viable will not be in the mass market by almost all estimates until 2010. However, it is less than a decade away. The time frame is NOT 30-40 years as some argue. The hydrogen economy needs trained people, new ventures and public-private partnerships now. The paper points out how the concerns of today, including higher costs and technologies under development, can be turned into opportunities for both the public and private sectors. It was not too long ago that the size of a mobile phone was that of a briefcase, and then almost 10 years ago, the size of a shoe box. Today, they are not only the size of a man's wallet but also often given away free to consumers who subscribe or contract for wireless services. While hydrogen may not follow this technological commercialization exactly, it certainly will be on a parallel path. International events and local or regional security dictate that the time for a hydrogen must be close at hand

  6. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Science.gov (United States)

    2011-01-31

    combinations have been investigated for the production of hydrogen from biomass carbohydrate. Chemical catalysis approaches include pyrolysis [19...temperature. High fructose corn syrup, low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...gasoline, vegetable oil vs. biodiesel, corn kernels vs. ethanol [31,109]. Given a price of $0.18/kg carbohydrate (i.e., $10.6/GJ) [2,44], the hydrogen

  7. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  8. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  9. Using renewables and the co-production of hydrogen and electricity from CCS-equipped IGCC facilities, as a stepping stone towards the early development of a hydrogen economy

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2010-01-01

    In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. However, although contra-intuitive, the interaction between both 'systems' turns out to be almost negligible. Firstly, it is shown that it is more beneficial to use IGCC facilities to produce hydrogen with, rather than (excess) wind-generated electricity due to the necessary electrolyser investment costs. But even flexible IGCC facilities do not seem to contribute substantially to the early development of a hydrogen economy. Namely, in most scenarios - which are combinations of a wide range of fuel prices and carbon taxes - one primary-energy carrier (natural gas or coal) seems to be dominant, pushing the other, and the corresponding technologies such as reformers or IGCCs, out of the market. (author)

  10. Europe - the first hydrogen economy?

    International Nuclear Information System (INIS)

    Hart, D.

    1999-01-01

    An examination of the state of research relating to hydrogen production and utilization indicates that interest in hydrogen from major companies in Europe has increased by several orders of magnitude in recent years. Of the three major areas where a hydrogen economy could be expected to start, namely, Japan, the United States and Europe, the latter may have advantages in diversity of resources, attitudes towards environmental issues and specific fiscal and regulatory structures. Examples of ongoing research and development projects in Europe include Norway's hydrogen combustion turbine to run on hydrogen from decarbonised natural gas, a project in the Netherlands involving mixing hydrogen and methane in the natural gas grid and a variety of projects involving liquid hydrogen refuelling, hydrogen aircraft, hydrogen fuelling stations and fuel cell vehicle development. There are also ongoing projects in carbon sequestration and hydrogen production for power generation and vehicle use. The author's main contention is that the combination of natural surroundings, environmental problems and attitudes, and business and government frameworks strongly suggest that Europe may be the first to have a hydrogen-based economy. 8 refs

  11. Wind in the future hydrogen economy

    International Nuclear Information System (INIS)

    Andres, P.

    2006-01-01

    Converting to a hydrogen economy will only be sustainable and have a positive impact on the environment if the fuel source for the hydrogen production is from a renewable or GHG free fuel source. Wind energy is of particular interest as a potential energy source for hydrogen production. It is modular, abundant and competitive and is far from fully exploited around the globe. Transmission constraints are however the current bottle neck to fully exploiting this resource. Producing electrolytic hydrogen from wind energy in transmission constraint areas will allow for better utilization of the available wind energy and transmission resources. The type of hydrogen storage and transportation option chosen and the size of the facilities will be the crucial factors in determining the relative cost competitiveness of a wind / hydrogen facility verses traditional hydrogen production from fossil fuels. With fossil fuel prices at record highs and the traditional demand for hydrogen growing (oil refining, ammonia production) and the fact that the world has entered a GHG constraint era the need to explore large scale wind / hydrogen production facilities has never been more urgent. (author)

  12. A nuclear based hydrogen economy

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Tamm, G.; Kunze, J.

    2005-01-01

    Exhausting demands are being imposed upon the world's ability to extract and deliver oil to the nations demanding fluid fossil fuels. This paper analyzes these issues and concludes that there must be no delay in beginning the development of the 'hydrogen economy' using nuclear energy as the primary energy source to provide both the fluid fuel and electrical power required in the 21st century. Nuclear energy is the only proven technology that is abundant and available worldwide to provide the primary energy needed to produce adequate hydrogen fluid fuel supplies to replace oil. Most importantly, this energy transition can be accomplished in an economical and technically proven manner while lowering greenhouse gas emissions. Furthermore, a similar application of using wind and solar to produce hydrogen instead of electricity for the grid can pave the way for the much larger production scales of nuclear plants producing both electricity and hydrogen. (authors)

  13. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  14. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  15. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  16. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  17. The solar-hydrogen economy: an analysis

    Science.gov (United States)

    Reynolds, Warren D.

    2007-09-01

    The 20th Century was the age of the Petroleum Economy while the 21st Century is certainly the age of the Solar-Hydrogen Economy. The global Solar-Hydrogen Economy that is now emerging follows a different logic. Under this new economic paradigm, new machines and methods are once again being developed while companies are restructuring. The Petroleum Economy will be briefly explored in relation to oil consumption, Hubbert's curve, and oil reserves with emphasis on the "oil crash". Concerns and criticisms about the Hydrogen Economy will be addressed by debunking some of the "hydrogen myths". There are three major driving factors for the establishment of the Solar-Hydrogen Economy, i.e. the environment, the economy with the coming "oil crash", and national security. The New Energy decentralization pathway has developed many progressive features, e.g., reducing the dependence on oil, reducing the air pollution and CO II. The technical and economic aspects of the various Solar-Hydrogen energy options and combinations will be analyzed. A proposed 24-hour/day 200 MWe solar-hydrogen power plant for the U.S. with selected energy options will be discussed. There are fast emerging Solar Hydrogen energy infrastructures in the U.S., Europe, Japan and China. Some of the major infrastructure projects in the transportation and energy sectors will be discussed. The current and projected growth in the Solar-Hydrogen Economy through 2045 will be given.

  18. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  19. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  20. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  1. A hydrogen economy: opportunities and challenges

    International Nuclear Information System (INIS)

    Tseng, P.; Lee, J.; Friley, P.

    2005-01-01

    A hydrogen economy, the long-term goal of many nations, can potentially confer energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel-cell technologies, problems in hydrogen production and its distribution infrastructure, and the response of petroleum markets. This study uses the US MARKAL model to simulate the impacts of hydrogen technologies on the US energy system and to identify potential impediments to a successful transition. Preliminary findings highlight possible market barriers facing the hydrogen economy, as well as opportunities in new R and D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. (author)

  2. Towards an ammonia-mediated hydrogen economy?

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Johannessen, Tue; Sørensen, Rasmus Zink

    2006-01-01

    Materialization of a hydrogen economy could provide a solution to significant global challenges, In particular. the possibility of improving the efficiency and simultaneously minimizing the environmental impact of energy conversion processes, together with the opportunity to reduce the dependency...

  3. An integrated approach to hydrogen economy in Sicilian islands

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Fabio V.; Sapienza, C.; Andaloro, L.; Dispensa, G.; Ferraro, M.; Antonucci, V. [Italian National Research Council, Institute of Advanced Energy Technologies ' ' Nicola Giordano' ' , salita S. Lucia sopra Contesse, 5, Messina 98126 (Italy)

    2009-08-15

    CNR-ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources. (author)

  4. Global environmental impacts of the hydrogen economy

    International Nuclear Information System (INIS)

    Derwent, R.; Simmonds, P.; O'Doherty, S.; Manning, A.; Collins, W.; Stevenson, D.

    2006-01-01

    Hydrogen-based energy systems appear to be an attractive proposition in providing a future replacement for the current fossil-fuel based energy systems. Hydrogen is an important, though little studied, trace component of the atmosphere. It is present at the mixing ratio of about 510 ppb currently and has important man-made and natural sources. Because hydrogen reacts with tropospheric hydroxyl radicals, emissions of hydrogen to the atmosphere perturb the distributions of methane and ozone, the second and third most important greenhouse gases after carbon dioxide. Hydrogen is therefore an indirect greenhouse gas with a global warming potential GWP of 5.8 over a 100-year time horizon. A future hydrogen economy would therefore have greenhouse consequences and would not be free from climate perturbations. If a global hydrogen economy replaced the current fossil fuel-based energy system and exhibited a leakage rate of 1%, then it would produce a climate impact of 0.6% of the current fossil fuel based system. Careful attention must be given to reduce to a minimum the leakage of hydrogen from the synthesis, storage and use of hydrogen in a future global hydrogen economy if the full climate benefits are to be realised. (author)

  5. Designing a gradual transition to a hydrogen economy in Spain

    Science.gov (United States)

    Brey, J. J.; Brey, R.; Carazo, A. F.; Contreras, I.; Hernández-Díaz, A. G.; Gallardo, V.

    The lack of sustainability of the current Spanish energy system makes it necessary to study the adoption of alternative energy models. One of these is what is known as the hydrogen economy. In this paper, we aim to plan, for the case of Spain, an initial phase for transition to this energy model making use of the potential offered by each Spanish region. Specifically, the target pursued is to satisfy at least 15% of energy demand for transport by 2010 through renewable sources. We plan to attain this target gradually, establishing intermediate stages consisting of supplying 5 and 10% of the energy demand for transport by 2006 and 2008, respectively. The results obtained allow us to determine, for each region, the hydrogen production and consumption, the renewable energy sources used to obtain hydrogen and the transport requirements between regions.

  6. Challenges for renewable hydrogen production

    International Nuclear Information System (INIS)

    Levin, D.B.; Chahine, R.

    2009-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas) which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermo-catalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. These issues are being addressed by H2CAN, a recently launched NSERC funded national strategic network in hydrogen production, purification, storage, infrastructure and safety. (author)

  7. Hydrogen economy and polymer membranes

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Schauer, Jan

    2010-01-01

    Roč. 295, č. 1 (2010), s. 23-29 ISSN 1022-1360 R&D Projects: GA ČR GA104/09/1165; GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : foams * gas permeation * hydrogen Subject RIV: CD - Macromolecular Chemistry

  8. Hydrogen energy stations: along the roadside to the hydrogen economy

    International Nuclear Information System (INIS)

    Clark, W.W.; Rifkin, J.; O'Connor, T.; Swisher, J.; Lipman, T.; Rambach, G.

    2005-01-01

    Hydrogen has become more than an international topic of discussion within government and among industry. With the public announcements from the European Union and American governments and an Executive Order from the Governor of California, hydrogen has become a ''paradigm change'' targeted toward changing decades of economic and societal behaviours. The public demand for clean and green energy as well as being ''independent'' or not located in political or societal conflict areas, has become paramount. The key issues are the commitment of governments through public policies along with corporations. Above all, secondly, the advancement of hydrogen is regional as it depends upon infrastructure and fuel resources. Hence, the hydrogen economy, to which the hydrogen highway is the main component, will be regional and creative. New jobs, businesses and opportunities are already emerging. And finally, the costs for the hydrogen economy are critical. The debate as to hydrogen being 5 years away from being commercial and available in the marketplace versus needing more research and development contradicts the historical development and deployment of any new technology be it bio-science, flat panel displays, computers or mobile phones. The market drivers are government regulations and standards soon thereafter matched by market forces and mass production. Hydrogen is no different. What this paper does is describes is how the hydrogen highway is the backbone to the hydrogen economy by becoming, with the next five years, both regional and commercial through supplying stationary power to communities. Soon thereafter, within five to ten years, these same hydrogen stations will be serving hundreds and then thousands of hydrogen fuel powered vehicles. Hydrogen is the fuel for distributed energy generation and hence positively impacts the future of public and private power generators. The paradigm has already changed. (author)

  9. Symbolic convergence and the hydrogen economy

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Brossmann, Brent

    2010-01-01

    This article documents that the hydrogen economy continues to attract significant attention among politicians, the media, and some academics. We believe that an explanation lies in the way that the hydrogen economy fulfills psychological and cultural needs related to a future world where energy is abundant, cheap, and pollution-free, a 'fantasy' that manifests itself with the idea that society can continue to operate without limits imposed by population growth and the destruction of the environment. The article begins by explaining its research methodology consisting of two literature reviews, research interviews of energy experts, and the application of symbolic convergence theory, a general communications theory about the construction of rhetorical fantasies. We then identify a host of socio-technical challenges to explain why the creation of a hydrogen economy would present immense (and possibly intractable) obstacles, an argument supplemented by our research interviews. Next, we employ symbolic convergence theory to identify five prevalent fantasy themes and rhetorical visions-independence, patriotism, progress, democratization, and inevitability-in academic and public discussions in favor of the hydrogen economy. We conclude by offering implications for scholarship relating to energy policy more broadly.

  10. The hydrogen economy - an opportunity for gas

    International Nuclear Information System (INIS)

    Soederbaum, J.; Martin, G.; O'Neill, C.

    2003-01-01

    Natural gas could play a pivotal role in any transition to a hydrogen economy-that is one of the findings of the recently-released National Hydrogen Study, commissioned by the Commonwealth Department of Industry, Tourism and Resources, and undertaken by the consulting firms ACIL Tasman and Parsons Brinckerhoff. The key benefits of hydrogen include zero emissions at the point of combustion (water is the main by-product) and its abundance Hydrogen can be produced from a range of primary energy sources including gas and coal, or through the electrolysis of water. Depending on the process used to manufacture hydrogen (especially the extent to which any associated carbon can be captured and sequestered), life-cycle emissions associated with its production and use can be reduced or entirely eliminated

  11. Renewable energy consumption and income in emerging economies

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2009-01-01

    Increased economic growth and demand for energy in emerging economies is creating an opportunity for these countries to increase their usage of renewable energy. This paper presents and estimates two empirical models of renewable energy consumption and income for a panel of emerging economies. Panel cointegration estimates show that increases in real per capita income have a positive and statistically significant impact on per capita renewable energy consumption. In the long term, a 1% increase in real income per capita increases the consumption of renewable energy per capita in emerging economies by approximately 3.5%. Long-term renewable energy per capita consumption price elasticity estimates are approximately equal to -0.70.

  12. Hydrogen energy economy: More than utopia

    International Nuclear Information System (INIS)

    Weber, R.

    1992-01-01

    Under the pressure of increasing climate changes in the last years the attitude towards hydrogen technology has changed. Germany has taken a leading position in hydrogen research. Above all there is not only government-sponsored research but also industrial research. It is even assumed that an energy economy on the basis of solar energy as well as of hydrogen is technically possible. If the fact that the total power of all cars in the FRG amounts to 200.000 MW - twice as much as all power stations - is taken into consideration it should be possible to produce in large-scale production decentralized solar or hydrogen energy converters at similar kilowatt rates. (BWI) [de

  13. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  14. Hydrogen from renewable resources - the hundred year commitment

    International Nuclear Information System (INIS)

    Adamson, K.A.

    2004-01-01

    During the last decade interest in a potential 'Hydrogen Economy' has increased and is now discussed in main stream literature and political debates. This is largely due to the promise that fuel cell technology, which uses a hydrogen-rich gas, has shown. Though hydrogen can be produced from a number of sources, it is steam reforming of natural gas that has gained a substantial support base, and is seen as an important bridge to a sustainable hydrogen production from renewable energy. What this paper examines is the synergy that exists now between hydrogen from renewable resources and the inception of the fuel cell market. It argues that although the natural gas pathway will be necessary for the short to medium term, there should not be a complete dominance of the production route. The paper also brings together a number of policy documents from the EU and argues that what is needed from the level of the EU is a long term, binding commitment to ensure that the natural gas pathway does not become locked in. (author)

  15. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  16. Hydrogen energy from renewable resources

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To asses the economic viability of an integrated energy production system, a multi-stage cash flow analysis framework is utilized. This framework relies on standard cash flow models using an electronic spreadsheet program (Lotus 1-2-3) as the modeling environment. The purpose of the program is to evaluate the life-cycle economics of the various component technologies using common assumptions about the economic and financial environment in which these would operate. A schematic diagram of the multi-stage model is shown in the entire integrated production system. The details of the financial model are explained below. In its most complex form, the integrated system consists of three production stages. The first is the production of electricity. At this first stage, the model can and does accommodate any type of production technology, e.g., wind energy conversion systems, solar thermal devices, and geothermal electricity. The second stage of the model is the production of hydrogen using a specific assumed production methodology. In this case, it is a high-temperature electrolysis facility using production and economic characteristics data provided by the Florida Solar Energy Center. The third stage of the model represents the production of methanol assuming a biomass gasifier technology with operating and economic characteristics data based on studied by Fluor and Southern California Edison. At each stage of the model, there are three components: a data input portion that is used to define the techno-economic characteristics of the technology; the cash flow analysis based on financial assumptions; and an output summary section that reports the economic characteristics of the technology

  17. United States Energy Association Final Report International Partnership for the Hydrogen Economy Ministerial Conference

    Energy Technology Data Exchange (ETDEWEB)

    William L. Polen

    2006-04-05

    This report summarizes the activities of the United States Energy Association as it conducted the initial Ministerial Meeting of the International Partnership for the Hydrogen Economy in Washington, DC on November 18-21, 2003. The report summarizes the results of the meeting and subsequent support to the Office of Energy Efficiency and Renewable Energy in its role as IPHE Secretariat.

  18. The hydrogen economy for a sustainable future and the potential contribution of nuclear power

    International Nuclear Information System (INIS)

    Hardy, C.

    2003-01-01

    The Hydrogen Economy encompasses the production of hydrogen using a wide range of energy sources, its storage and distribution as an economic and universal energy carrier, and its end use by industry and individuals with negligible emission of pollutants and greenhouse gases. Hydrogen is an energy carrier not a primary energy source, just like electricity is an energy carrier. The advantages of hydrogen as a means of storage and distribution of energy, and the methods of production of hydrogen, are reviewed. Energy sources for hydrogen production include fossil fuels, renewables, hydropower and nuclear power. Hydrogen has many applications in industry, for residential use and for transport by air, land and sea. Fuel cells are showing great promise for conversion of hydrogen into electricity and their development and current status are discussed. Non-energy uses of hydrogen and the safety aspects of hydrogen are also considered. It is concluded that the Hydrogen Economy, especially if coupled to renewable and nuclear energy sources, is a technically viable and economic way of achieving greater energy diversity and security and a sustainable future in this century

  19. A hydrogen economy and its impact on the world as we know it

    International Nuclear Information System (INIS)

    Blanchette, Stephen

    2008-01-01

    An assortment of governmental, technological, environmental, and economic factors has combined to spur renewed interest in alternatives to petroleum, and especially in hydrogen. While there is no clear consensus on the viability of the technology, governments and corporations alike have vigorous hydrogen research programs. The result is that hydrogen may stand on the verge of becoming a true successor to oil. A transition from oil to hydrogen would alter familiar global economic and political structures in profound ways. The ramifications will influence developed and developing nations, oil importers, and exporters alike. New alliances among governments, corporations, and other groups may challenge existing notions of governance. Although a hydrogen-based economy may be decades away, the vision for it requires near- and mid-term thinking to manage the transition smoothly. Further, hydrogen is only a metaphor; any change from the current oil economy will entail dramatic changes to the global status quo that must be planned for now

  20. Overview of U.S. programs for hydrogen from renewables

    International Nuclear Information System (INIS)

    Lewis, M.

    2007-01-01

    This paper discusses US program for hydrogen from renewable energy sources. Renewable energy sources include biomass, wind, solar, hydropower, geothermal and ocean waves. Although nuclear power is not considered renewable, a case can be made that it is, but requires recycling of spent fuel. The paper also discusses hydrogen production, storage and delivery. It discusses fuel cells, safety codes and standards and system analysis

  1. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  2. Hawaii hydrogen energy economy: production and distribution of hydrogen and oxygen in the district of north Kohala, the Big Island of Hawaii: a global prototype

    International Nuclear Information System (INIS)

    Russel, G.

    1993-01-01

    This paper shows how a community which is totally oil dependent can be transformed into a hydrogen fuel based economy by using the concept of setting hydrogen zones, with the use of off-peak hydro-electrical power and renewable energies. An existing hydro-electric plant in Hawaii could serve as a local prototype. 2 figs

  3. Fuel cell commercialization: The key to a hydrogen economy

    Science.gov (United States)

    Zegers, P.

    With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.

  4. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  5. Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature

    International Nuclear Information System (INIS)

    McDowall, William; Eames, Malcolm

    2006-01-01

    Scenarios, roadmaps and similar foresight methods are used to cope with uncertainty in areas with long planning horizons, such as energy policy, and research into the future of hydrogen energy is no exception. Such studies can play an important role in the development of shared visions of the future: creating powerful expectations of the potential of emerging technologies and mobilising resources necessary for their realisation. This paper reviews the hydrogen futures literature, using a six-fold typology to map the state of the art of scenario construction. The paper then explores the expectations embodied in the literature, through the 'answers' it provides to questions about the future of hydrogen. What are the drivers, barriers and challenges facing the development of a hydrogen economy? What are the key technological building blocks required? In what kinds of futures does hydrogen become important? What does a hydrogen economy look like, how and when does it evolve, and what does it achieve? The literature describes a diverse range of possible futures, from decentralised systems based upon small-scale renewables, through to centralised systems reliant on nuclear energy or carbon-sequestration. There is a broad consensus that the hydrogen economy emerges only slowly, if at all, under 'Business as Usual' scenarios. Rapid transitions to hydrogen occur only under conditions of strong governmental support combined with, or as a result of, major 'discontinuities' such as shifts in society's environmental values, 'game changing' technological breakthroughs, or rapid increases in the oil price or speed and intensity of climate change

  6. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  7. Carbon strategy and management in the hydrogen economy

    International Nuclear Information System (INIS)

    Snyder, C.

    2006-01-01

    Greenhouse gas (carbon) emission reduction related to the beneficial use of hydrogen is an important aspect in the development and public acceptance of a greater role for hydrogen in the economy. This presentation is an overview of potential effects of the evolving regulatory framework for carbon emissions management in Canada on hydrogen infrastructure development and compare it with activities in other jurisdictions

  8. Energy Efficiency and Urban Renewal in the Economies in Transition

    International Nuclear Information System (INIS)

    Brendow, K.

    1997-01-01

    The Paper notes the importance of energy consumption in agglomerations (65-70% in the economies in transition) and of related emissions. It assesses the technical and cost-effective potential for a 40% and more decrease in urban energy intensities and SO 2 /NO x emissions by 2020, resulting from a systematic approach to urban as well as energy planning. Compared to approaches worldwide, urban energy renewal in the economies in transition appears, as its beginning, characterized by a traditional focus on existing technological supply sub-systems such as district heating and co-generation. The obstacles to a more systematic approach, including demand side management, are slow progress in urban and energy reforms and a lack of acquaintance with modern planning tools. International cooperation is incommensurate with the long-term challenge of s ustainable urban development . (author)

  9. New Horizons for Hydrogen: Producing Hydrogen from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    Recent events have reminded us of the critical need to transition from crude oil, coal, and natural gas toward sustainable and domestic sources of energy. One reason is we need to strengthen our economy. In 2008 we saw the price of oil reach a record $93 per barrel. With higher oil prices, growing demand for gasoline, and increasing oil imports, an average of $235 billion per year, has left the United States economy to pay for foreign oil since 2005, or $1.2 trillion between 2005 and 2009. From a consumer perspective, this trend is seen with an average gasoline price of $2.50 per gallon since 2005, compared to an average of $1.60 between 1990 and 2004 (after adjusting for inflation). In addition to economic impacts, continued reliance on fossil fuels increases greenhouse gas emissions that may cause climate change, health impacts from air pollution, and the risk of disasters such as the Deepwater Horizon oil spill. Energy efficiency in the form of more efficient vehicles and buildings can help to reduce some of these impacts. However, over the long term we must shift from fossil resources to sustainable and renewable energy sources.

  10. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    Science.gov (United States)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  11. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  12. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  13. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    Science.gov (United States)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  14. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  15. New impetus to the economy through renewable energy sources

    International Nuclear Information System (INIS)

    Scheer, H.

    1997-01-01

    The paper shows that the renewable energy sources offer a unique chance: to replace the 'deus ex machina' philosophy by the 'deus ex sole' approach. The reasons why the energy industry refuses to consider exploitation of renewable energy sources are quite obvious. Any deep-cutting change in energy policy priorities would imply likewise deep cuts in the utilities' returns from investments made for existing, conventional power generation systems and transmission infrastructure, which would entail losses in a branch of industry never seen before. It is high time, however, to demand a basic switch in policy and to pave the way for solar energy by appropriate political and economic incentives now, as Germany as one of the highly industrialised countries must not turn a blind eye to its responsability for the global environment. Even if there were not the risk of a global environmental crisis as a consequence of current resource squandering, good economic reasoning and a sense of responsability for the developing economies of the world be reason enough to alter the energy policy approach without hesitation. (orig./CB) [de

  16. The Design of a Renewable Hydrogen Fuel Infrastructure for London

    International Nuclear Information System (INIS)

    Parissis, O.; Bauen, A.

    2006-01-01

    The development of a least cost hydrogen infrastructure is key to the introduction of hydrogen fuel in road transport. This paper presents a generic framework for modelling the development of a renewable hydrogen infrastructure that can be applied to different cases and geographical regions. The model was designed by means of mixed integer linear programming and developed in MATLAB. It was applied to the case of London aiming to examine the possibilities of developing a renewable hydrogen infrastructure within a 50 years time horizon. The results presented here are preliminary results from a study looking at the least cost solutions to supplying hydrogen produced exclusively from renewable energy resources to large urban centres. (authors)

  17. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  18. Hydrogen from renewable sources. Current and future constraints

    International Nuclear Information System (INIS)

    Falchetta, M.; Galli, S.

    2001-01-01

    Using renewable energy sources to produce hydrogen as an energy vector could assure a fully sustainable renewable energy system with zero emissions. Many conversion technologies (in particular water electrolysis) are already available and proven, but are still far from being economically competitive [it

  19. System-level energy efficiency is the greatest barrier to development of the hydrogen economy

    International Nuclear Information System (INIS)

    Page, Shannon; Krumdieck, Susan

    2009-01-01

    Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.

  20. The hydrogen economy- A debate on the merits

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2007-01-01

    Full Text Available stream_source_info van Vuuren_2007.pdf.txt stream_content_type text/plain stream_size 5193 Content-Encoding UTF-8 stream_name van Vuuren_2007.pdf.txt Content-Type text/plain; charset=UTF-8 The Hydrogen Economy A Debate... cheapest alternative. • The Hydrogen Economy or its alternative will only really take off when cheap coal production begins to peak Slide 10 © CSIR 2006 www.csir.co.za Global Warming • The risk is real, but the debate...

  1. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoff Dutton; Abigail Bristow; Matthew Page; Charlotte Kelly; Jim Watson; Alison Tetteh [CCLRC Rutherford Appleton Laboratory, Didcot (United Kingdom). Energy Research Unit (ERU)

    2005-01-15

    The potential contribution and viability of the hydrogen energy economy towards reducing UK carbon dioxide emissions in the time horizon to 2050 has been assessed using a quantitative model of the UK energy system in the context of a set of diverse socio-economic scenarios. It is argued that different sets of prevailing circumstances are likely to result in very different opportunities for hydrogen and hence very different transition pathways and ultimate penetration levels. The decision on whether to strategically encourage a transition to the hydrogen economy and the ultimate environmental benefits of such a transformation will depend on the outcome of a number of important political and social decisions. These include the acceptability of large scale carbon dioxide sequestration (hydrogen derived from fossil fuels), decisions about land-use (hydrogen from biomass), a possible doubling (or more) of the current electricity production capacity with a high penetration of renewable electricity (hydrogen from electrolysis of water), and/or the public acceptability of a large scale nuclear renaissance (hydrogen from electrolysis of water or from thermo-chemical cycles). Any rapid transition to a fully developed hydrogen economy would require a contribution from at least some and possibly all of these sources. Such a transition could result in a marked decrease in carbon dioxide emissions over the long term, but might even result in increased emissions within the shorter term (due to the initial use of hydrogen derived from fossil fuels without carbon dioxide sequestration or from the bulk grid electricity supply resulting in increased load factors and lifetimes of old fossil-fired power plant to meet the increased overall demand). 47 refs., 45 figs., 19 tabs., 3 apps.

  2. Role of a natural gas utility in the hydrogen economy

    International Nuclear Information System (INIS)

    Bayko, J.

    2004-01-01

    'Full text:' Enbridge Gas Distribution is the largest natural gas distribution company in Canada at about 1.7 million residential, commercial and industrial customers. Enbridge will speak to the role of a natural gas utility in the hydrogen economy, and outline the benefits of hydrogen production from natural gas reformation for both stationary and mobile applications. Hydrocarbon reformation will act at least as a bridge until a more fully developed hydrogen economy infrastructure is developed. Reformation allows immediate leveraging of the reliability of vast existing natural gas distribution systems, and a reduced need for on-site hydrogen storage. Natural gas powered fuel cells provide improved emissions over traditional internal combustion engines, and in the stationary market provide smarter use of resources through the higher efficiencies of cogeneration (the capture and use of otherwise waste heat). (author)

  3. Renewable energy and macroeconomic efficiency of OECD and non-OECD economies

    International Nuclear Information System (INIS)

    Chien, Taichen; Hu, Jin-Li

    2007-01-01

    This article analyzes the effects of renewable energy on the technical efficiency of 45 economies during the 2001-2002 period through data envelopment analysis (DEA). In our DEA model, labor, capital stock, and energy consumption are the three inputs and real GDP is the single output. Increasing the use of renewable energy improves an economy's technical efficiency. Conversely, increasing the input of traditional energy decreases technical efficiency. Compared to non-OECD economies, OECD economies have higher technical efficiency and a higher share of geothermal, solar, tide, and wind fuels in renewable energy. However, non-OECD economies have a higher share of renewable energy in their total energy supply than OECD economies

  4. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  5. Is hydrogen economy dead and buried?

    International Nuclear Information System (INIS)

    Bento, N.

    2010-01-01

    This article focuses on hydrogen technology and fuel cells, in particular on their mobile applications. The difficulty in introducing hydrogen and fuel cells onto the market stems from the fact that these technologies do not constitute incremental innovation, such as biofuels or hybrid cars, but a real technological breakthrough. Currently, auto-makers are more active in the promotion of such technology than oil companies. As well as this, manufacturers of fuel cells are trying to accelerate their entry onto the market, in order to limit their period of losses. Finally, public R and D programs continue, and public-private partnerships are being established with a view to financing facilities in California, Japan and Germany. (authors)

  6. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  7. Develop Improved Materials to Support the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  8. A hydrogen economy - an answer to future energy problems

    International Nuclear Information System (INIS)

    Seifritz, W.

    1975-01-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems. (Auth.)

  9. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  10. Modelling Renewable Energy Economy in Ghana with Autometrics

    OpenAIRE

    Ackah, Ishmael; Asomani, Mcomari

    2015-01-01

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana’s energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestri...

  11. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  12. A renewable energy and hydrogen scenario for northern Europe

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2008-01-01

    renewable energy supply system is demonstrated with the use of the seasonal reservoir-based hydrocomponents in the northern parts of the region. The outcome of the competition between biofuels and hydrogen in the transportation sector is dependent on the development of viable fuel cells and on efficient......A scenario based entirely on renewable energy with possible use of hydrogen as an energy carrier is constructed for a group of North European countries. Temporal simulation of the demand-supply matching is carried out for various system configurations. The role of hydrogen technologies for energy...... of energy trade between the countries, due to the different endowments of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources, such as wind and solar, can derive from exchange of power. The establishment of a smoothly functioning...

  13. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  14. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  15. The production of hydrogen fuel from renewable sources and its role in grid operations

    International Nuclear Information System (INIS)

    Barton, John; Gammon, Rupert

    2010-01-01

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  16. The production of hydrogen fuel from renewable sources and its role in grid operations

    Science.gov (United States)

    Barton, John; Gammon, Rupert

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  17. Modelling renewable energy economy in Ghana with autometrics

    International Nuclear Information System (INIS)

    Ackah, Ishmael; Asomani, Mcomari

    2015-01-01

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  18. Modelling renewable energy economy in Ghana with autometrics

    Energy Technology Data Exchange (ETDEWEB)

    Ackah, Ishmael; Asomani, Mcomari [Africa Centre for Energy Policy, Accra (Ghana); Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana)

    2015-04-15

    Renewable energy consumption has been identified as a potential solution to the intermittent power supply in Ghana. Recently, a Renewable Energy Act has been passed which has a target of 10% of renewable energy component in Ghana's energy mix by 2020. Whilst effort is been made to enhance supply through feed in tariffs, education and tax reduction on renewable energy related equipment, there is the need to understand the drivers of renewable energy demand. In this study, the general unrestricted model through Autometrics is used to estimate the determinants of renewable energy demand in Ghana. The results indicate that both economic factors and non-economic affect the demand for renewable energy. In addition, the underlying energy demand trend exhibits energy using behaviour. The study recommends that economic factors such as consumer subsidies should be considered when promoting renewable energy demand.

  19. New road map to hydrogen economy in Japan

    International Nuclear Information System (INIS)

    Fukuda, K.

    2004-01-01

    Reducing carbon dioxide emission and enhancing energy security are the most critical energy issues for construction of future energy systems. The hydrogen energy system is widely accepted as one of the most promising system options for solving such problems. Ministry of Economy, Trade and Industry(METI) of Japanese Government made public its revised introduction scenario of fuel cell vehicles(FCVs) and stationary fuel cells with a time frame of 2005 to 2030 in March, 2004. The original scenario was published in August, 2001 with the time frame of 2005 to 2020. The revised scenario could substantially be considered as New Road Map to Hydrogen Economy in Japan. In this paper the revised scenario will be introduced together with supporting data provided by the author. (author)

  20. The National Center For Hydrogen And Fuel Cells. Jump-starting the hydrogen economy through research

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Varlam, Mihai; Carcadea, Elena

    2010-01-01

    Full text: The research, design and implementation of hydrogen-based economy must consider each of the segments of the hydrogen energy system - production, supply, storage, conversion. The National Center for Hydrogen and Fuel Cells has the experience, expertise, facilities and instrumentation necessary to have a key role in developing any aspect of hydrogen-based economy, aiming to integrate technologies for producing and using hydrogen as an 'energy vector'. This paper presents a simulation of the applied 'learning curve' concept, NCHFC being the key element of R and D in the field in comparing the costs involved. It also presents the short and medium term research program of NCHFC, the main research and development directions being specified. (authors)

  1. IEA Hydrogen Implementing Agreement's Second Generation R and D and the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, N.; Garcia-Conde, A. G.; Riis, T. U.; Luzzi, A.; Valladares, M. R. de

    2005-07-01

    Since its creation by the International Energy Agency in the late 1970's, the IEA Hydrogen Implementing Agreement (HIA) has been at the forefront of collaborative international hydrogen research and development (R and D) (http://www.ieahia.org. ) The collective body of HIA hydrogen R and D will contribute to definition of the hydrogen economy. The five-year [2004-2009) mission of the IEA HIA is to advance the adoption of a Hydrogen Economy through strategic implementation of collaborative R and D and outreach programs that address key issues and barriers. The three goals for the Second Generation HIA are: Advancement of science and technology via pre-commercial collaborative RD and D programs; Assessment of market environment, including the non-energy sector; and Implementation of outreach program, aimed at community acceptance and support. The HIA launched its Second Generation of hydrogen R and D in the latter part of 2004. The HIA's anniversary report: In Pursuit of the Future: 25 Years of IEA Research towards the realization of Hydrogen Energy Systems (http://ieahia.org/pdfs/IEA_AnniversaryReport_HIA.pdf) chronicles its contributions to hydrogen R and D. As the hydrogen economy takes shape, the HIA is pleased to share highlights of its R and D history together with progress on planned activities and its six current annexes, listed below: Task 15 Photobiological Production of Hydrogen Task 16 Hydrogen from Carbon-Containing Materials Task 17 Solid and Liquid Storage Task 18 Integrated Systems Evaluation Task 19 Safety Task 20 Hydrogen from Waterphotolysis Planned successor annexes in storage and photobiological hydrogen production will also be discussed, along with a task on high temperature hydrogen production that is now in the definition phase. Over 250 experts from the sixteen member HIA countries and the European Union contribute to this portfolio of cutting edge hydrogen R and D and analysis activities. Several other countries are expected to

  2. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  3. Hydrogen: Its Future Role in the Nation's Energy Economy.

    Science.gov (United States)

    Winsche, W E; Hoffman, K C; Salzano, F J

    1973-06-29

    In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by

  4. Role of local governments in promoting renewable energy businesses: a contribution to the green urban economy

    NARCIS (Netherlands)

    Mans, U.; Meerow, S.

    2012-01-01

    Although policy-makers and entrepreneurs across the world are increasingly talking about the green economy, much of this debate still centers on the state of the global economy at the nation-state level. The role of renewable energy sourcing remains limited, while dependence on fossil fuels remains

  5. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  6. Frontiers, Opportunities and Challenges for a Hydrogen Economy

    Science.gov (United States)

    Turner, John

    2015-03-01

    Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.

  7. Renewable energy and low carbon economy transition in India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Fujino, Junichi

    2010-01-01

    that aligns India’s emissions to an optimal 450 ppmv CO2-eq. stabilization global response. The second emissions pathway assumes an underlying sustainable development pattern. A low carbon future will be good for renewable energy under both the development pathways, though the share of renewable energy...

  8. Energy policy and economy of renewable energy sources

    International Nuclear Information System (INIS)

    Bohoczky, F.

    1999-01-01

    Complete text of publication follows. The potential and expected economic impact of various forms of renewable energy are discussed briefly some figures are presented of the expected output of various forms of renewable. Economic and environmental benefits are stressed. (R.P.)

  9. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  10. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  11. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  12. Nunavut : Canada's emerging hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Goodings, C.R. [Nunavut Environmental Ltd., Bowen Island, BC (Canada)

    2000-05-01

    This power point presentation highlighted the opportunity for developing a hydrogen economy in Nunavut given the new political, social, economical and geographical conditions. The population of Nunavut territory consists of 85 per cent Inuit who have been given provincial like control over the 1.9 million sq km land claim. One of the challenge facing the government is to lessen Nunavut's dependence on imported oil for all energy needs. Average energy costs are currently 70 cents per kWh. The government subsidizes 75 per cent of all Nunavut's energy costs. The author claims that an energy system based on hydrogen is the key to developing Nunavut's power since it would create local employment and keep energy dollars in the community. For example, the Cambridge Bay Wind/Hydrogen Pilot Project was initiated to make use of hydrogen produced by wind power for electric power generation and for fuel for taxis. The system could be equally effective in Baker Lake which currently has three 720 W diesel generating units providing a maximum load of 1,127 kW. The average wind speed in the area is 7.6 m/s at a height of 25 meters. A simple graph illustrating the control strategy for wind-hydrogen fuel cell system was also included with this presentation. 29 figs.

  13. Power to gas. The final breakthrough for the hydrogen economy?

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Goldstein, Raphael [Germany Trade and Invest (GTAI), Paris (France); Rastetter, Aline [Alphea Hydrogene, Forbach (France)

    2013-04-01

    In Germany more than 20% of the energy mix is made up of renewable energy and its share is rapidly increasing. The federal government expects renewables to account for 35% of Germany's electricity consumption by 2020, 50% by 2030 and 80% by 2050. According to the German Energy Agency, multi-billion euro investments in energy storage are expected by 2020 in order to reach these goals. The growth of this fluctuating energy supply has created demand for innovative storage options in Germany and it is accelerating the development of technologies in this field. Along with batteries and smart grids, hydrogen is expected to be one of the lead technologies. 2010 a commercialization roadmap for wind hydrogen was set up by the two northern federal states of Hamburg and Schleswig-Holstein with the goal of utilizing surplus wind power for the electrolytic production of hydrogen. With the creation of the 'performing energy initiative', 2011, Brandenburg and Lower Saxony joined this undertaking. The aim of this initiative is to set up demonstration projects in order to develop and optimize wind-hydrogen hybrid systems and prepare their commercialization for the time after 2020. Beside the conversion of hydrogen into electricity and fuel for cars, further markets like raw material for the chemical, petrochemical, metallurgy and food industry are going to be addressed. Considering the fact there are over 40 caves currently used for natural gas storage with a total volume of 23.5 billion cubic meters and 400 000 km gas grid available in Germany, the German Technical and Scientific Association for Gas and Water sees opportunities for hydrogen to be fed into the existing natural gas grid network. The name of this concept is power-to-gas. According to the current DVGW-Standards natural gas in Germany can contain up to 5% hydrogen. The GERG, European Group on the Gas Research sees potential to increase this amount up to 6% to 20%. Power-to-gas could serve both for fuel and for the

  14. Feasibility of hydrogen from renewable energy in the Arctic

    International Nuclear Information System (INIS)

    Chauhan, B.

    2004-01-01

    'Full text:' There is an abundance of renewable resources in the Canadian Arctic. Despite that diesel is still the conventional source used by homes and businesses for their electrical and space heating needs. Electrolysis of water to produce hydrogen using renewable resources is under investigation. A techno-economic feasibility has been conducted for hybrid systems including wind turbine, photovoltaic system, electrolyser and fuel cells. Different scenarios have been considered for meeting the needs of a small, remote community in the Arctic. Results will be presented indicating the most cost-effective Wind-PV-Electrolyser-Fuel Cell system for combined heat and power. (author)

  15. Renewable Energy Sources - Technologies and Development of the Economy

    International Nuclear Information System (INIS)

    Car, S.

    2010-01-01

    The usage of renewable energy sources is a substitute for usage of fossil fuels, whose quantities are limited, and it represents an essential contribution to the reduction of greenhouse gases; at the same time it has a great economic significance for the development of new industries and creation of new jobs. To speed up gradual transition from fossil to renewable sources, governments of all EU member states harmonise their legislations and subordinate regulations promoting investments in usage of renewable sources and thus creating opportunities for new jobs especially in the production of plants and equipment for utilisation of wind power, solar energy, small hydro power plants, biomass and other kinds of renewable sources. In the last 10 years Croatia has adopted a number of acts and regulations that also stimulate investors to utilise renewable sources, and the source of such subsidies is a higher price of electricity paid by all the consumers. On the other hand, the development of domestic industry and gaining references necessary for gaining new contracts are very difficult because of stiff international competition and foreign sources of finance, which often require purchase of foreign equipment as a condition for contract award. In such conditions the utilisation of renewable sources does not contribute either to economic development or creating new jobs in Croatia, but in the countries in which such equipment is produced.(author).

  16. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  17. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  18. Renewable Hydrogen Potential from Biogas in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  19. Potential of producing renewable hydrogen from livestock animal waste. Paper no. IGEC-1-143

    International Nuclear Information System (INIS)

    Chang, F.

    2005-01-01

    Hydrogen economy and fuel cell technology have become increasingly recognized as means for maintaining a sustainable energy supply as well as a sustainable environment. Simultaneously, solutions are being sought to effectively manage the animal wastes from livestock farming of cattle, cow, hog, and poultry to ensure an environmentally sustainable method of food production. This discussion examines the potential of producing hydrogen from livestock waste on a scale that can effectively solve a waste management problem for the livestock industry and provide significant quantities of renewable hydrogen to the clean energy industry. The green energy derived from animal waste is considered to be carbon-neutral because animal feed is largely grown from photosynthesis of carbon dioxide. Electricity and heat thus generated will offset those generated from fossil fuels and can be rewarded with greenhouse gas emission reduction credits. Two groups of well proven technologies: biochemical processes such as anaerobic digestion (AD), and thermochemical processes such as gasification are considered in this paper. A theoretical analysis of the potential of reforming the biogas and syngas from these reactions has been conducted using mathematical models of AD, gasification, steam reforming and water-gas shift reactions, and the results indicate that significant quantities of renewable hydrogen can be generated to fuel clean energy technologies such as the fuel cell. Practical considerations are presented to complement the theoretical analysis and future research directions are also discussed. (author)

  20. Solar Hydrogen Energy Systems Science and Technology for the Hydrogen Economy

    CERN Document Server

    Zini, Gabriele

    2012-01-01

    It is just a matter of time when fossil fuels will become unavailable or uneconomical to retrieve. On top of that, their environmental impact is already too severe. Renewable energy sources can be considered as the most important substitute to fossil energy, since they are inexhaustible and have a very low, if none, impact on the environment. Still, their unevenness and unpredictability are drawbacks that must be dealt with in order to guarantee a reliable and steady energy supply to the final user. Hydrogen can be the answer to these problems. This book presents the readers with the modeling, functioning and implementation of solar hydrogen energy systems, which efficiently combine different technologies to convert, store and use renewable energy. Sources like solar photovoltaic or wind, technologies like electrolysis, fuel cells, traditional and advanced hydrogen storage are discussed and evaluated together with system management and output performance. Examples are also given to show how these systems are ...

  1. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  2. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  3. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  4. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  5. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  6. Sustainable growth and renewable resources in the global economy

    Energy Technology Data Exchange (ETDEWEB)

    Van der Ploeg, Frederick; Ligthart, Jenny E. [University of Amsterdam, Tinbergen Institute, Amsterdam (Netherlands)

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs.

  7. Sustainable growth and renewable resources in the global economy

    International Nuclear Information System (INIS)

    Van der Ploeg, Frederick; Ligthart, Jenny E.

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs

  8. Why do some emerging economies proactively accelerate the adoption of renewable energy?

    International Nuclear Information System (INIS)

    Salim, Ruhul A.; Rafiq, Shuddhasattwa

    2012-01-01

    This article analyses the determinants of renewable energy consumption in a panel of six major emerging economies, namely Brazil, China, India, Indonesia, Philippines and Turkey that are proactively accelerating the adoption of renewable energy. Using Fully modified ordinary least square (FMOLS), Dynamic ordinary least square (DOLS), and Granger causality methods this paper finds that in the long-run, renewable energy consumption is significantly determined by income and pollutant emission in Brazil, China, India and Indonesia while mainly by income in Philippines and Turkey. Causal link between renewable energy and income; and between renewable energy and pollutant emission are found to be bidirectional in the short-run. These results suggest that the appropriateness of the efforts undertaken by emerging countries to reduce the carbon intensity by increasing the energy efficiency and substantially increasing the share of renewable in the overall energy mix. - Highlights: ► Fully modified ordinary least square, dynamic ordinary least square, and Granger causality methods are used. ► Income and pollutant emission determine renewable energy consumption in Brazil, China, India and Indonesia. ► While income alone determines renewable energy consumption in Philippines and Turkey. ► Bi-directional causality runs between renewable energy and income and between renewable energy and pollutant emission.

  9. Transition towards a hydrogen economy: infrastructures and technical change

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The double constraint of climate change and increasing scarcity of oil requires that we consider alternative energies for the medium term. This thesis focuses on the development of a hydrogen economy, which is conditional on the existence of an infrastructure for the distribution of the new fuel and the readiness of fuel cells. The main idea is that the state can play a central role in both infrastructure implementation and preparation of fuel cells technology. The thesis begins with a techno-economic analysis of the hydrogen-energy chain, which highlights the difficulty of setting up the infrastructure. The study of the development of electricity and gas networks in the past provides the empirical basis supporting the hypothesis that government can play an important role to consolidate the diffusion of socio-technical networks. In addition, private projects of stations may be justified by early-move benefits, although their financial viability depends on the demand for hydrogen which is in turn dependent on the performance of the fuel cell vehicle. The introduction of radical innovations, such as fuel cell, has been made more difficult by the domination of conventional technologies. This assertion is particularly true in the transport sector which was progressively locked into fossil fuels by a process of technological and institutional co-evolution driven by increasing returns of scale. Hence, fuel cells may primarily diffuse through the accumulation of niches where the innovation is closer to commercialization. These niches may be located in portable applications segment. Investments in research and demonstration are still necessary in order to reduce costs and increase performances of fuel cells. Using a simple model of multi-technological diffusion, we analyze the competition between the hydrogen fuel cell vehicle and the plug-in hybrid car for the automotive market. We show that an early entry of the latter may block the arrival of hydrogen in the market

  10. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  11. Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy

    International Nuclear Information System (INIS)

    Taljan, Gregor; Fowler, Michael; Canizares, Claudio; Verbic, Gregor

    2008-01-01

    A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a hydrogen economy and competitive electricity markets. The simulation of the operation of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities. (author)

  12. Securing renewable resource supplies for changing market demands in a bio-based economy

    NARCIS (Netherlands)

    Dam, van J.E.G.; Klerk-Engels, de B.; Struik, P.C.; Rabbinge, R.

    2005-01-01

    Establishment of a bio-based economy has been recognised as one of the key issues for sustainable development For future developments renewable resources will play a key role as CO2 neutral raw material for sustainable industrial production to curb depletion of fossil resources. Options to fully

  13. A practicable way towards a renewable energy economy

    International Nuclear Information System (INIS)

    Mueller, C.

    1992-01-01

    The intensive use of oil, natural gas, coal and nuclear power destructs by pollutant accumulations our bases of life. With renewable energy sources on a decentrealized base a natural cycle can be used without devastating whole areas. After a great number of unfortunately uncoordinated attempts this statement has often enough been proved. Now the basis for a broad use of the necessary small-scale equipment has to be created. With the political decision to introduce an automatic trade system for electric power and rail taxis we are able to reduce pollutant emissions to a degree which is compatible with the environment. This gives an enormous economic impetus and is thus employment-creating. With mass production the necessary small-scale equipment will become cheaper than the currently used large-scale equipment. (orig.) [de

  14. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  15. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  16. The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest in Green Technologies?

    Directory of Open Access Journals (Sweden)

    Antonio Angelo Romano

    2011-01-01

    Full Text Available The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footprint, decreasing the CO2 intensity. Based on the estimation results, we think that energy sustainability passes through the use of renewable resources that can complement the nuclear technology on condition that both exceed their limits.

  17. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    Science.gov (United States)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  18. Hydrogen, a bridge between mobility and distributed generation. Some consideration towards the hydrogen economy

    International Nuclear Information System (INIS)

    Valentino Romeri

    2006-01-01

    In this paper were analysed the most recent energy initiatives started by some national and international institution, with particular focus on hydrogen and fuel cell. It were also overviewed the national road-maps towards the hydrogen economy. In 2004, based on the most authoritative available data regarding future FCVs penetration it was observed that, if vehicle power-generation system fuel cell based becomes more sophisticated, the role of the vehicles within the power grid might change. Fuel Cell Vehicle (FVC) could become a new power-generation source, supplying electricity to home and to the grid. Also, it was defined the dimension of this new kind of power generation source in different areas and it was compared with the related power grid installed generation capacity and it was found that this new source could be a multiple of the foreseeable installed capacity in year 2030. In the present work it was revised the analysis with the most recent scenarios and it was found that the results do not change significantly. Unfortunately this kind of analysis is still not considered in the energy debate or in the road-maps towards the hydrogen economy. (author)

  19. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  20. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    International Nuclear Information System (INIS)

    Lee, S.

    2009-01-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities

  1. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.

  2. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  3. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    International Nuclear Information System (INIS)

    Jeremy Rifkin

    2006-01-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the 'forever fuel'. It never runs

  4. The Hydrogen Economy Making the Transition to the Third Industrial Revolution and a New Energy Era

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Rifkin

    2006-07-01

    Jeremy Rifkin is the author of the international best seller, The Hydrogen Economy, which has been translated into fourteen languages. It is the most widely read book in the world on the future of renewable energy and the hydrogen economy. In his presentation on 'The Hydrogen Economy', Mr. Rifkin takes us on an eye-opening journey into the next great commercial era in history. He envisions the dawn of a new economy powered by hydrogen that will fundamentally change the nature of our market, political and social institutions, just as coal and steam power did at the beginning of the industrial age. Rifkin observes that we are fast approaching a critical watershed for the fossil-fuel era, with potentially dire consequences for industrial civilization. Experts had been saying that we had another forty or so years of cheap available crude oil left. Now, however, some of the world's leading petroleum geologists are suggesting that global oil production could peak and begin a steep decline much sooner, as early as the second decade of the 21. century. Non-OPEC oil producing countries are already nearing their peak production, leaving most of the remaining reserves in the politically unstable Middle East. Increasing tensions between Islam and the West are likely to further threaten our access to affordable oil. In desperation, the U.S. and other nations could turn to dirtier fossil-fuels, coal, tar sand, and heavy oil, which will only worsen global warming and imperil the earth's already beleaguered ecosystems. Looming oil shortages make industrial life vulnerable to massive disruptions and possibly even collapse. While the fossil-fuel era is entering its sunset century, a new energy regime is being born that has the potential to remake civilization along radical new lines, according to Rifkin. Hydrogen is the most basic and ubiquitous element in the universe. It is the stuff of the stars and of our sun and, when properly harnessed, it is the &apos

  5. The hydrogen economy urgently needs environmentally sustainable hydroelectricity

    International Nuclear Information System (INIS)

    Goodland, R.

    1995-01-01

    Only two sources of energy were said to have the capacity to bridge the transition to fully sustainable and renewable energy, namely natural gas and hydro. The argument was made that because of this advantage, both forms will have to be promoted fast, since the transition to sustainable energy is urgent. In so far as natural gas supplies are concerned, it was estimated that they will last for perhaps the next 50 years, whereas hydroelectric potential is practically unlimited. Developing nations could vastly accelerate their development, reduce poverty and approach sustainability by exporting hydro to industrial countries. Similarly, industrial nations switching from fossil fuels to hydrogen could move up the environmental ranking, and significantly help alleviating global pollution and climate risks. Environmental ranking of new energy sources, world reservoirs of hydroelectric power, environmental and social ranking of hydro sites, the environmental impacts of hydro projects, and the concept of environmental sustainability in hydro reservoirs, were summarized. Greater acceptance of the need for sustainable development by the hydro industry was urged, along with more care in selecting hydro development sites with sustainability as a prime objective. 23 refs., 6 figs

  6. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    Energy Technology Data Exchange (ETDEWEB)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  7. THEN: COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2005-01-01

    The workshop of the title was held on topics; hydrogen system, nuclear and non-nuclear hydrogen production, hydrogen storage and transportation, fuel-cells, hydrogen energy management, hydrogen economy and all subjects related on hydrogen system, consisted of 4 panels by 15 panelists and a comprehensive discussion session. (J.P.N.)

  8. Impacts on the biophysical economy and environment of a transition to 100% renewable electricity in Australia

    International Nuclear Information System (INIS)

    Turner, Graham M.; Elliston, Ben; Diesendorf, Mark

    2013-01-01

    We investigate the impacts on the biophysical economy, employment and environment of a transition scenario to an energy-efficient, 100% renewable electricity (RE) system by 2060, based on wind, solar and biomass technologies, and an introduction of electric vehicles. We employ a CSIRO process-based model of the physical activity of Australia’s economy and environmental resources, the Australian Stocks and Flows Framework. The RE systems are assumed to be manufactured in Australia to identify possible employment benefits. In comparison with the business-as-usual (BAU) scenario, on a national scale, the RE scenario has much lower economy-wide net emissions, remaining below contemporary levels and becoming zero in the electricity sector by 2060. Compared with BAU, the RE scenario also has significantly lower industrial water use, somewhat higher materials use, slightly lower unemployment, lower net foreign debt (relative to a GDP proxy) and, resulting from the growth in electric vehicles, reduced oil imports. The GDP per capita growth, based on the physical stocks of capital and labour, is virtually the same in both scenarios. Hence, from the viewpoint of the biophysical economy, there are no major barriers to implementing policies to facilitate the transition to a 100% renewable electricity system for Australia. - Highlights: ► Simulation of a 100% renewable electricity (RE) system in a process-based model. ► The RE scenario achieves zero GHG emissions in the electricity sector by 2060. ► Consumption of secondary materials is higher and more variable in the RE scenario. ► The RE scenario has lower water use, unemployment, foreign debt and oil imports

  9. Public opinion on renewable energy: The nexus of climate, politics, and economy

    Science.gov (United States)

    Olson-Hazboun, Shawn K.

    extractive industries. I also find pervasive climate skepticism across study sites. These findings indicate the need for broad-based and non-partisan discursive frames for renewable energy. Last, these findings speak to the importance of the 'just transitions' concepts, and the need to incorporate those communities most marginalized by the current system of fossil fuels extraction and production as society moves forward toward a cleaner energy economy.

  10. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  11. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  12. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  13. An economic perspective on experience curves and dynamic economies in renewable energy technologies

    International Nuclear Information System (INIS)

    Papineau, Maya

    2006-01-01

    This paper analyzes dynamic economies in renewable energy technologies. The paper has two contributions. The first is to test the robustness of experience in solar photovoltaic, solar thermal and wind energy to the addition of an explicit time trend, which has been done in experience studies for other industries, but not for renewable energy technologies. Estimation is carried out on the assumption that cumulative capacity, industry production, average firm production, and electricity generation affect experience and thus the fall in price. The second contribution is to test the impact of R and D on price reduction. In general cumulative experience is found to be highly statistically significant when estimated alone, and highly statistically insignificant when time is added to the model. The effect of R and D is small and statistically significant in solar photovoltaic technology and statistically insignificant in solar thermal and wind technologies

  14. The Brazilian strategy for the hydrogen economy; A estrategia brasileira para economia do hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Maiana Brito de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica; Neves Junior, Newton Pimenta

    2008-07-01

    This paper examines the Brazilian strategy in the development of technology related to hydrogen and the fuel cell systems. The Brazilian program and road map in the area are analyzed: the Program on Science, Technology and Innovation for the Hydrogen Economy - Pro H2, former Brazilian Program of the Fuel Cell Systems-ProCaC which was created in 2002 by the Ministry of Science, Technology - MCT, and the Road map for Structuring of the Hydrogen Economy in Brazil, which was created in 2004 by the Ministry of Mines and Energy - MME. (author)

  15. Renewable Energy Development in the Context of Green Economy: the Experience of Kostanay Region (Kazakhstan

    Directory of Open Access Journals (Sweden)

    Alla Anatolyevna Pakina

    2016-12-01

    Full Text Available The world’s best practices of “green” economy principles implementation demonstrate that one of the key criteria in this way is increasing energy efficiency. We have investigated the perspectives of renewable energy use through the case study of the Kostanay region – one of developed regions of Kazakhstan with industrial-agrarian type of the economy. The analysis of the natural conditions revealed that the area has sufficient resources to generate energy through renewable sources. The average annual radiation on the territory of the Kostanay region amounts to 3.55 kWh/mІ per day, and wind resources are also available to produce energy: the average wind speed here is 4-5 m/s, with the maximum wind speed 40 m/s in the southern part of the region. At the same time the biomass resources have the greatest potential as a renewable energy source. Taking into account the share of agricultural areas (92 %, the Kostanay region has a great potential for recycling agricultural production wastes – of both the livestock and crop production – for energy purposes, and such facilities are already in operation in some farms of the region. The assessment of biogas production potential, carried out in the article, showed that it can be considered as the most effective way to reduce fossil fuels consumption and to cover energy demand in the agricultural sector. Development of renewable energy will also contribute to environmental problems solution and raising the living standards of the local population.

  16. Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline - energetic and economic aspects

    International Nuclear Information System (INIS)

    Specht, M.; Staiss, F.; Bandi, A.; Weimer, T.

    1998-01-01

    In this paper, the renewable energy vectors liquid hydrogen (LH 2 ) and methanol generated from atmospheric CO 2 are compared with the conventional crude oil-gasoline system. Both renewable concepts, liquid hydrogen and methanol, lead to a drastic CO 2 reduction compared to the fossil-based system. The comparison between the LH 2 and methanol vector for the transport sector shows nearly the same fuel cost and energy efficiency but strong infrastructure advantages for methanol. (author)

  17. Perspectives of a hydrogen-based energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Czakainski, M.

    1989-06-01

    In view of the depletion of fossil fuel resources, and of their environmental effects, research is going on worldwide to find alternative energy sources. Hydrogen has been raising high hopes in recent years and has made a career as a candidate substitute for fossil fuels. There is hydropower or solar energy for electrolytic production of hydrogen which by a catalytic, environmentally friendly process is re-convertable into water. Experimental facilities exist for testing the hydrogen technology, but it is too early now to give any prognosis on the data of technical maturity and commercial feasibility of the technology. The et team invited some experts for a discussion on the pros and cons of hydrogen technology, and on questions such as siting of installations, infrastructure, and economics. (orig./UA).

  18. Study the feasibility of hydrogen assisted renewable power for off-grid communities

    International Nuclear Information System (INIS)

    Wu, S.H.; Fleetwood, M.; Roberston, R.; Nielsen, N.

    2004-01-01

    Most Renewable energy sources lack the controllability and availability of conventional fossil fuel-based energy sources and therefore cannot meet load requirements of a community without a backup or storage system. The advances of hydrogen technologies enable these renewable energy options to supply power to remote communities relying on independent sources of electrical and other energy. The hydrogen assisted renewable power (HARP) concept promises to make renewable energy more practical and mainstream through the use of hydrogen based electrical generation systems. The study herein is the first of a multiphase project to investigate the benefits of HARP as an environmentally friendly replacement for diesel in the supply of electricity to off-grid communities and analyse its feasibility and suitability as a back-up power supply. A small-scale pilot project was selected and this study assesses the major elements of a plant required to integrate electrical generation system, hydrogen storage and hydrogen generation into a renewable energy generation system. Based on the available renewable energy profiles, a simulation model was developed to assist in selecting, integrating, and evaluating various configurations and operational scenarios. This paper describes the components of the proposed HARP system as well as its cost, benefits and opportunities for other applications. (author)

  19. A singular facility scientific technological to promote the hydrogen economy

    International Nuclear Information System (INIS)

    Montes, M.

    2010-01-01

    Declining fossil fuel reserves raises concerns about new energy resources that will lead to energy systems based on distributed generation and active distribution systems that require new energy storage systems. Hydrogen is a good candidate to operate as storage and as energy carrier that still needs scientific and technological breakthroughs to facilitate their integration into this new energy culture. Spain has supported numerous public-private cooperative efforts that have culminated in the creation of the National Center for Hydrogen Technology Experiment and Fuel Cells. (Author)

  20. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  1. Assessment of primary impacts of a hydrogen economy in New Zealand using UniSyD

    International Nuclear Information System (INIS)

    Leaver, Jonathan D.; Gillingham, Kenneth T.; Leaver, Luke H.T.

    2009-01-01

    Small economies such as New Zealand risk significant economic hardship without careful evaluation of alternatives to petroleum-based transportation due to the adverse effects of climate change and depleting international oil reserves. This paper uses an integrated multi-regional multi-fleet system dynamics model of New Zealand's energy economy to assess the primary impacts of alternative vehicle fleet technologies. Results suggest that hydrogen fuelled HICEs and FCVs may offer significantly greater economic savings than BEVs due to a much lower capital cost. Under our Base Case, 65% of the light fleet are HICEs and FCVs and 5% BEVs. Excluding hydrogen vehicles from the vehicle fleet can result in an average annual cost of US$562 per vehicle between 2015 and 2050. Co-production of hydrogen and electricity using coal gasification with carbon capture and storage is the dominant long term hydrogen production technology. (author)

  2. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  3. Brazilian program on science, technology and innovation for hydrogen economy - ProH{sub 2}; Programa brasileiro de ciencia, tecnologia e inovacao para a economia do hidrogenio - ProH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Duarte Filho, Adriano

    2006-07-01

    This paper presents in a generic way the Brazilian Program of Science, Technology and Innovation for the economy of hydrogen - ProH{sub 2}, comprehending the following global objectives: consolidation of a brazilian technology of the fuel cell and hydrogen production from renewable energies, in particular the ethanol; technological and scientific innovation resulting in the cost reduction according to the brazilian reality; obtention of stationary power modules with the greatest possible nationalization index; clean and distributed energy generation.

  4. Perspectives for generation companies and the emerging hydrogen economy

    International Nuclear Information System (INIS)

    Cowan, N.

    2004-01-01

    'Full text:' Canadian and global power generation supply is evolving towards inclusion of emerging types of technologies for electricity production. Although much of Canadian electricity supply will continue to be derived from traditional sources in the foreseeable future the band for capital cost competitiveness is narrowing between the once clear-cut technological winners and emerging generation technologies creating opportunity for new technologies to commercialize in the market. OPG has been active in the development and commercialization of stationary high temperature fuel cells for several years. The major activity has been a partnering initiative to engineer and implement Solid Oxide Fuel Cell (SOFC) demonstration installations. The relationship with SOFC developer Siemens-Westinghouse out of Pittsburgh has allowed OPG to maintain an ongoing involvement in the emerging fuel cell industry, while exploring the broader implications of this technology for the power industry business model. OPG is part of the 'Hydrogen Village Partnership'. The Hydrogen Village will demonstrate and deploy various hydrogen production, storage and delivery techniques as well as applications of hydrogen such as fuel cells for stationary, transportation (mobile) and portable applications. OPG maintains an active role in the demonstration of emerging technologies for a number of reasons: 1) advancing commercialization of emerging generation technologies, 2) 'hands-on' participation in the deployment of such technology in order to gather and apply market knowledge 3) Involvement in developing technology as a part of commitment to sustainable development. (author)

  5. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  6. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  7. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  8. Chemical energy conversion as enabling factor to move to a renewable energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Abate, Salvatore; Centi, Gabriele; Perathoner, Siglinda [Mesina Univ. (Italy). Section Industrial Chemistry; ERIC aisbl and INSTM/CASPE, Messina (Italy)

    2015-07-01

    The role of chemical energy storage and solar fuels as key elements for the sustainable chemical and energy production is discussed in this concept paper. It is shown how chemical energy storage, with the development of drop-in carbon-based solar fuels, will play a central role in the future low-carbon economy, but it is necessary to consider its out-of-the-grid use, rather than being limited to be a tool for smart grids. Related aspects discussed are the possibility to: (i) enable a system of trading renewable energy on a world scale (out-of-the-grid), including the possibility to exploit actually unused remote resources, (ii) develop a solar-driven and low-carbon chemical production, which reduces the use of fossil fuels and (iii) create a distributed energy production, going beyond the actual limitations and dependence on the grid.

  9. Nevada`s role in the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Vaeth, T. [Dept. of Energy, Las Vegas, NV (United States)

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  10. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  11. Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role

    NARCIS (Netherlands)

    Pfau, S.F.; Hagens, J.E.; Dankbaar, B.

    2017-01-01

    BACKGROUND - Biogas plays a major role in two policy domains: the renewable energy domain and the bio-economy domain. The purpose of this paper is to examine the relationship of current biogas practices with the two policy domains and to identify how biogas can contribute to both. METHODS - The

  12. The significance of renewable energy use for economic output and environmental protection: evidence from the Next 11 developing economies.

    Science.gov (United States)

    Paramati, Sudharshan Reddy; Sinha, Avik; Dogan, Eyup

    2017-05-01

    Increasing economic activities in developing economies raise demand for energy mainly sourced from conventional sources. The consumption of more conventional energy will have a significant negative impact on the environment. Therefore, attention of policy makers has recently shifted towards the promotion of renewable energy generation and uses across economic activities to ensure low carbon economy. Given the recent scenario, in this paper, we aim to examine the role of renewable energy consumption on the economic output and CO 2 emissions of the next fastest developing economies of the world. The study employs several robust panel econometric models by using annual data from 1990 to 2012. Empirical findings confirm the significant long-run association among the variables. Similarly, results show that renewable energy consumption positively contributes to economic output and has an adverse effect on CO 2 emissions. Given our findings, we suggest policy makers of those economies to initiate further effective policies to promote more renewable energy generation and uses across economic activities to ensure sustainable economic development.

  13. A hydrogen economy: an answer to future energy problems. [Overview of 1974 THEME Conference

    Energy Technology Data Exchange (ETDEWEB)

    Seifritz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1975-06-01

    ''The Theme was THEME''. This was the headline of The Hydrogen Economy Miami Energy Conference which was the first international conference of this type and which took place in Miami, March 18-20, 1974. For the first time, about 700 participants from all over the western world discussed all the ramifications and aspects of a hydrogen based economy. Non-fossil hydrogen, produced from water by either electrolysis or by direct use of process heat from a nuclear source is a clean, all-synthetic, automatically recyclable, and inexhaustible fuel. It may support the World's future energy requirements beyond the present self limited fossil-fuel era. A large number of papers and news were presented on this conference reflecting this effort. The following article is intended to report on the highlights of the conference and to give a survey on the present state of the art in the hydrogen field. Furthermore, the author includes his own ideas and conclusions predominantly by taking into account the trends in the development of future nuclear reactor systems and symbiotic high-temperature-reactor/breeder strategies being the primary energy input of a hydrogen economy and providing a most promising avenue for solving both the World's energy and environmental (entropy) problems.

  14. 'Telling it as it is': typical failings in studies of lay opinion about a Hydrogen Economy

    International Nuclear Information System (INIS)

    Miriam Ricci; Paul Bellaby; Rob Flynn

    2006-01-01

    Realizing a future hydrogen economy is an enormous challenge for scientists, industry and institutional actors. Even if they succeed, acceptance or rejection of changes to current practice by the public could make or break the project. Fortunately there are now several studies on public awareness and perception of hydrogen energy and the technologies associated with it. Our paper presents a brief review of their findings and attempts a critique of their methods and conceptualizations. A future hydrogen economy would be a 'complex socio-technical system' not just a technology. This concept calls for appropriate methodologies, especially the need for improved qualitative research into public awareness and understanding of such complex issues as energy, and the development of a conceptual framework for gauging public attitudes to what might lie in the future. The paper concludes with an overview of fieldwork on these topics conducted by the authors with stakeholders and members of the public in three distinct areas of the UK. (authors)

  15. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  16. Transitioning to a hydrogen economy in New Zealand - An EnergyScape project

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Rob; Clemens, Tony; Gardiner, Alister; Leaver, Jonathan

    2010-09-15

    The project identifies how hydrogen could become a significant contributor to New Zealand's energy system by 2050. Future transport scenarios are modeled with a changing mix of internal combustion engine (ICE), battery electric vehicles (BEV) and fuel cell vehicles (FCV) over the period between the present day and 2050. For scenarios the model takes account of the electricity generation requirements and costs, the resources used, and the renewable content of that electricity generation. With high penetration of FCV, or a mix of FCV and BEV, NZ targets for renewable electricity generation and transport related emission reductions can be achieved.

  17. Renewable Hydrogen for Carbon-Free Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hammond, Steven W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wipke, Keith B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cader, T. [Hewlett Packard Enterprise

    2017-11-28

    NREL, in collaboration with Hewlett Packard Enterprise, has developed a system model for simulating both grid-tied and island microgrid power for hydrogen production and data center operation (assumed at 50 MW, 24 hours a day, 7 days a week).

  18. Production of hydrogen from renewable resources and its effectiveness

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2012-01-01

    Roč. 37, č. 16 (2012), s. 11563-11578 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen production * biological processes * conventional methods Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.548, year: 2012

  19. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  20. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  1. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  2. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  3. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  4. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  5. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea

    International Nuclear Information System (INIS)

    Bae, Jeong Hwan; Cho, Gyeong-Lyeob

    2010-01-01

    Hydrogen is anticipated to become one of the major alternative energy technologies for a sustainable energy system. This study analyzes the dynamic economic impacts of building a hydrogen economy in Korea employing a dynamic Computable General Equilibrium (CGE) model. As a frontier technology, hydrogen is featured as having a slow diffusion rate due to option value, positive externality, resistance of old technology, and complementary vintages. Without government intervention, hydrogen-derived energy will supply up to 6.5% of final energy demand by 2040. Simulation outcomes show that as price subsidy rates increase by 10%, 20%, and 30%, hydrogen demand will increase by 9.2%, 15.2%, and 37.7%, respectively, of final energy demand by 2040. The output of the transportation sector will increase significantly, while demands for oil and electricity will decline. Demands for coal and LNG will experience little change. Household consumption will decline because of the increase of income taxes. Overall GDP will increase because of the increase in exports and investments. CO 2 emission will decline for medium and high subsidy rate cases, but increase for low subsidy cases. Ultimately, subsidy policy on hydrogen will not be an effective measure for mitigating CO 2 emission in Korea when considering dynamic general equilibrium effects. (author)

  6. Compressor-less Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

    International Nuclear Information System (INIS)

    W Leighty; J Holloway; R Merer; B Somerday; C San Marchi; G Keith; D White

    2006-01-01

    We assume a transmission-constrained world, where large new wind plants and other renewable energies must pay all transmission costs for delivering their energy to distant markets. We modeled a 1,000 MW (1 GW) (name plate) wind plant in the large wind resource of the North America Great Plains, delivering exclusively hydrogen fuel, via a new gaseous hydrogen (GH2) pipeline, to an urban market at least 300 km distant. All renewable electric energy output would be converted, at the source, to hydrogen, via 100 bar output electrolyzers, directly feeding the GH2 transmission pipeline without costly compressor stations at inlet or at midline. The new GH2 pipeline is an alternative to new electric transmission lines. We investigate whether the pipeline would provide valuable energy storage. We present a simple model by which we estimate the cost of wind-source hydrogen fuel delivered to the distant city gate in year 2010, at GW scale. Ammonia, synthetic hydrocarbons, and other substances may also be attractive renewable-source energy carriers, storage media, and fuels; they are not considered in this paper. (authors)

  7. Migrant labor supply in a booming non-renewable resource economy: Cure and transmission mechanism for de-industrialization?

    Science.gov (United States)

    Nulle, Grant Mark

    This paper challenges the determinism that booming resource economies suffer from de-industrialization, the "Dutch Disease". For several decades, economists have attempted to explain how a sudden surge in mineral and energy extraction affects an economy's output and employment from an aggregate and sectoral perspective. Economic theory shows that a "boom" in mineral and energy production is welfare enhancing to the economy experiencing it. However, the phenomenon also induces inter-sectoral adjustments among non-renewable resource (NRR), traditional traded, and non-traded industries that tend to crowd out traditional export sectors such as agriculture and manufacturing. In turn, this paper asks two fundamental questions: 1) Can the inter-sectoral adjustments wrought by a boom in NRR production be mitigated in the resource-abundant economy experiencing it; 2) Can the inter-sectoral adjustments be exported to a neighboring non-resource economy by movements in migrant labor supply? The theoretical model and empirical estimation approach presented in this paper introduces an endogenous migrant labor supply response to booms in NRR output to test the extent traditional tradable sectors shrink in the NRR-abundant economy during the boom and if such effects are exported to a neighboring jurisdiction. Using data at the U.S. county level, the empirical results show that booming economies experience positive and statistically significant rates of real income and traded sector job growth during the boom, attributable to the influx of migrant labor. By contrast, little evidence is found that non-booming counties adjacent to the booming counties experience declines in income or job growth because of labor supply outflows. Instead, the results suggest the larger the number of potential "donor" counties that can supply labor to the booming economies, the more likely the transmission of booming economy effects, namely evidence of de-industrialization, is diffused across all of the

  8. From water to water, hydrogen as a renewable energy vector for the future

    International Nuclear Information System (INIS)

    Gillet, A.C.

    2000-01-01

    The most important property of hydrogen is that it is the cleanest fuel. Its combustion produces only water and a small amount of NO x . No acid rain, no greenhouse effect, no ozone layer depletion, no particulates aerosols. It seems then ideally suited for the conversion to renewable energy. Hydrogen has now established it self as a clean choice for an environmentally compatible energy system. It can provide a sustainable future for building, industrial and transport sectors of human activities. On average, it has about 20-30% higher combustion efficiency than fossil fuels and can produce electricity directly in fuel cells. In combination with solar PV- and hydro-electrolysis, it is compatible with land area requirements on a worldwide basis. If fossil fuels combustion environmental damage is taken into account, the hydrogen energy system is already cost effective. The question is thus no longer , but, and soon, will hydrogen energy become a practical solution to sustainable energy development. (Author)

  9. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    Science.gov (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  10. Potential Applications of Friction Stir Welding to the Hydrogen Economy. Hydrogen Regional Infrastructure Program In Pennsylvania, Materials Task

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  11. Toward a Low-Carbon Economy : Renewable Energy and Energy Efficiency Portfolio Review

    OpenAIRE

    World Bank

    2013-01-01

    Renewable energy and energy efficiency projects continue to perform strongly in the World Bank Group (WBG) energy portfolio and are increasingly being mainstreamed in the WBG's energy lending. In fiscal 2007 a total of US$1,433 million supported 63 renewable energy and energy efficiency projects in 32 countries. In addition to operational activities, the WBG engages in a variety of economic sector work and technical assistance focused on renewable energy and energy efficiency. This work is an...

  12. Wind energy technology: an option for a renewable clean environment energy. Low impact renewable energy: options for a clean environment and healthy Canadian economy

    International Nuclear Information System (INIS)

    Salmon, J.

    1999-01-01

    As Canada debates ways to address climate change, the country's low-impact renewable energy industries want to ensure that Canadians are provided with all of the options available to them. Accordingly, they have come together to create Options for a Clean Environment and Healthy Canadian Economy. Recognizing there is no 'silver bullet' solution to climate change, this document identifies an important suite of measures that, along with others, will allow Canada to achieve its long-term economic and environmental goals. The measures described in this document represent an investment in Canada's future. If implemented, they will reduce annual greenhouse gas (GHG) emissions by more than 12 million tonnes (Mt) by the year 2010 (roughly 8% of Canada's reduction target), create thousands of new jobs, and reduce health-care costs by millions of dollars each year. The most significant dividends from these measures, however, will occur after 2010 as a result of having set in motion fundamental changes in the attitudes of Canadians and the nature of the Canadian energy market. By 2020, the spin-off actions prompted by these measures will likely have resulted in GHG reductions twice as great as those achieved in 2010. This document highlights the opportunities associated specifically with Canada's low-impact renewable energy resources. These are non-fossil-fuel resources that are replenished through the earth's natural cycles and have a minimal impact on the environment and human health. They include wind, solar, earth energy, run-of-river hydro and sustainable biomass fuels. These resources can replace fossil fuels in a variety of areas, including electricity and space and water heating. Fuel cells, although not a renewable resource in themselves, are a promising technology that in combination with renewables have the potential to deliver versatile low-impact electricity. The document also identifies opportunities associated with the increased use of passive renewable energy

  13. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  14. Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors' strategies

    International Nuclear Information System (INIS)

    Bento, Nuno

    2010-01-01

    The difficulty of introducing hydrogen and fuel cells in the market stems from the fact that they are not an evolutionary innovation such as biofuels or hybrid cars. Instead they create a disruption in technological utilization. The domination of oil technologies sets a socio-economical context favoring actors involved in the current paradigm, and gives less opportunity to alternative fuels to develop and challenge the status quo. If this hypothesis is correct, then companies interested in the hydrogen economy would not become active because of an unstable context or contradictory interests concerning the replacement of the present system. A review of actions and announcements of main actors shows that technology readiness and the absence of infrastructure are the major justifications to delay investments. Some measures are discussed, which could be deployed in order to reduce uncertainties, such as regulation of carbon emissions from cars, technological subvention, and partnerships for infrastructure implementation.

  15. An investment-led approach to analysing the hydrogen energy economy in the UK

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2009-01-01

    The authors propose an alternative, investment-led approach to analysing the potential for the development of hydrogen energy in the UK. The UK economy is relatively sensitive to movements in world fossil fuels markets since the energy sector contributes at least 5% of UK GDP and represents an asset pool of at least pound 230 billion. Much of the ongoing research to assess possible scenarios for the development of alternatives to existing energy systems, including hydrogen energy, in the UK is built around the cost-optimising MARKAL model. The authors believe that this approach offers an incomplete picture of hydrogen energy deployment since it ignores the mechanisms dictating the flow of commercial capital to the sector and they suggest an alternative model based on the risk-adjusted value proposition. Initial analysis shows that valuation differentials already exist between companies in the fossil fuel, utilities and fuel cell sectors and that this might be exploited to the advantage of investors thus affecting the speed of development in hydrogen energy. It should be noted that the following represents work in progress and the authors intend to publish an extended analysis in due course. (author)

  16. The hydrogen economy: a threat or an opportunity for lead-acid batteries?

    Science.gov (United States)

    Rand, D. A. J.; Dell, R. M.

    There is mounting concern over the sustainability of global energy supplies. Among the key drivers are: (i) global warming, ocean surface acidification and air pollution, which imply the need to control and reduce anthropogenic emissions of greenhouse gases, especially emissions from transportation and thermal power stations; (ii) the diminishing reserves of oil and natural gas; (iii) the need for energy security adapted to each country, such as decreasing the dependence on fossil fuel imports (in particular, the vulnerability to volatile oil prices) from regions where there is political or economic instability; (iv) the expected growth in world population with the ever-increasing aspiration for an improved standard-of-living for all, especially in developing and poor nations. Hydrogen is being promoted world-wide as a total panacea for energy problems. As a versatile carrier for storing and transporting energy from any one of a myriad of sources to an electricity generator, it is argued that hydrogen will eventually replace, or at least greatly reduce, the reliance on fossil fuels. Not unexpectedly, the building of a 'hydrogen economy' presents great scientific and technological challenges in production, delivery, storage, conversion, and end-use. In addition, there are many policy, regulatory, economic, financial, investment, environmental and safety questions to be addressed. Notwithstanding these obstacles, it is indeed plausible that hydrogen will become increasingly deployed and will compete with traditional systems of energy storage and supply. Moreover, the case for hydrogen will be greatly strengthened if fuel cells, which are the key enabling technology, become more reliable, more durable, and less expensive. This paper examines the prospects for hydrogen as a universal energy-provider and considers the impact that its introduction might have on the present deployment of lead-acid batteries in mobile, stationary and road transportation applications.

  17. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  18. One million ton of hydrogen is the key piece in the Danish renewable energy puzzle

    DEFF Research Database (Denmark)

    Grandal, Rune Duban; Mathiesen, Brian Vad; Connolly, David

    2013-01-01

    Designing a 100 % renewable energy system (RES) for Denmark, the availability of a sustainable biomass resource potential is found to be a limiting factor. The biomass demand derives from specific needs in the system, i.e. 1) storable fuel for energy for balancing fluctuating power production, 2...... storage, i.e. storing wind power through electrolysis and further reaction of hydrogen to hydrocarbons with carbon feedstock from biomass. This involves biomass gasification and hydrogenation of the syngas or hydrogenation of recycled CO2. The advantage of hydro storage is a superior energy efficiency......) carbon feedstock for materials and chemicals and 3) energy dense fuels for the more demanding branches of the transportation sector such as aviation, ship freight and long distance road transportation. The challenge of balancing electricity over different timeslots comprise a short term balancing...

  19. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  20. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  1. System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a system and method for integrating renewable energy and a fuel cell for the production of electricity and hydrogen, wherein this comprises the use of renewable energy as fluctuating energy source for the production of electricity and also comprises the use of at least one

  2. The Relationship between the Generation of Electricity from Renewable Resources and Unemployment: An Empirical Study on the Egyptian Economy

    Directory of Open Access Journals (Sweden)

    Aliaa Nabil Khodeir

    2016-06-01

    Full Text Available Currently, there is a global trend towards the use of renewable energy resources. This is due to their benefits in terms of economic diversification, job creation, and sustainable development. Given the suffering of the Egyptian economy from the chronic unemployment problem, this paper has adopted the effect of electricity generation from renewable resources on unemployment. It tests the hypothesis which implies an inverse relationship between renewable electricity generation and unemployment rate in Egypt. By using Autoregressive Distributed Lag (ARDL approach to identify the effects in the short and long run during the period (1989-2013, it has been found that the hypothesis was achieved in the long run only. This is due to the fact that renewable energy projects in their establishment stages focus on capital intensity more than labour intensity, but with time both direct and indirect employment effects start to emerge. The econometric results agree in the presence of a significant negative impact of both economic growth and investments on the unemployment rate.

  3. Economy

    OpenAIRE

    Haring, Ben

    2009-01-01

    The economy of ancient Egypt is a difficult area of study due to the lack of preservation of much data (especially quantitative data); it is also a controversial subject on which widely divergent views have been expressed. It is certain, however, that the principal production and revenues of Egyptian society as a whole and of its individual members was agrarian, and as such, dependent on the yearly rising and receding of the Nile. Most agricultural producers were probably self-sufficient tena...

  4. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  5. Renewable Energy Consumption and Agriculture: Evidence for Cointegration and Granger causality for Tunisian Economy

    OpenAIRE

    Ben Jebli, Mehdi; Ben Youssef, Slim

    2015-01-01

    This paper uses the vector error correction model (VECM) and Granger causality tests to investigate short and long-run relationships between per capita carbon dioxide (CO2) emissions, real gross domestic product (GDP), renewable and non-renewable energy consumption, trade openness ratio and agricultural value added (AVA) in Tunisia spanning the period 1980-2011. The Johansen-Juselius test shows that all our considered variables are cointegrated. Short-run Granger causality tests reveal the ex...

  6. Reconnecting the technology characterisation of the hydrogen economy to contexts of consumption

    International Nuclear Information System (INIS)

    Hodson, Mike; Marvin, Simon

    2006-01-01

    This paper addresses a partial but powerful view of the hydrogen economy known as 'technology characterisation' (TC). TC offers particular representations of the supply of hydrogen technologies through 'measuring' the 'state of the art'. This view is seen as an important means of generating political and policy support for technological developments through outlining technical 'possibilities' and 'options' in relation to 'costs'. Through drawing on 10 TC documents a series of practices and issues are outlined. These documents are subjected to critical interrogation as a means of saying not how TC should be applied but in outlining how it often is applied. Our analysis of these documents claims that TC conceives of technological change through a process of narrowly framing understanding of what 'relevant' costs and technological possibilities are. We claim, through this critique, that this dominant way of narrowly characterising technological change in terms of the supply of technology would benefit from an appreciation of alternative 'ways of seeing' the development of hydrogen technologies, particularly in relation to 'contexts' of their appropriation, consumption and development. We suggest that this can be done through the development of two alternative ways of seeing: a Large Technical Systems approach which addresses wider systemic considerations, and localised 'niche' developments in nurtured spaces of reflexive social learning. Through subjecting the practices of a dominant way of seeing technological development-TC-to critique this opens up the possibilities for TC practitioners to reflect on the strengths and shortcomings of their own practices. This, in addition to outlining ways of seeing the appropriation and innovation of hydrogen technologies in specific contexts, through an LTS and niche approach, offers the potential for a dialogue between the supply and the contextualised appropriation of hydrogen technologies and thus for engaging disconnected

  7. An energy self-sufficient public building using integrated renewable sources and hydrogen storage

    International Nuclear Information System (INIS)

    Marino, C.; Nucara, A.; Pietrafesa, M.; Pudano, A.

    2013-01-01

    The control of the use of fossil fuels, major cause of greenhouse gas emissions and climate changes, in present days represents one of Governments' main challenges; particularly, a significant energy consumption is observed in buildings and might be significantly reduced through sustainable design, increased energy efficiency and use of renewable sources. At the moment, the widespread use of renewable energy in buildings is limited by its intrinsic discontinuity: consequently integration of plants with energy storage systems could represent an efficient solution to the problem. Within this frame, hydrogen has shown to be particularly fit in order to be used as an energetic carrier. In this aim, in the paper an energetic, economic and environmental analysis of two different configurations of a self-sufficient system for energy production from renewable sources in buildings is presented. In particular, in the first configuration energy production is carried out by means of photovoltaic systems, whereas in the second one a combination of photovoltaic panels and wind generators is used. In both configurations, hydrogen is used as an energy carrier, in order to store energy, and fuel cells guarantee its energetic reconversion. The analysis carried out shows that, although dimensioned as a stand-alone configuration, the system can today be realized only taking advantage from the incentivizing fares applied to grid-connected systems, that are likely to be suspended in the next future. In such case, it represents an interesting investment, with capital returns in about 15 years. As concerns economic sustainability, in fact, the analysis shows that the cost of the energy unit stored in hydrogen volumes, due to the not very high efficiency of the process, presently results greater than that of directly used one. Moreover, also the starting fund of the system proves to be very high, showing an additional cost with respect to systems lacking of energy storage equal to about 50

  8. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen

    International Nuclear Information System (INIS)

    Anderson, Dennis; Leach, Matthew

    2004-01-01

    If intermittent renewable energy technologies such as those based on solar, wind, wave and tidal resources are eventually to supply significant shares of total energy supplies, it is crucial that the energy storage problem is solved. There are several (long-recognised) possibilities ahead including compressed air, pumped storage, further developments in batteries, regenerable fuel cells, 'super-capacitors' and so forth. But one that is being revisited extensively by industry and research establishments is the production and storage of hydrogen from electricity at off-peak times, and in times when there would be a surplus of renewable energy, for reuse in the electricity, gas and transport markets; short-term and even seasonal and longer-term storage is technically feasible with this option. This paper looks at the costs of the option both in the near-term and the long-term relative to the current costs of electricity and natural gas supplies. While the costs of hydrogen would necessarily be greater than those of natural gas (though not disruptively so), when used in conjunction with emerging technologies for decentralised generation and combined heat and power there is scope for appreciable economies in electricity supply. A lot will depend on innovation at the systems level, and on how we operate our electricity and gas grids and regulate our electricity and gas industries. We have also suggested that we now need to experiment more, at the commercial level, and in the laboratories, with the hydrogen option

  9. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  10. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  11. Generation IV nuclear energy systems and hydrogen economy. New progress in the energy field in the 21st century

    International Nuclear Information System (INIS)

    Zang Mingchang

    2004-01-01

    The concept of hydrogen economy was initiated by the United States and other developed countries in the turn of the century to mitigate anxiety of national security due to growing dependence on foreign sources of energy and impacts on air quality and the potential effects of greenhouse gas emissions. Hydrogen economy integrates the primary energy used to produce hydrogen as a future energy carrier, hydrogen technologies including production, delivery and storage, and various fuel cells for transportation and stationary applications. A new hydrogen-based energy system would created as an important solution in the 21st century, flexible, affordable, safe, domestically produced, used in all sectors of the economy and in all regions of the country, if all the R and D plans and the demonstration come to be successful in 20-30 years. Among options of primary energy. Generation IV nuclear energy under development is particularly well suited to hydrogen production, offering the competitive position of large-scale hydrogen production with near-zero emissions. (author)

  12. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  13. Renewable Energy and Hydrogen System Concepts for Remote Communities in the West Nordic Region

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein; Moerkved, Andreas

    2008-02-25

    In 2003 the Nordic Council of Ministers granted the funding for the first of several studies on renewable energy and hydrogen (RE/H2) energy systems for remote communities in the West Nordic region. The objective with this report is to summarize the main findings from Phase II and III of the West Nordic project. The island Nolsoy, Faroe Islands, was selected as a case study. The main conclusion is that it makes sense to design a wind/diesel-system with thermal storage, both from a techno-economical and environmental point of view. Such systems can have close to 100% local utilization of the wind energy, and can cover up to 75% of the total annual electricity demand and 35% of the annual heat demand at a cost of energy around 0.07 - 0.09 euro/kWh. The introduction of a hydrogen system is technically feasible, but doubles the overall investment costs

  14. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  15. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  16. Can the Green Economy deliver it all? Experiences of renewable energy policies with socio-economic objectives

    International Nuclear Information System (INIS)

    Pahle, Michael; Pachauri, Shonali; Steinbacher, Karoline

    2016-01-01

    Highlights: • Open question if renewables achieve both environmental and socioeconomic objectives. • Two policies each assessed looking at energy access and employment respectively. • Important role of governments and need for monitoring capacity is confirmed. • Short-term socioeconomic benefits realized in two cases, but they may not sustain. • Cases underline need for methodologies to better assess multiple-objective policies. - Abstract: The Green Economy (GE) paradigm aims to reconcile environmental and socio-economic objectives. Policies to deploy renewable energy (RE) are widely perceived as a way to tap the potential synergies of these objectives. It is, however, still largely unclear whether the potential of simultaneously achieving both environmental and socio-economic objectives can be fully realized, and whether and how multiple objectives influence policy design, implementation, and evaluation. We aim to contribute to this aspect of GE research by looking at selected country experiences of renewable energy deployment with respect to the socio-economic goals of job creation or energy access. Across the cases examined, we find the following implications of relevance for the GE framework: First, we confirm the important role of governmental action for GE, with the specific need to state objectives clearly and build monitoring capacity. Second, consistent with the “strong” green growth variant of GE, some of the cases suggest that while renewable deployment may indeed lead to short-term socio-economic benefits, these benefits may not last. Third, we underline the urgent need for new methodologies to analyze and better understand multiple-objective policies, which are at the heart of the GE paradigm.

  17. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    Science.gov (United States)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  18. Panel discussion: Building Canadian companies and capabilities in the transition to the hydrogen economy

    International Nuclear Information System (INIS)

    Beck, N.

    2004-01-01

    'Full text:' Moderated by Nick Beck from Natural Resources Canada, this panel discussion will be prefaced by a keynote address by Dr. Arthur Carty, Canada's National Science Advisor and former President of the National Research Council of Canada, who will discuss technology commercialization in Canada and how the Government of Canada and industry collaborate to achieve their respective priorities. This session will illustrate innovative government and industry partnerships from early research and development to project demonstration, and adoption into the market-place. Panelists from across the Canadian hydrogen and fuel cell innovation spectrum will provide an overview of their respective company's partnerships with the Government of Canada and speak to how these alliances have helped their company to pioneer new technology, move technology from the lab to the marketplace, and/or become more competitive. Opportunities and challenges that companies have faced in their partnerships with government will be shared with the audience. The Panel Members are: Mr. Stephen Kukucha, Mr. Chris Reid, Mr. Robb Thompson, Mr. Pierre Rivard, Mr. John Shen, Mr. R. Randall MacEwen, Mr. Jonathan Wilkinson. Companies will also be showcasing their contribution in advancing Canada's and the world's transition to the hydrogen economy. (author)

  19. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  20. Single/total-economy aspects of production and utilization of energy from renewable raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, K

    1982-01-01

    ''Biosprit (biologically produced gasohol) can compete with synthetically produced ethanol for use in commerce and industries but not fully so with petrol due to the present refinery selling prices. Nevertheless, a 10% admixture will increase the price of one litre of petrol only slightly. If the consumer is not meant to cover this price increase, it could be covered by a small proportion of those expenditures which will be saved through a changeover to biogasohol production and which have been payed for necessary export refunding so far. Even at present, there is a considerable benefit involved for the overall national economy if there was a changeover to biogasohol production. In terms of total economy, transitional or initial subsidization would be just as justified as it is with initial promotion by the government with the introduction of new technologies.

  1. Catalyzing the potential of renewable energy in the Great Lakes economy

    International Nuclear Information System (INIS)

    Howland, T.

    2003-01-01

    Vision Quest Windelectric builds, owns and operates wind power plants. Its major activities include wind prospecting, development, production, and product marketing. Currently, the facility operates 68 wind turbines with a total installed capacity of 45.7 MW. A joint venture is currently under construction in southern Alberta where a 114 wind turbine array is being installed for operation in 2003 for a total capacity of 75 MW. It will be Canada's largest wind farm. Wind power offers competitive pricing, positive environmental and economic impact, and an incremental supply growth. Worldwide, wind-generated capacity exceeded 24,000 megawatts in 2002. Industry leaders are Europe, with 4,500 MW installed capacity, followed by the United States and India. In the past 5 years, wind power has seen a growth rate of 32 per cent. In the United States, wind farms are generating approximately 10 billion kWh annually. In Canada, there is more wind energy potential than current electricity use. In 2002, wind was being used as a power source in British Columbia, Alberta, Saskatchewan, Ontario, Quebec, Prince Edward Island and the Yukon, for a total installed capacity of 205 MW. Green power marketing promotes the use of renewable energy sources. Green pricing offers customers the option to support investment in renewables by paying a premium on electricity bills to pay for the additional costs related to the development of renewable energy. There are 12 companies offering green power options in Canada. Premiums range from 2 to 7.5 cents per kWh. In the United States, 40 per cent of the customers have access to green power programs, and worldwide, 2 million customers are buying green power. The demand for green power can be stimulated through policy support such as credit emissions for reductions, financial incentives, government purchases, market access, common certification, and renewable portfolio standards. 6 figs

  2. A Significant Role for Renewables in a Low-Carbon Energy Economy?

    Science.gov (United States)

    Newmark, R. L.

    2015-12-01

    Renewables currently make up a small (but growing) fraction of total U.S. electricity generation. In some regions, renewable growth has resulted in instantaneous penetration levels of wind and solar in excess of 60% of demand. With decreasing costs, abundant resource potential and low carbon emissions and water requirements, wind and solar are increasingly becoming attractive new generation options. However, factors such as resource variability and geographic distribution of prime resources raise questions regarding the extent to which our power system can rely on variable generation resources. Here, we describe scenario analyses designed to tackle engineering and economic challenges associated with variable generation, along with insights derived from research results. These analyses demonstrate the operability of high renewable systems and quantify some of the engineering challenges (and solutions) associated with maintaining reliability. Key questions addressed include the operational and economic impacts of increasing levels of variable generation on the U.S. power system. Since reliability and economic efficiency are measured across a variety of time frames, and with a variety of metrics, a suite of tools addressing different system impacts are used to understand how new resources affect incumbent resources and operational practices. We summarize a range of modeled scenarios, focusing on ones with 80% RE in the United States and >30% variable wind and solar in the East and the West. We also summarize the environmental impacts and benefits estimated for these and similar scenarios. Results provide key insights to inform the technical, operational and regulatory evolution of the U.S. power system. This work is extended internationally through the 21st Century Power Partnership's collaborations on power system transformation, with active collaboration in Canada, Mexico, India, China and South Africa, among others.

  3. Renewability emergy index calculation in the evaluation of the sustainability of a national economy; Calculo do indice de renovabillidade emergetica na avaliacao da sustentabilidade de uma economia nacional

    Energy Technology Data Exchange (ETDEWEB)

    Siche Jara, Raul Benito [Universidad Nacional de Trujillo, La Libertad (Peru). Fac. de Ciencias Agropecuarias. Escuela de Ingenieria Agroindustrial], e-mail: Siche.J.R@gmail.com; Ortega Rodriguez, Enrique [Universidade Estadual de Campinas (DEA/FEA/UNICAMP), SP (Brazil). Lab. de Engenharia Ecologica e Informatica Aplicada], e-mail: ortega@fea.unicamp.br

    2006-07-01

    In this study, the emergy methodology was used to analyze the sustainability of the Peruvian economic system. The resources (natural and not natural) and importations had been accounting in units of solar emergy using data of the Peruvian economy for the year 2004. Emergy is an energy measure based in the contribution of the resources and its influence, defined as the energy of a type required producing a flow or storage of another type. The focus of this study is the calculation of the emergy index call 'renewability' (REN), considered as a general measure of the ecological sustainability. In a long period, only systems or processes with high REN are sustainable. This index is calculated by the accounting of the resources renewed used in the economy in emergy units (2.17E+23 seJ) and divided by emergy total that enters to the economic system (6.93E+23 seJ), resulting a REN of 0.31. The renewable resources that use Peru almost represent 20% of the total of renewable resources available in the system. The great amount of renewable resources that Peru can potentially use was calculated in 11.44E+23 seJ, meaning that the system can be more sustainable if the economy is based on increasing the use of renewable resources and to diminish the use of non-renewable resources and imported resources. These data show that Peru has a relatively sustainable economy that can improve or get worse, depending of its politics in the use of resources. (author)

  4. Theoretical Framework of Organizational Intelligence: A Managerial Approach to Promote Renewable Energy in Rural Economies

    Directory of Open Access Journals (Sweden)

    Nicolae Istudor

    2016-08-01

    Full Text Available The companies involved in the energy sector must reinvent themselves to be innovative and adaptable to contemporary environmental changes. The promotion of renewable energy in rural communities is a great challenge for these companies. They should focus on improving the environment scanning actions and the knowledge management (KM system and enhancing the collective intelligence to avoid the loss of information, to foster innovation, and to maintain a competitive advantage. To achieve these goals, energy companies require appropriate management tools and practices. The purpose of this study is to propose a theoretical framework of organizational intelligence (OI supported by a cross-perspective analysis of various aspects: economic intelligence (EI and KM practices, entropy processes, and organizational enablers. A pilot investigation for testing the framework in the case of Transelectrica S.A. has been elaborated. The findings reveal that the elements of the OI framework are embedded in Transelectrica’s system and they need to be further developed. As an intelligent company acting in the Romanian energy market, Transelectrica has a higher potential to promote projects in the renewable energy sector. The main conclusion highlights that OI is a multidimensional construct that provides the organization the ability to deal with environmental challenges in a “new economy”.

  5. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  6. The employment impacts of economy-wide investments in renewable energy and energy efficiency

    Science.gov (United States)

    Garrett-Peltier, Heidi

    This dissertation examines the employment impacts of investments in renewable energy and energy efficiency in the U.S. A broad expansion of the use of renewable energy in place of carbon-based energy, in addition to investments in energy efficiency, comprise a prominent strategy to slow or reverse the effects of anthropogenic climate change. This study first explores the literature on the employment impacts of these investments. This literature to date consists mainly of input-output (I-O) studies or case studies of renewable energy and energy efficiency (REEE). Researchers are constrained, however, by their ability to use the I-O model to study REEE, since currently industrial codes do not recognize this industry as such. I develop and present two methods to use the I-O framework to overcome this constraint: the synthetic and integrated approaches. In the former, I proxy the REEE industry by creating a vector of final demand based on the industrial spending patterns of REEE firms as found in the secondary literature. In the integrated approach, I collect primary data through a nationwide survey of REEE firms and integrate these data into the existing I-O tables to explicitly identify the REEE industry and estimate the employment impacts resulting from both upstream and downstream linkages with other industries. The size of the REEE employment multiplier is sensitive to the choice of method, and is higher using the synthetic approach than using the integrated approach. I find that using both methods, the employment level per $1 million demand is approximately three times greater for the REEE industry than for fossil fuel (FF) industries. This implies that a shift to clean energy will result in positive net employment impacts. The positive effects stem mainly from the higher labor intensity of REEE in relation to FF, as well as from higher domestic content and lower average wages. The findings suggest that as we transition away from a carbon-based energy system to

  7. Modelling Non-Renewable Energy in Mauritius: In Quest for Sustainable Policies towards a Greener Economy

    Directory of Open Access Journals (Sweden)

    Indranarain Ramlall

    2012-07-01

    Full Text Available This paper sheds light on the interaction between energy consumption and energy production in an upper-income developing country. Results show that Industrial consumption of energy in Mauritius is driven mainly by Fuel source while Commercial use is accommodated by a mixture of Coal and Fuel sources. Bagasse and Hydro energy generations undermine the use of Coal and Fuel, all demonstrating an inherent greening phenomenon embedded in the energy process. However, their size effects are low. Findings further confirm sustainability in energy generation and absorption based on a slightly above one long-term elasticity coefficient between energy production and consumption. Overall, results suggest that Mauritius has to implement vigorous measures in view of greening its energy processes. Policy wise, this could signify the urgent need of both Commercial and Industrial usage taxes to stimulate a greener economy.

  8. THEN-2: The 2nd COE-INES international workshop on 'toward hydrogen economy; what nuclear can contribute and how'. Proposal and presentations

    International Nuclear Information System (INIS)

    2006-01-01

    The workshop of the title was held on topics; nuclear hydrogen system in cooperation with other non-nuclear energy systems related with hydrogen production, storage and transportation, and synthesized fuel productions, hydrogen energy management and economy, consisted of 3 keynote lectures and 4 topical sessions by 15 presenters and a panel discussion session. (J.P.N.)

  9. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  10. Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Dresselhaus, M; Crabtree, G; Buchanan, M; Mallouk, T; Mets, L; Taylor, K; Jena, P; DiSalvo, F; Zawodzinski, T; Kung, H; Anderson, I S; Britt, P; Curtiss, L; Keller, J; Kumar, R; Kwok, W; Taylor, J; Allgood, J; Campbell, B; Talamini, K

    2004-02-01

    The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

  11. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    Science.gov (United States)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  12. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  13. South Africa's opportunity to maximise the role of nuclear power in a global hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Greyvenstein, R. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: renee.greyvenstein@pbmr.co.za; Correia, M. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: michael.correia@pbmr.co.za; Kriel, W. [Pebble Bed Modular Reactor (PBMR) (Pty) Ltd. (South Africa)], E-mail: willem.kriel@pbmr.us

    2008-11-15

    Global concern for increased energy demand, increased cost of natural gas and petroleum, energy security and environmental degradation are leading to heightened interest in using nuclear energy and hydrogen to leverage existing hydrocarbon reserves. The wasteful use of hydrocarbons can be minimised by using nuclear as a source of energy and water as a source of hydrogen. Virtually all hydrogen today is produced from fossil fuels, which give rise to CO{sub 2} emissions. Hydrogen can be cleanly produced from water (without CO{sub 2} pollution) by using nuclear energy to generate the required electricity and/or process heat to split the water molecule. Once the clean hydrogen has been produced, it can be used as feedstock to fuel cell technologies, or in the nearer term as feedstock to a coal-to-liquids process to produce cleaner synthetic liquid fuels. Clean liquid fuels from coal - using hydrogen generated from nuclear energy - is an intermediate step for using hydrogen to reduce pollution in the transport sector; simultaneously addressing energy security concerns. Several promising water-splitting technologies have been identified. Thermo-chemical water-splitting and high-temperature steam electrolysis technologies require process temperatures in the range of 850 deg. C and higher for the efficient production of hydrogen. The pebble bed modular reactor (PBMR), under development in South Africa, is ideally suited to generate both high-temperature process heat and electricity for the production of hydrogen. This paper will discuss South Africa's opportunity to maximise the use of its nuclear technology and national resources in a global hydrogen economy.

  14. The marriage of car sharing and hydrogen economy: A possible solution to the main problems of urban living

    Energy Technology Data Exchange (ETDEWEB)

    Kriston, Akos; Inzelt, Gyoergy [Department of Physical Chemistry, Institute of Chemistry, Eoetvoes Lorand University, 1117 Budapest, Pazmany Peter setany 1/A (Hungary); Szabo, Tamas [Department of Applied Analysis and Computational Mathematics, Institute of Mathematics, Eoetvoes Lorand University, 1117 Budapest, Pazmany Peter setany 1/C (Hungary)

    2010-12-15

    The hydrogen economy is seeking its killer application, which can break down the 'chicken and egg problem', i.e., no hydrogen powered car can be sold if it cannot be refueled, and nobody will invest to a hydrogen refueling station if no one has a hydrogen powered vehicle. The applications like material handling, backup-power, and small stationary combined heat and power (CHP) engines are the most promising candidates, which may show financial return in 3-5 years. The replacement of fossil fuel with hydrogen in the automotive industry offers a substantial reduction of the harmful environmental effects, however, it is still the most challenging because of the absence of the hydrogen infrastructure, the price and the lifetime of the fuel cell (FC) engine and the unsuitable regulations, as well. In this work a new possible market was identified and analyzed in different points of view. This market segment is a car-sharing system operating with small urban vehicles, which not only can solve some environmental problems (e.g., air pollution and CO{sub 2} emission), but also helps to reduce congestion, secure energy supply and ease its distribution. First, a sensitivity analysis was done and the key performance indicators of the system were determined. The financial return of a hydrogen-based car-sharing system was examined carefully as a function of the rated power of the fuel cell power train, the way of hydrogen supply, the cost of the hydrogen and the size of the car fleet. Finally, a possible hydrogen-based car-sharing service was designed and optimized to the downtown of Budapest, Hungary. A sustainable system was proposed, which can satisfy the needs of the business (i.e., profitability) and the environment. (author)

  15. The marriage of car sharing and hydrogen economy: A possible solution to the main problems of urban living

    International Nuclear Information System (INIS)

    Kriston, Akos; Inzelt, Gyoergy; Szabo, Tamas

    2010-01-01

    The hydrogen economy is seeking its killer application, which can break down the 'chicken and egg problem', i.e., no hydrogen powered car can be sold if it cannot be refueled, and nobody will invest to a hydrogen refueling station if no one has a hydrogen powered vehicle. The applications like material handling, backup-power, and small stationary combined heat and power (CHP) engines are the most promising candidates, which may show financial return in 3-5 years. The replacement of fossil fuel with hydrogen in the automotive industry offers a substantial reduction of the harmful environmental effects, however, it is still the most challenging because of the absence of the hydrogen infrastructure, the price and the lifetime of the fuel cell (FC) engine and the unsuitable regulations, as well. In this work a new possible market was identified and analyzed in different points of view. This market segment is a car-sharing system operating with small urban vehicles, which not only can solve some environmental problems (e.g., air pollution and CO 2 emission), but also helps to reduce congestion, secure energy supply and ease its distribution. First, a sensitivity analysis was done and the key performance indicators of the system were determined. The financial return of a hydrogen-based car-sharing system was examined carefully as a function of the rated power of the fuel cell power train, the way of hydrogen supply, the cost of the hydrogen and the size of the car fleet. Finally, a possible hydrogen-based car-sharing service was designed and optimized to the downtown of Budapest, Hungary. A sustainable system was proposed, which can satisfy the needs of the business (i.e., profitability) and the environment. (author)

  16. Emission scenarios for a global hydrogen economy and the consequences for global air pollution

    NARCIS (Netherlands)

    van Ruijven, B.J.; Lamarque, J.F.; van Vuuren, D.P.; Kram, T.; Eerens, H.

    2011-01-01

    Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular

  17. The Methodology for Integral Assessment of the Impact of Renewable Energy on the Environment under Non-Stationary Economy

    Directory of Open Access Journals (Sweden)

    Petrakov Iaroslav V.

    2017-12-01

    Full Text Available The need to reduce anthropogenic load, eliminate threats to environmental safety and provide ecologically oriented development are one of the main global challenges of our time. At the same time, the replacement of traditional energy sources with alternatives ones requires a quantitative assessment of direct and indirect environmental impacts. The article analyzes the dynamics and structure of pollution in Ukraine in terms of its sources and forms as well as their impact on the carbon productivity of the GDP. It is proposed to assess the impact of alternative energy on the environment under non-stationary economy using an integral indicator that takes into account a number of factors, in particular the change in the share of RES in the total primary energy supply, share of renewable energy production, the index of greenhouse gases by the energy sector, change in the quality of atmospheric air in the urban populated area, amount of investment in reducing CO2 emissions, carbon intensity of energy production, share of thermal generation capacity that meets the ecological requirements of the EU.

  18. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy.

    Science.gov (United States)

    Kar, Sayan; Sen, Raktim; Goeppert, Alain; Prakash, G K Surya

    2018-02-07

    Herein we report an efficient and recyclable system for tandem CO 2 capture and hydrogenation to methanol. After capture in an aqueous amine solution, CO 2 is hydrogenated in high yield to CH 3 OH (>90%) in a biphasic 2-MTHF/water system, which also allows for easy separation and recycling of the amine and catalyst for multiple reaction cycles. Between cycles, the produced methanol can be conveniently removed in vacuo. Employing this strategy, catalyst Ru-MACHO-BH and polyamine PEHA were recycled three times with 87% of the methanol producibility of the first cycle retained, along with 95% of catalyst activity after four cycles. CO 2 from dilute sources such as air can also be converted to CH 3 OH using this route. We postulate that the CO 2 capture and hydrogenation to methanol system presented here could be an important step toward the implementation of the carbon neutral methanol economy concept.

  19. An examination of the criteria necessary for successful worldwide deployment of isolated, renewable hydrogen stationary power systems

    International Nuclear Information System (INIS)

    Rambach, G. D.; Snyder, J. D.

    1998-01-01

    This paper examines the top-down rationale and methods for using hydrogen as an energy carrier in isolated, stationary power systems. Such an examination can be useful because it provides a framework for detailed research on subsystems and helps clarify why, when and where large-scale hydrogen use would be beneficial. It also helps define the pathway for an evolving hydrogen stationary power market worldwide. Remote, stationary power systems are an ideal market entry opportunity for hydrogen. For example, if it is sufficiently difficult for conventional fuels to reach a community, and indigenous renewable sources are present, then on-site clean energy production becomes economically competitive. Relying heavily on intermittent sources of energy requires an energy carrier system that is efficient over long periods of time. In addition, the energy carrier must not defeat the reasons for initially switching to the clean sources of energy, and must be economically feasible. Hydrogen is an elegant solution to all of these needs. Choices exist for the methods of producing hydrogen, storing and transporting it, and converting it back to useful energy. There is considerable debate about how best to increase the use of renewable hydrogen because it is not yet economically competitive with conventional energy carriers in most applications. The deployment of isolated power systems relying on hydrogen as the energy storage medium requires complex and comprehensive planning and design considerations to provide successful market entry strategies as well as appropriate system engineering. This paper will discuss the criteria and framework necessary to determine how to successfully deploy any specific system or to plan a global marketing strategy. (author)

  20. Energy–exergy and economic analyses of a hybrid solar–hydrogen renewable energy system in Ankara, Turkey

    International Nuclear Information System (INIS)

    Ozden, Ender; Tari, Ilker

    2016-01-01

    Highlights: • Uninterrupted energy in an emergency blackout situation. • System modeling of a solar–hydrogen based hybrid renewable energy system. • A comprehensive thermodynamical analysis. • Levelized cost of electricity analysis for a project lifetime of 25 years. - Abstract: A hybrid (Solar–Hydrogen) stand-alone renewable energy system that consists of photovoltaic panels (PV), Proton Exchange Membrane (PEM) fuel cells, PEM based electrolyzers and hydrogen storage is investigated by developing a complete model of the system using TRNSYS. The PV panels are mounted on a tiltable platform to improve the performance of the system by monthly adjustments of the tilt angle. The total area of the PV panels is 300 m 2 , the PEM fuel cell capacity is 5 kW, and the hydrogen storage is at 55 bars pressure and with 45 m 3 capacity. The main goal of this study is to verify that the system meets the electrical power demand of the emergency room without experiencing a shortage for a complete year in an emergency blackout situation. For this purpose, after modeling the system, energy and exergy analyses for the hydrogen cycle of the system for a complete year are performed, and the energy and exergy efficiencies are found as 4.06% and 4.25%, respectively. Furthermore, an economic analysis is performed for a project lifetime of 25 years based on Levelized Cost of Electricity (LCE), and the LCE is calculated as 0.626 $/kWh.

  1. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  2. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for unchanged CFC loading in the stratosphere

  3. Hydrogen emissions and their effects on the arctic ozone losses. Risk analysis of a global hydrogen economy; Wasserstoff-Emissionen und ihre Auswirkungen auf den arktischen Ozonverlust. Risikoanalyse einer globalen Wasserstoffwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Feck, Thomas

    2009-07-01

    Hydrogen (H{sub 2}) could be used as one of the major components in our future energy supply in an effort to avoid greenhouse gas emissions. ''Green'' hydrogen in particular, which is produced from renewable energy sources, should significantly reduce emissions that damage the climate. Despite this basically environmentally-friendly property, however, the complex chain of interactions of hydrogen with other compounds means that the implications for the atmosphere must be analysed in detail. For example, H{sub 2} emissions, which could increase the tropospheric H{sub 2} inventory, can be released throughout the complete hydrogen process chain. H{sub 2} enters the stratosphere via the tropical tropopause and is oxidised there to form water vapour (H{sub 2}O). This extra water vapour causes increased radiation in the infrared region of the electromagnetic spectrum and thus causes the stratosphere to cool down. Both the increase in H{sub 2}O and the resulting cooling down of the stratosphere encourage the formation of polar stratospheric clouds (PSC) and liquid sulphate aerosols, which facilitate the production of reactive chlorine, which in turn currently leads to dramatic ozone depletion in the polar stratosphere. In the future, H{sub 2} emissions from a global hydrogen economy could therefore encourage stratospheric ozone depletion in the polar regions and thus inhibit the ozone layer in recovering from the damage caused by chlorofluorocarbons (CFCs). In addition to estimating possible influences on the trace gas composition of the stratosphere, one of the main aims of this thesis is to evaluate the risk associated with increased polar ozone depletion caused by additional H{sub 2} emissions. Studies reported on here have shown that even if around 90% of today's fossil primary energy input was to be replaced by hydrogen and if around 9.5% of the gas was to escape in a ''worst-case'' scenario, the additional ozone loss for

  4. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  5. Impact of H{sub 2} emissions of a global hydrogen economy on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Grooss, Jens-Uwe; Feck, Thomas; Vogel, Baerbel; Riese, Martin [Forschungszentrum Juelich (Germany)

    2010-07-01

    ''Green'' hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H{sub 2}) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H{sub 2} that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H{sub 2} can occur along the whole hydrogen process chain which increase the tropospheric H{sub 2} burden. The impact of these emissions is investigated. Figure 1 is a sketch that clarifies the path way and impact of hydrogen in the stratosphere. The air follows the Brewer-Dobson circulation in which air enters the stratosphere through the tropical tropopause, ascends then to the upper stratosphere and finally descends in polar latitudes within a typical transport time frame of 4 to 8 years. (orig.)

  6. Second generation biofuels, an accelerator of the transition toward an economy driven by energy drawn from hydrogen

    International Nuclear Information System (INIS)

    Delabroy, O.

    2013-01-01

    The growth of the bio economy, especially in transportation, involves developing a bio-fuel industry. First generation bio-fuels were produced from plant sugars like starch or from plant oils. Second generation bio fuels use as raw materials the whole plant and especially agricultural and forestry wastes which extend the resource considerably and limit the competition between food use and fuel use. Second generation bio-fuels can be made with not only biological methods but also biomass-to-liquid processes borrowed from thermochemistry. Players in this field, including 'Air Liquide' company, are drawing up a technical and economic road-map for competitiveness in this emerging branch of industry. Since the thermochemical approach for gasifying a biomass also yields large quantities of hydrogen, the industrialization of this branch and concomitant production of bio-hydrogen at competitive prices provide leverage for accelerating the transition toward using H 2 for transportation

  7. An examination of isolated, stationary, hydrogen power systems supplied by renewables: component and system issues and criteria necessary for successful worldwide deployment

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G. D. [Energy and Environmental Engineering Center, Desert Research Institute, Reno, NV (United States)

    1999-12-01

    The premise of this paper is that remote, stationary power systems, based on indigenous renewable energy sources, are an ideal market entry opportunity for hydrogen, but that the deployment of isolated power systems relying on hydrogen as the energy storage medium requires complex and comprehensive planning and design considerations to provide for successful market entry strategies and appropriate systems engineering. Accordingly, this paper sets out to discuss the criteria and the framework necessary to determine how to successfully deploy any specific system or to plan a global marketing strategy. Details of the indigenous intermittent energy sources (wind turbines, solar photovoltaic, micro-hydroelectric, etc), primary power-to-hydrogen conversion systems, hydrogen storage methods, and hydrogen-to-electricity conversion systems (hydrogen-internal combustion engine generator set, hydrogen fuel cells) are described, along with the criteria for technically and commercially successful deployment of any renewable utility power system that employs energy storage.2 refs., 4 figs.

  8. What governs the transition to a sustainable hydrogen economy? Articulating the relationship between technologies and political institutions

    International Nuclear Information System (INIS)

    Hisschemoeller, Matthijs; Bode, Ries; Kerkhof, Marleen van de

    2006-01-01

    There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: 'Governance by policy networking', Governance by government', 'Governance by corporate business', and 'Governance by challenge', and looks into the major line of argument in support of these paradigms and into their possible bias with respect to hydrogen options. Each of these paradigms reveals an institutional bias in that it articulates specific opportunities for collaboration and competition in order to stimulate the transition to a sustainable hydrogen economy. The paper makes the observation that there is a compelling need to reframe fashionable discourse such as the necessary shift from government to governance or from government to market. Instead, specific questions with respect to the impact of guiding policy frameworks on innovation will highlight that neither 'neutral' nor 'optimal' frameworks for policy making exist, where competing hydrogen options are at stake. The identification of paradigms of governance maybe considered a methodological device for (participator) policy analysis

  9. NSERC's research and industrial community: a growing force of discovery, people and innovation shaping tomorrow's hydrogen economy

    International Nuclear Information System (INIS)

    Therrien, R.

    2009-01-01

    'Full text': As Canada's largest university research-funding agency, the Natural Sciences and Engineering Research Council of Canada (NSERC) supports the training of some 26,500 university students and postdoctoral fellows, funds the research efforts of more than 11,800 university and college professors and stimulates academic-industry research and development (R and D) partnerships involving over 1,400 companies each year. In the hydrogen and fuel cell arena, NSERC has sponsored cutting edge research for over two decades. During that time, the level of activity has intensified significantly - from a mere handful of projects in the early 1980s and 1990s, to more than 150 grants and scholarships in 2008. Since 2002, NSERC's annual support has tripled from about $2.9 million to over $9 million. More than half of that investment is earmarked for university-industry projects involving over 40 fuel cell and hydrogen business interests. NSERC supports hydrogen advances through its Discovery Grants for basic research, Research Partnerships Programs' grants for research and knowledge transfer involving companies, and scholarships and fellowships for skills development. All of these initiatives provide advanced training for students at the post-graduate level, resulting in job-ready professionals who will help shape tomorrow's hydrogen economy. In 2007, NSERC doubled its funding for strategic research partnerships in the area of sustainable energy systems, including hydrogen-related R and D. These public-private partnerships permit companies to capitalize, at minimal cost, on university innovations and training. In addition to supporting project-specific partnerships, the new funds enabled the creation of several national networks that unite industrial and research interests engaged in fuel cell advancement on the one hand, and in hydrogen technologies on the other. The partnership opportunities that exist at NSERC will be briefly described and examples of successful

  10. Activities of UNIDO-ICHET: On a Mission to Convert the World to Hydrogen Economy

    International Nuclear Information System (INIS)

    Barbir, Frano; Veziroglu, T. Nejat; Ture, Engin; Dziedzic, Gregory

    2006-01-01

    United Nations Industrial Development Organization - International Centre for Hydrogen Energy Technologies (UNIDO-ICHET) is an autonomous technological institution within the auspices of UNIDO, located in Istanbul Turkey. UNIDO-ICHET''s mission is to act as a bridge between developed and developing countries in spanning the gap between research and development organizations, innovative enterprises and the market-place, by stimulating appropriate applications of hydrogen energy technologies and the hydrogen energy related industrial development throughout the world in general, and in the developing countries in particular. The activities of UNIDO-ICHET include initiation of demonstration and pilot projects worldwide, establishment of a database on hydrogen energy technology and R and D activities, applied research and development, testing services, and education and training. UNIDO-ICHET is also assisting developing countries in adopting their Hydrogen Road-maps, by working with local governments, universities and industries, with other international organizations having similar mission, and with the leading technology and energy companies. (authors)

  11. Global status of hydrogen research

    Energy Technology Data Exchange (ETDEWEB)

    Lakeman, J.B.; Browning, D.J.

    2001-07-01

    This report surveys the global status of hydrogen research and identifies technological barriers to the implementation of a global hydrogen economy. It is concluded that there will be a 30 year transition phase to the full implementation of the hydrogen economy. In this period, hydrogen will be largely produced by the reformation of hydrocarbons, particularly methane. It will be necessary to ensure that any carbonaceous oxides (and other unwanted species) formed as by-products will be trapped and not released into the atmosphere. Following the transition phase, hydrogen should be largely produced from renewable energy sources using some form of water cracking, largely electrolysis. Target performances and costs are identified for key technologies. The status of hydrogen research in the UK is reviews and it is concluded that the UK does not have a strategy for the adoption of the hydrogen economy, nor does it have a coherent and co-ordinated research and development strategy addressing barriers to the hydrogen economy. Despite this fact, because of the long transition phase, it is still possible for the UK to formulate a coherent strategy and make a significant contribution to the global implementation of the hydrogen economy, as there are still unresolved technology issues. The report concludes with a number of recommendations. (Author)

  12. Achieving stringent climate targets. An analysis of the role of transport and variable renewable energies using energy-economy-climate models

    Energy Technology Data Exchange (ETDEWEB)

    Pietzcker, Robert Carl

    2014-07-01

    technologies photovoltaics (PV) and concentrating solar power (CSP) in REMIND confirms the dominant role of these variable renewable energies for the decarbonization of the power sector. Recent cost reductions have brought PV to cost-competitiveness in regions with high midday electricity demand and high solar irradiance. The representation of system integration costs in REMIND is found to have significant impact on the competition between PV and CSP in the model: the low integration requirements of CSP equipped with thermal storage and hydrogen co-firing make CSP competitive at high shares of variable renewable energies, which leads to substantial deployment of both PV and CSP in low stabilization scenarios. A cross-model study of transport sector decarbonization confirms the earlier finding that the transport sector is not very reactive to intermediate carbon price levels: Until 2050, transport decarbonization lags 10-30 years behind the decarbonization of other sectors, and liquid fuels dominate the transport sector. In the long term, however, transportation does not seem to be an insurmountable barrier to stringent climate targets: As the price signals on CO{sub 2} increase further, transport emissions can be reduced substantially - if either hydrogen fuel cells or electromobility open a route to low-carbon energy carriers, or second generation biofuels (possibly in combination with CCS) allow the use of liquid-based transport modes with low emissions. The last study takes up the fundamental question of this thesis and analyses the trade-off between the stringency of a climate target and the resulting techno-economic requirements and costs. We find that transforming the global energy-economy system to keep a two-thirds likelihood of limiting global warming to below 2 C is achievable at moderate economic implications. This result is contingent on the near-term implementation of stringent global climate policies and full availability of several technologies that are still in

  13. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nakarado, Gary L. [Regulatory Logic LLC, Golden, CO (United States)

    2017-02-22

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA, to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.

  14. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  15. Air pollution and climate-forcing impacts of a global hydrogen economy.

    Science.gov (United States)

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  16. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  17. Assessment of hydrogen storage systems as a means of integrating electricity from renewable energies; Bewertung von Wasserstoffspeichersystemen zur Integration von Strom aus erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis, Julia; Genoese, Fabio; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany)

    2013-06-15

    Hydrogen storage is a possible option for an improved integration of renewable energies into the electricity supply system. Similarly to other technical storage options it is faced with the challenge of having to be economically viable. Compared with other storage media hydrogen has the virtue of being versatile. This has a significant impact on assessments of its profitability.

  18. Losing the roadmap: Renewable energy paralysis in Spain and its implications for the EU low carbon economy

    NARCIS (Netherlands)

    Martínez Alonso, Patricia; Hewitt, Richard; Diaz Pacheco, Jaime; Bermejo, Lara Roman; Hernández Jiménez, Verónica; Guillen, Jara Vicente.; Bressers, Johannes T.A.; Boer, C.L.

    2016-01-01

    After many years at the forefront of renewable energy (RE) implementation both in Europe and worldwide, Spain experienced a sudden transformation in 2012 to its RE development model in which national government backing and financial incentives for renewables were removed, throwing the RE sector into

  19. Aqueous-Phase Reforming of Renewable Polyols for Production of Hydrogen using Platinum Catalysts

    NARCIS (Netherlands)

    Boga, D.A.

    2013-01-01

    Hydrogen has the potential to fuel the energy needs of a more sustainable society. As hydrogen is not found in nature in any appreciable quantities, this energy carrier needs to be produced from a primary energy source. Biomass can serve as a source for sustainable hydrogen production. In principle,

  20. Feasibility study for the transition towards a hydrogen economy: A case study in Brazil

    International Nuclear Information System (INIS)

    Sacramento, E.M. do; Carvalho, Paulo C.M.; Lima, L.C. de; Veziroglu, T.N.

    2013-01-01

    Fossil fuels use has caused serious environmental impacts worldwide, mainly related with the greenhouse effect intensification. One strategy to mitigate such impacts is the use of hydrogen in combustion processes. Additionally, hydrogen can be utilized as an energy vector for storage purposes and is also classified as a fuel of the future, due to the low emission of pollutants into the atmosphere. The present paper shows results of a computational simulation carried out for the state of Ceará, Brazil, considering scenarios for the use of electrolytic hydrogen obtained with the use of photovoltaic (PV) modules and wind energy converters, as a substitute of fluid fossil fuels. -- Highlights: •The State of Ceará is already exploiting commercially wind and solar energy. •The system proposes the production of hydrogen from wind and solar energy. •The electrolytic hydrogen as a substitute for the utilization of fossil fluid fuels. •The hydrogen insertion into energy matrix will contributes to pollution mitigation. •Socioeconomic, technical, and environmental parameters were calculated

  1. Collaboration under the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF)

    Energy Technology Data Exchange (ETDEWEB)

    Neff, H.J. [Forschungszentrum Juelich (Germany)

    2005-06-01

    The objectives and achievements of the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF) will be described. Both are agreements between governments and aim at identifying and promoting potential areas of bilateral and multilateral collaboration on new and advanced energy technologies. The IPHE has analysed priorities for international collaboration in research, development, demonstration and utilisation of hydrogen equipment in five areas: hydrogen production, fuel cells, hydrogen storage, codes and standards, socio-economic research. A report on such options is available and a series of IPHE conferences and workshops will pave the way to concrete collaboration projects. The CSLF is focused on development of improved cost-effective technologies for the cost-efficient capture and safe, long-term storage of carbon dioxide (CO{sub 2}) for fossil power plants. The mission of the CSLF is to facilitate the development and deployment of such technologies via collaborative efforts that address key technical issues, as well as economic, and environmental challenges. The CSLF also promotes awareness and champion legal, regulatory, financial, and institutional environments conducive to such technologies. The CSLF has worked out a Technology Roadmap as a guide for the CSLF and its Members that describes possible routes to future CO2 capture, transport and storage needs. Included are modules on the current status of these technologies, ongoing activities in CO{sub 2} capture, transport and storage, and identification of technology gaps and non-technology needs that should be addressed over the next decade. The Technology Roadmap indicates areas where the CSLF can add value through international collaborative effort. Both, hydrogen technologies and CO2 sequestration, are closely connected and will serve an overall strategic framework with clean fossil fuels as a key element of a sustainable energy portfolio

  2. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  3. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  4. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  5. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  6. AN INTEGRATED ASSESSMENT OF THE IMPACTS OF HYDROGEN ECONOMY ON TRANSPORTATION, ENERGY USE, AND AIR EMISSIONS

    Science.gov (United States)

    This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...

  7. What governs the transition to a hydrogen economy? Articulating the relationship between technologies and political institutions

    NARCIS (Netherlands)

    Hisschemoller, M.; Bode, M.G.A.; van de Kerkhof, M.F.

    2006-01-01

    There is a lack of integrated knowledge on the transition to a sustainable energy system. The paper focuses on the relationship between technologies and institutions in the field of hydrogen from the perspective of political theory. The paper unfolds four paradigms of governance: 'Governance by

  8. The renewable alternative

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses renewable energy sources as an alternative to a fossil fuel based economy. The topics discussed in the chapter include the historic aspects and current status of use of renewable energy, status of the renewable energy industry, market barriers to renewable energy, research and development and commercialization of renewable energy, the environmental and social costs associated with renewable energy, valuing future costs and benefits of energy use, and the potential market of renewable energy

  9. S.1269: This Act may be cited as the Renewable Hydrogen Energy Research and Development Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 11, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The bill would require the Secretary of Energy to expedite the development of hydrogen derived from renewable energy sources as an alternative energy system for residential, industrial, utility, and motor vehicle use. The purposes of this bill are to reduce the US dependence on imported oil; accelerate the development of renewable hydrogen; accelerate research and development programs on components of a renewable hydrogen energy system; reduce emissions of greenhouse gases, acid rain, precursors to smog, and other air pollution; and establish industry and government cost shared projects to speed the development of renewable hydrogen energy systems

  10. Assessing Country’s Reliance on Renewable Energy through Energy Profile and Political Economy Aspects: A Cross Countries Study from 1990 to 2012

    Directory of Open Access Journals (Sweden)

    Santi Hapsari Paramitha

    2017-12-01

    Full Text Available This study examines the relationship between country’s reliance on renewable energy, energy profile, and political economy aspects using dynamic panel data models for a global panel consisting of 43 countries. The time component of our dataset is 1990-2012 inclusive. To make the observation more specific, this study investigates the relationship of a number of sub-samples which are constructed based on the region where the countries belong. In this way, this study ends up with several region samples; namely Western, Asia, Middle East (ME, Africa, Commonwealth of Independent States (CIS, and Latin America. In the empirical part, this study performs a region-based analysis to capture any variations and logical explanation behind them. The results suggest that dependency on oil import, engagement on international environment agreement, economic development, and country size country’s reliance on renewable energy are among the factors that are statistically significant to influence country’s adoption of renewable energy.

  11. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    Science.gov (United States)

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  12. Renewing Oregon's Economy: Growing Jobs and Industries through Innovation. A Report from the Oregon Council for Knowledge and Economic Development.

    Science.gov (United States)

    2003

    The Oregon Council for Knowledge and Economic Development (OCKED), a collaborative effort among Oregon's higher education institutions, economic development department, and the private sector, is charged with developing strategies to enhance Oregon's economic competitiveness in a knowledge-based, global economy. This report describes the council's…

  13. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  14. All-Vanadium Dual Circuit Redox Flow Battery for Renewable Hydrogen Generation and Desulfurisation

    OpenAIRE

    Peljo, Pekka Eero; Vrubel, Heron; Amstutz, Veronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frederic; Dennison, C R; Toghill, Kathryn; Girault, Hubert

    2016-01-01

    An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system capable to function as a conventional battery, but also to produce hydrogen and perform desulfurization when surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including ox...

  15. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  16. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    OpenAIRE

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hydrogen is emerging beyond its conventional role as an additive component for gasoline production, chemical and fertilizer manufacture, and food production to become a promising fuel for transportation and stationary power. Hydrogen offers a potentially unmatched ability to deliver a de-carbonized energy system, thereby addressing global climate change concerns, while simultaneously improving local air quality and reducing dependence on imported fossil fuels. This "trifecta" of potential ben...

  17. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  18. The Phoenix Project: Shifting to a solar hydrogen economy by 2020

    International Nuclear Information System (INIS)

    Braun, H.

    2008-01-01

    The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Arctic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential 'tipping point' of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth's climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water

  19. THE PHOENIX PROJECT: SHIFTING TO A SOLAR HYDROGEN ECONOMY BY 2020

    Directory of Open Access Journals (Sweden)

    HARRY BRAUN

    2008-07-01

    Full Text Available The most serious energy, economic and environmental problems are related to the use of fossil and nuclear fuels, which are rapidly diminishing and highly polluting, and many distinguished atmospheric chemists, including Dr. James Hanson at NASA, Dr. Steven Chu, the director of Lawrence Livermore Laboratory, and Professor Ralph Cicerone, president of the National Academy of Sciences have documented that climate changes are now occurring much faster than predicted just a few years ago. The methane hydrates in the oceans and the permafrost in vast areas of the Artic regions of Siberia, Alaska and Canada are now starting to rapidly melt, and given this could release 50 to 100 times more carbon into the atmosphere than is now generated from the burning of fossil fuels, humanity is rapidly approaching an exponential “tipping point” of no return. Given this sense of urgency, Hanson and others have warned that fossil fuels need to be phased-out by 2020 if irreversible damage to the earth’s climate and food production systems is to be avoided. The Phoenix Project plan seeks to do exactly that by mass-producing wind-powered hydrogen production systems and simply modifying all the existing vehicles and power plants to use the hydrogen made from the sun, wind and water.

  20. Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol

    DEFF Research Database (Denmark)

    Alberico, E.; Nielsen, Martin

    2015-01-01

    The possibility to implement both the exhaustive dehydrogenation of aqueous methanol to hydrogen and CO2 and the reverse reaction, the hydrogenation of CO2 to methanol and water, may pave the way to a methanol based economy as part of a promising renewable energy system. Recently, homogeneous...

  1. Geothermal energy: an important but disregarded form of renewable energy; geological situation, projects and economy in Austria

    International Nuclear Information System (INIS)

    Walker-Hertkorn, S.

    2000-05-01

    This study deals with the topic geothermal energy. Although geothermal energy is an important energy sector within the area of the renewable energies, the European policy downgraded this important, promising energy sector in 1999. Normally, geothermal energy cannot be regarded as a renewable energy source because the heat content of the Earth, the gravitational heat, the source heat, frictional heat and the decay of radioactive isotopes in the further process of geologic history will eventually be exhausted. However, we are referring here to many millions of years. At the present time, geothermal energy can thus be regarded as an inexhaustible renewable energy source. This work is focused on the geothermal situation in Austria. For many people, the term 'geothermal energy' is associated with countries such as Iceland, Italy (Larderello) and New Zealand. However, in Austria there are also innovative projects in the geothermal energy sector that only very few people know about. Some of these trend-setting projects are presented here. Regarding the total situation in Austria, the geothermal potential is described specifically for the Calcareous Alpine nappe and the Vienna Basin. Furthermore, the first results concerning successful injection in Upper Austria and up to now unconsidered locations for geothermal energy plants are presented. This work attempts to present the attractiveness of geothermal energy projects to the public, thus emphasizing the importance of discussing it again on the political level. (author)

  2. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    Science.gov (United States)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  3. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  4. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  5. Renewable hydrogen generation from a dual-circuit redox flow battery

    OpenAIRE

    Amstutz, Veronique; Toghill, Kathryn Ellen; Powlesland, Francis; Vrubel, Heron; Comninellis, Christos; Hu, Xile; Girault, Hubert H.

    2014-01-01

    Redox flow batteries (RFBs) are particularly well suited for storing the intermittent excess supply of renewable electricity; so-called “junk” electricity. Conventional RFBs are charged and discharged electrochemically, with electricity stored as chemical energy in the electrolytes. In the RFB system reported here, the electrolytes are conventionally charged but are then chemically discharged over catalytic beds in separate external circuits. The catalytic reaction of particular interest gene...

  6. Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Peters, Mike; Muratori, Matteo; Gearhart, Chris

    2018-03-01

    The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.

  7. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part B)

    Science.gov (United States)

    2015-03-20

    SUBJECT TERMS Biohydrogen, biofuels, cyanobacteria, photosynthesis, fermentation , transcription profiling, metabolic engineering, TCA cycle...transcription regulators, including RbcR, Fur, and ChlR, were identified and characterized, and a global model of the transcription network was...enhance hydrogen production. These data have recently been analyzed to produce a global transcription network model for this cyanobacterium [17]. At

  8. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  9. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  10. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    International Nuclear Information System (INIS)

    Cau, Giorgio; Cocco, Daniele; Petrollese, Mario; Knudsen Kær, Søren; Milan, Christian

    2014-01-01

    Highlights: • Energy management strategy for hybrid stand-alone power plant with hydrogen storage. • Optimal scheduling of storage devices to minimize the utilization costs. • A scenario tree method is used to manage uncertainties of weather and load forecasts. • A reduction of operational costs and energy losses is achieved. - Abstract: This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal scheduling of storage devices is carried out to maximize the benefits of available renewable resources by operating the photovoltaic systems and the wind turbine at their maximum power points and by minimizing the overall utilization costs. Unlike conventional EMS based on the state-of-charge (SOC) of batteries, the proposed EMS takes into account the uncertainty due to the intermittent nature of renewable resources and electricity demand. In particular, the uncertainties are evaluated with a stochastic approach through the construction of different scenarios with corresponding probabilities. The EMS is defined by minimizing the utilization costs of the energy storage equipment. The weather conditions recorded in four different weeks between April and December are used as case studies to test the proposed EMS and the results obtained are compared with a conventional EMS based on the state-of-charge of batteries. The results show a reduction of utilization costs of about 15% in comparison to conventional SOC-based EMS and an increase of the average energy storage efficiency

  11. Hydrogen production by renewable energies. Final report of the integrated research program 4.1; Production d'hydrogene par des energies renouvelables. Rapport final du programme de recherche integree 4.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this PRI is to study and to develop methods of hydrogen production based on the renewable energies, without greenhouse gases emission in order to implement clean processes in the framework of a sustainable development. Two approaches are proposed. The first one uses microorganisms in condition of hydrogen production (micro-algae). The second one is based on the bio-mimetism approaches aiming to reproduce artificially the biological mechanisms of the photosynthesis leading to water decomposition. (A.L.B.)

  12. Cooperation of research and economy for renewable energies and energy efficiency. Contributions; Zusammenarbeit von Forschung und Wirtschaft fuer Erneuerbare Energien und Energieeffizienz. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas [comps.

    2013-04-15

    The following topics were dealt with: Energy efficiency as driver of economy, green economy, system techniques for photovoltaics and decentral energy systems, energy research at Bosch, portfolio of possible kinds of cooperation of the FVEE-member institutes with industry, efficiency potentials by the new main energy carriers sun and wind, renewable energies and energy efficiency, photovoltaics technology centers for the advanced technology transfer from institutes to the PV industry, thin-film photovoltaics, offshore wind energy and sea energy usage, research requirement at the future rotor, the status of the energy transformation process from the view of the FVEE, geothermal heat supply of metropoles on the example of Berlin, challenges in the research for low-temperature solar thermal energy, efficient refrigeration techniques and solar cooling, suitedness of combined heat and power and heat pumps for the balance of the fluctuating electric-power supply, key role of the current nets in the further decarbonization of the electric-power supply, new battery systems between research and application, the use of biomethane, water electrolysis and regenerative gases as key factors for the energy-system transformation, thermal energy storage, future energy.optimized buildings, energy concepts for cities and region, bridging the information gap on energy efficiency in buildings, integration of electromobiles in the Smart Grid. (HSI)

  13. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  14. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydro power in Iceland or excess renewable electricity in Germany

    NARCIS (Netherlands)

    Kauw, Marco; Benders, Reinerus; Visser, Cindy

    2015-01-01

    The synthesis of green methanol from hydrogen and carbon dioxide can contribute to mitigation of greenhouse gasses. This methanol can be utilized as either a transport fuel or as an energy carrier for electricity storage. It is preferable to use inexpensive, reliable and renewable energy sources to

  15. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  16. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  17. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  18. Renewable energy in the Netherlands up to 2020. Investment options for energy transition to a low-carbon economy

    International Nuclear Information System (INIS)

    Hieminga, G.; Van Woelderen, S.

    2011-09-01

    This report provides insight into the market for green assets in the Netherlands. An asset is defined as green as its properties contribute to the achievement of European targets of 20% higher energy efficiency, CO2 reduction of 20% and 14% renewable energy by 2020. The objectives of this report are fourfold: (1) better understanding of the chances for success of green assets from an economic perspective; (2) Review the cost, expected growth, market size (in terms of energy and investments) and issues in Corporate Responsibility of green assets; (3) mapping of the financing needs for green assets in the Netherlands; (4) Communicate about it both inside and outside the organization; (5) Form a basis for a European study on green assets, taking into account green assets that are not relevant for the Netherlands until 2020, but are relevant in the European context, such as Concentrated Solar Power and Hydroelectric Power Plants. [nl

  19. Sensitivity of encapsulated diamond-protein transistor renewed by low temperature hydrogen plasma

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Neykova, Neda; Ukraintsev, Egor; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 2 (2013), s. 1598-1608 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996; GA ČR GD202/09/H041 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * solution-gated field-effect transistor * low temperature hydrogen termination * proteins * encapsulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/list13.htm#current

  20. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  1. Renewable energy in a market-based economy: How to estimate its potential and choose the right incentives

    International Nuclear Information System (INIS)

    Faundez, Pablo

    2008-01-01

    A model to explain and predict market-driven investment in renewable energy capital is proposed. The model is suitable for application to the biomass, wind, solar and ocean-derived energy industries. It basically assumes that, given a set of prices and a specific technology, the marginal efficiency of capital invested in these industries only depends on the productivity of the project's site and on its energy transport distance. As suggested by traditional investment theory, the model supposes that only those projects offering marginal efficiencies of capital above the current available rate of interest would be implemented, thus demarcating a region in the productivity-energy transport distance space where all the economically viable projects should lie. By relating this region to the geographic space available for development, total potential investment can be deduced. By using cash flows defined in variable energy transport distance and mean wind speed, a case study for the Chilean wind energy industry is presented. The use of the model to analyse the effect of alternative support schemes for wind energy in Chile is briefly demonstrated. It is concluded that for increasing the area economically available for the development of new wind farms, a research and development support scheme aimed at reducing investment cost of wind turbines by 25% is equivalent to a 20% price subsidy on energy. (author)

  2. 12. symposium for the use of regenerative energy sources and hydrogen technology. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.

    2005-01-01

    Topics of the conference were: renewable energy sources, wind energy, wood fueled space and water heating systems, SOFC fuel cell, storage of wind energy in the form of hydrogen, geothermal energy, usage of waste heat in low-temperature Rankine cycle engines, emissions trading, energy policy, solar hydrogen economy. (uke)

  3. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  4. Hydrogen perspectives in Japan

    International Nuclear Information System (INIS)

    Furutani, H.

    2000-01-01

    Hydrogen energy is considered to present a potential effective options for achieving the greenhouse gas minimization. The MITI (Ministry of International Trade and Industry) of Japanese Government is promoting the WE-NET (World Energy Network System) Project which envisions (1) construction of a global energy network for effective supply, transportation, storage and utilization of renewable energy using hydrogen as an energy carrier as a long-term options of sustainable energy economy, and (2) promotion of market entry of hydrogen energy in near and/or mid future even before construction of a WE-NET system. In this paper, I would like to report how far the hydrogen energy technology development addressed under Phase I has progressed, and describe the outline of the Phase II Plan. (author)

  5. A national vision of America's transition to a hydrogen economy. To 2030 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-02-01

    This document outlines a vision for America’s energy future -- a more secure nation powered by clean, abundant hydrogen. This vision can be realized if the Nation works together to fully understand hydrogen’s potential, to develop and deploy hydrogen technologies, and to produce and deliver hydrogen energy in an affordable, safe, and convenient manner.

  6. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  7. Comparative costs of hydrogen produced from photovoltaic electrolysis and from photoelectrochemical processes

    International Nuclear Information System (INIS)

    Block, D.L.

    1998-01-01

    The need for hydrogen produced from renewable energy sources is the key element to the world's large-scale usage of hydrogen and to the hydrogen economy envisioned by the World Hydrogen Energy Association. Renewables-produced hydrogen is also the most technically difficult problem to be solved. Hydrogen will never achieve large-scale usage until it can be competitively produced from renewable energy. One of the important questions that has to be addressed is: What are the economics of present and expected future technologies that will be used to produce hydrogen from renewables? The objective of this study is to give an answer to this question by determining the cost of hydrogen (in U.S.$/MBtu) from competing renewable production technologies. It should be noted that the costs and efficiencies assumed in this paper are assumptions of the author, and that the values are expected to be achieved after additional research on photoelectrochemical process technologies. The cost analysis performed is for three types of hydrogen (H 2 ) produced from five different types of renewable processes: photovoltaic (PV) electrolysis, three photoelectrochemical (PEC) processes and higher temperature electrolysis (HTE). The costs and efficiencies for PV, PEC and HTE processes are established for present day, and for expected costs and efficiencies 10 years into the future. A second objective of this analysis is to set base case costs of PV electrolysis. For any other renewable process, the costs for PV electrolysis, which is existing technology, sets the numbers which the other processes must better. (author)

  8. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  9. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  10. Modern technology electrolysis for power application. II. The impact of the energy market on the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, U [Brown Boveri AG, Baden, Switzerland; Bidard, R

    1979-01-01

    This paper considers the effects of the energy market on the use of hydrogen as a fuel and discusses various schemes of supplanting fossil fuels. Different fossil fuel substitution models in various parts of the western community result in rather different timing of market penetration needs and possibilities. This requires a consideration of the time span needed to implement different technologies in the choice of hydrogen production methods.

  11. HYDROGEN ENERGY: TERCEIRA ISLAND DEMONSTRATION FACILITY

    Directory of Open Access Journals (Sweden)

    MARIO ALVES

    2008-07-01

    Full Text Available The present paper gives a general perspective of the efforts going on at Terceira Island in Azores, Portugal, concerning the implementation of an Hydrogen Economy demonstration campus. The major motivation for such a geographical location choice was the abundance of renewable resources like wind, sea waves and geothermal enthalpy, which are of fundamental importance for the demonstration of renewable hydrogen economy sustainability. Three main campus will be implemented: one at Cume Hill, where the majority of renewable hydrogen production will take place using the wind as the primary energy source, a second one at Angra do Heroismo Industrial park, where a cogen electrical – heat power station will be installed, mainly to feed a Municipal Solid Waste processing plant and a third one, the Praia da Vitoria Hydrogenopolis, where several final consumer demonstrators will be installed both for public awareness and intensive study of economic sustainability and optimization. Some of these units are already under construction, particularly the renewable hydrogen generation facilities.

  12. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  14. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  15. Hycom Pre - Feasibility study. Final report[Hydrogen communities

    Energy Technology Data Exchange (ETDEWEB)

    Lacobazzi, A; Mario, F di [ENEA, (Italy); Hasenauer, U [Fraunhofer IS, (Germany); Joergensen, B H; Bromand Noergaard, P [Risoe National Lab., (Denmark)

    2005-07-01

    The Quick-start Programme of the European Union Initiative for Growth identifies the hydrogen economy as one of the key areas for investment in the medium term (2004-2015). In this context the HyCOM (Hydrogen Communities) programme has been initiated. The main goal of this programme is the creation of a limited number of strategically sited stand-alone hydrogen communities producing hydrogen from various primary sources (mostly renewables) and using it for heat and electricity production and as fuel for vehicles. This report looks at the establishment of such hydrogen communities, analysing the main technical, economic, social, and environmental aspects as well as financial and regulatory barriers associated with the creation and operation of hydrogen communities. It also proposes a number of concepts for Hydrogen Communities and criteria with which a Hydrogen Community should be evaluated. The study is not in any way intended to be prescriptive. (ln)

  16. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  17. Symposium on hydrogen technology and fuel cells - opportunities for the economy; Symposium Wassertechnologie und Brennstoffzellen - Chancen fuer die Wirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This volume contains 17 contributions on fuel cell technology and on the infrastructure required for hydrogen production and supply, in the form of abstracts and short reports. [German] Dieser Band enthaelt 17 Beitraege zum Themenkreis Brennstoffzellentechnologie und die dazu erforderliche Infrastruktur fuer die Wasserstofferzeugung und -versorgung in Form von Kurzfassungen und Vortragsfolien.

  18. Renewable energies and competition in the power economy. Governmental regulation - comparison between Germany and Great Britain; Erneuerbare Energien und Wettbewerb in der Elektrizitaetswirtschaft. Staatliche Regulierung im Vergleich zwischen Deutschland und Grossbritannien

    Energy Technology Data Exchange (ETDEWEB)

    Suck, A.

    2008-07-01

    Throughout Europe the energy economy faces two major challenges from new governmental regulation, namely regulation for the purposes of climate policy and regulation for the introduction of competition to what used to be monopolistic sectors. With regard to the growing regulatory influence of the European Union the author of this British-German comparative study analyses how diverging structures of governmental organisation and historical paths of development have led to different regulatory approaches to the market introduction of renewable energies and the liberalisation of the power economy. He offers an in-depth analysis of the differences in success the two countries success have had in developing sustainable electricity production systems and establishing competitive structures in the power sector.

  19. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  20. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  1. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  2. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  3. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  4. A global survey of hydrogen energy research, development and policy

    International Nuclear Information System (INIS)

    Solomon, Barry D.; Banerjee, Abhijit

    2006-01-01

    Several factors have led to growing interest in a hydrogen energy economy, especially for transportation. A successful transition to a major role for hydrogen will require much greater cost-effectiveness, fueling infrastructure, consumer acceptance, and a strategy for its basis in renewable energy feedstocks. Despite modest attention to the need for a sustainable hydrogen energy system in several countries, in most cases in the short to mid term hydrogen will be produced from fossil fuels. This paper surveys the global status of hydrogen energy research and development (R and D) and public policy, along with the likely energy mix for making it. The current state of hydrogen energy R and D among auto, energy and fuel-cell companies is also briefly reviewed. Just two major auto companies and two nations have specific targets and timetables for hydrogen fuel cells or vehicle production, although the EU also has an aggressive, less specific strategy. Iceland and Brazil are the only nations where renewable energy feedstocks are envisioned as the major or sole future source of hydrogen. None of these plans, however, are very certain. Thus, serious questions about the sustainability of a hydrogen economy can be raised

  5. Future role of hydrogen in FRG

    International Nuclear Information System (INIS)

    Bradke, H.

    1992-01-01

    Relative to the Federal Republic of Germany energy-economy framework, this paper prepares supply and demand assessments for a set of energy source diversification strategy alternatives involving the substantial use of hydrogen fuels, with the aim of reducing the strain on the the earth's limited supplies of fossil fuels and limiting carbon dioxide emissions into the atmosphere. These assessments include forecasts of population dynamics, GNP, and sectoral energy consumption, production, imports and prices for fossil fuels and renewable energy sources. The comparative evaluation of the diversification scenarios includes sensitivity analyses to establish the optimum mix of economy-energy planning criteria that would allow for the successful evolution of a hydrogen based economy in the FRG by the year 2040

  6. Real-time integration of optimal generation scheduling with MPC for the energy management of a renewable hydrogen-based microgrid

    International Nuclear Information System (INIS)

    Petrollese, Mario; Valverde, Luis; Cocco, Daniele; Cau, Giorgio; Guerra, José

    2016-01-01

    Highlights: • Energy management strategy for a renewable hydrogen-based microgrid. • Integration of optimal generation scheduling with a model predictive control. • Experimental tests are carried out simulating typical summer and winter days. • Effective improvement in performance and reduction in microgrid operating cost are achieved. - Abstract: This paper presents a novel control strategy for the optimal management of microgrids with high penetration of renewable energy sources and different energy storage systems. The control strategy is based on the integration of optimal generation scheduling with a model predictive control in order to achieve both long and short-term optimal planning. In particular, long-term optimization of the various microgrid components is obtained by the adoption of an optimal generation scheduling, in which a statistical approach is used to take into account weather and load forecasting uncertainties. The real-time management of the microgrid is instead entrusted to a model predictive controller, which has the important feature of using the results obtained by the optimal generation scheduling. The proposed control strategy was tested in a laboratory-scale microgrid present at the University of Seville, which is composed of an electronic power source that emulates a photovoltaic system, a battery bank and a hydrogen production and storage system. Two different experimental tests that simulate a summer and a winter day were carried out over a 24-h period to verify the reliability and performance enhancement of the control system. Results show an effective improvement in performance in terms of reduction of the microgrid operating cost and greater involvement of the hydrogen storage system for the maintenance of a spinning reserve in batteries.

  7. Prospects for hydrogen in the German energy system

    International Nuclear Information System (INIS)

    Hake, J.-F.; Linssen, J.; Walbeck, M.

    2006-01-01

    The focus of the paper concerns the current discussion on the contribution of the hydrogen economy to a 'sustainable energy system'. It considers whether advantages for the environmental situation and energy carrier supply can be expected from the already visible future characteristics of hydrogen as a new secondary energy carrier. Possible production paths for hydrogen from hydrocarbon-based, renewable or carbon-reduced/-free primary energy carriers are evaluated with respect to primary energy use and CO 2 emissions from the fuel cycle. Hydrogen has to be packaged by compression or liquefaction, transported by surface vehicles or pipelines, stored and transferred to the end user. Whether generated by electrolysis or by reforming, and even if produced locally at filling stations, the gaseous or liquid hydrogen has to undergo these market processes before it can be used by the customer. In order to provide an idea of possible markets with special emphasis on the German energy sector, a technical systems analysis of possible hydrogen applications is performed for the stationary, mobile and portable sector. Furthermore, different 'business as usual' scenarios are analysed for Germany, Europe and the World concerning end energy use in different sectors. The very small assumed penetration of hydrogen in the analysed scenarios up to the year 2050 indicates that the hydrogen economy is a long-term option. With reference to the assumed supply paths and analysed application possibilities, hydrogen can be an option for clean energy use if hydrogen can be produced with carbon-reduced or -free primary energy carriers like renewable energy or biomass. However, the energetic use of hydrogen competes with the direct use of clean primary energy and/or with the use of electric energy based on renewable primary energy. As a substitution product for other secondary energy carriers hydrogen is therefore under pressure of costs and/or must have advantages in comparison to the use of

  8. Hydro Solar 21- A building energetic demand providing system based on renewable energies and hydrogen; Hydro Solar 21- Energias renovables e hidrogeno para el abastecimiento energetico de un edificio

    Energy Technology Data Exchange (ETDEWEB)

    Renilla Collado, R.; Ortega Izquierdo, M.

    2008-07-01

    Hydro Solar 21 is an energy innovation Project carried out in Burgos City to develop an energy production system based on renewable energies to satisfy light and air condition requirements of a restored building. Nocturnal light demand is satisfied with hydrogen consumption in fuel cells. This hydrogen is produced with an energy renewable system made up of two wind turbine generators and a photovoltaic system. The air conditioning demand is satisfied with an adsorption solar system which produces cold water using thermal solar energy. (Author) 8 refs.

  9. The Dutch Economy 2009

    International Nuclear Information System (INIS)

    2010-09-01

    In the series 'The Dutch Economy' the Dutch Statistical Office describes and analyzes annual developments in enterprises, households and governments, and with respect to employment and the environment. One of the subjects is 'Economy and Environment' with the sub-topics 'Resources and Energy', 'Emissions' and 'Environmental Taxes'. Furthermore, in articles on specific themes current economic issues are discussed. One of those themes has the title 'Share of renewable energy in the Netherlands is still small'. [nl

  10. The Italian hydrogen programme

    International Nuclear Information System (INIS)

    Raffaele Vellone

    2001-01-01

    Hydrogen could become an important option in the new millennium. It provides the potential for a sustainable energy system as it can be used to meet most energy needs without harming the environment. In fact, hydrogen has the potential for contributing to the reduction of climate-changing emissions and other air pollutants as it exhibits clean combustion with no carbon or sulphur oxide emissions and very low nitrogen oxide emissions. Furthermore, it is capable of direct conversion to electricity in systems such as fuel cells without generating pollution. However, widespread use of hydrogen is not feasible today because of economic and technological barriers. In Italy, there is an ongoing national programme to facilitate the introduction of hydrogen as an energy carrier. This programme aims to promote, in an organic frame, a series of actions regarding the whole hydrogen cycle. It foresees the development of technologies in the areas of production, storage, transport and utilisation. Research addresses the development of technologies for separation and sequestration of CO 2 , The programme is shared by public organisations (research institutions and universities) and national industry (oil companies, electric and gas utilities and research institutions). Hydrogen can be used as a fuel, with significant advantages, both for electric energy generation/ co-generation (thermo-dynamic cycles and fuel cells) and transportation (internal combustion engine and fuel cells). One focus of research will be the development of fuel cell technologies. Fuel cells possess all necessary characteristics to be a key technology in a future economy based on hydrogen. During the initial phase of the project, hydrogen will be derived from fossil sources (natural gas), and in the second phase it will be generated from renewable electricity or nuclear energy. The presentation will provide a review of the hydrogen programme and highlight future goals. (author)

  11. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. Political economy of renewable energy policy in Germany. A consideration of the policy making process in the electricity market under the influence of interest groups

    International Nuclear Information System (INIS)

    Mueller, Tom

    2015-01-01

    In the research, it is argued that the targeted promotion of renewables leads to a change in the technological path dependency on the electricity market or led. The historically market depending portfolio of products in the conventional power industry will be replaced by an increasingly strong dependence on the product portfolio of Renewable Energy Sector according to this argumentation. The present work is devoted to the political explanation of the change and transition process in the electricity market. The process of policy formation in this market (especially support policies for renewable energies) will be discussed. It is examined from a public choice perspective, which political actors and instances in the past were responsible for the development and maintenance of individual policy elements. In particular, in this analysis the different private sector stakeholders in the electricity market move to center of attention. [de

  13. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  14. Production of Renewable Hydrogen from Glycerol Steam Reforming over Bimetallic Ni-(Cu,Co,Cr Catalysts Supported on SBA-15 Silica

    Directory of Open Access Journals (Sweden)

    Alicia Carrero

    2017-02-01

    Full Text Available Glycerol steam reforming (GSR is a promising alternative to obtain renewable hydrogen and help the economics of the biodiesel industry. Nickel-based catalysts are typically used in reforming reactions. However, the choice of the catalyst greatly influences the process, so the development of bimetallic catalysts is a research topic of relevant interest. In this work, the effect of adding Cu, Co, and Cr to the formulation of Ni/SBA-15 catalysts for hydrogen production by GSR has been studied, looking for an enhancement of its catalytic performance. Bimetallic Ni-M/SBA-15 (M: Co, Cu, Cr samples were prepared by incipient wetness co-impregnation to reach 15 wt % of Ni and 4 wt % of the second metal. Catalysts were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES, N2-physisorption, X-ray powder diffraction (XRD, hydrogen temperature programmed reduction (H2-TPR, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analyses (TGA, and tested in GSR at 600 °C and atmospheric pressure. The addition of Cu, Co, and Cr to the Ni/SBA-15 catalyst helped to form smaller crystallites of the Ni phase, this effect being more pronounced in the case of the Ni-Cr/SBA-15 sample. This catalyst also showed a reduction profile shifted towards higher temperatures, indicating stronger metal-support interaction. As a consequence, the Ni-Cr/SBA-15 catalyst exhibited the best performance in GSR in terms of glycerol conversion and hydrogen production. Additionally, Ni-Cr/SBA-15 achieved a drastic reduction in coke formation compared to the Ni/SBA-15 material.

  15. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    DEFF Research Database (Denmark)

    Cau, Giorgo; Cocco, Daniele; Petrollese, Mario

    2014-01-01

    This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal...

  16. Renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions: Review

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. The objective of this paper is to review the use of soybean peroxidase (SBP) and peroxides as a manure additive to mitigate emissions of odor...

  17. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.

    Science.gov (United States)

    Zhao, Liang; Wei, Jianwei; Lu, Junhua; He, Cheng; Duan, Chunying

    2017-07-17

    Using small molecules with defined pockets to catalyze chemical transformations resulted in attractive catalytic syntheses that echo the remarkable properties of enzymes. By modulating the active site of a nicotinamide adenine dinucleotide (NADH) model in a redox-active molecular flask, we combined biomimetic hydrogenation with in situ regeneration of the active site in a one-pot transformation using light as a clean energy source. This molecular flask facilitates the encapsulation of benzoxazinones for biomimetic hydrogenation of the substrates within the inner space of the flask using the active sites of the NADH models. The redox-active metal centers provide an active hydrogen source by light-driven proton reduction outside the pocket, allowing the in situ regeneration of the NADH models under irradiation. This new synthetic platform, which offers control over the location of the redox events, provides a regenerating system that exhibits high selectivity and efficiency and is extendable to benzoxazinone and quinoxalinone systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen, fuel of the future?

    International Nuclear Information System (INIS)

    Bello, B.

    2008-01-01

    The European project HyWays has drawn out the road map of hydrogen energy development in Europe. The impact of this new energy vector on the security of energy supplies, on the abatement of greenhouse gases and on the economy should be important in the future. This article summarizes the main conclusions of the HyWays study: CO 2 emissions, hydrogen production mix, oil saving abatement, economic analysis, contribution of hydrogen to the development of renewable energies, hydrogen uses, development of regional demand and of users' centers, transport and distribution. The proposals of the HyWays consortium are as follows: implementing a strong public/private European partnership to reach the goals, favoring market penetration, developing training, tax exemption on hydrogen in the initial phase for a partial compensation of the cost difference, inciting public fleets to purchase hydrogen-fueled vehicles, using synergies with other technologies (vehicles with internal combustion engines, hybrid vehicles, biofuels of second generation..), harmonizing hydrogen national regulations at the European scale. (J.S.)

  19. Economy of the depletable resources

    International Nuclear Information System (INIS)

    Hotelling, Harold Traductores Alvarez H Carlos Guillermo; Diaz Serna, F Javier; Olaya A, Alfredo

    2001-01-01

    Classic economic theory is analyzed with respect to the exploitation of renewable natural resources renewable as mining and oil exploitation. The principles of the mining economy and the good path of exploitation are presented under the assumptions of monopoly, duopoly and free competition. Advanced mathematical tools are used for the optimization and the effects of the taxes and the compensatory rates are included

  20. Manitoba: path to a hydrogen future

    International Nuclear Information System (INIS)

    Parsons, R.V.; Crone, J.

    2003-01-01

    A hydrogen economy is not just about future clean energy but is also about future economic development. It is about new products, new services, new knowledge, and renewable energy sources that will be ultimately used by consumers in the future, and thus represent potential new economic opportunities. The concept of achieving important environmental and health goals through a cleaner energy economy, based on hydrogen, is not new. Similarly, the desire of individual jurisdictions to seek out and develop economic development opportunities is not new. The key question today becomes one of how to plot directions on hydrogen that will yield appropriate economic development gains in the future. While hydrogen offers significant promise, the prospect benefits are recognized to be still largely long-term in nature. In addition, the ability to identify appropriate future directions is clouded by a degree of 'hydrogen hype' and by a variety of major technical and market uncertainties. During 2002, a unique process was initiated within Manitoba combining these elements to work toward a Hydrogen Economic Development Strategy, a strategy that is ultimately intended to lead the province as a whole to determining our future economic niches for hydrogen. This paper describes the nature of the assessment process undertaken within Manitoba, the outcomes achieved and general insights of relevance to a broader audience. (author)

  1. Proceedings of the 5th International workshop on hydrogen and fuel cells WICaC 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The 5th International Workshop on Hydrogen and Fuel Cells - WICaC 2010 aims to bring the most recent advances on fuel cell and hydrogen technologies. The conference will address the trends on hydrogen production, distribution, delivery, storage and infrastructure as well as fuel cell research, development, demonstration and commercialization. Some of the issues addressed at WICaC 2010 are: the official Brazilian hydrogen and fuel cell programs and its participation in the international programs and partnerships such as the IPHE (The International Partnership for Hydrogen and Fuel Cells in the Economy); the integration of renewable energy sources with hydrogen and fuel cell systems; the challenges to deploy the commercialization and use of fuel cells and hydrogen; distributed generation of energy; fuel cell uses in portable devices and in vehicles; life-cycle assessment of fuel cells and hydrogen technologies; environmental aspects; energy efficiency.

  2. Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm

    International Nuclear Information System (INIS)

    Niknam, Taher; Golestaneh, Faranak; Shafiei, Mehdi

    2013-01-01

    Micro Grids (MGs) are clusters of the DER (Distributed Energy Resource) units and loads which can operate in both grid-connected and island modes. This paper addresses a probabilistic cost optimization scheme under uncertain environment for the MGs with several multiple Distributed Generation (DG) units. The purpose of the proposed approach is to make decisions regarding to optimizing the production of the DG units and power exchange with the upstream network for a Combined Heat and Power (CHP) system. A PEMFCPP (Proton Exchange Membrane Fuel cell power plant) is considered as a prime mover of the CHP system. An electrochemical model for representation and performance of the PEMFC is applied. In order to best use of the FCPP, hydrogen production and storage management are carried out. An economic model is organized to calculate the operation cost of the MG based on the electrochemical model of the PEMFC and hydrogen storage. The proposed optimization scheme comprises a self-adaptive Charged System Search (CSS) linked to the 2m + 1 point estimate method. The 2m + 1 point estimate method is employed to cover the uncertainty in the following data: the hourly market tariffs, electrical and thermal load demands, available output power of the PhotoVoltaic (PV) and Wind Turbines (WT) units, fuel prices, hydrogen selling price, operation temperature of the FC and pressure of the reactant gases of FC. The Self-adaptive CSS (SCSS) is organized based on the CSS algorithm and is upgraded by some modification approaches, mainly a self-adaptive reformation approach. In the proposed reformation method, two updating approaches are considered. Each particle based on the ability of those approaches to find optimal solutions in the past iterations, chooses one of them to improve its solution. The effectiveness of the proposed approach is verified on a multiple-DG MG in the grid-connected mode. -- Highlights: ► Consider the effect of Hydrogen produced by PEMFC on MGs. ► Combines

  3. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  4. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: an examination of salt effects

    Science.gov (United States)

    Brimblecombe, Robin; Rotstein, Miriam; Koo, Annette; Dismukes, G. Charles; Swiegers, Gerhard F.; Spiccia, Leone

    2009-08-01

    Most transport fuels are derived from fossil fuels, generate greenhouse gases, and consume significant amounts of water in the extraction, purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally from abundant water sources such as sea water or other non-potable sources, could potentially provide an unlimited, clean fuel for the future. Solar, electrochemical water splitting typically combines a photoanode at which water oxidation occurs, with a cathode for proton reduction to hydrogen. In recent work, we have found that a bioinspired tetra-manganese cluster catalyzes water oxidation at relatively low overpotentials (0.38 V) when doped into a Nafion proton conduction membrane deposited on a suitable electrode surface, and illuminated with visible light. We report here that this assembly is active in aqueous and organic electrolyte solutions containing a range of different salts in varying concentrations. Similar photocurrents were obtained using electrolytes containing 0.0 - 0.5 M sodium sulfate, sodium perchlorate or sodium chloride. A slight decline in photocurrent was observed for sodium perchlorate but only at and above 5.0 M concentration. In acetonitrile and acetone solutions containing 10% water, increasing the electrolyte concentration was found to result in leaching of the catalytic species from the membrane and a decrease in photocurrent. Leaching was not observed when the system was tested in an ionic liquid containing water, however, a lower photocurrent was generated than observed in aqueous electrolyte. We conclude that immersion of the membrane in an aqueous solution containing an electrolyte concentration of 0.05 - 0.5M represent good conditions for operation for the cubium/Nafion catalytic system.

  5. A year in the life of an investor relations manager in the hydrogen technology section

    Energy Technology Data Exchange (ETDEWEB)

    Merer, R.M.; Dundas, A.J. [Stuart Energy Systems, Toronto, ON (Canada)

    2001-06-01

    The technical and cost challenges of hydrogen technology were discussed. Stuart Energy manufactures appliances that generate hydrogen from water, using electricity. The basis for the water electrolysis process is hydrogen generation and supply. This is the basis for fuel cell technology for all applications, energy storage, grid stabilization, and electric power generation from renewable energy sources. Stuart Energy develops the technology for the hydrogen economy for industrial, transportation, and regenerative power markets. In the past decade, the company has reduced the cost and size of its equipment significantly, creating a viable solution to the infrastructure needs of a hydrogen based economy. This presentation focused in part on the new techniques that are necessary to attract and maintain investor interest in Stuart Energy with particular emphasis on investor emotions since Stuart Energy's initial public offering (IPO) in October 2000. At the time, oil prices were high and hydrogen technology was in demand. Since that time, the hydrogen index has dropped significantly and share values are far from their peak. The author explained how stock valuation is determined and emphasized that the hydrogen economy will be built on steady technology development and not on volatile shareholder emotions. The technology promises to generate and use hydrogen in a manner that offers the same or better performance than today's technology, at greater convenience and lower cost. Hydrogen also offers benefits of energy security, higher efficiency and sustainable development. 1 ref.

  6. A year in the life of an investor relations manager in the hydrogen technology section

    International Nuclear Information System (INIS)

    Merer, R.M.; Dundas, A.J.

    2001-01-01

    The technical and cost challenges of hydrogen technology were discussed. Stuart Energy manufactures appliances that generate hydrogen from water, using electricity. The basis for the water electrolysis process is hydrogen generation and supply. This is the basis for fuel cell technology for all applications, energy storage, grid stabilization, and electric power generation from renewable energy sources. Stuart Energy develops the technology for the hydrogen economy for industrial, transportation, and regenerative power markets. In the past decade, the company has reduced the cost and size of its equipment significantly, creating a viable solution to the infrastructure needs of a hydrogen based economy. This presentation focused in part on the new techniques that are necessary to attract and maintain investor interest in Stuart Energy with particular emphasis on investor emotions since Stuart Energy's initial public offering (IPO) in October 2000. At the time, oil prices were high and hydrogen technology was in demand. Since that time, the hydrogen index has dropped significantly and share values are far from their peak. The author explained how stock valuation is determined and emphasized that the hydrogen economy will be built on steady technology development and not on volatile shareholder emotions. The technology promises to generate and use hydrogen in a manner that offers the same or better performance than today's technology, at greater convenience and lower cost. Hydrogen also offers benefits of energy security, higher efficiency and sustainable development. 1 ref

  7. Renewable Energy Sources, Energy Efficiency and Reduction of Greenhouse Gas Emissions as Main Sources Development of 'Green Economy' in Croatia until 2050

    International Nuclear Information System (INIS)

    Cosic, B.; Duic, N.; Krajacic, G.; Novosel, T.; Puksec, T.; Ridjan, I.

    2012-01-01

    Most countries will need a shift in their energy strategies in order to limit the increase in global warming and to reduce the emissions of greenhouse gases. It is worrying that while technologies with little or no greenhouse gas emissions exist, and are used for a couple of decades now, the increase of their market share is extremely low and the investments and subsidies in fossil fuels are substantially larger on a world wide scale. For changes to accrue it is necessary to carefully plan both the energy consumption and supply. A correct and rational prediction of future energy consumption is the basic assumption for the advanced analysis and modelling of energy systems and it will, as an input, have a profound influence on them. In this paper a bottom up approach was selected because it is the most suitable methodology to describe the legal, economic or purely technical mechanisms. Scenarios for the energy supply in 100% renewable systems in 2050 and the possibility to create a low-carbon society were simulated using the EnergyPLAN model for energy system analysis. Comparison of the necessary useful energy for space heating in 2050 shows a difference greater than 16% for different rates of renovation of the existing buildings in the residential sector of 1% and 3% annually. The electrification of road transport for passenger cars in combination with increased requirements for energy efficiency of internal combustion engines can reduce the energy consumption in the transport sector by 30% in comparison to the reference scenario for 2050. It is possible to reduce the emission of greenhouse gases by 82% in the period 2030-2050 and the use of renewable energy sources and the production of synthetic fuels can enable a transition to a 100% renewable energy system in Croatia in 2050. Doing so would create 192000 jobs in plant maintenance and fuel production alone, increase the security of energy supply and reduce the expenditure for the purchase of fossil fuels by 4

  8. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  9. Renewable energies - Alain Chardon

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    In an interview, the chairman of Cleantechs and Decarbonate, Capgemini Consulting, comments the challenge of the struggle against global warming, discusses the role of gas on the way towards a de-carbonated economy, the cost of renewable energies compared to that of fossil and nuclear energies. He outlines other brakes upon the development of renewable energies, discusses the political issues and the challenge of meeting European objectives with respect with the share of renewable energies in the energy mix and the electricity mix by 2020

  10. What product might a renewal of Heavy Ion Fusion development offer that competes with methane microbes and hydrogen HTGRs

    International Nuclear Information System (INIS)

    Logan, Grant; Lee, Ed; Yu, Simon; Briggs, Dick; Barnard, John; Friedman, Alex; Qin, Hong; Waldron, Will; Leitner, Mattaheus; Kwan, Joe; Henestroza, Enrique; Caporaso, George; Meier, Wayne; Tabak, Max; Callahan, Debbie; Moir, Ralph; Peterson, Per

    2006-01-01

    In 1994 a Fusion Technology journal publication by Logan, Moir and Hoffman described how exploiting unusually-strong economy-of-scale for large (8 GWe-scale) multi-unit HIF plants sharing a driver and target factory among several low cost molten salt fusion chambers (at) 100MWe net power DEMO. This scoping study, at a very preliminary conceptual level, attempts to identify how we might meet the last two great challenges taking advantage of several recent ideas and advances which motivate reconsideration of modular HIF drivers: >60X longitudinal compression of neutralized ion beams using a variable waveform induction module in NDCX down to 2 nanosecond bunches, the proof-of-principle demonstration of fast optical-gated solid state SiC switches by George Caporaso's group at LLNL (see George's RPIA06 paper), and recent work by Ed Lee, John Barnard and Hong Qin on methods for time-dependent correction of chromatic focusing errors in neutralized beams with up to 10 % Δv/v velocity tilt, allowing 5 or more bunches, and shorter bunches, and possibly 40 that would need higher peak beam intensities in order to reduce total driver energy below 1 MJ. In principle, both PLIA and induction accelerators might benefit from multiple short bunches (see June 24, 2005 talk by Logan on multi-pulsing in PLIA accelerators for IFE), although the PLIA approach, because of fixed circuit wave velocities at any z, requires imaginative work-arounds to handle the different bunch velocities required. George's RPIA06 paper also describes a different type of radial line induction linac that might be considered, but its unclear how the required pulse-to-pulse variable waveforms can be obtained with such pulselines. This initial MathCad analysis explores multi-pulsing in modular solenoid induction linacs (concept shown in Figure 1) considering high-q ECR sources, basic induction acceleration limits assuming affordable agile waveforms, transverse and longitudinal bunch confinement constraints

  11. 2012 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  12. 2011 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  13. 2010 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  14. 2013 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  15. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  16. Antimatter Economy

    Science.gov (United States)

    Hansen, Norm

    2004-05-01

    The Antimatter Economy will bring every country into the 21st century without destroying our environment and turn the Star Trek dream into reality by using antimatter from comets. At the April 2002 joint meeting of the American Physical Society and American Astronomical Society, I announced that comets were composed of antimatter, there were 109 antimatter elements, and the Periodic Table of Elements had been updated to include the antimatter elements. When matter and antimatter come together, energy is produce according to Einstein's equation of mass times the speed of light squared or E = mc2. Antimatter energy creates incredible opportunities for humanity. People in spacecraft will travel to the moon in hours, planets in days, and stars in weeks. Antimatter power will replace fossil plants and produce hydrogen from off-peak electrical power. Hydrogen will supplant gas in cars, trucks, and other vehicles. The billions of ton of coal, billions of barrels of oil, and trillions of cubic feet of natural gas will be used to make trillions of dollars of products to bring countries into the 21st century. Within this millennium, the Worlds Gross National Product will increase from 30 trillion to 3,000 trillion plus 1,500 trillion from space commercialization bringing the Total Gross National Product to 4,500 trillion. Millions of businesses and billions of jobs will be created. However, the real benefits will come from taking billions of people out of poverty and empowering them to pursue their dreams of life, liberty and pursuit of happiness. Please visit www.AntimatterEnergy.com.

  17. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  18. Electric car with solar and wind energy may change the environment and economy: A tool for utilizing the renewable energy resource

    Science.gov (United States)

    Liu, Quanhua

    2014-01-01

    Energy and environmental issues are among the most important problems of public concern. Wind and solar energy may be one of the alternative solutions to overcome energy shortage and to reduce greenhouse gaseous emission. Using electric cars in cities can significantly improve the air quality there. Through our analyses and modeling on the basis of the National Centers for Environment Prediction data we confirm that the amount of usable solar and wind energy far exceeds the world's total energy demand, considering the feasibility of the technology being used. Storing the surplus solar and wind energy and then releasing this surplus on demand is an important approach to maintaining uninterrupted solar- and wind-generated electricity. This approach requires us to be aware of the available solar and wind energy in advance in order to manage their storage. Solar and wind energy depends on weather conditions and we know weather forecasting. This implies that solar and wind energy is predictable. In this article, we demonstrate how solar and wind energy can be forecasted. We provide a web tool that can be used by all to arrive at solar and wind energy amount at any location in the world. The tool is available at http://www.renewableenergyst.org. The website also provides additional information on renewable energy, which is useful to a wide range of audiences, including students, educators, and the general public.

  19. Vision for a low-impact renewable energy future for Canada

    International Nuclear Information System (INIS)

    2003-11-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. The Coalition's vision for low-impact renewable energy focuses on green forms of electricity to provide not only light, heat and power, but to produce hydrogen fuel that could be used in fuel cell technologies. Low-impact renewable energy is a non-depleting resource with minimal environmental impacts. It includes wind energy, hydro energy, geothermal energy, biomass, tidal energy, and solar energy. The Coalition's goal is to have low-impact renewable energy account for at least 7 per cent of Canada's electricity production by 2010, and 15 per cent by 2020. It is currently at 1 per cent. This goal can be achieved by: defining a comprehensive renewable energy vision for Canada; setting long term targets for renewable energy in Canada; committing to a package of long term incentives; developing partnerships between all levels of government to increase financial investments in renewable energy projects; and, recognizing the potential for renewable energy in a carbon-constrained economy. refs., tabs

  20. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  1. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  2. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...... localities of tourism Greg Richards 11.Collaborative economy and destination marketing organizations: A systems approach Jonathan Day 12.Working within the Collaborative Tourist Economy: The complex crafting of work and meaning Jane Widtfeldt Meged and Mathilde Dissing Christensen PART - III Encounters...

  3. Renewable Energies, Present & Future

    Institute of Scientific and Technical Information of China (English)

    X. S. Cai

    2005-01-01

    Fossil fuels are major cause of environmental destruction in pollutions. It has created much needed momentum for renewable energies, which are environmentally benign, generated locally, and can play a significant role in developing economy. As a sustainable energy sources, it can grow at a rapid pace to meet increasing demands for electricity in a cost-effective way.

  4. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  5. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  6. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  7. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  8. Collaborative Economy

    DEFF Research Database (Denmark)

    that are emerging from them, and how governments are responding to these new challenges. In doing so, the book provides both theoretical and practical insights into the future of tourism in a world that is, paradoxically, becoming both increasingly collaborative and individualized. Table of Contents Preface 1.The...... collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  9. Collaborative Economy

    DEFF Research Database (Denmark)

    collaborative economy and tourism Dianne Dredge and Szilvia Gyimóthy PART I - Theoretical explorations 2.Definitions and mapping the landscape in the collaborative economy Szilvia Gyimóthy and Dianne Dredge 3.Business models of the collaborative economy Szilvia Gyimóthy 4.Responsibility and care...... and similar phenomena are among these collective innovations in tourism that are shaking the very bedrock of an industrial system that has been traditionally sustained along commercial value chains. To date there has been very little investigation of these trends, which have been inspired by, amongst other...... in the collaborative economy Dianne Dredge 5.Networked cultures in the collaborative economy Szilvia Gyimóthy 6.Policy and regulatory perspectives in the collaborative economy Dianne Dredge PART II - Disruptions, innovations and transformations 7.Regulating innovation in the collaborative economy: An examination...

  10. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  11. Proceedings of World Renewable Energy Congress '99

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian; Mohd Yusof Othman; Baharuddin Yatim

    2000-01-01

    The congress discussed the following subjects, 1. The role of renewable energy in the next millenium; 2. Challenges in the commercialization of renewable energy; 3. The role and agenda for renewable energy towards sustainable development. Topics covered in the technical session were biomass conversion; solar thermal technologies and systems; solar photovoltaic s; renewable energy economics, financing and policy; renewable energy education; climate and the environment; energy and architecture; energy management; wind and hydro technologies and systems; hydrogen and fuel cell

  12. Market Penetration Simulation of Hydrogen Powered Vehicles in Korea

    International Nuclear Information System (INIS)

    Eunju Jun; Yong Hoon, Jeong; Soon Heung, Chang

    2006-01-01

    As oil price being boosted, hydrogen has been considered to be a strong candidate for the future energy carrier along with electricity. Although hydrogen can be produced by many energy sources, carbon-free sources such as nuclear and renewable energy may be ideal ones due to their environmental friendliness. For the analysis of hydrogen economy, the cost and market penetration of various end-use technologies are the most important factors in production and consumer side, respectively. Particularly, hydrogen powered vehicle is getting more interests as fuel cell technologies are developed. In this paper, the hydrogen powered vehicle penetration into the transportation market is simulated. A system dynamic code, Vensim, was utilized to simulate the dynamics in the transportation, assuming various types of vehicle such as gasoline, hybrid electricity and hydrogen powered. Market shares of each vehicle are predicted by using currently available data. The result showed that hydrogen era will not be bright as we think. To reach the era of hydrogen fuel cell cost should be reduced dramatically. And if the hydrogen cost which includes both operating and capital cost reaches to a $0.16 per kilometer, hydrogen portion can be a 50 percent in the transportation sector. However, if strong policy or subsidy can be given, the result will be changed. [1] (authors)

  13. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  14. Special document: which energies for tomorrow? Fossil, renewable, nuclear, hydrogen energies; the CEA of Saclay at the heart of the research; energy, greenhouse effect, climate; Dossier special: quelles energies pour demain? Energies fossiles, renouvelables, nucleaires, hydrogene; le Centre CEA de Saclay au coeur de la recherche; energie, effet de serre, climat

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-04-01

    The Cea devotes many research programs in the energy domain and especially in the development of new energetic solutions: hydrogen program, photovoltaic program, energy conservation domain and improvement of energy production systems. In this framework, this document presents synthetical information on the France situation in the world energy space and on the Cea Saclay researches. The energy policy and the electric power in France, the fossil energies, the nuclear energy, the renewable energies, the hydrogen and the fuel cell, the greenhouse effect and the climatology are detailed. (A.L.B.)

  15. The hydrogen-energy sector. Report to Mrs the Minister of Ecology, Sustainable Development and Energy, Mr the Minister of Economy, Industry and Digital

    International Nuclear Information System (INIS)

    Durville, Jean-Louis; Gazeau, Jean-Claude; Nataf, Jean-Michel; Cueugniet, Jean; Legait, Benoit

    2015-09-01

    After a synthesis and 20 recommendations, this report discusses what the energy landscape could be by 2030. Then, it more specifically deals with the case of hydrogen as an energy vector. Several aspects are addressed: the main characteristics of hydrogen, the various modes of hydrogen production, hydrogen storage and distribution, uses of hydrogen in various sectors (notably energy and mobility), safety and regulation. It also proposes an international overview in terms on context and strategy, regulation, intellectual property, stationary installations, storage, and mobility. Issues related to the economic approach are discussed, notably by outlining the existence of divergent studies, different hypotheses on key parameters, and different models. The last part discusses strategic directions and states some recommendations related to assessment, to hydrogen production, to the contribution of hydrogen to the energy system regulation, to the emergence of a variety of uses, to objectives in terms of R and D, and to the evolution of the legal and regulatory context to promote and support the development of this sector

  16. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  17. Knowledge Economy

    OpenAIRE

    Kerr, Aphra; O Riain, Sean

    2009-01-01

    We examine a number of key questions regarding this knowledge economy. First, we look at the origin of the concept as well as early attempts to define and map the knowledge economy empirically. Second, we examine a variety of perspectives on the socio-spatial organisation of the knowledge economy and approaches which link techno-economic change and social-spatial organisation. Building on a critique of these perspectives, we then go on to develop a view of a knowledge economy that is conteste...

  18. Renewable Electricity Futures (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  19. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  20. The Greenlandic Economy – Structure and Prospects

    DEFF Research Database (Denmark)

    Andersen, Torben M.

    an economic development which addresses current economic and social problems, makes the economy independent of transfers from outside, and provides for a satisfactory increase in living standards. Essential for this is a transformation such that the economy does not only rely on renewable natural resources...

  1. British Columbia hydrogen and fuel cell strategy : an industry vision for our hydrogen future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-15

    British Columbia's strategy for global leadership in hydrogen fuel cell technology was outlined. It was suggested that hydrogen and fuel cells will power a significant portion of the province by 2020, and will be used in homes, businesses, industry and transportation. The following 3 streams of activity were identified as leading to the achievement of this vision: (1) a hydrogen highway of technology demonstrations in vehicles, refuelling facilities and stationary power systems in time for and building on the 2010 Winter Olympic and Paralympic Games, (2) the development of a globally leading sustainable energy technology cluster that delivers products and services as well as securing high-value jobs, and (3) the renewal of the province's resource heartlands to supply the fuel and knowledge base for hydrogen-based communities and industries, and clean hydrogen production and distribution. It was suggested that in order to achieve the aforementioned goals, the government should promote the hydrogen highway and obtain $135 million in funding from various sources. It was recommended that the BC government and members of industry should also work with the federal government and other provinces to make Canada an early adopter market. Creative markets for BC products and services both in Canada and abroad will be accomplished by global partnerships, collaboration with Alberta and the United States. It was suggested that in order to deploy clean energy technologies, BC must integrate their strategy into the province's long-term sustainable energy plan. It was concluded that the hydrogen and fuel cell cluster has already contributed to the economy through jobs, private sector investment and federal and provincial tax revenues. The technology cluster's revenues have been projected at $3 billion with a workforce of 10,000 people by 2010. The hydrogen economy will reduce provincial air emissions, improve public health, and support sustainable tourism

  2. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  3. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  4. HySA infrastructure center of competence: A strategic collaboration platform for renewable hydrogen production and storage for fuel cell telecom applications

    CSIR Research Space (South Africa)

    Bessarabov, D

    2014-09-01

    Full Text Available The Department of Science and Technology of South Africa developed the National Hydrogen and Fuel Cells Technologies (HFCT) Research, Development and Innovation Strategy. The National Strategy was branded Hydrogen South Africa (HySA). HySA has been...

  5. Renewables 2017 Global Status Report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Seyboth, Kristin; Adib, Rana; Murdock, Hannah E.; Lins, Christine; Edwards, Isobel; Hullin, Martin; Nguyen, Linh H.; Prillianto, Satrio S.; Satzinger, Katharina; Appavou, Fabiani; Brown, Adam; Chernyakhovskiy, Ilya; Logan, Jeffrey; Milligan, Michael; Zinaman, Owen; Epp, Baerbel; Huber, Lon; Lyons, Lorcan; Nowak, Thomas; Otte, Pia; Skeen, Jonathan; Sovacool, Benjamin; Witkamp, Bert; Musolino, Evan; Brown, Adam; Williamson, Laura E.; Ashworth, Lewis; Mastny, Lisa

    2017-01-01

    Renewable energy technologies increase their hold across developing and emerging economies throughout the year The year 2016 saw several developments and ongoing trends that all have a bearing on renewable energy, including the continuation of comparatively low global fossil fuel prices; dramatic price declines of several renewable energy technologies; and a continued increase in attention to energy storage. For the third consecutive year, global energy-related carbon dioxide emissions from fossil fuels and industry were nearly flat in 2016, due largely to declining coal use worldwide but also due to improvements in energy efficiency and to increasing use of renewable energy. As of 2015, renewable energy provided an estimated 19.3% of global final energy consumption, and growth in capacity and production continued in 2016. The power sector experienced the greatest increases in renewable energy capacity in 2016, whereas the growth of renewables in the heating and cooling and transport sectors was comparatively slow. Most new renewable energy capacity is installed in developing countries, and largely in China, the single largest developer of renewable power and heat over the past eight years. In 2016, renewable energy spread to a growing number of developing and emerging economies, some of which have become important markets. For the more than 1 billion people without access to electricity, distributed renewable energy projects, especially those in rural areas far from the centralised grid, offer important and often cost-effective options to provide such access. The renewable energy sector employed 9.8 million people in 2016, an increase of 1.1% over 2015. By technology, solar PV and biofuels provided the largest numbers of jobs. Employment shifted further towards Asia, which accounted for 62% of all renewable energy jobs (not including large-scale hydropower), led by China. The development of community renewable energy projects continued in 2016, but the pace of

  6. Moneyless Economy

    OpenAIRE

    Das, Subhendu

    2012-01-01

    Moneyless economy (MLE) does not have any money in the economy. All products and services are free for all people. This means everybody must work, work for free, and get everything they want for free also. Any work that a society needs is considered legitimate. MLE is not socialism. MLE has the ability to provide a lifestyle that anyone wants. We show that it is possible to run the exact same economy that we have now, in the exact same way, and without money. Any government of any country can...

  7. Development of technical marginal conditions for the application of hydrogen as storage for renewable energies. Short version of the final report

    International Nuclear Information System (INIS)

    1993-04-01

    Due to the present experiences gained in pilot projects and by the application of hydrogen in the industry it can be expected that an equivalent safety standard will be achieved for a manifold application of hydrogen as energy carrier as e.g. in the case of natural gas or liquid gas. A decentral generation and storage of hydrogen in detached houses is not recommended in conurbation because of necessary structural measurements and safety requirements. Small supply networks on the level of municipalities shall be erected instead. The use of hydrogen in the traffic seems to be useful in utility vehicles (e.g. buses) because the vehicle construction is more suitable for a safe integration of the tank system than in case of a car. The regulation shall be extended for a broader use of hydrogen and contain minimum requirements for the equipment and design of each application in terms of safety technology. (orig./MM) [de

  8. The environmental aspect of using renewables for hydrogen production compared to a fossil based system : A specific case study for a remote application

    International Nuclear Information System (INIS)

    Spath, P.; Padro, C.G.; Glockner, R.; Ulleberg, O.

    2002-01-01

    Under the umbrella of the International Energy Agency Hydrogen Implementing Agreement Annex 13 : Design and optimization of Integrated Systems, a number of studies are currently being conducted, touching on modeling, economics, and environmental consequences of hydrogen fuels. The use of hydrogen as a fuel in buses on a remote island of the coast of Norway is the topic of one such study, which represents a joint effort between the United States and Norway. The study involved the examination of two comparative systems, namely (1) hydrogen via wind/electrolysis and (2) hydrogen produced from steam methane reforming (SMR). The two systems were described and a comparative analysis performed of the life cycle assessments results, such as resource requirement, air emissions, fossil energy consumption and others. 4 refs., 3 tabs., 4 figs

  9. GRENADA. Renewables Readiness Assessment 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Grenada, like many Caribbean islands, is dependent on costly oil imports for its energy needs, including the generation of electricity. The transition to renewable energy could potentially support price reductions and improve the overall competitiveness of key sectors of the economy, particularly tourism. This report provides facts and analysis to support the country's discussion on ways to move forward with the renewable energy agenda. IRENA is ready to provide support in the implementation of the actions identified in this report.

  10. Economy and energy politic

    International Nuclear Information System (INIS)

    Martin, J.M.

    1992-01-01

    This book, divided into four parts, describes, first, energy consumption and national economy growth. In a second part, the irresistible ascent of coal, natural gas and petroleum international markets is studied. In the third part, energy politic is investigated: exchanges releasing, prices deregulation, contestation of power industry monopoly, energy national market and common energetic politic, single market concept. In the last part, global risks and world-wide regulations are given: demand, energy resources, technical changes, comparative evaluations between fossil, nuclear and renewable energies, environment, investments financing and international cooperation. 23 refs., 14 figs., 16 tabs

  11. The Methanol Economy Project

    Energy Technology Data Exchange (ETDEWEB)

    Olah, George [Univ. of Southern California, Los Angeles, CA (United States); Prakash, G. K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  12. Iran's Economy

    National Research Council Canada - National Science Library

    Ilias, Shayerah

    2008-01-01

    .... To the extent that U.S. sanctions and other efforts to change Iranian state policy target aspects of Iran ssssssss economy as a means of influence, it is important to evaluate Iran's economic structure, strengths, and vulnerabilities...

  13. Iran's Economy

    National Research Council Canada - National Science Library

    Ilias, Shayerah

    2008-01-01

    .... To the extent that U.S. sanctions and other efforts to change Iranian state policy target aspects of Iran's economy as a means of influence, it is important to evaluate Iran's economic structure, strengths, and vulnerabilities...

  14. Cambodia's economy

    OpenAIRE

    Ear, Sophal

    2008-01-01

    "This presentation is adapted from a Harvard KSG workshop held earlier this year on the Political Economy of "Binding Constraints to Growth" Cambodia Pilot for which I served as an External Panelist/Resource Person."

  15. Mobile economy

    OpenAIRE

    Turowski, Klaus

    2004-01-01

    Mobile economy : Transaktionen, Prozesse, Anwendungen und Dienste ; 4. Workshop Mobile Commerce, 02.-03. Februar 2004, Univ. Augsburg / K. Turowski ... (Hrsg.). - Bonn : Ges. für Informatik, 2004. - 189 S. : Ill., graph. Darst. - (GI-Edition : Proceedings ; 42)

  16. Renewal processes

    CERN Document Server

    Mitov, Kosto V

    2014-01-01

    This monograph serves as an introductory text to classical renewal theory and some of its applications for graduate students and researchers in mathematics and probability theory. Renewal processes play an important part in modeling many phenomena in insurance, finance, queuing systems, inventory control and other areas. In this book, an overview of univariate renewal theory is given and renewal processes in the non-lattice and lattice case are discussed. A pre-requisite is a basic knowledge of probability theory.

  17. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  18. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...

  19. Energy Policy is Technology Politics The Hydrogen Energy Case

    International Nuclear Information System (INIS)

    Carl-Jochen Winter

    2006-01-01

    Germany's energy supply status shows both an accumulation of unsatisfactory sustainabilities putting the nation's energy security at risk, and a hopeful sign: The nation's supply dependency on foreign sources and the accordingly unavoidable price dictate the nation suffers under is almost life risking; the technological skill, however, of the nation's researchers, engineers, and industry materializes in a good percentage of the indigenous and the world's energy conversion technology market. Exemplified with the up and coming hydrogen energy economy this paper tries to advocate the 21. century energy credo: energy policy is energy technology politics! Energy source thinking and acting is 19. and 20. century, energy efficient conversion technology thinking and acting is 21. century. Hydrogen energy is on the verge of becoming the centre-field of world energy interest. Hydrogen energy is key for the de-carbonization and, thus, sustainabilization of fossil fuels, and as a storage and transport means for the introduction of so far un-operational huge renewable sources into the world energy market. - What is most important is hydrogen's thermodynamic ability to exergize the energy scheme: hydrogen makes more technical work (exergy) out of less primary energy! Hydrogen adds value. Hydrogen energy and, in particular, hydrogen energy technologies, are to become part of Germany's national energy identity; accordingly, national energy policy as energy technology politics needs to grow in the nation's awareness as common sense! Otherwise Germany seems ill-equipped energetically, and its well-being hangs in the balance. (author)

  20. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  1. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Electricity retailer determines selling price to consumers in the smart grids. • Real-time pricing is determined in comparison with fixed and time-of-use pricing. • Hydrogen storage systems and plug-in electric vehicles are used for energy sources. • Optimal charging and discharging power of electrolyser and fuel cell is determined. • Optimal charging and discharging power of plug-in electric vehicles is determined. - Abstract: The plug-in electric vehicles and hydrogen storage systems containing electrolyzer, stored hydrogen tanks and fuel cell as energy storage systems can bring various flexibilities to the energy management problem. In this paper, selling price determination and energy management problem of an electricity retailer in the smart grid under uncertainties have been proposed. Multiple energy procurement sources containing pool market, bilateral contracts, distributed generation units, renewable energy sources (photovoltaic system and wind turbine), plug-in electric vehicles and hydrogen storage systems are considered. The scenario-based stochastic method is used for uncertainty modeling of pool market prices, consumer demand, temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use pricing and real-time pricing. It is shown that the selling price determination based on real-time pricing and flexibilities of plug-in electric vehicles and hydrogen storage systems leads to higher expected profit. The proposed model is formulated as mixed-integer linear programming that can be solved under General Algebraic Modeling System. To validate the proposed model, three types of selling price determination under four case studies are utilized and the results are compared.

  2. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  3. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  4. Fuel and Chemicals from Renewable Alcohols

    DEFF Research Database (Denmark)

    Hansen, Jeppe Rass

    2008-01-01

    The present work entitled Fuel and Chemicals from Renewable Alcohols covers the idea of developing routes for producing sustainable fuel and chemicals from biomass resources. Some renewable alcohols are already readily available from biomass in significant amounts and thus the potential...... for these renewable alcohols, together with other primary renewable building blocks, has been highlighted in the introductory chapter. While the first chapter covers the general potential of a renewable chemical industry, the other chapters deal with particular possibilities. It is shown how ethanol and glycerol can...... be converted into hydrogen by steam reforming over nickel or ruthenium based catalysts. This process could be important in a future hydrogen society, where hydrogen can be utilized in high efficiency fuel cells. Hydrogen produced from biofeedstocks can also be used directly in the chemical industry, where...

  5. Solar hydrogen infrastructure of road and maritime traffic in Croatia

    International Nuclear Information System (INIS)

    Firak, M.

    2005-01-01

    In the next 10 to 20 years the world and national economy will be faced with the need to transition from traditional sources of primary energy (e.g., fossil fuels) to renewable energy resources, mainly solar and wind power. At the same time hydrogen will appear on the energy scene, so already today we discuss the coming 'Hydrogen Economy', i.e., the economy based on hydrogen use. Given such developments, the question is how and when Croatia will begin to keep up with this global scenario? One of possible answers is discussed in this paper. It starts with the fact that Croatia is a significant tourist destination, visited by 10 millions mainly motorized tourists a year. World Tourism Organization forecast the increase in foreign tourists' arrivals by 8.4 percent a year until 2020. More than 90 percent of tourists stay in the Adriatic coast and islands; 55 percent of them arrive in the two summer months. Hence, the visits occur mainly in the region where and during the season when solar energy is abundant. The other assumption is the so called Hart Report, a study addressing the introduction of hydrogen infrastructure in the European traffic road system. It projects the number of hydrogen-fueled vehicles on the roads of the EU until 2020. Based on these two assumptions estimated is the number of hydrogen-fueled vehicles that in this period could arrive to the Croatian coast and islands for which the hydrogen infrastructure should be provided. Since during the holiday season thousands of motorized vessels sail along the Croatian coast and islands and many of them have some of 'hydrogen options' installed, it will be an additional reason for development for hydrogen infrastructure on the islands. Considering the above the paper proposed the hydrogen infrastructure based on photo-voltaic technology of solar energy use and water electrolysis as hydrogen production technology. The suggestion is to connect these installations to the Croatian electricity production and

  6. Economically sustainable: market synergies in hydrogen systems

    International Nuclear Information System (INIS)

    Hart, D.

    2000-01-01

    As interest in the use of hydrogen as an energy carrier grows, it is important to understand the advantages and disadvantages of a market-based approach to its introduction. While there will always be niche markets in which it makes sense to employ what is currently a comparatively expensive form of energy storage and delivery, this will not enable the sort of large-scale penetration that will allow for economies of mass-manufacture to bring the cost of hydrogen down. In addition, energy markets are becoming increasingly liberalised, and because of this it is important to understand the sort of market pressures that are arising where none have existed before. These pressures may actually lead to opportunities for hydrogen in energy storage and for use in power generation and transport fuel modes, and allow market penetration to occur more rapidly than might be the case in a centralised energy structure. In the liberalised energy market within the UK, for example, there are two areas of potentially major growth in hydrogen production and consumption: energy storage for renewable generators; and backup systems at weak electricity grid links. The first of these is due, in part, to potential changes in regulation governing the way that electricity is sold into the market, while the second is dependent more on an increasingly congested electricity grid and the high costs of building supplementary infrastructure. In both cases there is potential for the early use of hydrogen energy systems in an economically competitive environment. (author)

  7. Analysis of renewable portfolio standards

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, S.; Dougherty, W.; Duckworth, M.

    1997-12-31

    A national RPS would increase the fraction of U.S. electricity generation from renewable technologies at least cost. It would help ensure that the cost and performance of these technologies would improve with manufacturing experience, scale economies, and learning-by-doing from their integration into electric systems. Thus, their economic, environmental, energy security, and sustainability benefits would be realized.

  8. Shifting renewable energy in transport into the next gear. Developing a methodology for taking into account all electricity, hydrogen and methane from renewable sources in the 10% transport target; Hernieuwbare energie in transport naar een hogere versnelling. Ontwikkeling van een methode dat rekening houdt met alle elektriciteit, waterstof en methaan uit hernieuwbare bronnen in de 10% transportdoelsteling

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Leguijt, C.; Bennink, D. [CE Delft, Delft (Netherlands); Wentrup, K.; Dreblow, E.; Gruenig, M. [Ecologic Institute, Berlin (Germany); Schmidt, P.; Wurster, R.; Weindorf, W. [Ludwig-Boelkow-Systemtechnik, Muenchen-Ottobrunn (Germany)

    2012-01-15

    The European Union has set a 10% target of renewable energy use in the transport sector for 2020 in the Renewable Energy Directive (RED, 2009/28/EC). This directive also defines the associated calculation methodologies, for biofuels and renewable electricity used in transport. Regarding biofuels, only those biofuels can contribute that are actually used in the transport sector. The contribution of electricity from renewable sources is treated somewhat differently, as it is typically taken from the electricity grid, where the exact source of the energy used is not monitored: Member States should use the average share of renewable electricity production in their calculations. The RED required the European Commission to present, if appropriate, a proposal to consider the whole amount of the electricity from renewable sources used to power electric vehicles, as well as a methodology to include the contribution of hydrogen from renewable sources in the transport sector. At the same time, there is the question how biomethane injected into the natural gas grid should be counted towards the transport target if vehicles are filled from that same grid - a similar route to that of electricity use in transport. DG Energy of the Commission needs to be supported in the decision making process related to these three routes: renewable electricity, hydrogen and biomethane use in transport, where distribution is taking place via national grids. The result is a comprehensive report in which different methodological options are designed and assessed, and conclusions are drawn, both for the short to medium term (until 2020) and the longer term (post-2020). In the short term, where the contribution of these routes is still limited, a relatively simple approach will be sufficient, but more sophisticated monitoring methodologies may be needed in the future, depending on the way these routes develop [Dutch] In de Richtlijn Hernieuwbare Energie (RED, 2009/28/EC) heeft de Europese Unie

  9. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  10. A proposal for the modular integration of the renewable energy sources, via hydrogen, and the Rankine power cycle; Una propuesta de integracion modular de las fuentes de energia renovables, via hidrogeno, y el ciclo de potencia Rankine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Dirzo, Rafael

    2004-07-01

    This thesis synthesizes the state-of-the-art of the modular integration of the renewable energy sources and the Ranking power cycle. This is possible to obtain due to the development of the hydrogen production technologies and with it the chemical storage of the energies solar, Aeolian (wind) and tidal, among others. The purpose of this thesis is the assessment of hydrogen as fuel, its obtaining through the breaking of the water molecule using the renewable energies and the thermodynamic analysis of two prototypes for its energy conversion into electricity and power, voltage and fixed frequency: the first one at laboratory scale of 800 W and the second one, on industrial scale of 1 GW of power. Included here is the synthesis of the increasing bibliography on the development of the hydrogen technologies and the renewable energies, passing through the mass and energy balance in the power cycles until proposing, at the level of Process Flow Charts of the results of the proposed prototypes. The products show the possibility of constructing and operating the experimental prototype, whereas the thermodynamic analysis suggests that the industrial prototype is viable. The economic analysis of both proposals is part of a doctorate project in process. [Spanish] Esta tesis sintetiza el estado del arte de la integracion modular de las fuentes de energia renovables y el ciclo de potencia Ranking. Esto es posible lograrlo debido al desarrollo de las tecnologias de produccion de hidrogeno y con ello el almacenamiento quimico de las energias solar, eolica y maremotriz, entre otras. Es objetivo de esta tesis la valoracion del hidrogeno como combustible, su obtencion a traves del rompimiento de la molecula del agua utilizando las energias renovables y el analisis termodinamico de dos prototipo para su conversion energetica en electricidad a potencia, voltaje y frecuencia fijos: el primero a escala de laboratorio de 800 W y el segundo, a escala industrial de 1 GW de potencia. Se

  11. Renewable enthusiasm

    International Nuclear Information System (INIS)

    Duffin, Tony

    2000-01-01

    A reduction in energy consumption by the energy intensive sectors will be rewarded by a tax credit. The advantages of renewable sources of energy in terms of reducing emissions of carbon dioxide are extolled. The Government will reward the use of renewables through exemption from the Climate Change Levy. Many major companies are now committed to renewables and Shell predict that 50% of world energy will come from renewables by 2050. World-wide there is now 10,000 MW of installed wind power and the annual rate of growth is more than 20%. Other renewables such as biomass, energy from waste, solar power, hydropower, wind power and tidal power are discussed. The Government would like to see 10% of the UK's electricity coming from renewables by 2010. (UK)

  12. Human economy and natural economy

    Directory of Open Access Journals (Sweden)

    Masullo Andrea

    2014-03-01

    Full Text Available The decline of economy is due to its dependency from a virtual value, the currency, the coin, that in the recent phase of consumerism is so far from real value: human capital and natural capital. If human economy wants to continue to produce wellbeing, it must accept to be a subset of natural economy, intercept flux of matter produced by its circular mechanisms, put constraints in it, i.e. machines and structures, to direct it temporarily for our advantage, and finally release it to the same original flux, in an still usable state. In this way it will assume a function no more parasitic but symbiotic. It will be connected to natural cycles without destroying it, recovering the co-evolutionary link between nature and culture, building an economic web suited to the ecological web; thus we will have a mosaic characterised by biodiversity, technological diversity, and cultural diversity, able to produce a durable prosperity.

  13. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  14. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  15. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  16. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  17. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  18. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  19. Renewable Energy

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    Bent Sorensen’s Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, Fifth Edition, continues the tradition by providing a thorough and current overview of the entire renewable energy sphere. Since its first edition, this standard reference source helped put...... renewable energy on the map of scientific agendas. Several renewable energy solutions no longer form just a marginal addition to energy supply, but have become major players, with the promise to become the backbone of an energy system suitable for life in the sustainability lane. This volume is a problem...... structured around three parts in order to assist readers in focusing on the issues that impact them the most for a given project or question. PART I covers the basic scientific principles behind all major renewable energy resources, such as solar, wind, and biomass. PART II provides in-depth information...

  20. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  1. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  2. Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands

    International Nuclear Information System (INIS)

    Nasiri, Masoud; Ramazani Khorshid-Doust, Reza; Bagheri Moghaddam, Nasser

    2013-01-01

    Countries face many problems for the development of renewable energy technologies. However these problems are not the same for different countries. This paper provides insight into the development of Hydrogen and Fuel Cell Technology (HFCT) in Iran (1993–2010), as an alternative for increasing sustainability of energy system in long-term. This is done by applying the Technological Innovation System (TIS) approach and studying the structure and dynamics of seven key processes that affect the formation of HFCT TIS. Thereafter, the pattern of HFCT development in Iran is compared with the Netherlands, using a multi-level perspective. Then, it is shown that under-development and oil-dependency, which are two macro-economic factors at landscape level, can explain the main differences between these countries at regime and niche levels. This means that macro-economic factors cause Iran and the Netherlands to experience different ways for the development of HFCT. - Highlights: • Hydrogen and fuel cell technology development is modeled, using innovation systems. • This technology development in Iran and Netherlands are compared. • The causes of underdevelopment of this technology in Iran are explained

  3. Hydrogen Special. Facts, developments, opinions

    International Nuclear Information System (INIS)

    Hisschemoeller, M.; Van de Kerkhof, M.; Stam, T.; Cuppen, E.; Bakker, S.; Florisson, O.; Mallant, R.; Ros, J.; Naghelhout, D.; De Witte, N.; Van Delft, J.; Huurman, J.; Susebeek, J.; De Wit, H.; Hogenhuis, C.; Maatman, D.; Vaessen, M.; Vergragt, P.J.; Bout, P.; Molag, M.; Hemmes, K.; Taanman, M.; Dame, E.; Van Soest, J.P.

    2007-01-01

    In a large number of short articles several aspects of hydrogen are discussed: (dis)advantages; production; transport; distribution; storage; use in fuel cells, vehicles and houses; market; financing of the hydrogen-based economy; hydrogen transition and developing countries; education and training; developments in the USA and the European Union [nl

  4. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  5. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  6. Financing renewable energies. Windows for new opportunities

    International Nuclear Information System (INIS)

    Pontenagel, I.

    1999-01-01

    Renewable Energies are recognized as indispensable for a sustainable energy economy. Their progressive market introduction, however, depend very much on their economic competitiveness. A wide range of Renewable Energies are already cost competitive today. But still a shortage of information as well as mental and structural barriers are hindering their rapid market penetration. This volume publishes the results of two conferences, held by EUROSOLAR and dealing with the problems of Financing Renewable Energies. In five chapters - Banking Concepts for Financing Renewable Energies - Public Frameworks for Renewable Energy Market Introduction - Financing Renewable Energies in Developing Countries - Green Power - Market Structures and Players - Renewable Energy Financing Applications a variety of new concepts and fresh ideas are presented. (orig.)

  7. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  8. Renewable energy

    International Nuclear Information System (INIS)

    Berghmans, J.

    1994-01-01

    Renewable energy sources have a small environmental impact and can be easily integrated within existing structures. Moreover, the use of renewable energy sources can contribute to achieve a zero emission of carbon dioxide by 2100, provided an efficient environmental policy during the next 40 years. This includes a correct pricing policy of renewable energy sources with respect to nuclear energy and fossil fuel. The latter energy sources have been favoured in the past. In addition, an open market policy, the restructuring or conversion of existing international energy institutes, and international treaties for the protection of the natural environment are needed in view of achieving the zero carbon dioxide emission objective. (A.S.)

  9. Novel hydrogen storage materials: A review of lightweight complex hydrides

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, Pragya; Jain, Ankur

    2010-01-01

    The world is facing energy shortage and has become increasingly depending on new methods to store and convert energy for new, environmentally friendly methods of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Non-renewable fossil fuels are projected to decline sharply after 20-30 years. CO 2 emission from burning such fuels is the main cause for global warming. Currently whole world is seeking international commitment to cut emissions of greenhouse gases by 60% by 2050. Hydrogen which can be produced with little or no harmful emissions has been projected as a long term solution for a secure energy future. Increasing application of hydrogen energy is the only way forward to meet the objectives of Department of Energy (DOE), USA, i.e. reducing green house gases, increasing energy security and strengthening the developing countries economy. Any transition from a carbon-based/fossil fuel energy system to a hydrogen based economy involves overcoming significant scientific, technological and socio-economic barriers before ultimate implementation of hydrogen as the clean energy source of the future. Lot of research is going on in the world to find commercially viable solutions for hydrogen production, storage, and utilization, but hydrogen storage is very challenging, as application part of hydrogen energy totally depend on this. During early nineties and now also hydrogen storage as gas, liquid and metal hydride has been undertaken to solve the problem of hydrogen storage and transportation for the utilization as hydrogen energy, but none of these roots could became commercially viable along with the safety aspects for gas and liquid. With the result many new novel materials appeared involving different principles resulting in a fairly complex situation with no correlation between any two materials. In the present

  10. The Feasibility of Onsite Electrolysis as Primary and Clean Production Source of Fuel Hydrogen in Brazil

    International Nuclear Information System (INIS)

    COSTA, Andre R

    2006-01-01

    In accordance with the International Monetary Fund Brazil is currently the world's 12. largest and Latin America's largest economy, with a nominal GPD in the amount of US dollars 732,078 millions. Despite the fact that energy production is still heavily based on hydrocarbons, such as oil, natural gas and coal, the country is often indicated as one of the worldwide leaders in implementing renewable energy sources, primarily due to the spread utilization of bio-ethanol in transportation and the electricity production from hydropower. The purpose of this study is to assess the feasibility of onsite electrolysis as primary and clean source of fuel hydrogen in Brazil, indicating the main advantages of this production method. A perspective of the most significant challenges and actions to be taken regarding the accomplishment of a clean Brazilian hydrogen economy will be presented herein. (author)

  11. Toward the renewables - A natural gas/solar energy transition strategy

    Science.gov (United States)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  12. Conditions for a 100% Renewable Energy Supply System in Japan and South Korea

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2017-01-01

    renewable energy have proposed the use of photovoltaic power as the main source of electricity supply, in combination with diurnal battery storage and supplemented by other renewable sources such as wind, hydro, and geothermal power. Here, an alternative approach is explored, with wind and derived hydrogen......In the wake of the Fukushima nuclear accident, alternative energy paths have been discussed for Japan, but except for a few studies the assumption is usually made that Japan is too densely populated to be suited for a near-100% sustainable, indigenous energy provision. The studies emphasizing...... production as the main energy source, but still using solar energy, biofuels, and hydropower in a resilient combination allowing full satisfaction of demands in all sectors of the economy, i.e., for dedicated electricity, transportation energy as well as heat for processes and comfort. Furthermore...

  13. Renewable energy.

    Science.gov (United States)

    Destouni, Georgia; Frank, Harry

    2010-01-01

    The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee's Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee's scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

  14. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  15. Recent incentives for renewable energy in Turkey

    International Nuclear Information System (INIS)

    Simsek, Hayal Ayca; Simsek, Nevzat

    2013-01-01

    Recently, the importance of renewable energy sources has increased significantly as climate change has become an important long term threat to global ecosystems and the world economy. In the face of increased concern about climate change and high fossil fuel costs together with a reduction in the primary energy sources such as oil, natural gas and coal, alternative energy sources (renewables) are increasingly needed to respond to the threat of climate change and growing energy demand in the world. Recent developments in Turkey, such as the liberalization of the electricity market and improvements in the renewable legislations, have accelerated the growth process and investment opportunities in the field of renewable energy. Turkey′s naturally endowed potential for renewables, such as solar, geothermal and wind, also accompanied these developments and attracted world attention to this market. In Turkey, renewable energy sources have gained great importance in the last decades due to growing energy demand and incentive policies which foster the utilization of renewable energy sources. This study aims to explore the availability and potential of renewable energy sources in Turkey and discuss the government policies and economic aspects. - highlights: • Turkey′s potential for renewable energy has attracted world attention. • Turkey has specific energy objectives in promoting renewable energy. • This paper evaluates recent incentives for renewable energy in Turkey. • Incentives in Turkey have led to more investment in renewable energy generation

  16. Plutonium economy

    International Nuclear Information System (INIS)

    Traube, K.

    1984-01-01

    The author expresses his opinion on the situation, describes the energy-economic setting, indicates the alternatives: fuel reprocessing or immediate long-term storage, and investigates the prospects for economic utilization of the breeder reactors. All the facts suggest that the breeder reactor will never be able to stand economic competition with light-water reactors. However, there is no way to prove the future. It is naive to think that every doubt could and must be removed before stopping the development of breeder reactors - and thus also the reprocessing of the fuel of light-water reactors. On the basis of the current state of knowledge an unbiased cost-benefit-analysis can only lead to the recommendation to stop construction immediately. But can 'experts', who for years or even decades have called for and supported the development of breeder reactors be expected to make an unbiased analysis. Klaus Traube strikes the balance of the state Germany's nuclear economy is in: although there is no chance of definitively abandoning that energy-political cul-de-sac, no new adventures must be embarked upon. Responsible handling of currently used nuclear technology means to give up breeder technology and waive plutonium economy. It is no supreme technology with the aid of which structural unemployment or any other economic problem could be solved. (orig.) [de

  17. Hydrogen energy and sustainability: overview and the role for nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2008-01-01

    This paper discusses the role of nuclear power in hydrogen energy and sustainability. Hydrogen economy is based on hydrogen production, packaging (compression, liquefaction, hydrides), distribution (pipelines, road, rail, ship), storage (pressure and cryogenic containers), transfer and finally hydrogen use

  18. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.

    Science.gov (United States)

    Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor

    2018-01-24

    Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.

  19. [Hydrogen systems analysis, education, and outreach

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    This paper illustrates a search of web sites on the keyword, Hydrogen, and a second search combining keywords, Hydrogen and Renewable Energy. Names, addresses, and E-mail addresses or web site URLs are given for a number of companies and government or commercial organizations dealing with hydrogen fuel cells. Finally, brief summaries are given on hydrogen research projects at the National Renewable Energy Laboratory.

  20. Interval-Valued Neutrosophic Bonferroni Mean Operators and the Application in the Selection of Renewable Energy

    OpenAIRE

    Pu Ji; Peng-fei Cheng; Hong-yu Zhang; Jian-qiang Wang

    2018-01-01

    Renewable energy selection, which is a multi-criteria decision-making (MCDM) problem, is crucial for the sustainable development of economy. Criteria are interdependent in the selection problem of renewable energy.

  1. 77 FR 55898 - Request for Comments on a Renewal of a Previously Approved Information Collection: Automotive...

    Science.gov (United States)

    2012-09-11

    ...: Kenneth R. Katz, Fuel Economy Division, Office of International Policy, Fuel Economy and Consumer Programs... Fuel Economy Reports ACTION: Notice and request for comments. SUMMARY: In compliance with the Paperwork... Part 537, Automotive Fuel Economy Reports. OMB Control Number: 2127-0019. Type of Request: Renewal of a...

  2. Climate change and sustainable energy: actions and transition to a lower carbon economy

    International Nuclear Information System (INIS)

    Rosen, M.A.

    2009-01-01

    'Full text:' This presentation will address climate change and transition to a lower carbon economy in general and the importance of sustainable energy in such initiatives. The talk has two main parts. In the first part, the presenter discuss why non-fossil fuel energy options, which are diverse and range from renewables through to nuclear energy, are needed to help humanity combat climate change and transition to a lower carbon economy. Such energy options reduce or eliminate emissions of greenhouse gases and thus often form the basis of sustainable energy solutions. Nonetheless, carbon dioxide capture and sequestration may allow fossil fuels to be less carbon emitting. Sustainable energy options are not sufficient for avoiding climate change, in that they are not necessarily readily utilizable in their natural forms. Hydrogen energy systems are needed to facilitate the use of non-fossil fuels by allowing them to be converted to two main classes of energy carriers: hydrogen and select hydrogen-derived fuels and electricity. As hydrogen is not an energy resource, but rather is an energy carrier that must be produced, it complements non-fossil energy sources, which often need to be converted into more convenient forms. In addition, high efficiency is needed to allow the greatest benefits to be attained from all energy options, including non-fossil fuel ones, in terms of climate change and other factors. Efficiency improvements efforts have many dimensions, including energy conservation, improved energy management, fuel substitution, better matching of energy carriers and energy demands, and more efficiency utilization of both energy quantity and quality. The latter two concepts are best considered via the use of exergy analysis, an advanced thermodynamic tool. In the second part of the presentation, actions to address climate change more generally and to help society transition to a lower carbon economy are described. The role of sustainable energy in this

  3. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  4. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  5. Regional Priorities of Green Economy

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Bobylev

    2015-06-01

    Full Text Available The article is dedicated to transforming the economy of Russian regions to a green economy, which is an essential factor for the sustainable development. This is important not only for Russia but the whole world because our country has the great natural capital and provides important environmental services that support the planet biosphere. Based on the analysis of economic, social and ecological statistical data and Human Development Index (HDI we have shown that the development of Russian Federal Districts is very unbalanced and each Russian region has its own way to new economic model. For instance, it is necessary to increase the well-being in the North Caucasus Federal District, it is important to reach higher life expectancy at birth in the Siberian and the Far Eastern Districts. It is necessary to move from the «brown» economy to a green one by using the human capital (building a knowledge economy, by applying Best Available Technologies (Techniques, by investing in efficiency of use of natural resources and by increasing energy efficiency. The transition to a green economy will help to achieve social equity and the development of human potential; it helps to move from the exploitation of non-renewable natural capital to renewable human capital. All these socio-economic measures should give decoupling effect, make risks lower, reduce the exploitation of natural capital, stop the environmental degradation and prevent the ecological crisis. Transition to the green economic model has to be accompanied by new economic development indicators, which take into account social and environmental factors.

  6. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  7. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.

    Science.gov (United States)

    Zhang, Y-H Percival

    2008-05-01

    Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.

  8. RENEWABLE ENERGY STRATEGIES: WHERE EUROPEAN UNION HEADED?

    Directory of Open Access Journals (Sweden)

    RADULESCU IRINA GABRIELA

    2015-06-01

    Full Text Available The states from European Union must take advantage from renewable energy sources in order to revive the economy. Climate change creates new jobs and could reduce energy imports which would stimulate the economy of those states. The European Union should support research in the field, apply more efficient policies in energy, and create economies of scale to get an integrated European energy market in which the main actors can reduce the cost of production of renewable energy. In addition, it is possible to use the comparative advantages of the Member States and not only, like Greece, through solar energy, Southern Mediterranean, through distribution networks interconnections with EU, Russia and Ukraine, through biomass and the North Sea, through wind energy. This paper refers to the evolution and trends of the renewable energy sources and presents some scenarios of it.

  9. Consumer Views: Importance of Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on the importance of fuel economy amongst other vehicle attributes and views on which alternative fuel types would be the best and worst replacements for gasoline.

  10. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...... installations in the local landscape. A number of countries have introduced financial incentives to promote community acceptance. The tool box of incentives is still limited but in recent years it has been expanded to address local concerns. Certain general characteristics can be identified, suggesting...... that there are at least three distinct categories of incentives: individual compensation, community benefits and ownership measures. Local opposition must be approached with caution, as financial incentives to promote local acceptance can be seen as buying consent or even ‘bribery’, stirring up further opposition....

  11. Nuclides Economy

    International Nuclear Information System (INIS)

    Ivanov, Evgeny; Subbotin, Stanislav

    2007-01-01

    Traditionally the subject of discussion about the nuclear technology development is focused on the conditions that facilitate the nuclear power deployment. The main objective of this work is seeking of methodological basis for analysis of the coupling consequences of nuclear development. Nuclide economy is the term, which defines a new kind of society relations, dependent on nuclear technology development. It is rather closed to the setting of problems then to the solving of them. Last year Dr. Jonathan Tennenbaum published in Executive Intelligence Review Vol. 33 no 40 the article entitled as 'The Isotope Economy' where main interconnections for nuclear energy technologies and their infrastructure had been explained on the popular level. There he has given several answers and, therefore, just here we will try to expand this concept. We were interested by this publication because of similarity of our vision of resource base of technologies development. The main paradigm of 'Isotope economy' was expresses by Lyndon H. LaRouche: 'Instead of viewing the relevant resources of the planet as if they were a fixed totality, we must now assume responsibility of man's creating the new resources which will be more than adequate to sustain a growing world population at a constantly improved standard of physical per-capita output, and personal consumption'. We also consider the needed resources as a dynamic category. Nuclide economy and nuclide logistics both are needed for identifying of the future development of nuclear power as far we follow the holistic analysis approach 'from cave to grave'. Thus here we try to reasoning of decision making procedures and factors required for it in frame of innovative proposals development and deployment. The nuclear power development is needed in humanitarian scientific support with maximally deep consideration of all inter-disciplinary aspects of the nuclear power and nuclear technologies implementation. The main objectives for such

  12. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    Science.gov (United States)

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Inventory of Canadian marine renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, A. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre; Tarbotton, M. [Triton Consultants Ltd., Vancouver, BC (Canada)

    2006-07-01

    The future development of marine renewable energy sources was discussed with reference to an inventory of both wave energy and tidal current resources in Canada. Canada is endowed with rich potential in wave energy resources which are spatially and temporally variable. The potential offshore resource is estimated at 37,000 MW in the Pacific and 145,000 MW in the Atlantic. The potential nearshore resource is estimated at 9,600 MW near the Queen Charlotte Islands, 9,400 MW near Vancouver Island, 1,000 MW near Sable Island, and 9,000 MW near southeast Newfoundland. It was noted that only a fraction of the potential wave energy resource is recoverable and further work is needed to delineate important local variations in energy potential close to shore. Canada also has rich potential in the tidal resource which is highly predictable and reliable. The resource is spatially and temporally variable, with 190 sites in Canada with an estimated 42,200 MW; 89 sites in British Columbia with an estimated 4,000 MW; and, 34 sites in Nunavut with an estimated 30,500 MW. It was also noted that only a fraction of the potential tidal resource is recoverable. It was suggested that the effects of energy extraction should be evaluated on a case-by-case basis for both wave and tidal energy. This presentation provided a site-by site inventory as well as an analysis of buoy measurements and results from wind-wave hindcasts and tide models. Future efforts will focus on wave modelling to define nearshore resources; tidal modelling to fill gaps and refine initial estimates; assessing impacts of energy extraction at leading sites; and developing a web-enabled atlas of marine renewable energy resources. The factors not included in this analysis were environmental impacts, technological developments, climate related factors, site location versus power grid demand, hydrogen economy developments and economic factors. tabs., figs.

  14. Overview of interstate hydrogen pipeline systems

    International Nuclear Information System (INIS)

    Gillette, J.L.; Kolpa, R.L.

    2008-01-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  15. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  16. Current Renewable Energy Technologies and Future Projections

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  17. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    Science.gov (United States)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  18. Renewable Energy

    NARCIS (Netherlands)

    Turkenburg, W.C.; Arent, D.; Bertani, R.; Faaij, A.P.C.; Hand, M.; Krewitt, W.; Larson, E.D.; Lund, J.; Mehos, M.; Merrigan, T.; Mitchell, C.; Moreira, J.R.; Sinke, W.C.; Sonntag-O'Brien, V.; Thresher, B.; Sark, W.G.J.H.M. van; Usher, E.

    2012-01-01

    This chapter presents an in-depth examination of major renewable energy technologies, including their installed capacity and energy supply in 2009 , the current state of market and technology development, their economic and financial feasibility in 2009 and in the near future, as well as major

  19. The U.S. department of energy program on hydrogen production

    International Nuclear Information System (INIS)

    Henderson, David; Paster, Mark

    2003-01-01

    Clean forms of energy are needed to support sustainable global economics growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision roadmap for moving toward a hydrogen economy-a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. DOE has examined and organized its hydrogen activities in pursuit of this national vision. This includes the development of fossil and renewable sources, as well as nuclear technologies capable of economically producing large quantities of hydrogen. (author)

  20. Chances and limits of solar hydrogen in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bradke, H.; Masuhr, K.P.

    1992-01-01

    Assuming that by the middle of the next century in West-Germany a CO 2 -reduction of over 60% may be necessary, the implementation of a hydrogen based economy is not only consistent with the condition of using the most economic energy supply; beside the use of other competitive technologies (energy conservation and renewables) the CO 2 -reduction targets even force the introduction of hydrogen technologies. To achieve the Toronto target of an 80% CO 2 -reduction by the year 2050, the potential share of hydrogen in primary energy consumption could be about 30%. In West-Germany the annual cash-flow for such a scenario would be about 150 mrd ECU higher than today. But taking into account the increasing GDP the total relative costs of the energy systems will not be higher. 4 figs

  1. Research at the service of energy transition - Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    Bodineau, Luc; Antoine, Loic; Tonnet, Nicolas; Theobald, Olivier; Tappero, Denis

    2018-03-01

    This brochure brings together 22 hydrogen-energy and fuel cell projects selected and supported by the French agency of environment and energy management (Ademe) since 2012 through its call for research projects TITEC (industrial tests and transfers in real conditions) and Sustainable Energy: 1 - BHYKE: electric-hydrogen bike experiment; 2 - CHYMENE: innovative hydrogen compressor for mobile applications; 3 - COMBIPOL 3: bipolar plates assembly technology and gasketing process for PEMFC; 4 - CRONOS: high temperature SOFC for domestic micro-cogeneration; 5 - EPILOG: natural gas fuel cell on the way to commercialization; 6 - EXALAME: polyfunctional catalytic complexes for membranes-electrodes assembly without Nafion for PEMFC; 7 - HYCABIOME: H 2 and CO 2 conversion by biological methanation; 8 - HYLOAD: hydrogen-fueled airport vehicle experiment with on-site supply chain; 9 - HYSPSC: Pressurized hydrogen without Compressor; 10 - HYWAY: hydrogen mobility cluster demonstrator (electric-powered Kangoo cars fleet with range extender) at Lyon and Grenoble; 11 - MHYEL: Pre-industrialization of composite hybrid Membranes for PEM electrolyzer; 12 - NAVHYBUS: Design and experimentation of an electric-hydrogen river shuttle for passengers transportation at Nantes; 13 - PACMONT: fuel cells integration and adaptation for high mountain and polar applications; 14 - PREMHYOME: fabrication process of hybrid membranes for PEMFC; 15 - PRODIG: lifetime prediction and warranty for fuel cell systems; 16 - REHYDRO: fuel cell integration in the circular economy principle; 17 - SPHYNX and Co: optimizing renewable energy integration and self-consumption in buildings; 18 - THEMIS: design and experimentation of an autonomous on-site power supply system; 19 - VABHYOGAZ: biogas valorization through renewable hydrogen generation, design and experimentation of a 5 Nm 3 /h demonstrator at a waste disposal site; 20 - VALORPAC: Integration and experimentation of a high-temperature SOFC system that use

  2. IDRC and the Government of India announce their renewed support ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-02-22

    Feb 22, 2018 ... IDRC and the Government of India announce their renewed support for research ... challenges in areas including agriculture and environment, inclusive economies, and technology and innovation. ... Related content ...

  3. The Development of Lifecycle Data for Hydrogen Fuel Production and Delivery

    Science.gov (United States)

    2017-10-01

    An evaluation of renewable hydrogen production technologies anticipated to be available in the short, mid- and long-term timeframes was conducted. Renewable conversion pathways often rely on a combination of renewable and fossil energy sources, with ...

  4. Renewable resources and renewable energy a global challenge

    CERN Document Server

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  5. Economical aspects of renewable energy use

    International Nuclear Information System (INIS)

    Keller, L.

    1999-01-01

    This article is the summary of a presentation at the exhibition 'Habitat and Garden' at Lausanne (Switzerland) about the effects of renewable energy development on economy and employment. Several studies over this subject do exist and some companies have a considerable know-how in this field. One particularly important question is the impact of non-renewable energy taxes. An answer is available from already published studies: taxes with a yearly yield of 800 millions CHF (about 500 millions USD) would create a net number of 60,000 to 84,000 new jobs, provided that they are integrally used for renewable energy support [de

  6. Kicking the habit[Hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, N.; Lawton, G.; Pearce, F.

    2000-11-25

    This article focuses on the use of clean non-polluting hydrogen fuel as opposed to the use of fossil fuels which ties western nations to the Middle East. Details are given of Iceland's plans to use hydrogen fuelled buses, cars, trucks and trawlers, car manufacturers' options of using internal combustion engines burning hydrogen and hydrogen fuel cells, and the production of hydrogen using electrolysis of water and steam reforming of hydrocarbons. The 'Green Dream' of pollution-free hydrogen production, the use of solar energy for renewable hydrogen production in California, and problems associated with hydrogen storage are discussed.

  7. Competition and the hydrogen market

    International Nuclear Information System (INIS)

    Takeda, T.

    2006-01-01

    This paper addresses the issues of competition in the hydrogen market. The major drivers for the hydrogen-based economy are industrial growth, environmental and health benefits from improved air quality and reduced greenhouse gases as well as diversification of energy supply and security

  8. Hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research

  9. Hydrogen Technology Education Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  10. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  11. Hydrogen-powered road vehicles. Positive and negative health effects of new fuel

    International Nuclear Information System (INIS)

    2008-09-01

    Because of the political, social and environmental problems associated with dependency on fossil fuels, there is considerable interest in alternative energy sources. Hydrogen is regarded as a promising option, particularly as a fuel for road vehicles. The Dutch Energy research Centre of the Netherlands (ECN) recently published a vision of the future, in which it suggested that by 2050 more than half of all cars in the Netherlands could be running on hydrogen. Assuming that the hydrogen is produced from renewable energy sources, migration to hydrogen-powered vehicles would also curb carbon dioxide emissions. In the United States, Japan and Europe, considerable public and private investment is therefore being made with a view to developing the technologies needed to make the creation of a hydrogen-based economy possible within a few decades. A switch to using hydrogen as the primary energy source for road vehicles would have far-reaching social consequences. As with all technological developments, opportunities would be created, but drawbacks would inevitably be encountered as well. Some of the disadvantages associated with hydrogen are already known, and are to some degree manageable. It is likely, however, that other drawbacks would come to light only once hydrogen-powered cars were actually in use With that thought in mind, and in view of the social significance of a possible transition to hydrogen, it was decided that the Health Council should assess the positive and negative effects that hydrogen use could have on public health. It is particularly important to make such an assessment at the present early stage in the development of hydrogen technologies, so that gaps in existing scientific knowledge may be identified and appropriate strategies may be developed for addressing such gaps. This report has been produced by the Health and Environment Surveillance Committee, which has special responsibility for the identification of important correlations between

  12. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  13. Hydrogen technologies. Strategy for research, development and demonstration in Denmark, June 2005; Brintteknologier. Strategi for forskning, udvikling og demonstration i Danmark, juni 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Hydrogen as energy carrier makes its mark on the international energy and research political agenda. In numerous places around the world great expectations are tied to hydrogen and fuel cell technology as a significant contributor to a future sustainable energy economy, which implies gradual reduction of fossil fuel dependence, reduction of greenhouse gas emission and increased use of renewable energy. Denmark has even now an international position of strength in this area. This position has been reached through continuous research and development efforts since the early 1990ies. This strategy report describes existing and future technologies within hydrogen production, distribution and use. Furthermore, the international development is described. The report points at areas in which Danish research and development can assist in helping Danish industry to influence the future global market for hydrogen and fuel cell technologies. (BA)

  14. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  15. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  16. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  17. The strategic industrial sectors of the green economy: stakes and perspectives

    International Nuclear Information System (INIS)

    Albertini, Jean-Paul; Larrieu, Catherine; Griot, Alain

    2013-03-01

    Proposing a transverse analysis and a synthesis, the first part of this voluminous report discusses the evolution of the context since 2009 for the green industry sector, outlines and comments the development stakes for the different sectors, analyses and comments their main evolutions for the last three years, outlines the development potential and perspectives of these activities in France, and proposes an overview of strategic policies implemented in the field of green economy in different countries (USA, Germany, United Kingdom, Japan, China, South Korea). The second part addresses the evolution and perspectives of each sector: energy production from renewable sources (biofuels, biomass, marine energies, wind energy, geothermal energy, solar energy), optimization of natural energy consumption (building with low environmental impact, green chemistry, hydrogen and fuel cells, biomaterials, optimization of industrial processes, smart grids, energy storage, low-carbon vehicles), natural resource life cycle management (CO 2 capture and storage, water, purification and ecologic engineering, metrology and instrumentation, recycling and waste valorization)

  18. Renewable Acrylonitrile Production

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eaton, Todd R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sanchez i Nogue, Violeta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vorotnikov, Vassili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Rongming [University of Colorado; Gill, Ryan T. [University of Colorado; Gilhespy, Michelle [Johnson Matthey Technology Centre; Skoufa, Zinovia [Johnson Matthey Technology Centre; Watson, Michael J. [Johnson Matthey Technology Centre; Fruchey, O. Stanley [MATRIC; Cywar, Robin M. [Formerly NREL

    2017-12-08

    Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

  19. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  20. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  1. BIOWASTE AND HYDROGEN SULFIDE - PERSPECTIVE RENEWABLE FUELS

    OpenAIRE

    BESCHKOV V.; YANKOV D.; ANGELOV I.; RAZKAZOVA-VELKOVA E.; MARTINOV M.

    2017-01-01

    The enormous economical growth on a global scale in the last century has lead to extensive use of fossil fuels, such as coal, oil and natural gas. The result was strong emissions of carbon dioxide and greenhouse effect with consequent climate changes. The extensive use of fossil fuels that developed and stored in Earth interior for millions of years has made it no possibleto revive vegetation and process the emitted carbon dioxide with the help of photosynthesis. One of the ways to cope with ...

  2. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  3. Green energy and hydrogen research at University of Waterloo

    International Nuclear Information System (INIS)

    Fowler, M.

    2006-01-01

    This paper summarises Green Energy and Hydrogen Research at the University of Waterloo in Canada. Green energy includes solar, wind, bio fuels, hydrogen economy and conventional energy sources with carbon dioxide sequestration

  4. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    Directory of Open Access Journals (Sweden)

    CEAUȘESCU IONUT

    2015-04-01

    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  5. New renewable energy sources; Nye fornybare energikilder

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This booklet describes in simple terms the so-called new renewable energy sources: solar energy, biomass, wind power and wave power. In addition, there are brief discussions on hydrogen, ocean thermal energy conversion (OTEC), tidal power, geothermal energy, small hydropower plants and energy from salt gradients. The concept of new renewable energy sources is used to exclude large hydropower plants as these are considered conventional energy sources. The booklet also discusses the present energy use, the external frames for new renewable energy sources, and prospects for the future energy supply.

  6. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  7. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  8. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  9. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  10. Understanding the New Economy.

    Science.gov (United States)

    Morrell, Louis R.

    2001-01-01

    Asserts that while the Nasdaq bubble did burst, the new economy is real and that failure to understand the rules of the digital economy can lead to substandard investment portfolio performance. Offers guidelines for higher education institutional investors. (EV)

  11. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  12. Knowledge Based Economy Assessment

    OpenAIRE

    Madalina Cristina Tocan

    2012-01-01

    The importance of knowledge-based economy (KBE) in the XXI century is evident. In the article the reflection of knowledge on economy is analyzed. The main point is targeted to the analysis of characteristics of knowledge expression in economy and to the construction of structure of KBE expression. This allows understanding the mechanism of functioning of knowledge economy. The authors highlight the possibility to assess the penetration level of KBE which could manifest itself trough the exist...

  13. FROM CIRCULAR ECONOMY TO BLUE ECONOMY

    Directory of Open Access Journals (Sweden)

    Iustin-Emanuel, ALEXANDRU

    2014-11-01

    Full Text Available Addressing the subject of this essay is based on the background ideas generated by a new branch of science - Biomimicry. According to European Commissioner for the Environment, "Nature is the perfect model of circular economy". Therefore, by imitating nature, we are witnessing a process of cycle redesign: production-consumption-recycling. The authors present some reflections on the European Commission's decision to adopt after July 1, 2014 new measures concerning the development of more circular economies. Starting from the principles of Ecolonomy, which is based on the whole living paradigm, this paper argues for the development within each economy of entrepreneurial policies related to the Blue economy. In its turn, Blue economy is based on scientific analyses that identify the best solutions in a business. Thus, formation of social capital will lead to healthier and cheaper products, which will stimulate entrepreneurship. Blue economy is another way of thinking economic practice and is a new model of business design. It is a healthy, sustainable business, designed for people. In fact, it is the core of the whole living paradigm through which, towards 2020, circular economy will grow more and more.

  14. MAHRES: Spanish hydrogen geography

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, R.; Guerrero, F.M.; Carazo, A.F.

    2004-01-01

    Nowadays, it is common to hear about the hydrogen potential as an energetic vector or the renewable character of fuel cells; thus, the conjunction between both of them as a way to produce electricity, decreasing pollutant emission, is often discussed. However, that renewable character is only guaranteed in the case that the hydrogen used comes from some renewable energy source. Because of that, and due to the Spanish great potential related to natural usable resources like water, sun, wind or biomass, for instance, it seems attractive to make a meticulous study (supported by the statistical Multicriteria Decision Making Method) in order to quantify that potential and place it in defined geographical areas. Moreover, the growth of the electricity demand is always significant, and in this way the energy consumption in Spain is estimated to grow up to 3'4 % above the average during the next ten years. On the other hand, it must be taken into account that the contribution of the oil production will not be enough in the future. The study being carried out will try to elaborate 'The Spanish Renewable Hydrogen Map', that would contemplate, not only the current situation but also predictable scenarios and their implementation. (author)

  15. The Sharing Economy

    OpenAIRE

    Reinhold, Stephan; Dolnicar, Sara

    2017-01-01

    Peer-to-peer accommodation networks in general, and Airbnb in specific, are frequently referred to as part of the sharing economy. This chapter provides an overview of key characteristics of the sharing economy, discusses how these characteristics relate to peer-to-peer accommodation, and positions peer-to-peer accommodation networks within the sharing economy.

  16. Proceedings of the 1992 DOE/NREL hydrogen program review

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  17. Photovoltaics and renewable energies in Europe

    International Nuclear Information System (INIS)

    Jaeger-Waldau, Arnulf

    2007-01-01

    Photovoltaics and renewable energies are growing at a much faster pace than the rest of the economy in Europe and worldwide. This and the dramatic oil price increases in 2005 have led to a remarkable re-evaluation of the renewable energy sector by politics and financing institutions. Despite the fact that there are still discrepancies between the European Union and the USA, as to how to deal with climate change, renewable energies will play an important role for the implementation of the Kyoto Protocol and the worldwide introduction of tradable Green Certificates. Apart from the electricity sector, renewable energy sources for the generation of heat and the use of environment friendly biofuels for the transport sector will become more and more important in the future. (author)

  18. Can renewable energy sources sustain affluent society?

    International Nuclear Information System (INIS)

    Trainer, F.E.

    1995-01-01

    Figures commonly quoted on costs of generating energy from renewable sources can give the impression that it will be possible to switch to renewables as the foundation for the continuation of industrial societies with high material living standards. Although renewable energy must be the sole source in a sustainable society, major difficulties become evident when conversions, storage and supply for high latitudes are considered. It is concluded that renewable energy sources will not be able to sustain present rich world levels of energy use and that a sustainable world order must be based on acceptance of much lower per capita levels of energy use, much lower living standards and a zero growth economy. (Author)

  19. Renewable energy: Externality costs as market barriers

    International Nuclear Information System (INIS)

    Owen, Anthony D.

    2006-01-01

    This paper addresses the impact of environmentally based market failure constraints on the adoption of renewable energy technologies through the quantification in financial terms of the externalities of electric power generation, for a range of alternative commercial and almost-commercial technologies. It is shown that estimates of damage costs resulting from combustion of fossil fuels, if internalised into the price of the resulting output of electricity, could lead to a number of renewable technologies being financially competitive with generation from coal plants. However, combined cycle natural gas technology would have a significant financial advantage over both coal and renewables under current technology options and market conditions. On the basis of cost projections made under the assumption of mature technologies and the existence of economies of scale, renewable technologies would possess a significant social cost advantage if the externalities of power production were to be 'internalised'. Incorporating environmental externalities explicitly into the electricity tariff today would serve to hasten this transition process. (author)

  20. Renewable energy: An efficient mechanism to improve GDP

    International Nuclear Information System (INIS)

    Chien Taichen; Hu Jinli

    2008-01-01

    This article analyzes the effects of renewable energy on GDP for 116 economies in 2003 through Structural Equation Modeling (SEM) approach. In order to decipher the mechanism of how the use of renewables improves macroeconomic efficiency, we decompose GDP by the 'expenditure approach'. Although previous theory predicts positive effects of renewables on capital formation and trade balance, the SEM results show that renewables have a significant positive influence on capital formation only. The result that renewables do not have a significant impact on trade balance implies that renewables do not have an import substitution effect. Thus, we confirm the positive relationship between renewable energy and GDP through the path of increasing capital formation, but not for the path of increasing trade balance

  1. Input-output analysis for installing renewable energy systems

    International Nuclear Information System (INIS)

    Itoh, Y.; Nakata, T.

    2004-01-01

    Renewable energy facilities have been installed in many regions, because of their possibility to be an alternative to fossil fuels for mitigating global warming. Besides the profitability of renewable energy businesses, indirect economic effects of installing renewable energy facilities should be clarified. This study examines the possibility that the renewable energy facilities give renewed impetus to regional economic progress. The economic effects are analysed with input-output techniques in a rural area in Japan. As a consequence, both positive and negative effects on the rural economy are derived. In addition, we will focus on the changes in sectors such as construction, business services, banking, etc. as a result of economic activities for renewable systems. The business benefits of renewable energy system are discussed. (author)

  2. Renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Hydrogen is seen by many as a key energetic vector for the 21{sup st} century. Its utilization in fuel cells enables a clean and efficient production of electricity. The possibility to obtain hydrogen from various sources, along with several types of potential applications of fuel cells, have called the attention and investment of developed countries. European Union, United States, Canada and Japan have important programs that establish tied goals for the utilization of fuel cells in transport and distributed energy generation. Aware of the importance of this technology for the energetic future of Brazil, IPEN started 13 years ago the development of fuel cells for stationary and distributed energy applications. Preliminary studies were carried out at the Materials Research Center due to IPEN expertise on nuclear materials development. Based on both, the good initial results and the proposition of the Brazilian Fuel Cell Program (ProH{sub 2} ) by the Ministry of 2 Science, Technology and Innovation (MCTI), IPEN decided to organize an institutional program on the subject, conducted at the Fuel Cell and Hydrogen Center - CCCH. The objectives of the IPEN/CCCH program are based on the MCTI national program, contributing significantly to the national development in this area. The R and D Program was structured in a cross-cutting way involving human and infrastructure resources from many IPEN technical departments. The Center comprises three main areas of interests: PEMFC (Proton Exchange Membrane Fuel Cell); SOFC (Solid Oxide Fuel Cell); and H{sup 2}-Production, mainly from ethanol reforming. More than 50 professionals were engaged at this development, although some in part time, including PhDs, MSc and graduate students and undergraduate students. Important scientific and technological results have been obtained and the main achievements can be evaluated by patents, published papers, graduate courses given and the graduate student's thesis concluded. Since 2004

  3. Renewable energies

    International Nuclear Information System (INIS)

    2014-01-01

    Hydrogen is seen by many as a key energetic vector for the 21 st century. Its utilization in fuel cells enables a clean and efficient production of electricity. The possibility to obtain hydrogen from various sources, along with several types of potential applications of fuel cells, have called the attention and investment of developed countries. European Union, United States, Canada and Japan have important programs that establish tied goals for the utilization of fuel cells in transport and distributed energy generation. Aware of the importance of this technology for the energetic future of Brazil, IPEN started 13 years ago the development of fuel cells for stationary and distributed energy applications. Preliminary studies were carried out at the Materials Research Center due to IPEN expertise on nuclear materials development. Based on both, the good initial results and the proposition of the Brazilian Fuel Cell Program (ProH 2 ) by the Ministry of 2 Science, Technology and Innovation (MCTI), IPEN decided to organize an institutional program on the subject, conducted at the Fuel Cell and Hydrogen Center - CCCH. The objectives of the IPEN/CCCH program are based on the MCTI national program, contributing significantly to the national development in this area. The R and D Program was structured in a cross-cutting way involving human and infrastructure resources from many IPEN technical departments. The Center comprises three main areas of interests: PEMFC (Proton Exchange Membrane Fuel Cell); SOFC (Solid Oxide Fuel Cell); and H 2 -Production, mainly from ethanol reforming. More than 50 professionals were engaged at this development, although some in part time, including PhDs, MSc and graduate students and undergraduate students. Important scientific and technological results have been obtained and the main achievements can be evaluated by patents, published papers, graduate courses given and the graduate student's thesis concluded. Since 2004, the PEMFC

  4. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  5. Renewing governance.

    Science.gov (United States)

    Loos, Gregory P

    2003-01-01

    Globalization's profound influence on social and political institutions need not be negative. Critics of globalization have often referred to the "Impossible Trinity" because decision-making must 1. respect national sovereignty, 2. develop and implement firm regulation, and 3. allow capital markets to be as free as possible. To many, such goals are mutually exclusive because history conditions us to view policy-making and governance in traditional molds. Thus, transnational governance merely appears impossible because current forms of governance were not designed to provide it. The world needs new tools for governing, and its citizens must seize the opportunity to help develop them. The rise of a global society requires a greater level of generality and inclusion than is found in most policy bodies today. Politicians need to re-examine key assumptions about government. States must develop ways to discharge their regulatory responsibilities across borders and collaborate with neighboring jurisdictions, multilateral bodies, and business. Concepts such as multilateralism and tripartism show great promise. Governments must engage civil society in the spirit of shared responsibility and democratic decision-making. Such changes will result in a renewal of the state's purpose and better use of international resources and expertise in governance.

  6. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  7. Applications of the use of the renewable energies, solar power and wind power, for the securing of hydrogen, as power supply of the fuel cells; Obtencion de hidrogeno, a partir de la electrolisis del agua mediante energias renovables almacenamiento y aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, J. J.; Martin, I.; Aperribay, V.; San Martin, J. I.; Arrieta, J. M.; Zuazua, J.; Romero, E.

    2004-07-01

    The object of the presented communication is to show the applications of the use of the renewable energies, particularly the solar power and the wind power, for the securing of hydrogen, as power supply of the fuel cells. The electrical energy produced in the solar badges and in the windpowers is, principally, injected into the electrical networks, for his transport, distribution and consumption, if the network the demand. The novel aspect is, that if the network does not demand potency, this one is transformed into hydrogen at the same photovoltaic station or into the base of the tower of the windpower and, later, stored to feed the fuel cells, not producing to him any type of element pollutant, since the residual element is the water. (Author)

  8. The Hawaii hydrogen plan

    International Nuclear Information System (INIS)

    Takahashi, P.K.; McKinley, K.R.; Antal, M.J. Jr.; Kinoshita, C.M.; Neill, D.R.; Phillips, V.D.; Rocheleau, R.E.; Koehler, R.L.; Huang, N.

    1990-01-01

    Hawaii is the most energy-vulnerable state in the Union. Over the last 16 years the State has undertaken programs to reduce its energy needs and to provide alternatives to current usage tapping its abundant renewable energy resources. This paper describes the long-range research and development plans in Renewable Hydrogen for the State of Hawaii with special attention to the contributions of the Hawaii Natural Energy Institute of the University of Hawaii at Manoa. Current activities in production, storage, and utilization are detailed, and projections through the year 2000 are offered

  9. Modeling of similar economies

    Directory of Open Access Journals (Sweden)

    Sergey B. Kuznetsov

    2017-06-01

    Full Text Available Objective to obtain dimensionless criteria ndash economic indices characterizing the national economy and not depending on its size. Methods mathematical modeling theory of dimensions processing statistical data. Results basing on differential equations describing the national economy with the account of economical environment resistance two dimensionless criteria are obtained which allow to compare economies regardless of their sizes. With the theory of dimensions we show that the obtained indices are not accidental. We demonstrate the implementation of the obtained dimensionless criteria for the analysis of behavior of certain countriesrsquo economies. Scientific novelty the dimensionless criteria are obtained ndash economic indices which allow to compare economies regardless of their sizes and to analyze the dynamic changes in the economies with time. nbsp Practical significance the obtained results can be used for dynamic and comparative analysis of different countriesrsquo economies regardless of their sizes.

  10. Canadian hydrogen strategies

    International Nuclear Information System (INIS)

    Fairlie, M.; Scepanovic, V.; Dube, J.; Hammerli, M.; Taylor, J.

    2004-01-01

    'Full text:' In May of 2004, industry and government embarked on a process to create a strategic plan for development of the 'hydrogen economy' in Canada. The process was undertaken to determine how the development and commercialization of hydrogen technologies could be accelerated to yield a 'visible' reduction in greenhouse gases within the timeframe of Kyoto, while establishing a direction that addresses the necessity of far greater reductions in the future. Starting with a meeting of twenty seven experts drawn from the hydrogen technology, energy and transportation industries and government, a vision and mission for the planning process was developed. Two months later a second meeting was held with a broader group of stakeholders to develop hydrogen transition strategies that could achieve the mission, and from identifying the barriers and enablers for these strategies, an action plan was created. This paper reviews the results from this consultation process and discusses next steps. (author)

  11. Hydrogen and Fuel Cells for IT Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer

    2016-03-09

    With the increased push for carbon-free and sustainable data centers, data center operators are increasingly looking to renewable energy as a means to approach carbon-free status and be more sustainable. The National Renewable Energy Laboratory (NREL) is a world leader in hydrogen research and already has an elaborate hydrogen infrastructure in place at the Golden, Colorado, state-of-the-art data center and facility. This presentation will discuss hydrogen generation, storage considerations, and safety issues as they relate to hydrogen delivery to fuel cells powering IT equipment.

  12. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  13. Is renewable energy effective in promoting growth?

    International Nuclear Information System (INIS)

    Marques, António Cardoso; Fuinhas, José Alberto

    2012-01-01

    This paper applies panel data techniques to analyze the role of the various energy sources in economic growth, for a set of 24 European countries (1990–2007), controlling for energy consumption and energy dependency. The results suggest that the negative effect of the use of renewables supplants the positive effect of creating income by exploiting a natural resource locally, and thus growth does not appear to improve with the change towards renewables. The high costs of promoting renewables are probably being placed excessively upon the economy, namely by increasing the costs of electricity tariffs, thus inducing a deceleration in economic activity. Fossil fuels lead to dissimilar effects on growth while natural gas does not appear to be relevant in explaining growth. Coal hampers the capacity for growth, whereas the use of oil stimulates that growth. This is in line with productive structures that are deeply grounded in fossil fuels, particularly oil. - Highlights: ► We empirically test the distinct effects of decomposing energy by source on growth. ► We focus on 24 European Countries (1990–1907) by applying a panel data approach. ► Fossil fuels lead to dissimilar effects on growth. Coal hampers and oil stimulates it. ► Economic growth does not appear to improve with the paradigm change to renewable. ► High costs of promotion of renewables are being placed excessively upon the economy.

  14. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  15. Renewable energy resources; Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker; Naumann, Karin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kaltschmitt, Martin; Janczik, Sebastian [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2015-07-01

    Although the need to decarbonise our global economy and thus in particular the supply of energy to limit the global temperature increase is internationally undisputed the German politics in 2014 has significantly contributed less compared to previous years in order to attain this objective. The expansion of renewable energies in the electricity sector has decelerated significantly; and in the heating and mobility area no new impulses were set in relation to renewable energies. In addition, a dramatic fallen oil price makes it difficult to increase the use of renewable energy supply. Based on these deteriorated framework conditions compared to conditions of the previous years, the developments in Germany of 2014 are shown in the electricity, heat and transport sector in the field of renewable energy. For this purpose - in addition to a discussion of the current energy economic framework - for each option to use renewable energies the state and looming trends are analyzed. [German] Obwohl die Notwendigkeit zur Dekarbonisierung unserer globalen Wirtschaft und damit insbesondere der Energiebereitstellung zur Begrenzung des globalen Temperaturanstiegs international unstrittig ist, hat die deutsche Politik im Jahr 2014 im Vergleich zu den Vorjahren deutlich weniger zur Erreichung dieses Zieles beigetragen. Der Ausbau der Stromerzeugung aus erneuerbaren Energien im Stromsektor wurde deutlich verlangsamt; und im Waerme- und Mobilitaetsbereich wurden keine neuen Impulse in Bezug auf regenerative Energien gesetzt. Zusaetzlich erschwert ein drastisch gefallener Rohoelpreis die verstaerkte Nutzung des erneuerbaren Energieangebots. Ausgehend von diesen im Vergleich zu den Vorjahren verschlechterten Rahmenbedingungen werden nachfolgend die Entwicklungen in Deutschland des Jahres 2014 im Strom-, Waerme- und Transportsektor fuer den Bereich der erneuerbaren Energien aufgezeigt. Dazu werden - neben einer Diskussion des derzeitigen energiewirtschaftlichen Rahmens - fuer die

  16. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  17. RENEWABLE ENERGY: POLICY ISSUES AND ECONOMIC IMPLICATIONS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Gulden Boluk

    2013-01-01

    Full Text Available Current energy policy of Turkey is to increase the renewable energy share in total energy and to maximize benefit from existing potential until next 15 years. It was planed that the share of renewable energy resources in electricity production would be at least 30% by 2023 and government ensured some incentives such as feed-in tariff, investment incentives etc. for renewable energy. Moreover Turkish Energy Regulatory Agency (EMRA announced that biofuel blending would be mandatory starting from 2013 and 2014 for bioethanol (2% and biodiesel (1%, respectively. This study examines the current situation and potential of renewable resources and evaluates the impacts of renewable energy policy both on the energy sector and whole national economy. Renewable energy targets can generate around 275-545 thousand direct jobs possibilities in energy sector and 7.9 thousand tones natural gas and 464 thousand cubic meters fossil fuel saving by 2023. Net trade impact of renewable energy targets will be aggravated due to mandatory biodiesel blending since Turkey has oilseed deficit. In Turkey, utilization of all type of resources will contribute to economy but most feasible and sustainable renewable energy is biomass. Between the other renewables, biomass would provide highest social well-being in the country.

  18. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  19. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  20. Growing a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.