WorldWideScience

Sample records for renewable hydrogen carbon

  1. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  2. Renewable Hydrogen for Carbon-Free Data Center

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hammond, Steven W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wipke, Keith B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cader, T. [Hewlett Packard Enterprise

    2017-11-28

    NREL, in collaboration with Hewlett Packard Enterprise, has developed a system model for simulating both grid-tied and island microgrid power for hydrogen production and data center operation (assumed at 50 MW, 24 hours a day, 7 days a week).

  3. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  4. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Christensen, Christina Hviid; Sehested, J.

    2007-01-01

    for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments. A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between...... addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation. The Ru catalyst operates better than all the Ni catalysts...

  5. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydro power in Iceland or excess renewable electricity in Germany

    NARCIS (Netherlands)

    Kauw, Marco; Benders, Reinerus; Visser, Cindy

    2015-01-01

    The synthesis of green methanol from hydrogen and carbon dioxide can contribute to mitigation of greenhouse gasses. This methanol can be utilized as either a transport fuel or as an energy carrier for electricity storage. It is preferable to use inexpensive, reliable and renewable energy sources to

  6. Renewable Hydrogen Carrier - Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Science.gov (United States)

    2011-01-31

    combinations have been investigated for the production of hydrogen from biomass carbohydrate. Chemical catalysis approaches include pyrolysis [19...temperature. High fructose corn syrup, low-cost sucrose replacement, is made by stabilized glucose isomerase, which can work at ~60 °C for even about two...gasoline, vegetable oil vs. biodiesel, corn kernels vs. ethanol [31,109]. Given a price of $0.18/kg carbohydrate (i.e., $10.6/GJ) [2,44], the hydrogen

  7. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  8. Challenges for renewable hydrogen production

    International Nuclear Information System (INIS)

    Levin, D.B.; Chahine, R.

    2009-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas) which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermo-catalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. These issues are being addressed by H2CAN, a recently launched NSERC funded national strategic network in hydrogen production, purification, storage, infrastructure and safety. (author)

  9. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  10. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  11. Renewable hydrogen utilisation for the production of methanol

    International Nuclear Information System (INIS)

    Galindo Cifre, P.; Badr, O.

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can be provided by biomass or CO 2 in the flue gases of fossil fuel-fired power stations, cement factories, fermentation processes and water purification plants. Methanol production pathways via biomass gasification and CO 2 recovery from the flue gasses of a fossil fuel-fired power station have been reviewed in this study. The cost of methanol production from biomass was found to lie in the range of 300-400 EUR/tonne of methanol, and the production cost of CO 2 based methanol was between 500 and 600 EUR/tonne. Despite the higher production costs compared with methanol produced by conventional natural gas reforming (i.e. 100-200 EUR/tonne, aided by the low current price of natural gas), these new processes incorporate environmentally beneficial aspects that have to be taken into account. (author)

  12. Hydrogen energy from renewable resources

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To asses the economic viability of an integrated energy production system, a multi-stage cash flow analysis framework is utilized. This framework relies on standard cash flow models using an electronic spreadsheet program (Lotus 1-2-3) as the modeling environment. The purpose of the program is to evaluate the life-cycle economics of the various component technologies using common assumptions about the economic and financial environment in which these would operate. A schematic diagram of the multi-stage model is shown in the entire integrated production system. The details of the financial model are explained below. In its most complex form, the integrated system consists of three production stages. The first is the production of electricity. At this first stage, the model can and does accommodate any type of production technology, e.g., wind energy conversion systems, solar thermal devices, and geothermal electricity. The second stage of the model is the production of hydrogen using a specific assumed production methodology. In this case, it is a high-temperature electrolysis facility using production and economic characteristics data provided by the Florida Solar Energy Center. The third stage of the model represents the production of methanol assuming a biomass gasifier technology with operating and economic characteristics data based on studied by Fluor and Southern California Edison. At each stage of the model, there are three components: a data input portion that is used to define the techno-economic characteristics of the technology; the cash flow analysis based on financial assumptions; and an output summary section that reports the economic characteristics of the technology

  13. Designing Microporus Carbons for Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  14. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  15. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  16. Overview of U.S. programs for hydrogen from renewables

    International Nuclear Information System (INIS)

    Lewis, M.

    2007-01-01

    This paper discusses US program for hydrogen from renewable energy sources. Renewable energy sources include biomass, wind, solar, hydropower, geothermal and ocean waves. Although nuclear power is not considered renewable, a case can be made that it is, but requires recycling of spent fuel. The paper also discusses hydrogen production, storage and delivery. It discusses fuel cells, safety codes and standards and system analysis

  17. Hydrogen Sulphide Corrosion of Carbon and Stainless Steel Alloys Immersed in Mixtures of Renewable Fuel Sources and Tested Under Co-processing Conditions

    Directory of Open Access Journals (Sweden)

    Gergely András

    2016-10-01

    Full Text Available In accordance with modern regulations and directives, the use of renewable biomass materials as precursors for the production of fuels for transportation purposes is to be strictly followed. Even though, there are problems related to processing, storage and handling in wide range of subsequent uses, since there must be a limit to the ratio of biofuels mixed with mineral raw materials. As a key factor with regards to these biomass sources pose a great risk of causing multiple forms of corrosion both to metallic and non-metallic structural materials. To assess the degree of corrosion risk to a variety of engineering alloys like low-carbon and stainless steels widely used as structural metals, this work is dedicated to investigating corrosion rates of economically reasonable engineering steel alloys in mixtures of raw gas oil and renewable biomass fuel sources under typical co-processing conditions. To model a desulphurising refining process, corrosion tests were carried out with raw mineral gasoline and its mixture with used cooking oil and animal waste lard in relative quantities of 10% (g/g. Co-processing was simulated by batch-reactor laboratory experiments. Experiments were performed at temperatures between 200 and 300ºC and a pressure in the gas phase of 90 bar containing 2% (m3/m3 hydrogen sulphide. The time span of individual tests were varied between 1 and 21 days so that we can conclude about changes in the reaction rates against time exposure of and extrapolate for longer periods of exposure. Initial and integral corrosion rates were defined by a weight loss method on standard size of coupons of all sorts of steel alloys. Corrosion rates of carbon steels indicated a linear increase with temperature and little variation with composition of the biomass fuel sources. Apparent activation energies over the first 24-hour period remained moderate, varying between 35.5 and 50.3 kJ mol−1. Scales developed on carbon steels at higher

  18. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  19. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  20. Energy Systems With Renewable Hydrogen Compared to Direct Use of Renewable Energy in Austria

    International Nuclear Information System (INIS)

    Gerfried Jungmeier; Kurt Konighofer; Josef Spitzer; R Haas; A Ajanovic

    2006-01-01

    The current Austrian energy system has a renewable energy share of 20% - 11% hydropower and 9 % biomass - of total primary energy consumption. Whereas a possible future introduction of renewable hydrogen must be seen in the context of current energy policies in Austria e.g. increase of energy efficiency and use of renewable energy, reduction of greenhouse gas emissions. The aim of the research project is a life cycle based comparison of energy systems with renewable hydrogen from hydropower, wind, photovoltaic and biomass compared to the direct use of renewable energy for combined heat and power applications and transportation services. In particular this paper focuses on the main question, if renewable energy should be used directly or indirectly via renewable hydrogen. The assessment is based on a life cycle approach to analyse the energy efficiency, the material demand, the greenhouse gas emissions and economic aspects e.g. energy costs and some qualitative aspects e.g. energy service. The overall comparison of the considered energy systems for transportation service and combined heat and electricity application shows, that renewable hydrogen might be beneficial mainly for transportation services, if the electric vehicle will not be further developed to a feasibly wide-spread application for transportation service in future. For combined heat and electricity production there is no advantage of renewable hydrogen versus the direct use of renewable energy. Conclusions for Austria are therefore: 1) renewable hydrogen is an interesting energy carrier and might play an important role in a future sustainable Austrian energy system; 2) renewable hydrogen applications look most promising in the transportation sector; 3) renewable hydrogen applications will be of low importance for combined heat and electricity applications, as existing technologies for direct use of renewable energy for heat and electricity are well developed and very efficient; 4) In a future '100

  1. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  2. Hydrogen storage in carbon nanostruc

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Quintel, A.; Skakalova, V.; Choi, M.; Dettlaff-Weglikowska, U.; Roth, S.; Stepanek, I.; Bernier, P.; Leonhardt, A.; Fink, J.

    2002-01-01

    The paper gives a critical review of the literature on hydrogen storage in carbon nanostructures. Furthermore, the hydrogen storage of graphite, graphite nanofibers (GNFs), and single-walled carbon nanotubes (SWNTs) was measured by thermal desorption spectroscopy (TDS). The samples were ball milled

  3. Hydrogen research and development in Hawaii: Hawaii natural energy institute's hydrogen from renewable resources research program

    International Nuclear Information System (INIS)

    McKinley, K.R.; Rocheleau, R.E.; Takahashi, P.K.; Jensen, C.M.

    1993-01-01

    Hawaii, an energy-vulnerable state, has launched a Renewable Resources Research Program, focusing on hydrogen production and storage; the main tasks of this effort are: photoelectrochemical production of hydrogen through the use of coated silicon electrodes; solar conversion and the production of hydrogen with cyanobacteria; improved hydrogen storage through the use of nonclassical poly-hydride metal complexes. 10 refs

  4. The Design of a Renewable Hydrogen Fuel Infrastructure for London

    International Nuclear Information System (INIS)

    Parissis, O.; Bauen, A.

    2006-01-01

    The development of a least cost hydrogen infrastructure is key to the introduction of hydrogen fuel in road transport. This paper presents a generic framework for modelling the development of a renewable hydrogen infrastructure that can be applied to different cases and geographical regions. The model was designed by means of mixed integer linear programming and developed in MATLAB. It was applied to the case of London aiming to examine the possibilities of developing a renewable hydrogen infrastructure within a 50 years time horizon. The results presented here are preliminary results from a study looking at the least cost solutions to supplying hydrogen produced exclusively from renewable energy resources to large urban centres. (authors)

  5. Hydrogen from renewable sources. Current and future constraints

    International Nuclear Information System (INIS)

    Falchetta, M.; Galli, S.

    2001-01-01

    Using renewable energy sources to produce hydrogen as an energy vector could assure a fully sustainable renewable energy system with zero emissions. Many conversion technologies (in particular water electrolysis) are already available and proven, but are still far from being economically competitive [it

  6. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    Levin, David B.; Chahine, Richard

    2010-01-01

    The increasing demand for H 2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H 2 as a transportation fuel and portable power, will require H 2 production on a massive scale. Increased production of H 2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H 2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H 2 , circumventing the need to establish a large and costly distribution infrastructure. Each of these H 2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H 2 production systems with H 2 purification and storage technologies. (author)

  7. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  8. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  9. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  10. Renewable based hydrogen energy projects in remote and island communities

    International Nuclear Information System (INIS)

    Miles, S.; Gillie, M.

    2009-01-01

    Task 18 working group of the International Energy Agency's Hydrogen Implementing Agreement has been evaluating and documenting experiences with renewable based hydrogen energy projects in remote and island communities in the United Kingdom, Canada, Norway, Iceland, Gran Canaria, Spain and New Zealand. The objective was to examine the lessons learned from existing projects and provide recommendations regarding the effective development of hydrogen systems. In order to accomplish this task, some of the drivers behind the niche markets where hydrogen systems have already been developed, or are in the development stages, were studied in order to determine how these could be expanded and modified to reach new markets. Renewable based hydrogen energy projects for remote and island communities are currently a key niche market. This paper compared various aspects of these projects and discussed the benefits, objectives and barriers facing the development of a hydrogen-based economy

  11. A renewable energy based hydrogen demonstration park in Turkey. HYDEPARK

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan, Niluefer; Ersoez, Atilla [TUEBITAK Marmara Research Center Energy Institute, Gebze Kocaeli (Turkey); Cubukcu, Mete [Ege Univ., Bornova, Izmir (Turkey). Solar Energy Inst.

    2010-07-01

    The main goal of this national project is to research hydrogen technologies and renewable energy applications. Solar and wind energy are utilized to obtain hydrogen via electrolysis, which can either be used in the fuel cell or stored in cylinders for further use. The management of all project work packages was carried by TUeBITAK Marmara Research Center (MRC) Energy Institute (EI) with the support of the collaborators. The aim of this paper is to present the units of the renewable energy based hydrogen demonstration park, which is in the demonstration phase now and share the experimental results. (orig.)

  12. Carbon dioxide, the feedstock for using renewable energy

    Science.gov (United States)

    Hashimoto, K.; Kumagai, N.; Izumiya, K.; Kato, Z.

    2011-03-01

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  13. New perspectives on renewable energy systems based on hydrogen

    International Nuclear Information System (INIS)

    Bose, T. K.; Agbossou, K.; Benard, P.; St-Arnaud, J-M.

    1999-01-01

    Current hydrocarbon-based energy systems, current energy consumption and the push towards the utilization of renewable energy sources, fuelled by global warming and the need to reduce atmospheric pollution are discussed. The consequences of climatic change and the obligation of Annex B countries to reduce their greenhouse gas emissions in terms of the Kyoto Protocols are reviewed. The role that renewable energy sources such as hydrogen, solar and wind energy could play in avoiding the most catastrophic consequences of rapidly growing energy consumption and atmospheric pollution in the face of diminishing conventional fossil fuel resources are examined. The focus is on hydrogen energy as a means of storing and transporting primary energy. Some favorable characteristics of hydrogen is its abundance, the fact that it can be produced utilizing renewable or non-renewable sources, and the further fact that its combustion produces three times more energy per unit of mass than oil, and six times more than coal. The technology of converting hydrogen into energy, storing energy in the form of hydrogen, and its utilization, for example in the stabilization of wind energy by way of electrolytic conversion to hydrogen, are described. Development at Hydro-Quebec's Institute of Research of a hydrogen-based autonomous wind energy system to produce electricity is also discussed. 2 tabs., 11 refs

  14. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  15. Carbon material for hydrogen storage

    Science.gov (United States)

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  16. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  17. A renewable energy and hydrogen scenario for northern Europe

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2008-01-01

    renewable energy supply system is demonstrated with the use of the seasonal reservoir-based hydrocomponents in the northern parts of the region. The outcome of the competition between biofuels and hydrogen in the transportation sector is dependent on the development of viable fuel cells and on efficient......A scenario based entirely on renewable energy with possible use of hydrogen as an energy carrier is constructed for a group of North European countries. Temporal simulation of the demand-supply matching is carried out for various system configurations. The role of hydrogen technologies for energy...... of energy trade between the countries, due to the different endowments of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources, such as wind and solar, can derive from exchange of power. The establishment of a smoothly functioning...

  18. Transportable Hydrogen Research Plant Based on Renewable Energy

    International Nuclear Information System (INIS)

    Mikel Fernandez; Carlos Madina; Asier Gil de Muro; Jose Angel Alzolab; Iker Marino; Javier Garcia-Tejedor; Juan Carlos Mugica; Inaki Azkkrate; Jose Angel Alzola

    2006-01-01

    Efficiency and cost are nowadays the most important barriers for the penetration of systems based on hydrogen and renewable energies. According to this background, TECNALIA Corporation has started in 2004 the HIDROTEC project: 'Hydrogen Technologies for Renewable Energy Applications'. The ultimate aim of this project is the implementation of a multipurpose demonstration and research plant in order to explore diverse options for sustainable energetic solutions based on hydrogen. The plant is conceived as an independent system that can be easily transported and assembled. Research and demonstration activities can thus be carried out at very different locations, including commercial renewable facilities. Modularity and scalability have also been taken into account for an optimised exploitation. (authors)

  19. Integrated Renewable Hydrogen Utility System (IRHUS) business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

  20. Storing in carbon nano structures for hybrid systems solar hydrogen

    International Nuclear Information System (INIS)

    Marazzi, R.; Zini, G.; Tartarini, P.

    2009-01-01

    We have developed a hybrid energy system for converting energy from renewable sources and its storage in the form of hydrogen. The storage uses activated carbon and the methodology was modelled mathematically and simulated in numerical software. The results show that storage compression is cheaper storage for liquefaction. [it

  1. The production of hydrogen fuel from renewable sources and its role in grid operations

    International Nuclear Information System (INIS)

    Barton, John; Gammon, Rupert

    2010-01-01

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  2. The production of hydrogen fuel from renewable sources and its role in grid operations

    Science.gov (United States)

    Barton, John; Gammon, Rupert

    Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen

  3. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  4. Valorization of Renewable Carbon Resources for Chemicals.

    Science.gov (United States)

    Chen, Xi; Zhang, Bin; Wang, Yunzhu; Yan, Ning

    2015-01-01

    The overuse of fossil fuels has caused an energy crisis and associated environment issues. It is desirable to utilize renewable resources for the production of chemicals. This review mainly introduces our recent work on the transformation of renewable carbon resources including the conversion of cellulose, lignin, and chitin into sustainable chemicals. Various transformation routes have been established to form value-added chemicals, and accordingly a variety of effective catalytic systems have been developed, either based on metal catalysis and/or acid-base catalysis, to enable the desired transformation.

  5. Low Cost Carbon Fiber From Renewable Resources

    International Nuclear Information System (INIS)

    Compere, A.L.

    2001-01-01

    The Department of Energy Partnership for a New Generation of Vehicles has shown that, by lowering overall weight, the use of carbon fiber composites could dramatically decrease domestic vehicle fuel consumption. For the automotive industry to benefit from carbon fiber technology, fiber production will need to be substantially increased and fiber price decreased to$7/kg. To achieve this cost objective, alternate precursors to pitch and polyacrylonitrile (PAN) are being investigated as possible carbon fiber feedstocks. Additionally, sufficient fiber to provide 10 to 100 kg for each of the 13 million cars and light trucks produced annually in the U.S. will require an increase of 5 to 50-fold in worldwide carbon fiber production. High-volume, renewable or recycled materials, including lignin, cellulosic fibers, routinely recycled petrochemical fibers, and blends of these components, appear attractive because the cost of these materials is inherently both low and insensitive to changes in petroleum price. Current studies have shown that a number of recycled and renewable polymers can be incorporated into melt-spun fibers attractive as carbon fiber feedstocks. Highly extrudable lignin blends have attractive yields and can be readily carbonized and graphitized. Examination of the physical structure and properties of carbonized and graphitized fibers indicates the feasibility of use in transportation composite applications

  6. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  7. BIOWASTE AND HYDROGEN SULFIDE - PERSPECTIVE RENEWABLE FUELS

    OpenAIRE

    BESCHKOV V.; YANKOV D.; ANGELOV I.; RAZKAZOVA-VELKOVA E.; MARTINOV M.

    2017-01-01

    The enormous economical growth on a global scale in the last century has lead to extensive use of fossil fuels, such as coal, oil and natural gas. The result was strong emissions of carbon dioxide and greenhouse effect with consequent climate changes. The extensive use of fossil fuels that developed and stored in Earth interior for millions of years has made it no possibleto revive vegetation and process the emitted carbon dioxide with the help of photosynthesis. One of the ways to cope with ...

  8. Feasibility of hydrogen from renewable energy in the Arctic

    International Nuclear Information System (INIS)

    Chauhan, B.

    2004-01-01

    'Full text:' There is an abundance of renewable resources in the Canadian Arctic. Despite that diesel is still the conventional source used by homes and businesses for their electrical and space heating needs. Electrolysis of water to produce hydrogen using renewable resources is under investigation. A techno-economic feasibility has been conducted for hybrid systems including wind turbine, photovoltaic system, electrolyser and fuel cells. Different scenarios have been considered for meeting the needs of a small, remote community in the Arctic. Results will be presented indicating the most cost-effective Wind-PV-Electrolyser-Fuel Cell system for combined heat and power. (author)

  9. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  10. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  11. Renewable energy for hydrogen production and sustainable urban mobility

    International Nuclear Information System (INIS)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V.; Matteucci, F.; Breedveld, L.

    2010-01-01

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO 2 -free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  12. Renewable energy for hydrogen production and sustainable urban mobility

    Energy Technology Data Exchange (ETDEWEB)

    Briguglio, N.; Andaloro, L.; Ferraro, M.; Di Blasi, A.; Dispenza, G.; Antonucci, V. [Istituto di Tecnologie avanzate per l' Energia ' ' Nicola Giordano' ' Salita S, Lucia sopra Contesse, 5, 98126 Messina (Italy); Matteucci, F. [TRE SpA Tozzi Renewable Energy, Via Zuccherificio, 10, 48100 Mezzano (RA) (Italy); Breedveld, L. [2B Via della Chiesa Campocroce, 4, 31021 Mogliano Veneto (TV) (Italy)

    2010-09-15

    In recent years, the number of power plants based on renewable energy (RWE) has been increasing and hydrogen as an energy carrier has become a suitable medium-to-long term storage solution as well as a ''fuel'' for FCEV's because of its CO{sub 2}-free potential. In this context, the aim of the present study is to carry out both an economic and environmental analysis of a start-up RWE plant using a simulation code developed in previous work and a Life Cycle Assessment (LCA). The plant will be located in the South of Italy (Puglia) and will consist of different RWE sources (Wind Power, Photovoltaic, Biomass). RWE will be used to produce hydrogen from an electrolyzer, which will feed a fleet of buses using different fuels (methane, hydrogen, or a mixture of these). In particular, a wind turbine of 850 kW will feed a hydrogen production plant and a biomass plant will produce methane. Preliminary studies have shown that it is possible to obtain hydrogen at a competitive cost (DOE target) and that components (wind turbine, electrolyzer, vessel, etc.) influence the final price. In addition, LCA results have permitted a comparison of different minibuses using either fossil fuels or renewable energy sources. (author)

  13. Hydrogen from renewable resources - the hundred year commitment

    International Nuclear Information System (INIS)

    Adamson, K.A.

    2004-01-01

    During the last decade interest in a potential 'Hydrogen Economy' has increased and is now discussed in main stream literature and political debates. This is largely due to the promise that fuel cell technology, which uses a hydrogen-rich gas, has shown. Though hydrogen can be produced from a number of sources, it is steam reforming of natural gas that has gained a substantial support base, and is seen as an important bridge to a sustainable hydrogen production from renewable energy. What this paper examines is the synergy that exists now between hydrogen from renewable resources and the inception of the fuel cell market. It argues that although the natural gas pathway will be necessary for the short to medium term, there should not be a complete dominance of the production route. The paper also brings together a number of policy documents from the EU and argues that what is needed from the level of the EU is a long term, binding commitment to ensure that the natural gas pathway does not become locked in. (author)

  14. Carbon finance options in renewable energy

    International Nuclear Information System (INIS)

    Nahar, P.

    2010-01-01

    The Kyoto Protocol splits the world into two categories, notably Annex 1 with binding targets; and non-Annex 1 without any binding targets. This presentation discussed the Kyoto Protocol, with particular reference to the flexibility mechanisms which allow countries to achieve their emission targets in a cost effective way through emission trading, joint implementation, or clean development mechanisms (CDM). The CDM was outlined in detail in terms of how it works. The CDM key concepts include baseline use, additionality, and monitoring. Reasons for risk and CDM renewable energy projects were also outlined. Other topics that were presented included the impact of carbon finance; United States federal climate policy; European Union policy; EVO structured carbon; portfolio management; and EVO structured carbon. tabs., figs.

  15. One million ton of hydrogen is the key piece in the Danish renewable energy puzzle

    DEFF Research Database (Denmark)

    Grandal, Rune Duban; Mathiesen, Brian Vad; Connolly, David

    2013-01-01

    Designing a 100 % renewable energy system (RES) for Denmark, the availability of a sustainable biomass resource potential is found to be a limiting factor. The biomass demand derives from specific needs in the system, i.e. 1) storable fuel for energy for balancing fluctuating power production, 2...... storage, i.e. storing wind power through electrolysis and further reaction of hydrogen to hydrocarbons with carbon feedstock from biomass. This involves biomass gasification and hydrogenation of the syngas or hydrogenation of recycled CO2. The advantage of hydro storage is a superior energy efficiency......) carbon feedstock for materials and chemicals and 3) energy dense fuels for the more demanding branches of the transportation sector such as aviation, ship freight and long distance road transportation. The challenge of balancing electricity over different timeslots comprise a short term balancing...

  16. Renewable Hydrogen Potential from Biogas in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  17. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  18. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  19. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  20. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  1. Renewable carbohydrates are a potential high-density hydrogen carrier

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-H. Percival [Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); DOE BioEnergy Science Center (BESC), Oak Ridge, TN 37831 (United States)

    2010-10-15

    The possibility of using renewable biomass carbohydrates as a potential high-density hydrogen carrier is discussed here. Gravimetric density of polysaccharides is 14.8 H{sub 2} mass% where water can be recycled from PEM fuel cells or 8.33% H{sub 2} mass% without water recycling; volumetric densities of polysaccharides are >100 kg of H{sup 2}/m{sup 3}. Renewable carbohydrates (e.g., cellulosic materials and starch) are less expensive based on GJ than are other hydrogen carriers, such as hydrocarbons, biodiesel, methanol, ethanol, and ammonia. Biotransformation of carbohydrates to hydrogen by cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) has numerous advantages, such as high product yield (12 H{sub 2}/glucose unit), 100% selectivity, high energy conversion efficiency (122%, based on combustion energy), high-purity hydrogen generated, mild reaction conditions, low-cost of bioreactor, few safety concerns, and nearly no toxicity hazards. Although SyPaB may suffer from current low reaction rates, numerous approaches for accelerating hydrogen production rates are proposed and discussed. Potential applications of carbohydrate-based hydrogen/electricity generation would include hydrogen bioreactors, home-size electricity generators, sugar batteries for portable electronics, sugar-powered passenger vehicles, and so on. Developments in thermostable enzymes as standardized building blocks for cell-free SyPaB projects, use of stable and low-cost biomimetic NAD cofactors, and accelerating reaction rates are among the top research and development priorities. International collaborations are urgently needed to solve the above obstacles within a short time. (author)

  2. New Horizons for Hydrogen: Producing Hydrogen from Renewable Resources

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    Recent events have reminded us of the critical need to transition from crude oil, coal, and natural gas toward sustainable and domestic sources of energy. One reason is we need to strengthen our economy. In 2008 we saw the price of oil reach a record $93 per barrel. With higher oil prices, growing demand for gasoline, and increasing oil imports, an average of $235 billion per year, has left the United States economy to pay for foreign oil since 2005, or $1.2 trillion between 2005 and 2009. From a consumer perspective, this trend is seen with an average gasoline price of $2.50 per gallon since 2005, compared to an average of $1.60 between 1990 and 2004 (after adjusting for inflation). In addition to economic impacts, continued reliance on fossil fuels increases greenhouse gas emissions that may cause climate change, health impacts from air pollution, and the risk of disasters such as the Deepwater Horizon oil spill. Energy efficiency in the form of more efficient vehicles and buildings can help to reduce some of these impacts. However, over the long term we must shift from fossil resources to sustainable and renewable energy sources.

  3. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  4. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  5. Potential of producing renewable hydrogen from livestock animal waste. Paper no. IGEC-1-143

    International Nuclear Information System (INIS)

    Chang, F.

    2005-01-01

    Hydrogen economy and fuel cell technology have become increasingly recognized as means for maintaining a sustainable energy supply as well as a sustainable environment. Simultaneously, solutions are being sought to effectively manage the animal wastes from livestock farming of cattle, cow, hog, and poultry to ensure an environmentally sustainable method of food production. This discussion examines the potential of producing hydrogen from livestock waste on a scale that can effectively solve a waste management problem for the livestock industry and provide significant quantities of renewable hydrogen to the clean energy industry. The green energy derived from animal waste is considered to be carbon-neutral because animal feed is largely grown from photosynthesis of carbon dioxide. Electricity and heat thus generated will offset those generated from fossil fuels and can be rewarded with greenhouse gas emission reduction credits. Two groups of well proven technologies: biochemical processes such as anaerobic digestion (AD), and thermochemical processes such as gasification are considered in this paper. A theoretical analysis of the potential of reforming the biogas and syngas from these reactions has been conducted using mathematical models of AD, gasification, steam reforming and water-gas shift reactions, and the results indicate that significant quantities of renewable hydrogen can be generated to fuel clean energy technologies such as the fuel cell. Practical considerations are presented to complement the theoretical analysis and future research directions are also discussed. (author)

  6. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  7. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  8. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  9. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  10. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  11. Hydrogen generator characteristics for storage of renewably-generated energy

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Bartela, Łukasz; Węcel, Daniel; Dubiel, Klaudia

    2017-01-01

    The paper presents a methodology for determining the efficiency of a hydrogen generator taking the power requirements of its auxiliary systems into account. Authors present results of laboratory experiments conducted on a hydrogen generator containing a PEM water electrolyzer for a wide range of device loads. On the basis of measurements, the efficiency characteristics of electrolyzers were determined, including that of an entire hydrogen generator using a monitored power supply for its auxiliary devices. Based on the results of the experimental tests, the authors have proposed generalized characteristics of hydrogen generator efficiency. These characteristics were used for analyses of a Power-to-Gas system cooperating with a 40 MW wind farm with a known yearly power distribution. It was assumed that nightly-produced hydrogen is injected into the natural gas transmission system. An algorithm for determining the thermodynamic and economic characteristics of a Power-to-Gas installation is proposed. These characteristics were determined as a function of the degree of storage of the energy produced in a Renewable Energy Sources (RES) installation, defined as the ratio of the amount of electricity directed to storage to the annual amount of electricity generated in the RES installation. Depending on the degree of storage, several quantities were determined. - Highlights: • The efficiency characteristics of PEM electrolyzer are determined. • Generalized characteristics of hydrogen generator efficiency are proposed. • Method of choice of electrolyser nominal power for Power-to-Gas system was proposed. • Development of Power-to-Gas systems requires implementation of support mechanisms.

  12. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  13. Renewable energy carriers: Hydrogen or liquid air/nitrogen?

    International Nuclear Information System (INIS)

    Li Yongliang; Chen Haisheng; Zhang Xinjing; Tan Chunqing; Ding Yulong

    2010-01-01

    The world's energy demand is met mainly by the fossil fuels today. The use of such fuels, however, causes serious environmental issues, including global warming, ozone layer depletion and acid rains. A sustainable solution to the issues is to replace the fossil fuels with renewable ones. Implementing such a solution, however, requires overcoming a number of technological barriers including low energy density, intermittent supply and mobility of the renewable energy sources. A potential approach to overcoming these barriers is to use an appropriate energy carrier, which can store, transport and distribute energy. The work to be reported in this paper aims to assess and compare a chemical energy carrier, hydrogen, with a physical energy carrier, liquid air/nitrogen, and discuss potential applications of the physical carrier. The ocean energy is used as an example of the renewable energy sources in the work. The assessment and comparison are carried out in terms of the overall efficiency, including production, storage/transportation and energy extraction. The environmental impact, waste heat recovery and safety issues are also considered. It is found that the physical energy carrier may be a better alternative to the chemical energy carrier under some circumstances, particularly when there are waste heat sources.

  14. Carbon credit of renewable energy projects in Malaysia

    Science.gov (United States)

    Lim, X.; Lam, W. H.; Shamsuddin, A. H.

    2013-06-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  15. Carbon credit of renewable energy projects in Malaysia

    International Nuclear Information System (INIS)

    Lim, X; Lam, W H; Shamsuddin, A H

    2013-01-01

    The introduction of Clean Development Mechanism (CDM) to Malaysia improves the environment of the country. Besides achieving sustainable development, the carbon credit earned through CDM enhances the financial state of the nation. Both CDM and renewable energy contribute to the society by striving to reduce carbon emission. Most of the CDM projects are related to renewable energy, which recorded 69% out of total CDM projects. This paper presents the energy overview and status of renewable energies in the country. Then, the renewable energy will be related to the CDM.

  16. Carbon deposition and hydrogen retention in tokamak

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo

    2006-01-01

    The results of measurements on co-deposition of hydrogen isotopes and wall materials, hydrogen retention, redeposition of carbon and deposition of hydrogen on PMI of JT-60U are described. From above results, selection of plasma facing material and ability of carbon wall is discussed. Selection of plasma facing materials in fusion reactor, characteristics of carbon materials as the plasma facing materials, erosion, transport and deposition of carbon impurity, deposition of tritium in JET, results of PMI in JT-60, application of carbon materials to PFM of ITER, and future problems are stated. Tritium co-deposition in ITER, erosion and transport of carbon in tokamak, distribution of tritium deposition on graphite tile used as bumper limiter of TFTR, and measurement results of deposition of tritium on the Mark-IIA divertor tile and comparison between them are described. (S.Y.)

  17. Carbon compound used in hydrogen storage

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.

    2004-01-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  18. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... good and cheap agricultural residue for the production of activated carbon, with carbon, hydrogen and nitrogen ... fuel-wood because household energy requirements are met with ..... Thin layer solar drying and mathematical.

  19. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  20. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  1. Hydrogen production by catalytic processing of renewable methane-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Smith, Franklyn; T-Raissi, Ali [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922-5703 (United States)

    2008-04-15

    Biomass-derived methane-rich gases such as landfill gas (LFG), biogas and digester gas are promising renewable resources for near-future production of hydrogen. The technical and economical feasibility of hydrogen production via catalytic reforming of LFG and other methane-rich gases is evaluated in this paper. The thermodynamic equilibrium calculations and experimental measurements of reformation of methane-rich CH{sub 4}-CO{sub 2} mixtures over Ni-based catalyst were conducted. The problems associated with the catalyst deactivation due to carbon lay down and effects of steam and oxygen on the process sustainability were explored. Two technological approaches distinguished by the mode of heat input to the endothermic process (i.e., external vs autothermal) were modeled using AspenPlus trademark chemical process simulator and validated experimentally. A 5 kW{sub th} pilot unit for hydrogen production from LFG-mimicking CH{sub 4}-CO{sub 2} mixture was fabricated and operated. A preliminary techno-economic assessment indicates that the liquid hydrogen production costs are in the range of 3.00-7.00 per kilogram depending upon the plant capacity, the process heat input option and whether or not carbon sequestration is included in the process. (author)

  2. Hydrogen adsorption in carbon nanostructures compared

    International Nuclear Information System (INIS)

    Schimmel, H.G.; Nijkamp, G.; Kearley, G.J.; Rivera, A.; Jong, K.P. de; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam 'opened' SWNT are compared and shown to be similar. The storage capacity below 77 K of these materials correlates with the surface area of the material with the activated charcoal having the largest. SWNT and 'opened' SWNT have a relatively low accessible surface area due to bundling of the tubes. Pressure-temperature curves give the interaction potential, which was found to be ∼580 K or 50 meV in all samples, leading to significant adsorption below ∼50 K. Using the inelastic neutron scattering signal associated with rotation of the hydrogen molecule as a sensitive probe for the surroundings of the molecule, no difference was found between the hydrogen molecules adsorbed in the investigated materials. These combined spectroscopic and macroscopic results show that SWNT, nanofibers and activated carbons store molecular hydrogen due to their graphitic nature and not because they possess special morphologies. Results from a density functional theory computer calculation suggest molecular hydrogen bonding to an aromatic C-C bond of graphite, irrespective of the surface morphology farther away

  3. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  4. Renewable energy and low carbon economy transition in India

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash; Fujino, Junichi

    2010-01-01

    that aligns India’s emissions to an optimal 450 ppmv CO2-eq. stabilization global response. The second emissions pathway assumes an underlying sustainable development pattern. A low carbon future will be good for renewable energy under both the development pathways, though the share of renewable energy...

  5. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  6. Carbon: Hydrogen carrier or disappearing skeleton?

    International Nuclear Information System (INIS)

    De Jong, K.P.; Van Wechem, H.M.H.

    1994-01-01

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently developed Shell Middle Distillate Hydrogenation process for the manufacture of high quality diesel from aromatic refinery streams fits this picture. In the future, the hydrogen required to raise the product H/C ratio will be increasingly produced via gasification of large amounts of heavy residues. In the light of the strong preference towards using liquid fuels in the transport sector, the Shell Middle Distillate Synthesis process to convert natural gas into diesel of very high quality is discussed. Finally, a few comments on the use of hydrogen without a carbon carrier are made. Long lead times and the likelihood of producing the 'first' hydrogen from fossil fuel are highlighted. 13 figs., 6 tabs., 5 refs

  7. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  8. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  9. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  10. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  11. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  12. Hydrogen storage in sonicated carbon materials

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.S.; Choi, Y.J.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P.

    2001-01-01

    The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this

  13. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    Buczek, B.; Wolak, E.

    2005-01-01

    higher temperatures than liquefaction [3]. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation [4]. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor [5]. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage. [1]G. D. Berry, A. D. Pastemak, G. D. Rambach, J. R. Smith, N. Schock, Energy. 21, 289, 1996; [2]L. Czepirski, Przem. Chem. 70, 129, 1991 (in Polish); [3]B. Buczek, L. Czepirski, Inz. Chem. Proc., 24, 545, 2003; [4]U. Huczko, Przem. Chem. 81, 19, 2002 (in Polish); [5]U. Buenger, W. Zittel, Appl. Phys. A 72, 147, 2001. (authors)

  14. Hydrogen storage using microporous carbon materials

    International Nuclear Information System (INIS)

    B Buczek; E Wolak

    2005-01-01

    temperatures than liquefaction. Last years have brought the interest in hydrogen storage in porous carbon materials, caused by the design and accessibility of new materials, such as fullerenes, carbon nano-tubes and nano-fibers. In particular the tubular carbon structures are perspective highly adsorbing materials, for their surface adsorption (on the internal and external surface of the nano-tubes), and for the effect of capillary condensation. Data presented in Table 1 show that the amount of hydrogen adsorbed on these new materials depends of their modification and on the type of carbon precursor. In this work the concept of hydrogen storage by adsorption was analyzed. The discussion is based on measurements of hydrogen adsorption on commercial active carbon in the temperature range 77 - 298 K at pressures up to 4 MPa. The amount of gas that can be stored in an adsorption system depends on the adsorbent characteristics and the operating conditions. Adsorption method was compared with another one taking into account both technical and economical aspects. The results show that the adsorption technique could provide a viable method for hydrogen storage

  15. Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline - energetic and economic aspects

    International Nuclear Information System (INIS)

    Specht, M.; Staiss, F.; Bandi, A.; Weimer, T.

    1998-01-01

    In this paper, the renewable energy vectors liquid hydrogen (LH 2 ) and methanol generated from atmospheric CO 2 are compared with the conventional crude oil-gasoline system. Both renewable concepts, liquid hydrogen and methanol, lead to a drastic CO 2 reduction compared to the fossil-based system. The comparison between the LH 2 and methanol vector for the transport sector shows nearly the same fuel cost and energy efficiency but strong infrastructure advantages for methanol. (author)

  16. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  17. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  18. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    L Balan; L Duclaux; S Los

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7-8]. Presently, the best performance of hydrogen adsorption was found in super-activated microporous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physi-sorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field at the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  19. Hydrogen adsorption in doped porous carbons

    International Nuclear Information System (INIS)

    Balan, L.; Duchaux, L.; Los, S.

    2005-01-01

    Full text of publication follows: Hydrogen is a clean fuel that will be used in automotive transport when the problem of storage will be solved. The difficulties of H 2 storage (available space, security and performance, etc...) require a material that can store 5 weight % of hydrogen. Research is focused on new materials that can assume the constraints imposed by the automotive applications. Among these materials, the nano-structured carbons (nano-fibers and single walled carbon nano-tubes) were claimed to be promising by numerous authors [1-3]. The more promising carbon materials for hydrogen adsorption are those having micropores (i. e. single walled carbon nano-tubes and activated carbon), for which the energy of sorption of hydrogen molecules is theoretically higher [7- 8]. Presently, the best performance of hydrogen adsorption was found in super-activated micro-porous carbons sorbing 5 weight % at 77 K, and almost 0.5 % at room temperature and 6 MPa [9]. Up to now, the performance of these materials can still be improved as the known mechanism of sorption in these carbon materials: physisorption controlled by Van der Waals attractive forces through London interaction is efficient at cryogenic temperatures (77 K) where the interaction between adsorbent and adsorbate becomes stronger. One way to improve the attractive interaction between adsorbent and molecule is to increase the forces due to the interaction of electrical field and induced dipole of the molecule. This can be theoretically tailored in carbon materials through the electron charge transfer by electron donors who can provide an increase in the electrical field al the surface of the adsorbent. Then, the doping of carbon substrates, appearing to be a promising method to increase the energy of adsorption has been proposed in recent papers as a solution to obtain good hydrogen adsorption properties at appropriate temperatures close to room temperatures [10-12]. Thus, we have studied the adsorption

  20. Analysis of an integrated carbon cylce for storage of renewables

    Science.gov (United States)

    Streibel, Martin; Nakaten, Natalie; Kempka, Thomas; Kühn, Michael

    2013-04-01

    In order to mitigate the consequences of climate change the energy concept of the Government of Germany foresees the reduction of CO2 emissions by 80 % in 2050 compared to the status in 1990. Different routes are followed to achieve this goal. Most advanced is the construction of renewable energy sources in order to replace fossil fuel driven parts of the electricity generation. The increasing share of renewable energy sources in power production introduces the problem of high fluctuation of energy generated by windmills and photovoltaic. On top the production is not driven by demand but by availability of wind and sun. In this context, the "Power to Gas" concept has been developed. Main idea is the storage of excess renewable energy in form of hydrogen produced by electrolysis. If in a second step H2 reacts with CO2 to form CH4 the current natural gas infrastructure can be used. In times of energy production by renewables below the actual electricity demand CH4 is combusted to produce electricity. The emissions can be further reduced if CO2 is captured in the power plant and buffered in a dynamic geological storage (CCS). Subsequently the CO2 is back produced when excess energy is available to synthesise CH4. Storing CH4 locally also reduces energy for transport. Hence an integrated almost closed carbon cycle is implemented. In the present study this extended "Power to Gas" concept is elaborated on a regional-scale for the State of Brandenburg and the control area of 50 hertz. Focus of the analysis is the energetic balance of the concept for the integration of a geological CH4 and CO2 storage. Therefore, the energy conversion efficiency for the "Power to Gas" concept has been calculated using available data from literature. According to our calculations approximately 33 % of the wind energy used can be regained by combusting the synthesised CH4 in a combined cycle plant. In order to fuel a peaking power plant with a power of 120 MW for 2,500 hours a year

  1. Study the feasibility of hydrogen assisted renewable power for off-grid communities

    International Nuclear Information System (INIS)

    Wu, S.H.; Fleetwood, M.; Roberston, R.; Nielsen, N.

    2004-01-01

    Most Renewable energy sources lack the controllability and availability of conventional fossil fuel-based energy sources and therefore cannot meet load requirements of a community without a backup or storage system. The advances of hydrogen technologies enable these renewable energy options to supply power to remote communities relying on independent sources of electrical and other energy. The hydrogen assisted renewable power (HARP) concept promises to make renewable energy more practical and mainstream through the use of hydrogen based electrical generation systems. The study herein is the first of a multiphase project to investigate the benefits of HARP as an environmentally friendly replacement for diesel in the supply of electricity to off-grid communities and analyse its feasibility and suitability as a back-up power supply. A small-scale pilot project was selected and this study assesses the major elements of a plant required to integrate electrical generation system, hydrogen storage and hydrogen generation into a renewable energy generation system. Based on the available renewable energy profiles, a simulation model was developed to assist in selecting, integrating, and evaluating various configurations and operational scenarios. This paper describes the components of the proposed HARP system as well as its cost, benefits and opportunities for other applications. (author)

  2. Renewable energies development: what contribution of the carbon market?

    International Nuclear Information System (INIS)

    Bordier, Cecile

    2008-12-01

    In the climate-energy package, the European Union has committed to achieve objectives differentiated by countries to reduce greenhouse gas emissions and developing renewable energies. Part of the emissions reduction must be achieved through a common mechanism to all Member States: the European CO 2 trading market (EU ETS) covers about 40% of emissions of gas European greenhouse from five major industrial sectors, including power generation. The development of renewable energy is the responsibility of each member state. To meet its commitments in terms of renewable energy, each Member State may adopt economic incentives: tendering, purchase prices or green certificates. This Climate Report describes two national policies with different instruments: aid mechanism by prices in France and definition of quantitative targets in the UK. The author attempts to evaluate these policies for the production of renewable electricity in terms of cost per ton of carbon avoided to compare with the price of carbon quotas in the EU ETS. The results show that the cost of national incentive policies for renewable energy per ton of CO 2 avoided varies significantly from one country to another, but in both cases higher than the quota price on the European market. It is difficult to draw definitive conclusions on economic effectiveness of different policy instruments. The first phase of the European exchange of CO 2 quotas market has induced a stress relatively low, weighing mainly on the electricity generation sector. The allocations to the electricity sector have been reduced from 2008 and quotas will be auctioned from 2013 within the limits of an overall ceiling will decrease year by year. This increase in stress on emissions should play a key role in the deployment of CO 2 emission reduction solutions in this sector, including the development of renewable energies. The incentive mechanisms at the national level could complement the impact of the European carbon market by accelerating

  3. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  4. Carbon neutral and flexible underground storage of renewable excess energy; Klimaneutrale Flexibilisierung regenerativer Ueberschussenergie mit Untergrundspeichern

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Michael; Nakatem, Natalie; Streibel, Martin; Kempka, Thomas [GeoForschungsZentrum Potsdam (Germany)

    2013-10-15

    We present an innovative, extended and carbon neutral 'Power-to-Gas-to-Power' concept. Excess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided in that way, using 17.2% of renewable electricity generated in the State of Brandenburg. We calculate the overall efficiency of the system with 27.7% and the associated costs of electricity are 20,43 Euro-cent/ kWh. Compared to pump storage hydro power and compressed air storage the determined efficiency is worse, however the costs of electricity are competitive. (orig.)

  5. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  6. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  7. Environment, Renewable Energy and Reduced Carbon Emissions

    Science.gov (United States)

    Sen, S.; Khazanov, G.; Kishimoto, Y.

    2011-01-01

    Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.

  8. Carbon strategy and management in the hydrogen economy

    International Nuclear Information System (INIS)

    Snyder, C.

    2006-01-01

    Greenhouse gas (carbon) emission reduction related to the beneficial use of hydrogen is an important aspect in the development and public acceptance of a greater role for hydrogen in the economy. This presentation is an overview of potential effects of the evolving regulatory framework for carbon emissions management in Canada on hydrogen infrastructure development and compare it with activities in other jurisdictions

  9. Carbon nanotube materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  10. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  11. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  12. State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes

    International Nuclear Information System (INIS)

    Levin, Todd; Thomas, Valerie M.; Lee, Audrey J.

    2011-01-01

    We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2-2.2 cents/kWh and from dedicated biomass facilities for 3.0-5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity. - Research Highlights: →We examine state-scale impacts of a renewable electricity standard and a carbon tax. →Georgia has low electricity prices and bioenergy is the main renewable option. →A carbon tax of $50/tCO 2 does not significantly increase renewable generation. →Renewable electricity credits divert renewable investment to other states. →Keeping renewable electricity generation in-state increases electricity costs by 1%.

  13. Renewable Methane Generation from Carbon Dioxide and Sunlight.

    Science.gov (United States)

    Steinlechner, Christoph; Junge, Henrik

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO 2 in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO 2 into CH 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  15. Production of hydrogen from renewable resources and its effectiveness

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2012-01-01

    Roč. 37, č. 16 (2012), s. 11563-11578 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen production * biological processes * conventional methods Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.548, year: 2012

  16. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption

    International Nuclear Information System (INIS)

    Midilli, Adnan; Dincer, Ibrahim

    2008-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for reducing global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions are derived depending primarily upon the exergetic utilization ratios of fossil fuels and hydrogen: the fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency, fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator. These relations incorporate predicted exergetic utilization ratios for hydrogen energy from non-fossil fuel resources such as water, etc., and are used to investigate whether or not exergetic utilization of hydrogen can significantly reduce the fossil fuel based global irreversibility coefficient (ranging from 1 to +∞) indicating the fossil fuel consumption and contribute to increase the hydrogen based global exergetic indicator (ranging from 0 to 1) indicating the hydrogen utilization at a certain ratio of fossil fuel utilization. In order to verify all these exergetic expressions, the actual fossil fuel consumption and production data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. For the verification of these parameters, the variations of fossil fuel based global irreversibility coefficient and hydrogen based global exergetic indicator as the functions of fossil fuel based global waste exergy factor, hydrogen based global exergetic efficiency and exergetic utilization of hydrogen from non-fossil fuels are analyzed and discussed in detail. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases

  17. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-11-01

    Full Text Available Among the several typologies of storage technologies, mainly on different physical principles (mechanical, electrical and chemical, hydrogen produced by power to gas (P2G from renewable energy sources complies with chemical storage principle and is based on the conversion of electrical energy into chemical energy by means of the electrolysis of water which does not produce any toxic or climate-relevant emission. This paper aims to pinpoint the potential uses of renewable hydrogen storage systems in Europe, analysing current and potential locations, regulatory framework, governments’ outlooks, economic issues, and available renewable energy amounts. The expert opinion survey, already used in many research articles on different topics including energy, has been selected as an effective method to produce realistic results. The obtained results highlight strategies and actions to optimize the storage of hydrogen produced by renewables to face varying electricity demand and generation-driven fluctuations reducing the negative effects of the increasing share of renewables in the energy mix of European Countries.

  18. Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands

    International Nuclear Information System (INIS)

    Gils, Hans Christian; Simon, Sonja

    2017-01-01

    Highlights: • A pathway to a 100% renewable energy supply for the Canary Islands is presented. • Hourly system operation is analysed, considering flexibility options and sector linkage. • Results show feasibility of a carbon neutral energy supply with local resources. • High resolution power system model highlights importance of grid connections. - Abstract: As many other small islands and archipelagos, the Canary Islands depend to a high degree on energy imports. Despite its small surface, the archipelago has a high potential for renewable energy (RE) technologies. In this paper, we present a scenario pathway to a 100% RE supply in the Canary Islands by 2050. It relies on a back-casting approach linking the bottom-up accounting framework Mesap-PlaNet and the high resolution power system model REMix. Our analysis shows that locally available technology potentials are sufficient for a fully renewable supply of the islands’ power, heat, and land transport energy demands. To follow the pathway for achieving a carbon neutral supply, expansion of RE technology deployment needs to be accelerated in the short-term and efforts towards greater energy efficiency must be increased. According to our results, an extended linkage between energy sectors through electric vehicles as well as electric heating, and the usage of synthetic hydrogen can contribute notably to the integration of intermittent RE power generation. Furthermore, our results highlight the importance of power transmission in RE supply systems. Supply costs are found 15% lower in a scenario considering sea cable connections between all islands.

  19. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  20. The Carbon Trust and DTI Renewables network impacts study

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2005-11-15

    The study's key objectives, as set by the Renewables Advisory Board, the Carbon Trust and DTI, are as follows: To undertake a forward renewables capacity mapping exercise derived from the generation companies' investment plans to 2010, and if the capacity mapping exercise indicates that the planned level of activity is unlikely to meet the 2010 target, to devise and consider a small number of scenarios whereby the 10% target could be achieved; To determine how the transmission and distribution networks need to evolve to enable the Government's 2010 target of 10% of electricity supplied from renewable sources and the aspiration to double that percentage; To investigate the network issues regarding the intermittent nature of renewable generation and the characterisation of renewable generation with regard to grid code compliance; To provide insights into the actions and the stepping stones required between now and 2020 for the key decisions and investments relating to the transformation of the transmission and distribution network, and those issues likely to affect the rate of progress toward the targets. The study also analyses whether there are potential network impacts on renewables expansion from a simultaneous expansion of the UK's CHP capacity to meet the Government target of 10GW of CHP by 2010. The study (which was largely completed ahead of the Government's announcement on extension of the Renewables Obligation Order to 2015, and the raising of the renewables target to 15% of electricity sales by 2015) has found that based on business plans, developers can meet about 72% of the 2010 target by 20061. The Government's announcement has been welcomed by the renewables community and is expected to give added confidence to developers and investors that the Government is intent on creating a long term stable regime to incentivise investment in renewable energy technologies. However, in parallel with tackling what was a decline in

  1. Hydrogen and renewable energy sources integrated system for greenhouse heating

    Directory of Open Access Journals (Sweden)

    Ileana Blanco

    2013-09-01

    Full Text Available A research is under development at the Department of Agro- Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic and hydrogen, integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules, which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.

  2. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  3. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  4. Amorphous carbon enhancement of hydrogen penetration into UO2

    International Nuclear Information System (INIS)

    Zalkind, S.; Shamir, N.; Gouder, T.; Akhvlediani, R.; Hoffman, A.

    2014-01-01

    In a previous study, it was demonstrated that an amorphous carbon layer, deposited on a native oxide covered uranium surface, significantly enhances the interaction of hydrogen with the uranium metal. Fig. 1[2], demonstrates the preferential hydrogen attack (forming uranium hydride) on the carbon covered area of the naturally oxidized uranium metal

  5. Renewable methane generation from carbon dioxide and sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Steinlechner, Christoph; Junge, Henrik [Leibniz Institut fuer Katalyse, Universitaet Rostock e.V., Rostock (Germany)

    2018-01-02

    The direct approach: Methane is a potential key player in the world's transition to a more sustainable energy future. The direct conversion of carbon dioxide into methane is highly desirable to lower the concentration of CO{sub 2} in the atmosphere and also to store renewable energy. This Highlight describes the first homogeneous system for the light-driven conversion of CO{sub 2} into CH{sub 4}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Carbon-hydrogen-related complexes in Si

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.; Gwozdz, K.; Weber, J.

    2018-04-01

    Several deep level transient spectroscopy (DLTS) peaks (E42, E65, E75, E90, E262, and H180) are observed in n- and p-type Czochralski-grown Si samples subjected to hydrogenation by a dc H plasma treatment. The concentration of the defects is found to be proportional to the carbon and hydrogen content in our samples. The analysis of the depth profiles performed in Si samples hydrogenated by wet chemically etching shows that all these defects contain a single H atom. E65 and E75 appear only in samples with a high oxygen content which shows that oxygen is a constituent of these defects. The analysis of the enhancement of the emission rate of the defects with electric field shows that E65, E75, E90, and E262 are single acceptors whereas E42 is a double acceptor. The presence of a barrier for hole capture (about 53 meV) can explain the absence of the enhancement of the emission rate of H180, which can be attributed to a single acceptor state. From a comparison with theory, we assign E90 to CH1BC, E42 (E262) to CH1AB, and H180 to CH1Td. The similarity of the electrical properties of E65 and E75 to those of E90 suggest that E65 and E75 may originate from the CH1BC defect with an oxygen atom in its nearest neighborhood. Our results on the CH-related complexes give a conclusive explanation of some previously reported controversial experimental data.

  7. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  8. Modelling hydrogen permeation in a hydrogen effusion probe for monitoring corrosion of carbon steels

    International Nuclear Information System (INIS)

    Santiwiparat, P.; Rirksomboon, T.; Steward, F.R.; Lister, D.H.; Cook, W.G.

    2015-01-01

    Hydrogen accumulation inside carbon steel and stainless steel devices shaped like cylindrical cups attached to a pipe containing hydrogen gas was modelled with MATLAB software. Hydrogen transfer around the bottom of the cups (edge effect) and diffusion through the cup walls (material effect) were accounted for. The variation of hydrogen pressure with time was similar for both materials, but the hydrogen plateau pressures in stainless steel cups were significantly higher than those in carbon steel cups. The geometry of the cup also affected the plateau pressure inside the cup. (author)

  9. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  10. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis

    International Nuclear Information System (INIS)

    Agll, Abdulhakim Amer A.; Hamad, Yousif M.; Hamad, Tarek A.; Thomas, Mathew; Bapat, Sushrut; Martin, Kevin B.; Sheffield, John W.

    2013-01-01

    Countries around the world are trying to use alternative fuels and renewable energy to reduce the energy consumption and greenhouse gas emissions. Biogas contains methane is considered a potential source of clean renewable energy. This paper discusses the design of a combined heat, hydrogen and power system, which generated by methane with use of Fuelcell, for the campus of Missouri University of Science and Technology located in Rolla, Missouri, USA. An energy flow and resource availability study was performed to identify sustainable type and source of feedstock needed to run the Fuelcell at its maximum capacity. FuelCell Energy's DFC1500 unit (a molten carbonate Fuelcell) was selected as the Fuelcell for the tri-generation (heat, hydrogen and electric power) system. This tri-generation system provides electric power to the campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, backup power and other applications on the campus. In conclusion, the combined heat, hydrogen and power system reduces fossil fuel usage, and greenhouse gas emissions at the university campus. -- Highlights: • Combined heat, hydrogen and power (CHHP) using a molten carbonate fuel cell. • Energy saving and alternative fuel of the products are determined. • Energy saving is increased when CHHP technology is implemented. • CHHP system reduces the greenhouse gas emissions and fuel consumption

  11. How carbon credits could drive the emergence of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, John A. [Macquarie Graduate School of Management, Macquarie University, Sydney, NSW 2109 (Australia)

    2008-10-15

    The shift to renewable energy options and low-carbon technologies, in response to the concerns over energy security and climate change, is proceeding more slowly than many would like. The usual argument against rapid deployment of new technologies is the costs imposed on the economy, commonly interpreted in terms of upfront costs to be borne or involving large cash transfers to fund, for example, efforts to preserve rainforests. In this contribution I argue that such a perspective provides a continuing barrier to taking effective action, whereas a perspective based on creation and use of carbon credits provides a means of avoiding the shock of abrupt industrial change. Carbon credits granted for bona fide carbon load reductions could be created through private initiative, for example by merchant banks, to constitute a market that will complement regulatory-based initiatives such as national emissions trading systems. This is not a novel idea; indeed it is the way that capitalism has funded every major change, including the Industrial Revolution, through the creation of credit. The emergence of a global carbon credit economy is likely to precede a global regulatory system governing climate change and will doubtless help to stimulate the emergence of such a global system. (author)

  12. How carbon credits could drive the emergence of renewable energies

    International Nuclear Information System (INIS)

    Mathews, John A.

    2008-01-01

    The shift to renewable energy options and low-carbon technologies, in response to the concerns over energy security and climate change, is proceeding more slowly than many would like. The usual argument against rapid deployment of new technologies is the costs imposed on the economy, commonly interpreted in terms of upfront costs to be borne or involving large cash transfers to fund, for example, efforts to preserve rainforests. In this contribution I argue that such a perspective provides a continuing barrier to taking effective action, whereas a perspective based on creation and use of carbon credits provides a means of avoiding the shock of abrupt industrial change. Carbon credits granted for bona fide carbon load reductions could be created through private initiative, for example by merchant banks, to constitute a market that will complement regulatory-based initiatives such as national emissions trading systems. This is not a novel idea; indeed it is the way that capitalism has funded every major change, including the Industrial Revolution, through the creation of credit. The emergence of a global carbon credit economy is likely to precede a global regulatory system governing climate change and will doubtless help to stimulate the emergence of such a global system

  13. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  14. Electrochemical Hydrogen Storage in a Highly Ordered Mesoporous Carbon

    Directory of Open Access Journals (Sweden)

    Dan eLiu

    2014-10-01

    Full Text Available A highly order mesoporous carbon has been synthesized through a strongly acidic, aqueous cooperative assembly route. The structure and morphology of the carbon material were investigated using TEM, SEM and nitrogen adsorption-desorption isotherms. The carbon was proven to be meso-structural and consisted of graphitic micro-domain with larger interlayer space. AC impedance and electrochemical measurements reveal that the synthesized highly ordered mesoporous carbon exhibits a promoted electrochemical hydrogen insertion process and improved capacitance and hydrogen storage stability. The meso-structure and enlarged interlayer distance within the highly ordered mesoporous carbon are suggested as possible causes for the enhancement in hydrogen storage. Both hydrogen capacity in the carbon and mass diffusion within the matrix were improved.

  15. Compressor-less Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

    International Nuclear Information System (INIS)

    W Leighty; J Holloway; R Merer; B Somerday; C San Marchi; G Keith; D White

    2006-01-01

    We assume a transmission-constrained world, where large new wind plants and other renewable energies must pay all transmission costs for delivering their energy to distant markets. We modeled a 1,000 MW (1 GW) (name plate) wind plant in the large wind resource of the North America Great Plains, delivering exclusively hydrogen fuel, via a new gaseous hydrogen (GH2) pipeline, to an urban market at least 300 km distant. All renewable electric energy output would be converted, at the source, to hydrogen, via 100 bar output electrolyzers, directly feeding the GH2 transmission pipeline without costly compressor stations at inlet or at midline. The new GH2 pipeline is an alternative to new electric transmission lines. We investigate whether the pipeline would provide valuable energy storage. We present a simple model by which we estimate the cost of wind-source hydrogen fuel delivered to the distant city gate in year 2010, at GW scale. Ammonia, synthetic hydrocarbons, and other substances may also be attractive renewable-source energy carriers, storage media, and fuels; they are not considered in this paper. (authors)

  16. Carbon Lock-Out: Advancing Renewable Energy Policy in Europe

    Directory of Open Access Journals (Sweden)

    Robert Pietzcker

    2012-02-01

    Full Text Available As part of its climate strategy, the EU aims at increasing the share of electricity from renewable energy sources (RES-E in overall electricity generation. Attaining this target poses a considerable challenge as the electricity sector is “locked” into a carbon-intensive system, which hampers the adoption of RES-E technologies. Electricity generation, transmission and distribution grids as well as storage and demand response are subject to important path dependences, which put existing, non-renewable energy sources at an advantage. This paper examines how an EU framework for RES-E support policies should be designed to facilitate a carbon lock-out. For this purpose, we specify the major technological, economic and institutional barriers to RES-E. For each of the barriers, a policy review is carried out which assesses the performance of existing policy instruments and identifies needs for reform. The review reveals several shortcomings: while policies targeting generation are widely in place, measures to address barriers associated with electricity grids, storage and demand are still in their infancy and have to be extended. Moreover, the implementation of policies has been fragmented across EU Member States. In this respect, national policies should be embedded into an integrated EU-wide planning of the RES-E system with overarching energy scenarios and partially harmonized policy rules.

  17. From water to water, hydrogen as a renewable energy vector for the future

    International Nuclear Information System (INIS)

    Gillet, A.C.

    2000-01-01

    The most important property of hydrogen is that it is the cleanest fuel. Its combustion produces only water and a small amount of NO x . No acid rain, no greenhouse effect, no ozone layer depletion, no particulates aerosols. It seems then ideally suited for the conversion to renewable energy. Hydrogen has now established it self as a clean choice for an environmentally compatible energy system. It can provide a sustainable future for building, industrial and transport sectors of human activities. On average, it has about 20-30% higher combustion efficiency than fossil fuels and can produce electricity directly in fuel cells. In combination with solar PV- and hydro-electrolysis, it is compatible with land area requirements on a worldwide basis. If fossil fuels combustion environmental damage is taken into account, the hydrogen energy system is already cost effective. The question is thus no longer , but, and soon, will hydrogen energy become a practical solution to sustainable energy development. (Author)

  18. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  19. Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping

    Energy Technology Data Exchange (ETDEWEB)

    Jie Liu

    2011-02-01

    The DOE Hydrogen Sorption Center of Excellence (HSCoE) was formed in 2005 to develop materials for hydrogen storage systems to be used in light-duty vehicles. The HSCoE and two related centers of excellence were created as follow-on activities to the DOE Office of Energy Efficiency and Renewable Energy’s (EERE’s) Hydrogen Storage Grand Challenge Solicitation issued in FY 2003. The Hydrogen Sorption Center of Excellence (HSCoE) focuses on developing high-capacity sorbents with the goal to operate at temperatures and pressures approaching ambient and be efficiently and quickly charged in the tank with minimal energy requirements and penalties to the hydrogen fuel infrastructure. The work was directed at overcoming barriers to achieving DOE system goals and identifying pathways to meet the hydrogen storage system targets. To ensure that the development activities were performed as efficiently as possible, the HSCoE formed complementary, focused development clusters based on the following four sorption-based hydrogen storage mechanisms: 1. Physisorption on high specific surface area and nominally single element materials 2. Enhanced H2 binding in Substituted/heterogeneous materials 3. Strong and/or multiple H2 binding from coordinated but electronically unsatruated metal centers 4. Weak Chemisorption/Spillover. As a member of the team, our group at Duke studied the synthesis of various carbon-based materials, including carbon nanotubes and microporous carbon materials with controlled porosity. We worked closely with other team members to study the effect of pore size on the binding energy of hydrogen to the carbon –based materials. Our initial project focus was on the synthesis and purification of small diameter, single-walled carbon nanotubes (SWNTs) with well-controlled diameters for the study of their hydrogen storage properties as a function of diameters. We developed a chemical vapor deposition method that synthesized gram quantities of carbon nanotubes with

  20. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  1. Carbon Monoxide Hydrogenation on Ice Surfaces.

    Science.gov (United States)

    Kuwahata, Kazuaki; Ohno, Kaoru

    2018-03-14

    We have performed density functional calculations to investigate the carbon monoxide hydrogenation reaction (H+CO→HCO), which is important in interstellar clouds. We found that the activation energy of the reaction on amorphous ice is lower than that on crystalline ice. In the course of this study, we demonstrated that it is roughly possible to use the excitation energy of the reactant molecule (CO) in place of the activation energy. This relationship holds also for small water clusters at the CCSD level of calculation and the two-layer-level ONIOM (CCSD : X3LYP) calculation. Generally, since it is computationally demanding to estimate activation energies of chemical reactions in a circumstance of many water molecules, this relationship enables one to determine the activation energy of this reaction on ice surfaces from the knowledge of the excitation energy of CO only. Incorporating quantum-tunneling effects, we discuss the reaction rate on ice surfaces. Our estimate that the reaction rate on amorphous ice is almost twice as large as that on crystalline ice is qualitatively consistent with the experimental evidence reported by Hidaka et al. [Chem. Phys. Lett., 2008, 456, 36.]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  3. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    OpenAIRE

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01

    Hydrogen is emerging beyond its conventional role as an additive component for gasoline production, chemical and fertilizer manufacture, and food production to become a promising fuel for transportation and stationary power. Hydrogen offers a potentially unmatched ability to deliver a de-carbonized energy system, thereby addressing global climate change concerns, while simultaneously improving local air quality and reducing dependence on imported fossil fuels. This "trifecta" of potential ben...

  4. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  5. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei, E-mail: limei.xu@pku.edu.cn [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Tangpanitanon, Jirawat [University of Cambridge, Cambridge, Cambridgeshire CB2 1TP (United Kingdom); Wen, Bo [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Beijing Computational Science Research Center, Heqing Street, Haidian District, Beijing 100084 (China); Xue, Jianming [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-05-28

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  6. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Science.gov (United States)

    Sun, Gang; Tangpanitanon, Jirawat; Shen, Huaze; Wen, Bo; Xue, Jianming; Wang, Enge; Xu, Limei

    2014-05-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  7. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    International Nuclear Information System (INIS)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei; Tangpanitanon, Jirawat; Wen, Bo; Xue, Jianming

    2014-01-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT

  8. Thermal stability of hydrogenated small-diameter carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Podlivaev, A. I., E-mail: AIPodlivayev@mephi.ru; Openov, L. A. [National Research Nuclear University “MEPhI” (Russian Federation)

    2017-02-15

    The initial stage of hydrogen desorption from fully hydrogenated carbon nanotubes (3.0) and (2.2) is numerically studied by the molecular dynamics method. The temperature dependence of the desorption rate is directly determined at T = 1800–2500 K. The characteristic desorption times are determined at temperatures outside this range by extrapolation. It is shown that hydrogen desorption leads to the appearance of electronic states in the band gap.

  9. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  10. Carbon Emissions, Renewable Electricity, and Profits: Comparing Policies to Promote Anaerobic Digesters on Dairies

    OpenAIRE

    Key, Nigel D.; Sneeringer, Stacy E.

    2012-01-01

    Anaerobic digesters can provide renewable energy and reduce greenhouse gas emissions from manure management. Government policies that encourage digester adoption by livestock operations include construction cost-share grants, renewable electricity subsidies, and carbon pricing (offset) programs. However, the effectiveness and efficiency of these policies is not well understood. For the U.S. dairy sector, we compare predicted digester adoption rates, carbon emission reductions, renewable elect...

  11. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stark, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water. The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.

  12. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Ruiz-Chavarria, Gregorio [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Codigo Postal 04510, Mexico D.F. (Mexico); Magana, L.F., E-mail: fernando@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Arellano, J.S. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Avenida San Pablo No. 180, Col. Reynosa Tamaulipas Codigo Postal 02200, Mexico D.F. (Mexico)

    2009-07-06

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H{sub 2}). Nitrogen coverage was C{sub 8}N.

  13. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  14. System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a system and method for integrating renewable energy and a fuel cell for the production of electricity and hydrogen, wherein this comprises the use of renewable energy as fluctuating energy source for the production of electricity and also comprises the use of at least one

  15. Energy storage applications of activated carbons: supercapacitors and hydrogen storage

    OpenAIRE

    Sevilla Solís, Marta; Mokaya, Robert

    2014-01-01

    Porous carbons have several advantageous properties with respect to their use in energy applications that require constrained space such as in electrode materials for supercapacitors and as solid state hydrogen stores. The attractive properties of porous carbons include, ready abundance, chemical and thermal stability, ease of processability and low framework density. Activated carbons, which are perhaps the most explored class of porous carbons, have been traditionally employed as catalyst s...

  16. Hydrogen storage in porous carbons: modelling and performance improvements

    International Nuclear Information System (INIS)

    Pellenq, R.J.M.; Maresca, O.; Marinelli, F.; Duclaux, L.; Azais, P.; Conard, J.

    2006-01-01

    In this work, we aim at exploring using ab initio calculations, the various ways allowing for an efficient hydrogen docking in carbon porous materials. Firstly, the influence of surface curvature on the chemisorption of atomic hydrogen is considered. Then it is shown that electro-donor elements such as lithium or potassium used as dopant of the carbon substrate induce a strong physi-sorption for H 2 , allowing its storage at ambient temperature under moderate pressure. (authors)

  17. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  19. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  20. Microwave interaction with nonuniform hydrogen gas in carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, S.; Babaei, Sh.

    2009-01-01

    In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied

  1. An energy self-sufficient public building using integrated renewable sources and hydrogen storage

    International Nuclear Information System (INIS)

    Marino, C.; Nucara, A.; Pietrafesa, M.; Pudano, A.

    2013-01-01

    The control of the use of fossil fuels, major cause of greenhouse gas emissions and climate changes, in present days represents one of Governments' main challenges; particularly, a significant energy consumption is observed in buildings and might be significantly reduced through sustainable design, increased energy efficiency and use of renewable sources. At the moment, the widespread use of renewable energy in buildings is limited by its intrinsic discontinuity: consequently integration of plants with energy storage systems could represent an efficient solution to the problem. Within this frame, hydrogen has shown to be particularly fit in order to be used as an energetic carrier. In this aim, in the paper an energetic, economic and environmental analysis of two different configurations of a self-sufficient system for energy production from renewable sources in buildings is presented. In particular, in the first configuration energy production is carried out by means of photovoltaic systems, whereas in the second one a combination of photovoltaic panels and wind generators is used. In both configurations, hydrogen is used as an energy carrier, in order to store energy, and fuel cells guarantee its energetic reconversion. The analysis carried out shows that, although dimensioned as a stand-alone configuration, the system can today be realized only taking advantage from the incentivizing fares applied to grid-connected systems, that are likely to be suspended in the next future. In such case, it represents an interesting investment, with capital returns in about 15 years. As concerns economic sustainability, in fact, the analysis shows that the cost of the energy unit stored in hydrogen volumes, due to the not very high efficiency of the process, presently results greater than that of directly used one. Moreover, also the starting fund of the system proves to be very high, showing an additional cost with respect to systems lacking of energy storage equal to about 50

  2. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA from renewable carbon

    Directory of Open Access Journals (Sweden)

    Müller Roland H

    2010-02-01

    Full Text Available Abstract Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB. This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source.

  3. Optimal production of renewable hydrogen based on an efficient energy management strategy

    International Nuclear Information System (INIS)

    Ziogou, Chrysovalantou; Ipsakis, Dimitris; Seferlis, Panos; Bezergianni, Stella; Papadopoulou, Simira; Voutetakis, Spyros

    2013-01-01

    This work presents the development of a flexible energy management strategy (EMS) for a renewable hydrogen production unit through water electrolysis with solar power. The electricity flow of the unit is controlled by a smart microgrid and the overall unattended operation is achieved by a supervisory control system. The proposed approach formalizes the knowledge regarding the system operation using a finite-state machine (FSM) which is subsequently combined with a propositional-based logic to describe the transitions among various process states. The operating rules for the integrated system are derived by taking into account both the operating constraints and the interaction effects among the individual subsystems in a systematic way. Optimal control system parameter values are obtained so that a system performance criterion incorporating efficient and economic operation is satisfied. The resulted EMS has been deployed to the industrial automation system that monitors and controls a small-scale experimental solar hydrogen production unit. The overall performance of the proposed EMS in the experimental unit has been evaluated over short-term and long-term operating periods resulting in smooth and efficient hydrogen production. - Highlights: • Development of an energy management strategy based on a finite-state machine and propositional-based reasoning. • Deployment of the energy-aware algorithm to an autonomous renewable hydrogen production unit. • Supervisory control of the electricity flow by a smart microgrid using an industrial automation system. • Unattended operation and remote monitoring incorporating subsystem interactions in a systematic way. • Optimal hydrogen production regardless of the weather conditions through water electrolysis with solar power

  4. Study of a molten carbonate fuel cell combined heat, hydrogen and power system

    International Nuclear Information System (INIS)

    Hamad, Tarek A.; Agll, Abdulhakim A.; Hamad, Yousif M.; Bapat, Sushrut; Thomas, Mathew; Martin, Kevin B.; Sheffield, John W.

    2014-01-01

    To address the problem of fossil fuel usage and high greenhouse gas emissions at the Missouri University of Science and Technology campus, using of alternative fuels and renewable energy sources can lower energy consumption and greenhouse gas emissions. Biogas, produced by anaerobic digestion of wastewater, organic waste, agricultural waste, industrial waste, and animal by-products is a potential source of renewable energy. In this work, we have discussed the design of CHHP (combined heat, hydrogen and power) system for the campus using local resources. An energy flow and resource availability study is performed to identify the type and source of feedstock required to continuously run the fuel cell system at peak capacity. Following the resource assessment study, the team selects FuelCell Energy DFC (direct fuel cell) 1500™ unit as a molten carbonate fuel cell. The CHHP system provides electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. In conclusion, the CHHP system will be able to reduce fossil fuel usage, and greenhouse gas emissions at the university campus. - Highlights: • A molten carbonate fuel cell tri-generation by using anaerobic digestion system. • Anaerobic digestion system will be able to supply fuel for the DFC1500™ unit. • Use locally available feedstock to production electric power, hydrogen and heat. • Application energy end-uses on the university. • CHHP system will reduce energy consumption, fossil fuel usage, and GHG emissions

  5. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  6. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  7. Implications of carbon cap-and-trade for US voluntary renewable energy markets

    International Nuclear Information System (INIS)

    Bird, Lori A.; Holt, Edward; Levenstein Carroll, Ghita

    2008-01-01

    Many consumers today are purchasing renewable energy in large part for the greenhouse gas (GHG) emissions benefits that they provide. Emerging carbon regulation in the US has the potential to affect existing markets for renewable energy. Carbon cap-and-trade programs are now under development in the Northeast under the Regional Greenhouse Gas Initiative (RGGI) and in early stages of development in the West and Midwest. There is increasing discussion about carbon regulation at the national level as well. While renewable energy will likely benefit from carbon cap-and-trade programs because compliance with the cap will increase the costs of fossil fuel generation, cap-and-trade programs can also impact the ability of renewable energy generation to affect overall CO 2 emissions levels and obtain value for those emissions benefits. This paper summarizes key issues for renewable energy markets that are emerging with carbon regulation, such as the implications for emissions benefits claims and voluntary market demand and the use of renewable energy certificates (RECs) in multiple markets. It also explores policy options under consideration for designing carbon policies to enable carbon markets and renewable energy markets to work together

  8. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  9. Substitutability of Electricity and Renewable Materials for Fossil Fuels in a Post-Carbon Economy

    Directory of Open Access Journals (Sweden)

    Antonio García-Olivares

    2015-11-01

    Full Text Available A feasible way to avoid the risk of energy decline and combat climate change is to build a 100% renewable global energy mix. However, a globally electrified economy cannot grow much above 12 electric terawatts without putting pressure on the limits of finite mineral reserves. Here we analyze whether 12 TW of electricity and 1 TW of biomass (final power will be able to fuel a future post-carbon economy that can provide similar services to those of a contemporary economy. Contrarily to some pessimistic expectations, this analysis shows that the principle economic processes can be replaced with sustainable alternatives based on electricity, charcoal, biogas and hydrogen. Furthermore, those services that cannot be replaced are not as crucial so as to cause a return to a pre-industrial society. Even so, land transport and aviation are at the limit of what is sustainable, outdoor work should be reorganized, metal primary production should be based on hydrogen reduction when possible, mineral production should be increasingly based on recycling, the petrochemical industry should shrink to a size of 40%–43% of the 2012 petrochemical sector, i.e., a size similar to that the sector had in 1985–1986, and agriculture may require organic farming methods to be sustainable.

  10. Renewable Energy and Hydrogen System Concepts for Remote Communities in the West Nordic Region

    Energy Technology Data Exchange (ETDEWEB)

    Ulleberg, Oeystein; Moerkved, Andreas

    2008-02-25

    In 2003 the Nordic Council of Ministers granted the funding for the first of several studies on renewable energy and hydrogen (RE/H2) energy systems for remote communities in the West Nordic region. The objective with this report is to summarize the main findings from Phase II and III of the West Nordic project. The island Nolsoy, Faroe Islands, was selected as a case study. The main conclusion is that it makes sense to design a wind/diesel-system with thermal storage, both from a techno-economical and environmental point of view. Such systems can have close to 100% local utilization of the wind energy, and can cover up to 75% of the total annual electricity demand and 35% of the annual heat demand at a cost of energy around 0.07 - 0.09 euro/kWh. The introduction of a hydrogen system is technically feasible, but doubles the overall investment costs

  11. Using renewables and the co-production of hydrogen and electricity from CCS-equipped IGCC facilities, as a stepping stone towards the early development of a hydrogen economy

    International Nuclear Information System (INIS)

    Haeseldonckx, Dries; D'haeseleer, William

    2010-01-01

    In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. However, although contra-intuitive, the interaction between both 'systems' turns out to be almost negligible. Firstly, it is shown that it is more beneficial to use IGCC facilities to produce hydrogen with, rather than (excess) wind-generated electricity due to the necessary electrolyser investment costs. But even flexible IGCC facilities do not seem to contribute substantially to the early development of a hydrogen economy. Namely, in most scenarios - which are combinations of a wide range of fuel prices and carbon taxes - one primary-energy carrier (natural gas or coal) seems to be dominant, pushing the other, and the corresponding technologies such as reformers or IGCCs, out of the market. (author)

  12. Bridging the European Wind Energy Market and a Future Renewable Hydrogen-Inclusive Economy. A Dynamic Techno-economic Assessment

    International Nuclear Information System (INIS)

    Shaw, S.; Peteves, S.D.

    2006-01-01

    The study establishes the link between the growing wind market and the emerging hydrogen market of the European Union, in a so-called 'wind-hydrogen strategy'. It considers specifically the diversion of wind electricity, as a wind power control mechanism in high wind penetration situations, for the production of renewable electrolytic hydrogen - a potentially important component of a renewable hydrogen-inclusive economy. The analysis examines the long-term competitiveness of a wind-hydrogen strategy via cost-benefit assessment. It indicates the duration and extent to which (financial) support, if any, would need to be provided in support of such a strategy, and the influence over time of certain key factors on the outcome

  13. Interaction of hydrogen in carbon matrix with impurities of nickel

    International Nuclear Information System (INIS)

    Gervasoni, L L; Segui, S

    2012-01-01

    This work aims to define general criteria to allow theoretical and experimental design of new materials with high hydrogen content, with a view to their potential application as moderators in reactors at high temperatures and hydrogen storage materials. To this end we study the effects of Ni impurities on the properties of pure carbon (slabs as well as nanoparticles and gels) in order to analyze the thermodynamical characteristics, and improve the behavior of alloys for Ni-metal hydride rechargeable batteries. These elements are chosen because they have a wide range of solubility of hydrogen, which from the technological point of view makes them important candidates for the search for new materials. Our results show that this kind of carbon material could be used as support for hydrogen storage improving the screening charge density and the density of available states, as analyzed by the authors in previous works (author)

  14. Hydrogenation of surface carbon on alumina-supported nickel

    Energy Technology Data Exchange (ETDEWEB)

    Mccarthy, J.G.; Wise, H.

    1979-05-01

    The methanation of carbon deposited by CO or ethylene decomposition on Girdler G-65 catalyst (25Vertical Bar3< nickel, 8Vertical Bar3< alkali, mostly CaO, 4Vertical Bar3< C as graphite, on alumina) was studied by temperature-programed desorption and temperature-programed surface reaction. Four types of carbon were identified: ..cap alpha..-carbon consisted of isolated carbon atoms bonded to nickel and reacting with hydrogen at 470/sup 0/ +/- 20/sup 0/K; ..gamma..-carbon was probably a bulk carbide, most likely Ni/sub 3/C, which had a reaction peak at 550/sup 0/K; ..beta..-carbon consisted of amorphous, polymerized carbon, which had a reaction peak at 680/sup 0/K; and an unreactive crystalline graphite-like species. The ..cap alpha..-form was thermally unstable and transformed into the ..beta..-form above 600/sup 0/K. Both ..cap alpha..- and ..beta..-forms slowly converted to inert graphite above 600/sup 0/K. The evidence suggested that synthesis gas methanation proceeds by dissociative adsorption of CO as the rate-determining step which forms a very reactive carbon adatom state (..cap alpha..') which converts to the ..cap alpha..-state in the absence of hydrogen and to methane in the presence of hydrogen.

  15. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Rosalba eJuarez Mosqueda

    2015-02-01

    Full Text Available The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT, the (10,10 CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.

  16. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and carbon containing alloys

  17. Hydrogen storage properties of carbon nanomaterials and carbon containing metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Maehlen, Jan Petter

    2003-07-01

    The topic of this thesis is structural investigations of carbon containing materials in respect to their hydrogen storage properties. This work was initially triggered by reports of extremely high hydrogen storage capacities of specific carbon nanostructures. It was decided to try to verify and understand the mechanisms in play in case of the existence of such high hydrogen densities in carbon. Two different routes towards the goal were employed; by studying selected hydrides with carbon as one of its constituents (mainly employing powder diffraction techniques in combination with hydrogen absorption and desorption measurements) and by carefully conducting hydrogen sorption experiments on what was believed to be the most ''promising'' carbon nanomaterial sample. In the latter case, a lot of effort was attributed to characterisations of different carbon nanomaterial containing samples with the aid of electron microscopy. Three different carbon-containing metal hydride systems, Y2C-H, YCoC-H and Y5SiC0.2-H, were examined. A relation between hydrogen occupation and the local arrangement of metal and carbon atoms surrounding the hydrogen sites was established. Several characteristic features of the compounds were noted in addition to solving the structure of the former unknown deuterideY5Si3C0.2D2.0 by the use of direct methods. Several carbon-nanomaterial containing samples were studied by means of transmission electron microscopy and powder diffraction, thus gaining knowledge concerning the structural aspects of nanomaterials. Based on these investigations, a specific sample containing a large amount of open-ended single-wall carbon nanotubes was chosen for subsequent hydrogen storage experiments. The latter experiments revealed moderate hydrogen storage capacities of the nanotubes not exceeding the values obtained for more conventional forms of carbon. These two different routes in investigating the hydrogen storage properties of carbon and

  18. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  19. Carbon compound used in hydrogen storage; Compuesto de carbon utilizado en almacenamiento de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J L; Lopez M, B E [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In the present work it is studied the activated carbon of mineral origin for the sorption of hydrogen. The carbon decreased of particle size by means of the one alloyed mechanical. The time of mill was of 10 hours. The characterization one carries out by scanning electron microscopy and X-ray diffraction. The hydrogen sipped in the carbon material it was determined using the Thermal gravimetric method (TGA). The conditions of hydrogenation went at 10 atm of pressure and ambient temperature during 18 hours. They were also carried out absorption/desorption cycles of hydrogen in the same one system of thermal gravimetric analysis. The results showed percentages of sorption of 2% approximately in the cycles carried out in the system TGA and of 4.5% in weight of hydrogen at pressure of 10 atmospheres and ambient temperature during 18 hours. (Author)

  20. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    D Cazorla Amoros; D Lozano Castello; F Suarez Garcia; M Jorda Beneytoa; A Linares Solano

    2005-01-01

    Full text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ). [1] A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous carbons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  1. Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy

    OpenAIRE

    Daegi Kim; Kunio Yoshikawa; Ki Young Park

    2015-01-01

    The effect of hydrothermal carbonization on the properties of cellulose present in lignocellulosic biomass was investigated for converting it into a renewable energy resource with high energy recovery efficiency. The biochar obtained from cellulose subjected to hydrothermal carbonization showed a significant increase in its carbon content and a calorific value. 13C NMR spectroscopy showed that when raw cellulose was subjected to hydrothermal carbonization above 220 °C, the resulting biochar h...

  2. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  3. Hydrogen storage on carbon materials: state of the art

    International Nuclear Information System (INIS)

    Cazorla-Amoros, D.; Lozano-Castello, D.; Suarez-Garcia, F.; Jorda-Beneyto, M.; Linares-Solano, A.

    2005-01-01

    Complete text of publication follows: From an economic point of view, the use of hydrogen could revolutionize energy and transportation markets, what generates a great interest towards this fuel. This interest has led to the so-called 'hydrogen economy'. However, the main drawback for the use of hydrogen as transportation fuel or in power generation is the storage of this gas to reach a sufficiently high energy density, which could fit to the goals of the DOE hydrogen plan to automotive fuel cell systems i.e. 62 kg H 2 /m 3 ) [1]. A review of both experimental and theoretical studies published on the field of hydrogen storage on carbon materials (nano-tubes, nano-fibers and porous cartons) shows a large dispersion in hydrogen storage values. Although some values have exceeded by far the goals of the DOE [2], other authors assure that it is not feasible the use of carbonaceous materials as hydrogen storage systems [3]. The first objective of this presentation is to analyze some possible reasons of the large values dispersion. The discrepancy among the different theoretical studies can be due to non-realist models or to unsuitable approaches. High results dispersion and low reproducibility of experimental measurements are mostly consequence of experimental errors (as for example, the use of small amount of sample) and/or to the use of non-purified materials. In fact, the main disadvantage of the use of novel carbon materials, such as nano-tubes and nano-fibers, is the unavailability of large amounts of those materials with sufficient purity in order to get both feasible measurements in the laboratory, an their subsequent use in large scale. In addition to these possible reasons of errors, for a better understanding of the large results dispersion, the different mechanism of hydrogen storage, such as hydride formation, hydrogen transfer and hydrogen adsorption will be also reviewed in this presentation. Differently to nano-tubes and nano-fibers, activated carbons are

  4. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  5. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  6. Determination of contents of carbonate and hydrogen carbonate in solutions for alkaline leading of uranium ores

    International Nuclear Information System (INIS)

    Radil, V.

    1988-01-01

    The new analytical method is based on the determination of the molar ratio carbonate - hydrogen carbonate using the measured concentration of hydrogen ions, the determination of the dissociation constant of carbonic acid for different values of ionic strength. The concentration of hydrogen ions was measured with a Metrohm 632 pH meter with the use of a combined glass electrode. The content of total carbonate carbon was determined coulometrically and the uranium content was determined by extraction with tributyl phosphate and by spectrometry of the complex of uranyl ions with Arsenazo III. Model solutions were used for the experiments which contained a high concentration of sulfate ions, thiosulfate ions, uranium and various proportions of carbonate and hydrogen carbonate. The composition of the individual samples of the extraction solutions are tabulated. The calibration was made of the glass combined electrode at different ionic strength, the values determined of dissociation constants of carbonic acid for different ionic strength. The mathematical procedure is described for the calculation of molar concentrations of carbonate and hudrogen carbonate and the results are presented of the analysis of model solutions. (E.S.). 5 tabs., 1 fig., 5 refs

  7. Are carbon nanostructures an efficient hydrogen storage medium?

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Zeppelin, von F.; Chen, X.; Dettlaff-Weglikowska, U.; Roth, S.

    2003-01-01

    Literature data on the storage capacities of hydrogen in carbon nanostructures show a scatter over several orders of magnitude which cannot be solely explained by the limited quantity or purity of these novel nanoscale materials. With this in mind, this article revisits important experiments.

  8. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  9. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  10. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  11. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  12. Hydrogen role in a carbon-free energy mix

    International Nuclear Information System (INIS)

    2014-02-01

    Among the energy storage technologies under development today, there is today an increasing interest towards the hydrogen-based ones. Hydrogen generation allows to store electricity, while its combustion can supply electrical, mechanical or heat energy. The French Atomic Energy Commission (CEA) started to work on hydrogen technologies at the end of the 1990's in order to reinforce its economical interest. The development of these technologies is one of the 34 French industrial programs presented in September 2013 by the French Minister of productive recovery. This paper aims at identifying the hydrogen stakes in a carbon-free energy mix and at highlighting the remaining technological challenges to be met before reaching an industrial development level

  13. Ab initio calculations on hydrogen storage in porous carbons

    International Nuclear Information System (INIS)

    Maresca, O.; Marinelli, F.; Pellenq, R.J.M.; Duclaux, L.; Azais, Ph.; Conard, J.

    2005-01-01

    We have investigated through ab initio computations the possible ways to achieve efficient hydrogen storage on carbons. Firstly, we have considered how the curvature of a carbon surface could affect the chemisorption of atomic H 0 Secondly, we show that electron donor elements such as Li and K, used as dopants for the carbon substrate, strongly enhance the physi-sorption energy of H 2 , allowing in principle its storage in this type of material at room temperature under mild conditions of pressure. (authors)

  14. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  15. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  16. Hydrogen storage in nanoporous carbon materials: myth and facts.

    Science.gov (United States)

    Kowalczyk, Piotr; Hołyst, Robert; Terrones, Mauricio; Terrones, Humberto

    2007-04-21

    We used Grand canonical Monte Carlo simulation to model the hydrogen storage in the primitive, gyroid, diamond, and quasi-periodic icosahedral nanoporous carbon materials and in carbon nanotubes. We found that none of the investigated nanoporous carbon materials satisfy the US Department of Energy goal of volumetric density and mass storage for automotive application (6 wt% and 45 kg H(2) m(-3)) at considered storage condition. Our calculations indicate that quasi-periodic icosahedral nanoporous carbon material can reach the 6 wt% at 3.8 MPa and 77 K, but the volumetric density does not exceed 24 kg H(2) m(-3). The bundle of single-walled carbon nanotubes can store only up to 4.5 wt%, but with high volumetric density of 42 kg H(2) m(-3). All investigated nanoporous carbon materials are not effective against compression above 20 MPa at 77 K because the adsorbed density approaches the density of the bulk fluid. It follows from this work that geometry of carbon surfaces can enhance the storage capacity only to a limited extent. Only a combination of the most effective structure with appropriate additives (metals) can provide an efficient storage medium for hydrogen in the quest for a source of "clean" energy.

  17. State-level renewable electricity policies and reductions in carbon emissions

    International Nuclear Information System (INIS)

    Prasad, Monica; Munch, Steven

    2012-01-01

    A wide range of renewable electricity policies has been adopted at the state level in the United States, but to date there has been no large-scale, empirical assessment of the effect of these policies on carbon emissions. Such an assessment is important because scholars have pointed out that increases in renewable electricity will not necessarily lead to declines in carbon emissions. We examine the effects of a range of policies across 39 states. We find significant and robust decreases in carbon emissions associated with the introduction of public benefit funds, a form of “carbon tax” adopted by 19 states to date. Our aim in this paper is not to provide a final judgment on these policies, many of which may not have been in place long enough to show strong effects, but to shift the attention of the research community away from proximate measures such as increases in clean electricity generation and onto measurement of lower carbon emissions. - Highlights: ► We ask whether state-level renewable electricity policies in the United States have succeeded in lowering carbon emissions. ► We examine net metering, retail choice, fuel generation disclosure, mandatory green power options, public benefit funds, and renewable portfolio standards. ► The introduction of public benefit funds, a kind of carbon tax, is associated with decreases in carbon emissions.

  18. Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt; Meyer, Seth

    2017-01-01

    This study investigates the economic interactions between a national renewable fuel policy, namely the Renewable Fuel Standard (RFS) in the United States, and a sub-national renewable fuel policy, the Low Carbon Fuel Standard (LCFS) in California. The two policies have a similar objective of reducing greenhouse gas emissions, but the policies differ in the manner in which those objectives are met. The RFS imposes a hierarchical mandate of renewable fuel use for each year whereas the LCFS imposes a specific annual carbon-intensity reduction with less of a fuel specific mandate. We model the interactions using a partial-equilibrium structural model of agricultural and energy markets in the US and Rest-of-World regions. Our results suggest the policies are mutually reinforcing in that the compliance costs of meeting one of the requirements is lower in the presence of the other policy. In addition, the two policies combine to create a spatial shift in renewable fuel use toward California even though overall renewable fuel use remains relatively unchanged. - Highlights: • Results suggest the RFS and LCFS are mutually reinforcing. • Overall level of renewable fuel use is similar across scenarios. • Renewable fuel use shifts toward California in the presence of the LCFS. • Higher ethanol blend (e.g. E85) use also shifts toward California.

  19. Hydrogen - the answer to our prayer for low carbon transport?

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Albert; Kershaw, Ian; Vinke, Jan [Ricardo Strategic Consulting GmbH, Muenchen (Germany)

    2008-07-01

    As political, social and economic pressure mounts, the automotive industry needs low carbon solutions - but how do we get there? Despite higher fuel prices and pressure to reduce vehicle CO{sub 2} in many countries, consumers assume limited personal responsibility for reducing carbon emissions from their road transport. The automotive industry is challenged with developing low carbon vehicles without compromise on cost, performance or practicality. The options for reducing CO{sub 2} emissions from road transport range from improved traffic management and driving behaviour, to improved vehicle technologies. Incremental efficiency improvements will be the most cost-effective way of improving powertrains, while economics and availability will continue to limit use of fuel cells, hydrogen and biofuels. We propose an evolutionary route of downsized combustion engines, increasing hybrid electric capability and more biofuel blends, supplemented by lower carbon plug-in electric power for short journeys. The transition to low carbon transport will require policies to encourage consumer demand. (orig.)

  20. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  1. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  2. Biosynthesis of planet friendly bioplastics using renewable carbon source.

    Science.gov (United States)

    Jain, Roopesh; Tiwari, Archana

    2015-01-01

    Plastics are uniquely flexible materials that offer considerable benefits as a simple packing to complex engineering material. Traditional synthetic polymers (often called plastics), such as polypropylene and polyethylene have been derived from non-renewable petrochemicals and known to cause environmental concerns due to their non-biodegradable nature. The enormous use of petroleum-based plastic compounds emphasized a need for sustainable alternatives derived from renewable resources. Bioplastics have attracted widespread attention, as eco-friendly and eco-tolerable alternative. But they have got certain limitations as well, such as high cost of production and unsatisfactory mechanical properties. In this study we have found agriculture waste (AW) as low-cost and renewable substrate for the production of bioplastics in bacterial fermentation. Improvement in tensile properties of produced bioplastic film has also been documented upon blending with Cellulose Acetate Butyrate (CAB).

  3. Carbon monoxide hydrogenation over ruthenium zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.A.; Nijs, H.H.; Verdonck, J.J.; Uytterhoeven, J.B.

    1978-03-01

    Ru zeolites are active and stable methanation catalysts. Under Fischer--Tropsch conditions they show a narrow product distribution. Further work is needed to assign this to a possible effect exerted by the zeolite cages. When the size of the Ru particles enclosed in the zeolite cages is increased, a lower methanation activity is found and a higher amount of C/sub 2/ and C/sub 3/ products are formed under Fischer--Tropsch conditions. This effect has not been reported until now on other supports. The less acidic zeolites act as promoters of the CO hydrogenation: under methanation conditions the activity is increased; under Fischer--Tropsch conditions, the selectivity is shifted toward higher hydrocarbons. This is explained by the particular zeolite property that electron deficient metal agglomerates seem to be formed on the acidic zeolites. With respect to kinetic behavior, relative activity of different metals, influence of reaction temperature on product distribution, the zeolite behaves in the same way a conventional alumina support. 4 figs., 4 tables.

  4. The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest in Green Technologies?

    Directory of Open Access Journals (Sweden)

    Antonio Angelo Romano

    2011-01-01

    Full Text Available The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footprint, decreasing the CO2 intensity. Based on the estimation results, we think that energy sustainability passes through the use of renewable resources that can complement the nuclear technology on condition that both exceed their limits.

  5. ''Green'' path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim Z. [Florida Solar Energy Center, University of Central Florida, Cocoa, FL 32922 (United States); Veziroglu, T. Nejat [Clean Energy Research Institute, University of Miami, Coral Gables, FL 33124 (United States)

    2008-12-15

    While the dominant role of hydrogen in a sustainable energy future is widely accepted, the strategies for the transition from fossil-based to hydrogen economy are still actively debated. This paper emphasizes the role of carbon-neutral technologies and fuels during the transition period. To satisfy the world's growing appetite for energy and keep our planet healthy, at least 10 TW (or terawatt) of carbon-free power has to be produced by mid-century. Three prominent options discussed in the literature include: decarbonization of fossil energy, nuclear energy and renewable energy sources. These options are analyzed in this paper with a special emphasis on the role of hydrogen as a carbon-free energy carrier. In particular, the authors compare various fossil decarbonization strategies and evaluate the potential of nuclear and renewable energy resources to meet the 10 TW target. An overview of state-of-the-art technologies for production of carbon-free energy carriers and transportation fuels, and the assessment of their commercial potential is provided. It is shown that neither of these three options alone could provide 10 TW of carbon-neutral power without major changes in the existing infrastructure, and/or technological breakthroughs in many areas, and/or a considerable environmental risk. The authors propose a scenario for the transition from current fossil-based to hydrogen economy that includes two key elements: (i) changing the fossil decarbonization strategy from one based on CO{sub 2} sequestration to one that involves sequestration and/or utilization of solid carbon, and (ii) producing carbon-neutral synthetic fuels from bio-carbon and hydrogen generated from water using carbon-free sources (nuclear, solar, wind, geothermal). This strategy would allow taking advantage of the existing fuel infrastructure without an adverse environmental impact, and it would secure a smooth carbon-neutral transition from fossil-based to future hydrogen economy. (author)

  6. Renewable energy, carbon emissions, and economic growth in 24 Asian countries: evidence from panel cointegration analysis.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-01

    This article aims to investigate the relationship among renewable energy consumption, carbon dioxide (CO 2 ) emissions, and GDP using panel data for 24 Asian countries between 1990 and 2012. Panel cross-sectional dependence tests and unit root test, which considers cross-sectional dependence across countries, are used to ensure that the empirical results are correct. Using the panel cointegration model, the vector error correction model, and the Granger causality test, this paper finds that a long-run equilibrium exists among renewable energy consumption, carbon emission, and GDP. CO 2 emissions have a positive effect on renewable energy consumption in the Philippines, Pakistan, China, Iraq, Yemen, and Saudi Arabia. A 1% increase in GDP will increase renewable energy by 0.64%. Renewable energy is significantly determined by GDP in India, Sri Lanka, the Philippines, Thailand, Turkey, Malaysia, Jordan, United Arab Emirates, Saudi Arabia, and Mongolia. A unidirectional causality runs from GDP to CO 2 emissions, and two bidirectional causal relationships were found between CO 2 emissions and renewable energy consumption and between renewable energy consumption and GDP. The findings can assist governments in curbing pollution from air pollutants, execute energy conservation policy, and reduce unnecessary wastage of energy.

  7. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  8. Decoration of carbon nano surfaces with hydrogen and hydrogen rich molecules

    International Nuclear Information System (INIS)

    Zöttl, S.

    2013-01-01

    The use of helium nano droplets as a matrix to investigate different atomic and molecular samples is a well established experimental technique. The unique properties of helium allow for different analytical methods and at the same time provide a stable ambient temperature. Cluster growth inside helium nano droplets can be accomplished by repeatedly doping the droplets with sample particles in a controlled environment. The experimental work represented in this thesis was performed using helium nano droplets to create clusters of fullerenes like C 60 and C 70 . The adsorption properties of these fullerene clusters regarding hydrogen and hydrogen rich molecules have been subject to investigation. The observed results suggest that curved carbon nano surfaces offer higher storage densities than planar graphite surfaces. The use of C 60 as a model carbon nano structure provides a well understood molecule for testing and evaluating computational methods to calculate surface properties of various carbon nano materials. The cost effective storage of hydrogen for mobile applications plays a key role in the development of alternatives to fossil fuels. For that reason, the application of carbon nano materials to store hydrogen by adsorption has attracted much scientific attention lately. The insights gained in the presented thesis contribute to the collective efforts and deliver more refined tools to estimate the adsorption properties of future carbon nano materials. In addition to the aforementioned, a time-of-flight mass spectrometer for educational purpose has been designed and constructed in the framework of my PhD thesis. The instrument is successfully used in various lab courses and information on the setup can be found in the Appendix of this work. (author) [de

  9. Improving hydrogen storage in Ni-doped carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Menendez, J.A.; Pis, J.J.; Arenillas, A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-04-15

    The effect of nickel distribution and content in Ni-doped carbon nanospheres on hydrogen storage capacity under conditions of moderate temperature and pressure was studied. It was found that the nickel distribution, obtained by using different doping techniques and conditions, has a noticeable influence on hydrogen storage capacity. The samples with the most homogeneous nickel distribution, obtained by pre-oxidising the carbon nanospheres, displayed the highest storage capacity. In addition, storage capacity is influenced by the amount of nickel. It was found a higher storage capacity in samples containing 5 wt.% of Ni. This is due to the greater interactions between the nickel and the support that produce a higher activation of the solid through a spillover effect. (author)

  10. Simulation of carbon sputtering due to molecular hydrogen impact

    International Nuclear Information System (INIS)

    Laszlo, J.

    1993-01-01

    Simulated results are compared to experimental data on the sputtering yield of carbon due to atomic and to molecular hydrogen impact. The experimental sputtering yields of carbon (graphite) due to low energy hydrogen bombardment have been found to be higher than the simulated ones. Efforts are made to obtain high enough simulated yields by considering the formation of dimer, H 2 and D 2 molecules in the primary beam. The molecular beam model applies full neutralization and full dissociation at the surface. The simulation of sputtering yields of target materials up to Z 2 ≤ 30 is also included for the low primary energy regime for deuterium projectiles. It is found that, although the sputtering yields really tend to increase, the effect of molecule formation in the beam in itself cannot be made responsible for the deviation between measured and simulated sputtering yields. (orig.)

  11. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  12. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  13. Financing renewable energy infrastructure: Formulation, pricing and impact of a carbon revenue bond

    International Nuclear Information System (INIS)

    Tang, Amy; Chiara, Nicola; Taylor, John E.

    2012-01-01

    Renewable energy systems depend on large financial incentives to compete with conventional generation methods. Market-based incentives, including state-level REC markets and international carbon markets have been proposed as solutions to increase renewable energy investment. In this paper we introduce and formulate a carbon revenue bond, a financing tool to complement environmental credit markets to encourage renewable energy investment. To illustrate its use, we value the bond by predicting future revenue using stochastic processes after analyzing historical price data. Three illustrative examples are presented for renewable energy development in three different markets: Europe, Australia and New Jersey. Our findings reveal that the sale of a carbon revenue bond with a ten year maturity can finance a significant portion of a project's initial cost. - Highlights: ► Current financial incentives for renewable energy in the US are inadequate. ► We introduce and structure a “carbon revenue bond” as an innovative financing tool. ► Stochastic models of environmental credit prices are used to illustrate bond pricing. ► Three examples illustrate revenue bond impact on initial cost of infrastructure.

  14. Release of hydrogen isotopes from carbon based fusion reactor materials

    International Nuclear Information System (INIS)

    Vainonen-Ahlgren, E.

    2000-01-01

    The purpose of this study is to understand the annealing behavior of hydrogen isotopes in carbon based materials. Also, the density of the material and structural changes after thermal treatment and ion irradiation are examined. The study of hydrogen diffusion in diamondlike carbon films revealed an activation energy of 2.0 eV, while the deuterium diffusion, due to better measuring sensitivity, is found to be concentration dependent with the effective diffusion coefficient becoming smaller with decreasing deuterium concentration. To explain the experimentally observed profiles, a model according to which atomic deuterium diffuses and deuterium in clusters is immobile is developed. The concentration of immobile D was assumed to be an analytical function of the total D concentration. To describe the annealing behavior of D incorporated in diamondlike carbon films during the deposition process, a model taking into account diffusion of free D and thermal detrapping and trapping of D was developed. The difference in the analysis explains the disagreement of activation energy (1.5 ± 0.2 eV) with the value of 2,9± 0.1 eV obtained for D implanted samples earlier. The same model was applied to describe the experimental profiles in Si doped diamondlike carbon films. Si affects the retention of D in diamondlike carbon films. The amount of D depends on Si content in the co-deposited but not implanted samples. Besides, Si incorporation into carbon coating decreases to some extent the graphitization of the films and leads to formation of a structure which is stable under thermal treatment and ion irradiation. Hydrogen migration in the hydrogen and methane co-deposited films was also studied. In samples produced in methane atmosphere and annealed at different temperatures, the hydrogen concentration level decreases in the bulk, with more pronounced release at the surface region. In the case of coatings deposited by a methane ion beam, the H level also decreases with increasing

  15. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  16. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  17. Hydrogen storage in carbon nano-tubes; Stockage d'hydrogene dans les nanotubes de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Becher, M.; Haluska, M.; Hirscher, M. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Quintel, A.; Skakalova, V.; Dettlaff-Weglikovska, U.; Chen, X.; Hulman, M.; Choi, Y.; Roth, S.; Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Strobel, R.; Jorissen, L. [Zentrum fur Sonnenenergie und Wasserstoff-Forschung, Ulm (Germany); Kappes, M.M. [Karlsruhe Univ., Institut fur Physikalische Chemie(Germany); Fink, J. [Institut fur Festkorper-Und Werkstoffforschun, Dresden (Germany); Zuttel, A. [Fribourg Univ., Dept. Physique (Switzerland); Stepanek, I.; Bernier, P. [Montpellier-2 Univ., GDPC, 34 (France)

    2003-11-01

    Hydrogen storage in new nano-structured carbonic materials is a topic for lively discussion. The measured storage capacities of these materials, which have been announced in the literature during the last ten years are spread over an enormous range from about 0.1 wt% up to 67 wt%. This paper will give a report on the state of the art of hydrogen storage in carbon nano-structures. We shall critically review the recent 'key publications' on this topic, which claim storage capacities clearly above the technological bench mark set by the US Department of Energy, and we shall report new results which have been obtained in a joint project sponsored by the Federal Ministry for Education and Research in Germany (BMBF). (authors)

  18. The effect of atomic hydrogen adsorption on single-walled carbon nano tubes properties

    International Nuclear Information System (INIS)

    Jalili, S.; Majidi, R.

    2007-01-01

    We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nano tubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nano tube, the energy gap will be appeared. This is due to the degree of the Sp 3 hybridization, and the hydrogen coverage can control the band gap of the carbon nano tube

  19. Activated carbon fibers and engineered forms from renewable resources

    Science.gov (United States)

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  20. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source

    International Nuclear Information System (INIS)

    Hao, Wenbin; He, Xiaojin; Mi, Yongli

    2014-01-01

    Highlights: • Bamboo fiber and waste paper were pyrolyzed to generate bamboo carbon and waste paper carbon as anode fuels of IT-DCFC. • Superior cell performance was achieved with the waste paper carbon. • The results suggested the high performance was due to the highest thermal reactivity and the catalytic inherent impurities. • Calcite and kaolinite as inherent impurities favored the thermal decomposition and the electrooxidation of carbon. - Abstract: Three kinds of carbon sources obtained from carbon black, bamboo fiber and waste paper were investigated as anode fuels in an intermediate temperature direct carbon fuel cell. The carbon sources were characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, etc. The results indicated that the waste paper carbon was more abundant in calcite and kaolinite, and showed higher thermal reactivity in the intermediate temperature range compared with the other two carbon sources. The cell performance was tested at 650 °C in a hybrid single cell, using Sm 0.20 Ce 0.80 O 2−x as the electrolyte. As a result, the cell fed with waste paper carbon showed the highest performance among the three carbon sources, with a peak power density of 225 mW cm −2 . The results indicated that its inherent impurities, such as calcite and kaolinite, might favor the thermal gasification of renewable carbon sources, which resulted in the enhanced performance of the intermediate temperature direct carbon fuel cell

  1. An examination of the criteria necessary for successful worldwide deployment of isolated, renewable hydrogen stationary power systems

    International Nuclear Information System (INIS)

    Rambach, G. D.; Snyder, J. D.

    1998-01-01

    This paper examines the top-down rationale and methods for using hydrogen as an energy carrier in isolated, stationary power systems. Such an examination can be useful because it provides a framework for detailed research on subsystems and helps clarify why, when and where large-scale hydrogen use would be beneficial. It also helps define the pathway for an evolving hydrogen stationary power market worldwide. Remote, stationary power systems are an ideal market entry opportunity for hydrogen. For example, if it is sufficiently difficult for conventional fuels to reach a community, and indigenous renewable sources are present, then on-site clean energy production becomes economically competitive. Relying heavily on intermittent sources of energy requires an energy carrier system that is efficient over long periods of time. In addition, the energy carrier must not defeat the reasons for initially switching to the clean sources of energy, and must be economically feasible. Hydrogen is an elegant solution to all of these needs. Choices exist for the methods of producing hydrogen, storing and transporting it, and converting it back to useful energy. There is considerable debate about how best to increase the use of renewable hydrogen because it is not yet economically competitive with conventional energy carriers in most applications. The deployment of isolated power systems relying on hydrogen as the energy storage medium requires complex and comprehensive planning and design considerations to provide successful market entry strategies as well as appropriate system engineering. This paper will discuss the criteria and framework necessary to determine how to successfully deploy any specific system or to plan a global marketing strategy. (author)

  2. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  3. Energy–exergy and economic analyses of a hybrid solar–hydrogen renewable energy system in Ankara, Turkey

    International Nuclear Information System (INIS)

    Ozden, Ender; Tari, Ilker

    2016-01-01

    Highlights: • Uninterrupted energy in an emergency blackout situation. • System modeling of a solar–hydrogen based hybrid renewable energy system. • A comprehensive thermodynamical analysis. • Levelized cost of electricity analysis for a project lifetime of 25 years. - Abstract: A hybrid (Solar–Hydrogen) stand-alone renewable energy system that consists of photovoltaic panels (PV), Proton Exchange Membrane (PEM) fuel cells, PEM based electrolyzers and hydrogen storage is investigated by developing a complete model of the system using TRNSYS. The PV panels are mounted on a tiltable platform to improve the performance of the system by monthly adjustments of the tilt angle. The total area of the PV panels is 300 m 2 , the PEM fuel cell capacity is 5 kW, and the hydrogen storage is at 55 bars pressure and with 45 m 3 capacity. The main goal of this study is to verify that the system meets the electrical power demand of the emergency room without experiencing a shortage for a complete year in an emergency blackout situation. For this purpose, after modeling the system, energy and exergy analyses for the hydrogen cycle of the system for a complete year are performed, and the energy and exergy efficiencies are found as 4.06% and 4.25%, respectively. Furthermore, an economic analysis is performed for a project lifetime of 25 years based on Levelized Cost of Electricity (LCE), and the LCE is calculated as 0.626 $/kWh.

  4. Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

    Directory of Open Access Journals (Sweden)

    Hongwang Wang

    2014-06-01

    Full Text Available The quest for renewable and cleaner energy sources to meet the rapid population and economic growth is more urgent than ever before. Being the most abundant carbon source in the atmosphere of Earth, CO2 can be used as an inexpensive C1 building block in the synthesis of aromatic fuels for internal combustion engines. We designed a process capable of synthesizing benzene, toluene, xylenes and mesitylene from CO2 and H2 at modest temperatures (T = 380 to 540 °C employing Fe/Fe3O4 nanoparticles as catalyst. The synthesis of the catalyst and the mechanism of CO2-hydrogenation will be discussed, as well as further applications of Fe/Fe3O4 nanoparticles in catalysis.

  5. Cloning single wall carbon nanotubes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M [Rice Univ., Houston, TX (United States); Kittrell, Carter [Rice Univ., Houston, TX (United States)

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H2 molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H2 goals.

  6. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  7. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  8. Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ling Dong

    2018-03-01

    Full Text Available Temporary housing plays an important role in providing secure, hygienic, private, and comfortable shelter in the aftermath of disaster (such as flood, fire, earthquake, etc.. Additionally, temporary housing can also be used as a sustainable form of on-site residences for construction workers. While most of the building components used in temporary housing can be manufactured in a plant, prefabrication technology improves the production efficiency of temporary housing; furthermore, integrated renewable energy systems, for example, solar photovoltaic (PV system, offer benefits for temporary housing operations. In order to assess the environmental impacts of prefabricated temporary housing equipped with renewable energy systems, this study first divides the life cycle of temporary housing into six stages, and then establishes a life cycle assessment (LCA model for each stage. Furthermore, with the aim of reducing the environmental impacts, life cycle carbon reduction measures are proposed for each stage of temporary housing. The proposed methodology is demonstrated using a case study in China. Based on the proposed carbon reduction measures, the LCA of a prefabricated temporary housing case study building equipped with renewable energy systems indicates a carbon emissions intensity of 35.7 kg/m2·per year, as well as a reduction in material embodied emissions of 18%, assembly emissions of 17.5%, and operational emissions of 91.5%. This research proposes a carbon reduction-driven LCA of temporary housing and contributes to promoting sustainable development of prefabricated temporary housing equipped with renewable energy systems.

  9. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  10. Are renewable energy policies upsetting carbon dioxide emissions? The case of Latin America countries.

    Science.gov (United States)

    Fuinhas, José Alberto; Marques, António Cardoso; Koengkan, Matheus

    2017-06-01

    The impact of renewable energy policies in carbon dioxide emissions was analysed for a panel of ten Latin American countries, for the period from 1991 to 2012. Panel autoregressive distributed lag methodology was used to decompose the total effect of renewable energy policies on carbon dioxide emissions in its short- and long-run components. There is evidence for the presence of cross-sectional dependence, confirming that Latin American countries share spatial patterns. Heteroskedasticity, contemporaneous correlation, and first-order autocorrelation cross-sectional dependence are also present. To cope with these phenomena, the robust dynamic Driscoll-Kraay estimator, with fixed effects, was used. It was confirmed that the primary energy consumption per capita, in both the short- and long-run, contributes to an increase in carbon dioxide emissions, and also that renewable energy policies in the long-run, and renewable electricity generation per capita both in the short- and long-run, help to mitigate per capita carbon dioxide emissions.

  11. Carbon dioxide reduction in housing: experiences in urban renewal projects in the Netherlands

    NARCIS (Netherlands)

    Waals, F.M. van der; Vermeulen, W.J.V.; Glasbergen, P.

    2003-01-01

    It is increasingly being recognised that the housing sector can contribute to reductions in the levels of carbon dioxide (CO2 ). The renewal of existing residential areas offers opportunities to reduce CO2 emissions. However, technical options for CO2-reduction, such as insulation, solar energy,

  12. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be...extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  13. An examination of isolated, stationary, hydrogen power systems supplied by renewables: component and system issues and criteria necessary for successful worldwide deployment

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G. D. [Energy and Environmental Engineering Center, Desert Research Institute, Reno, NV (United States)

    1999-12-01

    The premise of this paper is that remote, stationary power systems, based on indigenous renewable energy sources, are an ideal market entry opportunity for hydrogen, but that the deployment of isolated power systems relying on hydrogen as the energy storage medium requires complex and comprehensive planning and design considerations to provide for successful market entry strategies and appropriate systems engineering. Accordingly, this paper sets out to discuss the criteria and the framework necessary to determine how to successfully deploy any specific system or to plan a global marketing strategy. Details of the indigenous intermittent energy sources (wind turbines, solar photovoltaic, micro-hydroelectric, etc), primary power-to-hydrogen conversion systems, hydrogen storage methods, and hydrogen-to-electricity conversion systems (hydrogen-internal combustion engine generator set, hydrogen fuel cells) are described, along with the criteria for technically and commercially successful deployment of any renewable utility power system that employs energy storage.2 refs., 4 figs.

  14. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  15. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    Science.gov (United States)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  16. Hydrogen desorption from mechanically milled carbon micro coils hydrogenated at high temperature

    International Nuclear Information System (INIS)

    Yoshio Furuya; Shuichi Izumi; Seiji Motojima; Yukio Hishikawa

    2005-01-01

    Carbon micro coils (CMC) have been prepared by the catalytic pyrolysis of acetylene at 750-800 C. The as grown coils have an almost amorphous structure and contain about 1 mass% hydrogen. They have 0.1 - 10 mm coil length, 1-5 μm coil diameter, 0.1-0.5 μm coil pitch and about 100 m 2 /g specific surface area. They were graphitized, as maintaining the morphology of the coils, by heat-treating at a higher temperature than 2500 C in Ar atmosphere. The layer space (d) of graphitized CMC was determined to be 0.341 nm, forming a 'herringbone' structure with an inclination of 10-40 degree versus the coiled fiber axis, having a specific surface area of about 8 m 2 /g. The hydrogen absorption behaviors of CMC were investigated from RT to 1200 C by a thermal desorption spectrometry (TDS) using a quadrupole mass analyzer. In TDS measurements, pre-existing hydrogen, which was due to the residual acetylene incorporated into CMC on its growing, desorbed from 700 C and peaked at about 900 C. The increment in the main peak of desorbed hydrogen in the as-grown CMC heat-treated at 500 C for 1 h under high pressure of hydrogen gas (1.9 or 8.9 MPa) was not remarkable as is shown in Fig.1. While, in the CMC samples milled mechanically for 1 h at RT using a planetary ball mill, the increase of desorbed hydrogen became to be great with the hydrogen pressure (up to 8.9 MPa) on heat-treating at 500 C, as is shown in Fig.2. In these CMC samples, the building up temperature of the hydrogen desorption was shifted to a lower one and the temperature range of desorption became to be wider than those in the as-grown CMC because of the appearance of another desorption peak at about 600 C in addition to the peak ranging from 850 C to 900 C. The same kind of peak was also slightly observed in as-grown CMC (Fig.1). It is clear that this desorption at about 600 C has contributed to the remarkable increase of desorbed hydrogen in the milled CMC. In this work, values of more than 2 mass% were obtained

  17. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  18. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  19. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    Science.gov (United States)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during

  20. Synergistic methane formation kinetics for hydrogen impact on carbon

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.

    1986-06-01

    A physical/chemical model is presented for the reaction kinetics for methane formation from carbon, due to bombardment by energetic (∼ 100's eV) H + ions and thermal (∼ 1 eV) H 0 atoms. While the model was developed for H + and H 0 , it can be readily applied to non-hydrogenic energetic particles (ions or atoms, e.g., Ar + , He + , He) in combination with thermal (∼ 1 eV) hydrogen (again ions or atoms) impacting on carbon. Both collisional (in the case of the energetic particles) and chemical reaction processes are included. Special cases of sub-eV H 0 alone, energetic H + alone and combined H 0 plus H + were considered and fitted to experimental data. Generally good agreement was found between theoretical predictions and experimental results over the experimental flux and H + energy ranges studied (H 0 flux: 6x10 14 - 7x10 15 H 0 /cm 2 s, H + flux: 6x10 12 - 5x10 15 H + /cm 2 s, H + energy: 300 eV/H + and 1 keV/H + )

  1. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    Science.gov (United States)

    Erlebacher, Jonah; Gaskey, Bernard

    2017-10-03

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  2. Assessment of hydrogen storage systems as a means of integrating electricity from renewable energies; Bewertung von Wasserstoffspeichersystemen zur Integration von Strom aus erneuerbaren Energien

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis, Julia; Genoese, Fabio; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany)

    2013-06-15

    Hydrogen storage is a possible option for an improved integration of renewable energies into the electricity supply system. Similarly to other technical storage options it is faced with the challenge of having to be economically viable. Compared with other storage media hydrogen has the virtue of being versatile. This has a significant impact on assessments of its profitability.

  3. Aqueous-Phase Reforming of Renewable Polyols for Production of Hydrogen using Platinum Catalysts

    NARCIS (Netherlands)

    Boga, D.A.

    2013-01-01

    Hydrogen has the potential to fuel the energy needs of a more sustainable society. As hydrogen is not found in nature in any appreciable quantities, this energy carrier needs to be produced from a primary energy source. Biomass can serve as a source for sustainable hydrogen production. In principle,

  4. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  5. Performance of carbon-based hot frit substrates: I, Low pressure helium and hydrogen testing

    International Nuclear Information System (INIS)

    Barletta, R.; Adams, J.; Svandrlik, J.; Powell, J.R.

    1993-07-01

    The performance of various carbon-based materials in flowing, high-temperature helium and hydrogen is described. These materials which are candidate hot frit substrates for possible application in a PBR include various grades of graphite, carbon-carbon and vitreous carbon. Vitreous carbon showed extremely good performance in helium, while that of the various graphite grades was quite variable and, in some cases, poor. Purified grades performed better than unpurified grades, but in all cases large sample-to-sample variations in weight loss were observed. For carbon-carbon samples, the performance was intermediate. Since the weight loss in these samples was in large measure due to the loss of the densification media, improvements in the performance of carbon-carbon may be possible. With respect to the performance in hydrogen, high weight losses were observed, re-enforcing the need for coating carbon-based materials for service in a flowing hydrogen environment

  6. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  7. Carbon dioxide based power generation in renewable energy systems

    International Nuclear Information System (INIS)

    Kumar, Pramod; Srinivasan, Kandadai

    2016-01-01

    After a substantial impact on refrigeration, carbon dioxide (CO_2) is gaining considerable attention as a working fluid for thermal power generation. This can be attributed mainly to its excellent heat transfer properties and compactness of components arising from its high density. It has the merit of being amenable to operation in sub-, trans- or super-critical Brayton cycle modes. However, inhibiting factors are high pressures needed when operated in trans- or supercritical cycles and the work of compression eroding most of the work of expansion in sub-critical cycle operation. Some of the lacunae of CO_2 such as high work of compression can be alleviated by using non-mechanical means such as thermal compression using the adsorption technique either for partial compression in high pressure Brayton cycles or for total compression in low pressure cycles. CO_2 has also been proposed as an additive to flammable hydrocarbons such that their flammability can be suppressed and yet retaining their other desirable thermodynamic qualities. This review explores the potential and limitations of thermodynamic cycles where either CO_2 is used alone or as a component in mixture of working fluids. Inter alia, it also highlights the issues of regulation of load management using the efficiency-specific power output plane. When used as a blending component, pinch point in the regenerators affects the cycle performance. The objective is to identify research and developmental challenges involving CO_2 as a working fluid specifically for solar power generation.

  8. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  9. A study on hydrogen storage through adsorption in nano-structured carbons; Etude du stockage d'hydrogene par adsorption dans des carbones nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Langohr, D

    2004-10-15

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  10. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  11. Nuclear Energy and Renewables interaction: System Effects in Low-carbon Electricity Systems

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cometto, Marco

    2013-01-01

    This report presents a synthesis of the OECD/NEA study 'Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems'. It addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as nuclear power, in terms of their effects on electricity systems. These effects add costs to the production of electricity, which are not usually transparent. The report recommends that decision-makers should take into account such system costs and internalise them according to a 'generator pays' principle, which is currently not the case. Analysing data from six OECD/NEA countries, the study finds that including the system costs of variable renewables at the level of the electricity grid increases the total costs of electricity supply by up to one-third, depending on technology, country and penetration levels. In addition, it concludes that, unless the current market subsidies for renewables are altered, dispatchable technologies will increasingly not be replaced as they reach their end of life and consequently security of supply will suffer. This implies that significant changes in management and cost allocation will be needed to generate the flexibility required for an economically viable coexistence of nuclear energy and renewables in increasingly de-carbonised electricity systems

  12. Review of theoretical calculations of hydrogen storage in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Meregalli, V.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2001-02-01

    In this paper we review the existing theoretical literature on hydrogen storage in single-walled nanotubes and carbon nanofibers. The reported calculations indicate a hydrogen uptake smaller than some of the more optimistic experimental results. Furthermore the calculations suggest that a variety of complex chemical processes could accompany hydrogen storage and release. (orig.)

  13. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    Science.gov (United States)

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  15. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    International Nuclear Information System (INIS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-01-01

    A simple hydrogen adsorption measurement system utilizing the volumetric differential pressure technique has been designed, fabricated and calibrated. Hydrogen adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will be helpful in understanding the adsorption property of the studied carbon materials using the fundamentals of adsorption theory. The principle of the system follows the Sievert-type method. The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range, R1, S1, S2, and S3 having known fixed volume. The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operating pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. High purity hydrogen is being used in the system and the amount of samples for the study is between 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of the adsorption process by eliminating the errors caused by temperature expansion effects and other non-adsorption related phenomena. The ideal gas equation of state is applied to calculate the hydrogen adsorption capacity based on the differential pressure measurements. Activated carbon with a surface area of 644.87 m 2 /g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m 2 /g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption

  16. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  17. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    Science.gov (United States)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  18. Mechanism of obtaining carbon monoxide and hydrogen during brown coal radiolysis. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, V R; Kurbanov, M A; Dzantiev, B T; Kerimov, V K; Musaeva, P F

    1982-05-01

    This article analyzes effects of gamma radiation on the yield of products of coal gasification: hydrogen and carbon monoxide. Samples of brown coal from the Kansk-Achins basin were treated by gamma radiation with cobalt 60 radiation source. Analyses show that accumulation of hydrogen and carbon monoxide in brown coal under influence of gamma radiation is characterized by a constant rate. Yields of carbon monoxide and hydrogen amount to 0.16 molecule/100 electro volt and 0.21 molecule/electro volt respectively. Reducing radiation dose from 2.5 to 0.7 millirad/h reduces yields of hydrogen and carbon monoxide. Increasing temperature of vacuum brown coal pyrolysis from 200 to 600 C causes decrease of hydrogen yield. Hydrogen yield decrease during temperature increase is caused by a high content of aromatic nuclei in the samples used in the radiolysis. (5 refs.)

  19. Kalahari groundwaters: Their hydrogen, carbon and oxygen isotopes

    International Nuclear Information System (INIS)

    Mazor, E.; Verhagen, B.T.; Sellschop, J.P.F.; Robins, N.S.; Hutton, L.G.

    1974-01-01

    Tritium and 14 C measurements have revealed several cases of post-nuclear bomb-test rain recharge of local groundwaters, along with values indicating recharge over larger, yet hydrologically active, time scales. In general, recharge seems to follow rain distribution in being more intense in the northern rather than in the southern Kalahari. Initial δ 13 C values vary over a wide range and reveal some correlation to pH and chemical composition of the water. They cannot be used to correct for fossil carbon dilution in 14 C-age calculations. Radiocarbon-deduced ages range from recent to 30,000 years. Stable hydrogen and oxygen isotopes indicate recharge from direct rain infiltration. (author)

  20. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  1. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  2. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  3. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  4. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  5. Role of carbon atoms in the remote plasma deposition of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Benedikt, J.; Wisse, M.; Woen, R.V.; Engeln, R.; Sanden, M.C.M. van de

    2003-01-01

    The aim of this article is to determine the role of carbon atoms in the growth of hydrogenated amorphous carbon (a-C:H) films by means of an argon/acetylene expanding thermal plasma. Cavity ring down absorption spectroscopy is used to detect metastable carbon atoms by probing the 1s 2 2s 2 2p 3s 1 P 1 2 2s 2 2p 2 1 S 0 electronic transition. In addition to absorption measurements, the emission of the same transition is monitored by means of optical emission spectroscopy. These two measurements provide information about the local production of the C atoms and about their reactivity in the gas phase. It will be shown that under growth conditions in an Ar/C 2 H 2 expanding thermal plasma, the metastable carbon density is also representative for the ground state carbon density. From obtained results it is concluded that the carbon atoms react rapidly with acetylene in the gas phase and therefore their contribution to the growth of hard diamond-like a-C:H films can be neglected. Only at low acetylene flows, the condition when soft polymer-like films are deposited, carbon atoms are detected close to the substrate and can possibly contribute to the film growth

  6. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  7. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  8. Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater

    International Nuclear Information System (INIS)

    Kokko, M.; Bayerköhler, F.; Erben, J.; Zengerle, R.; Kurz, Ph.; Kerzenmacher, S.

    2017-01-01

    Highlights: • MoS_x is an efficient and durable catalyst for H_2 evolution in acidic wastewater. • MoS_x outperformed Pt as H_2-catalyst in long term in acidic wastewater. • Improved activity over time was likely due to changes in MoS_x structure. - Abstract: Microbial electrolysis cells (MECs) are an attractive future alternative technology to generate renewable hydrogen and simultaneously treat wastewaters. The thermodynamics of hydrogen evolution in MECs can be greatly improved by operating the cathode at acidic pH in combination with a neutral pH microbial anode. This can easily be achieved with acidic industrial wastewaters that have to be neutralised before discharge. For the hydrogen evolution reaction (HER) in acidic wastewater, efficient and inexpensive catalysts are required that are compatible with the often complex chemical composition of wastewaters. In this study, molybdenum sulphides (MoS_x) on different carbon supports were successfully used for hydrogen evolution in different acidic media. At first, the cathodes were screened by linear sweep voltammetry in sulphuric acid (pH 0) or phosphate buffer (pH 2.2). After this, the overpotentials for H_2 production of the best cathodes and their long term performances (⩾1 week) were determined in acidic industrial wastewater (pH 2.4) obtained from a plant mainly producing cellulose acetate. For the most promising MoS_x cathodes, the overpotentials for HER (at 3 mA cm"−"2) were only ∼40 mV higher than for a platinum electrode. Most importantly, the catalytic efficiency of the MoS_x electrodes improved in the wastewater over time (7–17 days), while Pt electrodes were found to be slowly deactivated. Thus, MoS_x emerges as an affordable, efficient and especially durable electrocatalyst for HER in real acidic wastewaters and this could be an important contribution to take energy production from wastewaters in the form of hydrogen towards practical applications.

  9. S.1269: This Act may be cited as the Renewable Hydrogen Energy Research and Development Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, June 11, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The bill would require the Secretary of Energy to expedite the development of hydrogen derived from renewable energy sources as an alternative energy system for residential, industrial, utility, and motor vehicle use. The purposes of this bill are to reduce the US dependence on imported oil; accelerate the development of renewable hydrogen; accelerate research and development programs on components of a renewable hydrogen energy system; reduce emissions of greenhouse gases, acid rain, precursors to smog, and other air pollution; and establish industry and government cost shared projects to speed the development of renewable hydrogen energy systems

  10. New insights on electrochemical hydrogen storage in nanoporous carbons by in situ Raman spectroscopy

    OpenAIRE

    Leyva García, Sarai; Morallón Núñez, Emilia; Cazorla Amorós, Diego; Béguin, François; Lozano Castelló, Dolores

    2014-01-01

    In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cath...

  11. Renewables vs. energy efficiency: The cost of carbon emissions reduction in Spain

    International Nuclear Information System (INIS)

    López-Peña, Álvaro; Pérez-Arriaga, Ignacio; Linares, Pedro

    2012-01-01

    While support instruments have succeeded to largely deploy renewables during the 1996–2008 period, little attention has been paid to energy efficiency measures, resulting in a high energy intensity and large growth of energy demand. Energy-related CO 2 emissions have increased significantly. At the same time, important investments in combined cycle gas turbines have taken place. This paper analyses whether, from a cost minimization viewpoint, renewable support has been the best policy for reducing emissions, when compared to the promotion of energy efficiency in sectors such as transportation or buildings. We use a model of the Spanish energy sector to examine its evolution in the time period considered under different policies. It is a bottom-up, static, partial equilibrium, linear programming model of the complete Spanish energy system. We conclude that demand side management (DSM) clearly dominates renewable energy (RE) support if the reduction of emissions at minimum cost is the only concern. We also quantify the savings that could have been achieved: a total of €5 billion per year, mainly in RE subsidies and in smaller costs of meeting the reduced demand (net of DSM implementation cost). - Highlights: ► Energy efficiency is cheaper than renewables for reducing carbon emissions. ► Energy efficiency measures could have saved more than €5 billion per year in Spain. ► Savings could have been bigger without overcapacity in gas combined cycles.

  12. System effects of nuclear energy and renewables in low-carbon electricity Systems

    International Nuclear Information System (INIS)

    Keppler, J.H.; Gameron, R.; Cometto, M.

    2012-01-01

    Electricity produced by variable renewable energies significantly affects the economics of dispatchable power generators, in particular those of nuclear power, both in the short run and the long run; the outcome of these competing factors will depend on the amount of variable renewables being introduced, local conditions and the level of carbon prices. An assessment of grid-level system costs (including the costs for grid connection, extension and reinforcement, as well as the added costs for balancing and back-up, but excluding the financial costs of intermittency and the impacts on security of supply, the environment, siting and safety), reveals a considerable difference between those of dispatchable technologies and those of variable renewables. Using a common methodology and a broad array of country-specific data, the grid-level system costs for Finland, France, Germany, the Republic of Korea, the United Kingdom and the United States were calculated for nuclear, coal, gas, onshore wind, offshore wind and solar PV both at 10 pc and 30 pc penetration levels. Variable renewables are creating a market environment in which dispatchable technologies can no longer finance themselves through revenues in 'energy only' wholesale markets; this has serious implications for the security of electricity supplies. Four main policy recommendations are proposed

  13. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  14. Hydrogen and Fuel Cells for IT Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer

    2016-03-09

    With the increased push for carbon-free and sustainable data centers, data center operators are increasingly looking to renewable energy as a means to approach carbon-free status and be more sustainable. The National Renewable Energy Laboratory (NREL) is a world leader in hydrogen research and already has an elaborate hydrogen infrastructure in place at the Golden, Colorado, state-of-the-art data center and facility. This presentation will discuss hydrogen generation, storage considerations, and safety issues as they relate to hydrogen delivery to fuel cells powering IT equipment.

  15. Determination of Hydrogen and Carbon contents in crude oil and Petroleum fractions by NMR Spectroscopy

    International Nuclear Information System (INIS)

    Khadim, Mohammad A.; Wolny, R.A.; Al-Dhuwaihi, Abdullah S.; Al-Hajri, E.A.; Al-Ghamdi, M.A.

    2003-01-01

    Proton and carbon-13 NMR spectroscopic methods were developed for determining hydrogen and carbon contents in petroleum products. These methods are applicable to a wide of petroleum streams. A new reference standard, bis (trimethylsilyl) methane, BTMSM, is introduced fro both proton and carbon-13 NMR for the first time, which offers several advantages over those customarily employed. These methods are important for the calculation of the mass balance and hydrogen consumption in pilot plant studies. Unlike the ASTM D-5291 combustion method, the NMR methods also allow for the measurement of hydrogen and carbon content in low boiling fractions and those containing hydrogen as low as 1%. The NMR methods can also determine aromatic and aliphatic hydrogens carbons in a given sample without additional experimentation. The precision and accuracy of the newly developed NMR methods are compared with those of currently employed ASTM D-5291 combustion method. Using the proton NMR method, hydrogen content was determined in fifteen model compounds and sixty-eight petroleum fractions. The NMR and ASTM methods show an agreement within +5%for 48 out of a total number of 68 oil fractions. Using carbon-13 NMR, the carbon content was determined for four representative compounds and three fractions of crude oil. Both carbon-13 NMR and ASTM methods give comparable carbon content in model compounds and crude oil fractions. (author)

  16. Renewable energy

    DEFF Research Database (Denmark)

    Olsen, Birgitte Egelund

    2016-01-01

    Renewable energy projects are increasingly confronted by local opposition, which delays and sometimes even prevents their implementation. This reflects the frequent gap between support for the general idea of renewables as a strategy for reducing carbon emissions, and acceptance of renewable energy...

  17. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    Science.gov (United States)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  18. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J. [Technische Universität Dresden, Institut für Angewandte Physik, 01062 Dresden (Germany)

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  19. Renewable Energy and Carbon Management in the Cradle-to-Cradle Certification

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving; Laurent, Alexis

    2017-01-01

    matter and acidification). However, increasing the share of RE in the primary aluminum production from a full life cycle perspective can greatly increase the environmental benefits brought up by the C2C certification not only for climate change, but also for the broader range of impact categories. In our......As part of the Cradle to Cradle® (C2C) certification program, the C2C certification criterion, Renewable Energy and Carbon Management (RE&CM), focuses on use of electricity from renewable energy (RE) and direct greenhouse gas offsets in the manufacturing stage and, to a limited extent......, on the cradle to gate only at the highest level of certification. The aim of this study is to provide decision makers with a quantified overview of possible limitations of that C2C certification requirement and potential gains by introducing a full lifecycle assessment (LCA) perspective to the scheme. Scenario...

  20. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    Science.gov (United States)

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  1. All-Vanadium Dual Circuit Redox Flow Battery for Renewable Hydrogen Generation and Desulfurisation

    OpenAIRE

    Peljo, Pekka Eero; Vrubel, Heron; Amstutz, Veronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frederic; Dennison, C R; Toghill, Kathryn; Girault, Hubert

    2016-01-01

    An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system capable to function as a conventional battery, but also to produce hydrogen and perform desulfurization when surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including ox...

  2. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  3. Hydrogen-enriched natural gas; Bridge to an ultra low carbon world

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Joshua; Oliver, Mike

    2010-09-15

    Natural gas is recognized as an important part of the solution to climate change, as it has the smallest carbon footprint among fossil fuels and can be used with high efficiency. This alone is not enough. Supplementing natural gas with hydrogen creating hydrogen-enriched natural gas (HENG), where the hydrogen comes from a low- or zero-carbon energy source. HENG, the subject of this paper, can leverage existing natural gas infrastructure to reduce CO2 and NOx, improve the efficiency of end-use equipment, and lower the overall carbon intensity of energy consumption.

  4. Hydrogenation of carbon to methane in reduced sponge iron, chromium, and ferrochromium

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, M A; Reeve, D A

    1976-01-01

    Hydrogenation of excess carbon to methane in reduced sponge iron, chromium and ferrochromium under isothermal and temperature-programmed conditions indicates that it is possible to control the residual carbon content of the metallized products which may be an advantage if further processing of the products is contemplated. Hydrogenation starts above 800/sup 0/C and a shrinking-core kinetic model fits the experimental data. The mean apparent activation energy for the hydrogenation of residual carbon to methane in sponge iron, chromium and ferrochromium is 21 kcal/mole.

  5. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  6. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  7. The monitoring of oxygen, hydrogen and carbon in the sodium circuits of the PFR

    International Nuclear Information System (INIS)

    Mason, L.; Morrison, N.S.; Robertson, C.M.; Trevillion, E.A.

    1984-01-01

    The paper reviews the instrumentation available for monitoring oxygen, hydrogen, tritium and carbon impurity levels on the primary and secondary circuits of PFR. Circuit oxygen levels measured using electrochemical oxygen meters are compared to estimates from circuit plugging meters. The data are interpreted in the light of information from cold trap temperatures. Measurements of secondary circuit hydrogen levels using both the sodium and gas phase hydrogen detection equipment are compared to estimates of circuit hydrogen levels from plugging meters and variations in sodium phase hydrogen levels during power operation are discussed. (author)

  8. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Science.gov (United States)

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  9. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    International Nuclear Information System (INIS)

    Paul, S.

    2000-11-01

    My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configured to study the electrical properties of the grown a-C:H films, has been reported. Since device performance is crucially linked to the density of states in the film, a study of the same was undertaken in my doctoral research. I present a mathematical formalism to estimate the density of states in a-C:H. The most commonly used metal, (aluminium), for contact formation on a-C:H films, has been concluded to be the least suitable. On the basis of the study presented in this thesis, copper and chromium are judged to be the best alternatives. The resilience of a-C:H/Si heterostructures under high voltages (upto 900 V) has been reported in this thesis for the first time. The performance of a-C:H grown at room temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). (author)

  10. Do Renewable Energy Policies Reduce Carbon Emissions? On Caps and Intra-Jurisdictional Leakage

    OpenAIRE

    Perino, Grischa; Jarke, Johannes

    2015-01-01

    Climate policies overlapping a cap-and-trade scheme are generally considered not to change domestic emissions. In a two-sector general equilibrium model where only one sector is covered by a cap, we find that such policies do have a net impact on carbon emissions through inter-sectoral leakage. Promotion of renewable energy reduces emissions if tax-funded, but can increase emissions if funded by a levy on electricity. Replacing fossil fuels by electricity in uncapped sectors (e.g. power-to-he...

  11. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    Science.gov (United States)

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.

    Science.gov (United States)

    Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G

    2017-08-24

    Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general,

  14. Optical and luminescence properties of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Rusli

    1996-03-01

    In this thesis, the optical and luminescence properties of hydrogenated amorphous carbon(a - C:H) thin films deposited using a Plasma Enhanced Chemical Vapour Deposition (PECVD) system are studied. A photoluminescence (PL) measuring system with a wavelength range of 300nm to 900nm, used for the above study, has been set up as a main part of the research. Firstly, a simple yet powerful method developed to solve for the optical constants and thickness of a - C : H deposited on Si is presented. This is followed by an investigation into the optical properties of band gap modulated a - C : H thin films superlattice structures. a - C : H films, obtained from a wide range of deposition conditions, are then characterised in terms of their optical absorption, infrared absorption, Raman scattering, fraction of sp 2 to sp 3 bondings and unpaired electron spin density. Their PL characteristics, such as the peak emission energy, spectral bandwidth, quantum efficiency, fatigue and polarisation memory are investigated in relation to their microstructure. The results, taken together with those obtained from photoconductivity study and electric field quenching of PL, are used to understand the origin of the strong PL in a - C : H. Preliminary work on a - C : H electroluminescent celbis also presented. (author)

  15. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  16. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    Science.gov (United States)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  17. Hydrogen from renewable energy: A pilot plant for thermal production and mobility

    Science.gov (United States)

    Degiorgis, L.; Santarelli, M.; Calì, M.

    In the mainframe of a research contract, a feasibility pre-design study of a hydrogen-fuelled Laboratory-Village has been carried out: the goals are the design and the simulation of a demonstration plant based on hydrogen as primary fuel. The hydrogen is produced by electrolysis, from electric power produced by a mix of hydroelectric and solar photovoltaic plants. The plant will be located in a small remote village in Valle d'Aosta (Italy). This country has large water availability from glaciers and mountains, so electricity production from fluent water hydroelectric plants is abundant and cheap. Therefore, the production of hydrogen during the night (instead of selling the electricity to the grid at very low prices) could become a good economic choice, and hydrogen could be a competitive local fuel in term of costs, if compared to oil or gas. The H 2 will be produced and stored, and used to feed a hydrogen vehicle and for thermal purposes (heating requirement of three buildings), allowing a real field test (Village-Laboratory). Due to the high level of pressure requested for H 2 storage on-board in the vehicle, the choice has been the experimental test of a prototype laboratory-scale high-pressure PEM electrolyzer: a test laboratory has been designed, to investigate the energy savings related to this technology. In the paper, the description of the dynamic simulation of the plant (developed with TRNSYS) together with a detailed design and an economic analysis (proving the technical and economical feasibility of the installation) has been carried out. Moreover, the design of the high-pressure PEM electrolyzer is described.

  18. Amending the Structure of Renewable Carbon from Biorefinery Waste-Streams for Energy Storage Applications.

    Science.gov (United States)

    Ho, Hoi Chun; Goswami, Monojoy; Chen, Jihua; Keum, Jong K; Naskar, Amit K

    2018-05-29

    Biorefineries produce impure sugar waste streams that are being underutilized. By converting this waste to a profitable by-product, biorefineries could be safeguarded against low oil prices. We demonstrate controlled production of useful carbon materials from the waste concentrate via hydrothermal synthesis and carbonization. We devise a pathway to producing tunable, porous spherical carbon materials by modeling the gross structure formation and developing an understanding of the pore formation mechanism utilizing simple reaction principles. Compared to a simple hydrothermal synthesis from sugar concentrate, emulsion-based synthesis results in hollow spheres with abundant microporosity. In contrast, conventional hydrothermal synthesis produces solid beads with micro and mesoporosity. All the carbonaceous materials show promise in energy storage application. Using our reaction pathway, perfect hollow activated carbon spheres can be produced from waste sugar in liquid effluence of biomass steam pretreatment units. The renewable carbon product demonstrated a desirable surface area of 872 m 2 /g and capacitance of up to 109 F/g when made into an electric double layer supercapacitor. The capacitor exhibited nearly ideal capacitive behavior with 90.5% capacitance retention after 5000 cycles.

  19. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  20. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Renewable hydrogen generation from a dual-circuit redox flow battery

    OpenAIRE

    Amstutz, Veronique; Toghill, Kathryn Ellen; Powlesland, Francis; Vrubel, Heron; Comninellis, Christos; Hu, Xile; Girault, Hubert H.

    2014-01-01

    Redox flow batteries (RFBs) are particularly well suited for storing the intermittent excess supply of renewable electricity; so-called “junk” electricity. Conventional RFBs are charged and discharged electrochemically, with electricity stored as chemical energy in the electrolytes. In the RFB system reported here, the electrolytes are conventionally charged but are then chemically discharged over catalytic beds in separate external circuits. The catalytic reaction of particular interest gene...

  2. Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Peters, Mike; Muratori, Matteo; Gearhart, Chris

    2018-03-01

    The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.

  3. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  4. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution

    KAUST Repository

    Bhunia, Manas Kumar; Yamauchi, Kazuo; Takanabe, Kazuhiro

    2014-01-01

    Described herein is the photocatalytic hydrogen evolution using crystalline carbon nitrides (CNs) obtained by supramolecular aggregation followed by ionic melt polycondensation (IMP) using melamine and 2,4,6-triaminopyrimidine as a dopant. The solid

  5. A study on hydrogen storage through adsorption in nano-structured carbons

    International Nuclear Information System (INIS)

    Langohr, D.

    2004-10-01

    The aim of this work is to build and calibrate an experimental set-up for the testing of the materials, to produce some carbon materials in large amounts and characterise them, and finally, to test these materials in their ability to store hydrogen. This will help in establishing a link between the hydrogen storage capacities of the carbons and their nano-structure. The script is divided into four chapters. The first chapter will deal with the literature review on the thematic of hydrogen storage through adsorption in the carbon materials, while the second chapter will present the experimental set-up elaborated in the laboratory. The third chapter explains the processes used to produce the two families of carbon materials and finally, the last chapter presents the structural characterisation of the samples as well as the experimental results of hydrogen storage on the materials elaborated. (author)

  6. Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application

    CSIR Research Space (South Africa)

    Segakweng, T

    2015-11-01

    Full Text Available Nanoporous carbons which possess high surface areas and narrow pore size distributions have become one of the most important classes of porous materials with potential to be utilized for hydrogen storage. In recent times, several metal...

  7. Hydrogen degradation of 21-6-9 and medium carbon steel by disc pressure test

    International Nuclear Information System (INIS)

    Zhou, D.H.; Zhou, W.X.; Xu, Z.L.

    1986-01-01

    This paper reports the method of disc pressure test and the results for 21-6-9 stainless steel and medium carbon steel in hydrogen gas with different pressures and time of storage. The results show the hydrogen induced degradation of these two kinds of steel. An attempt was made to establish an index which uses variation of area of deformed disc to determine the degradation of ductility in a hydrogen environment. (orig.)

  8. Global zero-carbon energy pathways using viable mixes of nuclear and renewables

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2015-01-01

    Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO 2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person −1 year -1 ). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally

  9. Renewable Bio-Solar Hydrogen Production: The Second Generation (Part B)

    Science.gov (United States)

    2015-03-20

    SUBJECT TERMS Biohydrogen, biofuels, cyanobacteria, photosynthesis, fermentation , transcription profiling, metabolic engineering, TCA cycle...transcription regulators, including RbcR, Fur, and ChlR, were identified and characterized, and a global model of the transcription network was...enhance hydrogen production. These data have recently been analyzed to produce a global transcription network model for this cyanobacterium [17]. At

  10. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Bush, Brian; Penev, Michael

    2015-05-12

    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  11. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  12. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  13. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  14. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition

  15. Hydrogen storage in single-wall carbon nano-tubes by means of laser excitation

    International Nuclear Information System (INIS)

    Oksengorn, B.

    2010-01-01

    A new mode for hydrogen adsorption and storage in single-wall carbon nano-tubes is used, on the basis of laser excitation. Remember that this method has been useful to obtain, in the case of the fullerene C 60 , many complex C 60 -atoms or C 60 -molecules, where atoms or molecular particles are trapped inside the C 60 -molecules. We think this method might be important to store many hydrogen molecules inside carbon nano-tubes. (author)

  16. Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system

    International Nuclear Information System (INIS)

    Cau, Giorgio; Cocco, Daniele; Petrollese, Mario; Knudsen Kær, Søren; Milan, Christian

    2014-01-01

    Highlights: • Energy management strategy for hybrid stand-alone power plant with hydrogen storage. • Optimal scheduling of storage devices to minimize the utilization costs. • A scenario tree method is used to manage uncertainties of weather and load forecasts. • A reduction of operational costs and energy losses is achieved. - Abstract: This paper presents a novel energy management strategy (EMS) to control an isolated microgrid powered by a photovoltaic array and a wind turbine and equipped with two different energy storage systems: electric batteries and a hydrogen production and storage system. In particular, an optimal scheduling of storage devices is carried out to maximize the benefits of available renewable resources by operating the photovoltaic systems and the wind turbine at their maximum power points and by minimizing the overall utilization costs. Unlike conventional EMS based on the state-of-charge (SOC) of batteries, the proposed EMS takes into account the uncertainty due to the intermittent nature of renewable resources and electricity demand. In particular, the uncertainties are evaluated with a stochastic approach through the construction of different scenarios with corresponding probabilities. The EMS is defined by minimizing the utilization costs of the energy storage equipment. The weather conditions recorded in four different weeks between April and December are used as case studies to test the proposed EMS and the results obtained are compared with a conventional EMS based on the state-of-charge of batteries. The results show a reduction of utilization costs of about 15% in comparison to conventional SOC-based EMS and an increase of the average energy storage efficiency

  17. Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems : Method comments to a NEA report

    OpenAIRE

    Söder, Lennart

    2012-01-01

    OECD Nuclear Energy Agency (NEA) released a new report on 29 November 2012. The study recommends that decision-makers should take full electricity system costs into account in energy choices and that such costs should be internalised according to a “generator pays” principle. The study, entitled Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems, addresses the increasingly important interactions of variable renewables and dispatchable energy technologies, such as ...

  18. Hydrogen production by renewable energies. Final report of the integrated research program 4.1; Production d'hydrogene par des energies renouvelables. Rapport final du programme de recherche integree 4.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this PRI is to study and to develop methods of hydrogen production based on the renewable energies, without greenhouse gases emission in order to implement clean processes in the framework of a sustainable development. Two approaches are proposed. The first one uses microorganisms in condition of hydrogen production (micro-algae). The second one is based on the bio-mimetism approaches aiming to reproduce artificially the biological mechanisms of the photosynthesis leading to water decomposition. (A.L.B.)

  19. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  20. Monte-Carlo Simulation of Hydrogen Adsorption in Single-Wall Carbon Nano-Cones

    Directory of Open Access Journals (Sweden)

    Zohreh Ahadi

    2011-01-01

    Full Text Available The properties of hydrogen adsorption in single-walled carbon nano-cones are investigated in detail by Monte Carlo simulations. A great deal of our computational results show that the hydrogen storage capacity in single-walled carbon nano-cones is slightly smaller than the capacity of single-walled carbon nanotubes at any time at the same conditions. This indicates that the hydrogen storage capacity of single-walled carbon nano-cones is related to angles of carbon nano-cones. It seems that these type of nanotubes could not exceed the 2010 goal of 6 wt%, which is presented by the U.S. Department of Energy. In addition, these results are discussed in theory.

  1. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  2. Novel Hydrogen Compounds from a Potassium Carbonate Electrolytic Cell

    International Nuclear Information System (INIS)

    Mills, Randell L.

    2000-01-01

    Novel compounds containing hydrogen in new hydride and polymeric states that demonstrate novel hydrogen chemistry have been isolated following the electrolysis of a K 2 CO 3 electrolyte with the production of excess energy. Inorganic hydride clusters K[KH KHCO 3 ] n + and hydrogen polymer ions such as OH 23 + and H 16 - were identified by time-of-flight secondary ion mass spectroscopy. The presence of compounds containing new states of hydrogen was confirmed by X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and proton nuclear magnetic resonance spectroscopy

  3. Conversion of carbon monoxide intensities tomolecular hydrogen abundances

    International Nuclear Information System (INIS)

    Kutner, M.L.; Leung, C.M.

    1985-01-01

    We present results of theoretical models (static spherical clouds with a microturbulent velocity field) to study the conversion of carbon monoxide (CO) line parameters into molecular hydrogen (H 2 ) column densities, N2. The three potential H 2 tracers that we investigate are the integrated 12 CO and 13 CO intensities, I 12 and I 13 , and the 13 CO LTE column density, N( 13 . We find that I 12 may be a reasonable tracer of N2 under conditions appropriate to the envelopes of giant molecular clouds and for studies involving cloud ensembles of different cloud sizes and velocity dispersions. However, it saturates under higher density conditions. It is important that empirical conversion factors be set using the types of objects to which they will be applied. For this reason, our analysis suggests that the conversion factor N2/I 12 for giant molecular clouds in the molecular ring of our galaxy may be a factor of 2 lower than the average used by many observers. This lower value is supported by some recent empirical determinations. The quantity I 13 is a good tracer of N2 over a wide range of densities but it is more sensitive to the actual 13 CO abundance. The quantity N( 13 is similar to I 13 as a good tracer of N2 except at low densities and temperatures. The ratio I 12 /I 13 may be used to delineate temperature and column density effects. Finally, we find a strong temperature dependence in the various conversion factors, with N2/I 12 scaling with gas temperature (T/sub k/ approximately as (T/sub k/)/sup -1.3/

  4. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  5. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  6. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)]. E-mail: inui@eee.tut.ac.jp; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Ito, N. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Nakajima, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan); Tanaka, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2006-08-15

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide.

  7. Performance simulation of planar SOFC using mixed hydrogen and carbon monoxide gases as fuel

    International Nuclear Information System (INIS)

    Inui, Y.; Urata, A.; Ito, N.; Nakajima, T.; Tanaka, T.

    2006-01-01

    The authors investigate in detail the influence of the mixing ratio of hydrogen and carbon monoxide in the fuel on the cell performance of the SOFC through numerical simulations for a single cell plate of the co-flow type planar cell. It is made clear that the cell performance is almost the same and excellent, independent of the mixing ratio of hydrogen and carbon monoxide under the nominal operating condition. The electromotive force of the hydrogen rich fuel gas is a little higher than that of the carbon monoxide rich fuel gas. The internal voltage drop in the cell decreases as the fraction of carbon monoxide becomes high. Since the value of the single cell voltage is determined by the balance of these two phenomena, the lowering of the electromotive force is dominant and the single cell voltage of the hydrogen rich fuel gas is higher when the inlet gas temperature is high, whereas the voltage drop reduction is dominant and the single cell voltage of the carbon monoxide rich fuel gas is higher when the temperature is low. The effect of the additional gases of water vapor and carbon dioxide is restricted to the single cell voltage shift, and the qualitative dependence of the single cell voltage on the inlet gas temperature is determined by the mixing ratio of hydrogen and carbon monoxide

  8. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  9. Dependence of hydrogen storage characteristics of mechanically milled carbon materials on their host structures

    International Nuclear Information System (INIS)

    Shindo, K.; Kondo, T.; Sakurai, Y.

    2004-01-01

    We investigated whether the hydrogen storage characteristics of carbon materials prepared by mechanical milling in an H 2 atmosphere were dependent on their host structures. We used natural graphite (NG) and activated carbon fibers (ACF) and compared them with activated carbon (AC) powders. The XRD patterns of NG and ACF milled for over 20 h and SEM images of these samples milled for 80 h were almost the same as those of AC. The hydrogen storage capacities of NG and ACF estimated by the inert gas fusion-thermal conductivity method increased with the mechanical milling time up to 10 h and showed little milling time dependence thereafter. The capacities of NG and ACF reached about 3.0 wt.% and were similar to that of AC. However, it should be noted that the hydrogen storage mechanism of NG and ACF mechanically milled in an H 2 atmosphere might be different because the changes in their specific surface areas with milling time were opposite. Thermal desorption mass spectroscopy (TDS) revealed that the desorption spectra of the hydrogen molecules (mass number=2) of NG and ACF milled for 10 h in the same way as AC contained two peaks at about 500 and 800 deg. C. The desorption activation energies of hydrogenated NG and ACF at these peaks calculated from a Kissinger plot were almost with the same as those of hydrogenated AC. This suggests that the state of the hydrogen trapped in the structural defects in NG introduced by the mechanical milling may be almost the same as that of AC. In addition, we assumed the possibility that the state of the hydrogen in ACF hydrogenated by mechanical milling could be almost the same as that in hydrogenated AC. We considered that the nanocarbon materials hydrogenated under our milling conditions had very similar physical shapes and hydrogen storage capacities, independent of their host structures

  10. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang

    2016-01-01

    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  11. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  12. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  13. Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M.; Takenobu, T.; Ata, M. [Materials Laboratories, SONY Corporation, Shin-Sakuragaoka 2-1-1, Hodogaya-ku, 240-0036, Yokohama (Japan); Kataura, H. [Department of Physics, Faculty of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, 192-0397, Tokyo (Japan)

    2004-04-01

    The hydrogen physisorption properties in single-walled carbon nanotube (SWNT) based materials were characterized. The SWNTs were highly purified and three useful pores for hydrogen physisorption were activated. Hydrogen was physisorbed in intra-tube pores at room temperature and the capacity was estimated to be about 0.3-0.4 wt. % at room temperature. The adsorption capacity can be explained by the Langmuir model. The intra-tube pores have large adsorption potential and this induces hydrogen physisorption at comparatively higher temperatures. This fact indicates the importance of fabricating sub-nanometer ordered pores for this phenomena. (orig.)

  14. Negative-ion production on carbon materials in hydrogen plasma : influence of the carbon hybridization state and the hydrogen content on H- yield

    NARCIS (Netherlands)

    Ahmad, A.; Pardanaud, C.; Carrère, M.; Layet, J.M.; Gicquel, A.; Kumar, P.; Eon, D.; Jaoul, C.; Engeln, R.A.H.; Cartry, G.

    2014-01-01

    Highly oriented polycrystalline graphite (HOPG), boron-doped diamond (BDD), nanocrystalline diamond, ultra-nanocrystalline diamond and diamond-like carbon surfaces are exposed to low-pressure hydrogen plasma in a 13.56 MHz plasma reactor. Relative yields of surface-produced H- ions due to

  15. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  16. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chaoqi Shen

    2017-10-01

    Full Text Available Herein, we report on a novel method for deposition of magnesium (Mg nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  17. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaoqi; Aguey-Zinsou, Kondo-Francois, E-mail: f.aguey@unsw.edu.au [MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2017-10-17

    Herein, we report on a novel method for deposition of magnesium (Mg) nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs) in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  18. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  19. Formation of carbon nanostructures using acetylene, argon-acetylene and argon-hydrogen-acetylene plasmas

    International Nuclear Information System (INIS)

    Marcinauskas, L.; Grigonis, A.; Minialga, V.; Marcinauskas, L.; Valincius, V.

    2013-01-01

    The films prepared in argon-acetylene plasma are attributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the films and lead to the formation of nanocrystalline graphite. The carbon nanotubes were formed at low (≤ 450°C; p = 40 Pa) temperature in pure acetylene plasma. (authors)

  20. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  1. Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt electrode-based sensor.

    Science.gov (United States)

    Matsuura, Hiroaki; Yamawaki, Yosuke; Sasaki, Kosuke; Uchiyama, Shunichi

    2013-06-01

    A multielectrolytic modified carbon electrode (MEMCE) was fabricated by the electrolytic-oxidation/reduction processes. First, the functional groups containing nitrogen atoms such as amino group were introduced by the electrode oxidation of carbon felt electrode in an ammonium carbamate aqueous solution, and next, this electrode was electroreduced in sulfuric acid. The redox waves between hydrogen ion and hydrogen molecule at highly positive potential range appeared in the cyclic voltammogram obtained by MEMCE. A coulometric cell using MEMCE with a catalytic activity of electrooxidation of hydrogen molecule was constructed and was used for the measurement of dissolved hydrogen. The typical current vs. time curve was obtained by the repetitive measurement of the dissolved hydrogen. These curves indicated that the measurement of dissolved hydrogen was finished completely in a very short time (ca. 10 sec). A linear relationship was obtained between the electrical charge needed for the electrooxidation process of hydrogen molecule and dissolved hydrogen concentration. This indicates that the developed coulometric method can be used for the determination of the dissolved hydrogen concentration.

  2. Sensitivity of encapsulated diamond-protein transistor renewed by low temperature hydrogen plasma

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Neykova, Neda; Ukraintsev, Egor; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 2 (2013), s. 1598-1608 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996; GA ČR GD202/09/H041 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * solution-gated field-effect transistor * low temperature hydrogen termination * proteins * encapsulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/list13.htm#current

  3. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  4. A Significant Role for Renewables in a Low-Carbon Energy Economy?

    Science.gov (United States)

    Newmark, R. L.

    2015-12-01

    Renewables currently make up a small (but growing) fraction of total U.S. electricity generation. In some regions, renewable growth has resulted in instantaneous penetration levels of wind and solar in excess of 60% of demand. With decreasing costs, abundant resource potential and low carbon emissions and water requirements, wind and solar are increasingly becoming attractive new generation options. However, factors such as resource variability and geographic distribution of prime resources raise questions regarding the extent to which our power system can rely on variable generation resources. Here, we describe scenario analyses designed to tackle engineering and economic challenges associated with variable generation, along with insights derived from research results. These analyses demonstrate the operability of high renewable systems and quantify some of the engineering challenges (and solutions) associated with maintaining reliability. Key questions addressed include the operational and economic impacts of increasing levels of variable generation on the U.S. power system. Since reliability and economic efficiency are measured across a variety of time frames, and with a variety of metrics, a suite of tools addressing different system impacts are used to understand how new resources affect incumbent resources and operational practices. We summarize a range of modeled scenarios, focusing on ones with 80% RE in the United States and >30% variable wind and solar in the East and the West. We also summarize the environmental impacts and benefits estimated for these and similar scenarios. Results provide key insights to inform the technical, operational and regulatory evolution of the U.S. power system. This work is extended internationally through the 21st Century Power Partnership's collaborations on power system transformation, with active collaboration in Canada, Mexico, India, China and South Africa, among others.

  5. Hydrogen adsorption in the series of carbon nanostructures: Graphenes-graphene nanotubes-nanocrystallites

    Science.gov (United States)

    Soldatov, A. P.; Kirichenko, A. N.; Tat'yanin, E. V.

    2016-07-01

    A comparative analysis of hydrogen absorption capability is performed for the first time for three types of carbon nanostructures: graphenes, oriented carbon nanotubes with graphene walls (OCNTGs), and pyrocarbon nanocrystallites (PCNs) synthesized in the pores of TRUMEM ultrafiltration membranes with mean diameters ( D m) of 50 and 90 nm, using methane as the pyrolized gas. The morphology of the carbon nanostructures is studied by means of powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM). Hydrogen adsorption is investigated via thermogravimetric analysis (TGA) in combination with mass-spectrometry. It is shown that only OCNTGs can adsorb and store hydrogen, the desorption of which under atmospheric pressure occurs at a temperature of around 175°C. Hydrogen adsorption by OCNTGs is quantitatively determined and found to be about 1.5% of their mass. Applying certain assumptions, the relationship between the mass of carbon required for the formation of single-wall OCNTGs in membrane pores and the surface area of pores is established. Numerical factor Ψ = m dep/ m calc, where m dep is the actual mass of carbon deposited upon the formation of OCNTGs and mcalc is the calculated mass of carbon necessary for the formation of OCNTGs is introduced. It is found that the dependence of specific hydrogen adsorption on the magnitude of the factor has a maximum at Ψ = 1.2, and OCNTGs can adsorb and store hydrogen in the interval 0.4 to 0.6 hydrogen adsorption and its relationship to the structure of carbon nanoformations are examined.

  6. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  7. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    Science.gov (United States)

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  8. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  9. Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods

    Directory of Open Access Journals (Sweden)

    Judith A. Cherni

    2016-12-01

    Full Text Available One way of increasing access to electricity for impoverished unconnected areas without adding significant amounts of CO2 to the atmosphere is by promoting renewable energy technologies. However, decision-makers rarely, if ever, take into account the level of in-built energy requirements and consequential CO2 emissions found in renewable energy, particularly photovoltaic cells and related equipment, which have been widely disseminated in developing countries. The deployment of solar panels worldwide has mostly relied on silicon crystalline cell modules, despite the fact that less polluting material—in particular, thin film and organic cells—offers comparatively distinct technical, environmental and cost advantages characteristics. A major scientific challenge has thus been the design of a single decision-making approach to assess local and global climate change-related impacts as well as the socio-economic effects of low-carbon technology. The article focuses on the functions of the multi-criteria-based tool SURE-DSS and environmental impact analysis focused on greenhouse gases (GHG emissions balance to inform the selection of technologies in terms of their impact on livelihoods and CO2eq. emissions. An application in a remote rural community in Cuba is discussed. The results of this study show that while PV silicon (c-Si, thin film (CdTe and organic solar cells may each equally meet the demands of the community and enhance people’s livelihoods, their effect on the global environment varies.

  10. Carbon dots: Synthesis from renewable sources via hydrothermal carbonization, characterization and evaluation of their interaction with biological systems

    International Nuclear Information System (INIS)

    Moraes, Liz Specian de; Alves, Oswaldo Luiz

    2016-01-01

    Full text: Carbon dots (CDs) constitute a new class of carbon-based nanomaterials with interesting photoluminescent properties that enable their potential use in bioimaging, sensing and drug delivery applications. They consist of quasi spherical nanoparticles with size below 10 nm. As a consequence of their low toxicity and biocompatibility, CDs have been considered as a promising alternative to traditional semiconductor-based quantum dots. In addition, they can be synthesized from accessible renewable sources in an environmentally friendly perspective. In this work, we report the use of bovine serum albumin (BSA) and bovine plasma (BP) as precursors to synthesis of CDs applying hydrothermal carbonization method. The study also includes the physical chemical characterization and the evaluation of interaction between these nanomaterials and biosystems, using hemolytic assay. The morphology and size of the carbon nanoparticles were analyzed by Transmission Electronic Microscopy. CDs obtained from BSA (BSA-CDs) and BP (BP-CDs) had spherical shape with an average size of 5.6 and 3.7 nm, respectively. The fluorescence quantum yield was calculated using quinine sulfate as reference. BSA-CDs and BP-CDs exhibited quantum yields of 4.9% and 4.0%, when they were excited at wavelength of 315 and 300 nm, respectively. Furthermore, the red-shift phenomenon was observed in the emission spectra of both synthesized CDs, indicating the formation of particles with different sizes or the presence of surface energy traps distribution. The composition of CDs was determined by Elemental Analysis and X-ray Photoelectron Spectroscopy. Both nanomaterials contained C, N, O and S elements. The hemolytic assay demonstrated the synthesized CDs did not cause damage to red blood cell membrane at concentrations between 5 and 250 μg mL -1 . (author)

  11. Carbon dots: Synthesis from renewable sources via hydrothermal carbonization, characterization and evaluation of their interaction with biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Liz Specian de; Alves, Oswaldo Luiz, E-mail: liz.specian@hotmail.com.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: Carbon dots (CDs) constitute a new class of carbon-based nanomaterials with interesting photoluminescent properties that enable their potential use in bioimaging, sensing and drug delivery applications. They consist of quasi spherical nanoparticles with size below 10 nm. As a consequence of their low toxicity and biocompatibility, CDs have been considered as a promising alternative to traditional semiconductor-based quantum dots. In addition, they can be synthesized from accessible renewable sources in an environmentally friendly perspective. In this work, we report the use of bovine serum albumin (BSA) and bovine plasma (BP) as precursors to synthesis of CDs applying hydrothermal carbonization method. The study also includes the physical chemical characterization and the evaluation of interaction between these nanomaterials and biosystems, using hemolytic assay. The morphology and size of the carbon nanoparticles were analyzed by Transmission Electronic Microscopy. CDs obtained from BSA (BSA-CDs) and BP (BP-CDs) had spherical shape with an average size of 5.6 and 3.7 nm, respectively. The fluorescence quantum yield was calculated using quinine sulfate as reference. BSA-CDs and BP-CDs exhibited quantum yields of 4.9% and 4.0%, when they were excited at wavelength of 315 and 300 nm, respectively. Furthermore, the red-shift phenomenon was observed in the emission spectra of both synthesized CDs, indicating the formation of particles with different sizes or the presence of surface energy traps distribution. The composition of CDs was determined by Elemental Analysis and X-ray Photoelectron Spectroscopy. Both nanomaterials contained C, N, O and S elements. The hemolytic assay demonstrated the synthesized CDs did not cause damage to red blood cell membrane at concentrations between 5 and 250 μg mL{sup -1}. (author)

  12. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  13. Radiation Shielding and Hydrogen Storage with Multifunctional Carbon, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  14. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    International Nuclear Information System (INIS)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent

  15. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  16. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  17. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  18. Minimizing fouling at hydrogenated conical-tip carbon electrodes during dopamine detection in vivo.

    Science.gov (United States)

    Chandra, Shaneel; Miller, Anthony D; Bendavid, Avi; Martin, Philip J; Wong, Danny K Y

    2014-03-04

    In this paper, physically small conical-tip carbon electrodes (∼2-5 μm diameter and ∼4 μm axial length) were hydrogenated to develop a probe capable of withstanding fouling during dopamine detection in vivo. Upon hydrogenation, the resultant hydrophobic sp(3) carbon surface deters adsorption of amphiphilic lipids, proteins, and peptides present in extracellular fluid and hence minimizes electrode fouling. These hydrogenated carbon electrodes showed a 35% decrease in sensitivity but little change in the limit of detection for dopamine over a 7-day incubation in a synthetic laboratory solution containing 1.0% (v/v) caproic acid (a lipid), 0.1% (w/v) bovine serum albumin and 0.01% (w/v) cytochrome C (both are proteins), and 0.002% (w/v) human fibrinopeptide B (a peptide). Subsequently, during dopamine detection in vivo, over 70% of the dopamine oxidation current remained after the first 30 min of a 60-min experiment, and at least 50% remained over the next half-period at the hydrogenated carbon electrodes. On the basis of these results, an initial average electrode surface fouling rate of 1.2% min(-1) was estimated, which gradually declined to 0.7% min(-1). These results support minimal fouling at hydrogenated carbon electrodes applied to dopamine detection in vivo.

  19. Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING

    International Nuclear Information System (INIS)

    Wiesberg, Igor L.; Medeiros, José Luiz de; Alves, Rita M.B.; Coutinho, Paulo L.A.; Araújo, Ofélia Q.F.

    2016-01-01

    Highlights: • Evaluation of carbon dioxide conversion to methanol by two chemical routes. • HYDROGENATION: conversion via catalytic hydrogenation at high pressure. • BI-REFORMING: conversion via syngas from bi-reforming of natural gas. • HYDROGENATION is viable for hydrogen price inferior to 1000 US$/t. • BI-REFORMING is unable to avoid emissions; viable only if gas price is very low. - Abstract: Chemical conversion of carbon dioxide to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of carbon dioxide is a challenging impediment to conversion requiring severe reaction conditions at the expense of increased energy input, therefore adding capital, operation and environmental costs, which could result in partial or total override of its potential sustainability as feedstock to the chemical and energy industries. This work investigates two innovative chemical destinations of carbon dioxide to methanol, namely a direct conversion through carbon dioxide hydrogenation (HYDROGENATION), and an indirect via carbon dioxide conversion to syngas through bi-reforming (BI-REFORMING). Process simulation is used to obtain mass and energy balances needed to support assessment of economic and environmental performance. A business scenario is considered where an industrial source of nearly pure carbon dioxide exists and an investment decision for utilization of carbon dioxide is faced. Due to uncertainties in prices of the raw materials, hydrogen (HYDROGENATION) and natural gas (BI-REFORMING), the decision procedure includes the definition of price thresholds to reach profitability. Sensitivity analyses are performed varying costs with greater uncertainty, i.e., carbon dioxide and methanol, and recalculating maximum allowable prices of raw materials. The analyses show that in a Brazilian scenario, BI-REFORMING is unlikely

  20. Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls

    International Nuclear Information System (INIS)

    Pinkerton, F.E.; Wicke, B.G.; Olk, C.H.; Tibbetts, G.G.; Meisner, G.P.; Meyer, M.S.; Herbst, J.F.

    2000-01-01

    We have used a thermogravimetric analyzer (TGA) to measure the hydrogen absorption capacity of a variety of carbon-based storage materials, including Li- and K-intercalated graphite and Li-doped multi-wall nanotubes. The TGA uses weight gain/loss as a function of time and temperature to monitor hydrogen absorption/desorption in flowing hydrogen gas. Creating and maintaining a contaminant-free atmosphere is critical to the accurate TGA measurement of hydrogen absorption in carbon-based materials; even low concentrations of impurity gases such as O 2 or H 2 O are sufficient to masquerade as hydrogen absorption. We will discuss examples of this effect relevant to recent reports of hydrogen storage appearing in the literature. The precautions required are non-trivial. In our TGA, for instance, about 16% of the original atmosphere remains after a two-hour purge; at least 15 hours is required to fully purge the apparatus. Furthermore, we cover the TGA with a protective atmosphere enclosure during sample loading to minimize the introduction of impurity gases. With these precautions it is possible to unambiguously measure hydrogen storage. For example, we have determined the hydrogen absorption capacity of our K-intercalated graphite samples to be 1.3 wt% total hydrogen absorption above 50 o C, of which 0.2 wt% can be reproducibly recovered with temperature cycling. With due care, TGA measurements provide complementary information to that obtained from standard pressure techniques for measuring hydrogen sorption, which rely on measuring the loss of gas pressure in a known volume. Taken together, TGA and pressure measurements provide a powerful combination for determining verifiable hydrogen storage capacity. (author)

  1. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  2. A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution

    Institute of Scientific and Technical Information of China (English)

    Xiaobo Li; Yao Zheng; Anthony F.Masters; Thomas Maschmeyer

    2016-01-01

    A metal-free photocatalytic hydrogen evolution system was successfully fabricated using heteroatom doped graphene materials as electron-transfer co-catalysts and carbon nitride as a semiconductor.The catalytic role of graphene is significantly dependent on the heteroatom dopant of the graphene,such as O,S,B,N doped/undoped graphene co-catalysts,and N-graphene shows the best catalytic hydrogen evolution rate.

  3. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  4. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-01-01

    In this work, the hydrogen storage behaviors of chemically treated multi-walled carbon nanotubes (MWNTs) were investigated. The surface properties of the functionalized MWNTs were confirmed by Fourier transfer infrared spectroscopy, X-ray diffraction, the Boehm titration method, and zeta-potential measurements. The hydrogen storage capacity of the MWNTs was evaluated at 298 K and 100 bar. In the experimental results, it was found that the chemical treatments introduced functional groups onto the MWNT surfaces. The amount of hydrogen storage was enhanced, by acidic surface treatment, to 0.42 wt.% in the acidic-treated MWNTs compared with 0.26 wt.% in the as-received MWNTs. Meanwhile, the basic surface treatment actually reduced the hydrogen storage capacity, to 0.24 wt.% in the basic-treated MWNTs sample. Consequently, it could be concluded that hydrogen storage is greatly influenced by the acidic characteristics of MWNT surfaces, resulting in enhanced electron acceptor-donor interaction at interfaces.

  5. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  6. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities

    Science.gov (United States)

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  7. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  8. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  9. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  10. Too little oil, too much coal: Optimal carbon tax and when to phase in oil, coal and renewables

    OpenAIRE

    van der Ploeg, Frederick; Withagen, Cees A.

    2011-01-01

    Our main message is that it is optimal to use less coal and more oil once one takes account of coal being a backstop which emits much more CO2 than oil. The way of achieving this is to have a steeply rising carbon tax during the initial oil-only phase, a less-steeply rising carbon tax during the intermediate phase where oil and coal are used alongside each other and the following coal-only phase, and a flat carbon tax during the final renewables-only phase. The "laissez-faire" outcome uses co...

  11. Stability and Electronic Properties of Hydrogenated Zigzag Carbon Nanotube Focused on Stone-Wales Defect

    International Nuclear Information System (INIS)

    Pan Li-Jun; Zhang Jie; Chen Wei-Guang; Tang Ya-Nan

    2015-01-01

    We present a first-principles study of the chemisorption of hydrogen on a Stone-Wales (SW) defective carbon nanotube (10,0). The investigated configurations include four configurations covering single defects and double defects. One hydrogen dimer adsorption is energetically favored on bonds shared by carbon heptagon-heptagon for configurations with the defect parallel to the tube axis compared with the carbon pentagon-hexagon sites for ones with a slanted defect. This different behavior is also demonstrated for hydrogen dimer chain adsorption, the favored site for the former ones is through the defect, which is the nearest neighbor site to defect for the latter ones. It is found that the energy band gaps of hydrogenated configurations may be enlarged or decreased by altering the adsorption site or defect position. The semiconductor-to-metal transition may occur for configurations with the defect or defects parallel to the tube axis due to low electronic localization. Our results highlight the interest of the interaction of multi-factor system by providing a detailed bond and position picture of a hydrogenated defective carbon nanotube (10,0). (paper)

  12. Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution

    Science.gov (United States)

    Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco

    2016-12-01

    Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ~130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.

  13. Renewable energy

    International Nuclear Information System (INIS)

    Berghmans, J.

    1994-01-01

    Renewable energy sources have a small environmental impact and can be easily integrated within existing structures. Moreover, the use of renewable energy sources can contribute to achieve a zero emission of carbon dioxide by 2100, provided an efficient environmental policy during the next 40 years. This includes a correct pricing policy of renewable energy sources with respect to nuclear energy and fossil fuel. The latter energy sources have been favoured in the past. In addition, an open market policy, the restructuring or conversion of existing international energy institutes, and international treaties for the protection of the natural environment are needed in view of achieving the zero carbon dioxide emission objective. (A.S.)

  14. The carbon footprint of integrated milk production and renewable energy systems - A case study.

    Science.gov (United States)

    Vida, Elisabetta; Tedesco, Doriana Eurosia Angela

    2017-12-31

    Dairy farms have been widely acknowledged as a source of greenhouse gas (GHG) emissions. The need for a more environmentally friendly milk production system will likely be important going forward. Whereas methane (CH 4 ) enteric emissions can only be reduced to a limited extent, CH 4 manure emissions can be reduced by implementing mitigation strategies, such as the use of an anaerobic digestion (AD). Furthermore, implementing a photovoltaic (PV) electricity generation system could mitigate the fossil fuels used to cover the electrical needs of farms. In the present study to detect the main environmental hotspots of milk production, a Life Cycle Assessment was adopted to build the Life Cycle Inventory according to ISO 14040 and 14044 in a conventional dairy farm (1368 animals) provided by AD and PV systems. The Intergovernmental Panel on Climate Change tiered approach was adopted to associate the level of emission with each item in the life cycle inventory. The functional unit refers to 1kg of fat-and-protein-corrected-milk (FPCM). In addition to milk products, other important co-products need to be considered: meat and renewable energy production from AD and PV systems. A physical allocation was applied to attribute GHG emissions among milk and meat products. Renewable energy production from AD and PV systems was considered, discounting carbon credits due to lower CH 4 manure emissions and to the minor exploitation of fossil energy. The CF of this farm scenario was 1.11kg CO 2 eq/kg FPCM. The inclusion of AD allowed for the reduction of GHG emissions from milk production by 0.26kg CO 2 eq/kg FPCM. The PV system contribution was negligible due to the small dimensions of the technology. The results obtained in this study confirm that integrating milk production with other co-products, originated from more efficient manure management, is a successful strategy to mitigate the environmental impact of dairy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  16. Study on the production of alternative fuels by carbon dioxide hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyu Sung; Han, Sang Do; Kim, Jong Won; Kim, Youn Soon; Seo, Ji Mi [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The technologies of the fuel production from carbon dioxide by catalytic hydrogenation were surveyed. For the catalytic hydrogenation we made the lab-scale reaction apparatus and carried out some experiments with various catalysts like CuO/ZnO/Al{sub 2}O{sub 3}, Raney nickel and other commercial catalysts. In this year, the third year of the project, the experiments to find optimum catalysts and obtain the good conditions of carbon dioxide were performed followed by second year. And also the processes of the methanol synthesis was investigated simultaneously. (author). 58 refs., 58 figs., 28 tabs.

  17. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  18. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    International Nuclear Information System (INIS)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R.; Usher, E.

    2005-12-01

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated 'business

  19. Changing Climates. The Role of Renewable Energy in a Carbon-Constrained World. A Paper Prepared for REN21

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J.; Denton, F.; Garg, A.; Kamel, S.; Pacudan, R. [UNEP Risoe Centre on Energy, Climate and Sustainable Development URC, Roskilde (Denmark); Usher, E. [UNEP Energy Unit, Paris (France)

    2005-12-15

    The current paper on renewable energy and climate change is focused on the key characteristics of the climate change challenge, the intergovernmental action to address the challenge, and how current and future renewable energy projects can contribute to global carbon mitigation and adaptation efforts at the local level. The report presents the current and possible different future contributions that renewable energy can make. This is based on analysis of different authoritative global scenarios and their underlying assumptions, and is aimed at providing guidance on what would be required in terms of policy decisions and technological developments if renewable energy is going to significantly mitigate climate change. Although the focus is particularly on climate change and the opportunities for renewable energy, other issues are closely interlinked. Reducing GHG emissions by introducing more renewable energy, for example, will also have positive impacts on the security of energy supply, while potentially compounding the need for investment capital. The report begins with the current global energy demand and the contribution of renewable energy to meeting that demand. Next, different key internationally recognised energy development scenarios are presented from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA), together with selected policy scenarios of very different specific options to mitigate climate change and stabilize CO2 levels in the range of 450-550 ppm. These scenarios are presented with both high and limited penetrations of renewable energy, along with discussions of underlying assumptions leading to these different results, including comparisons of projected technology costs. Existing policies worldwide to promote renewable energy are then analysed for their relative efficiency and results. Guidance is presented on the possible policy tools governments can use to move from the stipulated &apos

  20. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  1. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    Science.gov (United States)

    Tian, H. Y.; Buckley, C. E.; Mulè, S.; Paskevicius, M.; Dhal, B. B.

    2008-11-01

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 °C was also activated in a carbon dioxide atmosphere at 900 °C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of adsorption showed that larger mesopores were also present. Hydrogen storage properties of the CA were also investigated. An activated sample with a Brunauer-Emmett-Teller surface area of 1539 ± 20 m2 g-1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  2. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  3. Ground state energy of an hydrogen atom confined in carbon nano-structures: a diffusion quantum Monte Carlo study

    International Nuclear Information System (INIS)

    Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.

    2006-01-01

    Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.

  4. Renewable enthusiasm

    International Nuclear Information System (INIS)

    Duffin, Tony

    2000-01-01

    A reduction in energy consumption by the energy intensive sectors will be rewarded by a tax credit. The advantages of renewable sources of energy in terms of reducing emissions of carbon dioxide are extolled. The Government will reward the use of renewables through exemption from the Climate Change Levy. Many major companies are now committed to renewables and Shell predict that 50% of world energy will come from renewables by 2050. World-wide there is now 10,000 MW of installed wind power and the annual rate of growth is more than 20%. Other renewables such as biomass, energy from waste, solar power, hydropower, wind power and tidal power are discussed. The Government would like to see 10% of the UK's electricity coming from renewables by 2010. (UK)

  5. The carbon footprint and non-renewable energy demand of algae-derived biodiesel

    International Nuclear Information System (INIS)

    Azadi, Pooya; Brownbridge, George; Mosbach, Sebastian; Smallbone, Andrew; Bhave, Amit; Inderwildi, Oliver; Kraft, Markus

    2014-01-01

    Highlights: • Global sensitivity analysis is performed to determine the environmental impact of algal biodiesel. • GHG emission of algal biodiesel ranges from 40 to 125 g e-CO 2 /MJ. • Biodiesel from dried algae may prove sustainable if a low carbon solution e.g. solar drying is used. - Abstract: We determine the environmental impact of different biodiesel production strategies from algae feedstock in terms of greenhouse gas (GHG) emissions and non-renewable energy consumption, we then benchmark the results against those of conventional and synthetic diesel obtained from fossil resources. The algae cultivation in open pond raceways and the transesterification process for the conversion of algae oil into biodiesel constitute the common elements among all considered scenarios. Anaerobic digestion and hydrothermal gasification are considered for the conversion of the residues from the wet oil extraction route; while integrated gasification–heat and power generation and gasification–Fischer–Tropsch processes are considered for the conversion of the residues from the dry oil extraction route. The GHG emissions per unit energy of the biodiesel are calculated as follows: 41 g e-CO 2 /MJ b for hydrothermal gasification, 86 g e-CO 2 /MJ b for anaerobic digestion, 109 g e-CO 2 /MJ b for gasification–power generation, and 124 g e-CO 2 /MJ b for gasification–Fischer–Tropsch. As expected, non-renewable energy consumptions are closely correlated to the GHG values. Also, using the High Dimensional Model Representation (HDMR) method, a global sensitivity analysis over the entire space of input parameters is performed to rank them with respect to their influence on key sustainability metrics. Considering reasonable ranges over which each parameter can vary, the most influential input parameters for the wet extraction route include extractor energy demand and methane yield generated from anaerobic digestion or hydrothermal gasification of the oil extracted

  6. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, T.J.; Bagreev, A.; Adib, F.; Turk, A.

    2000-03-15

    Unmodified and caustic-impregnated carbons were compared as adsorbents for hydrogen sulfide in the North River Water Pollution Control Plant in New York City over a period of 2 years. The carbons were characterized using accelerated H{sub 2}S breakthrough capacity tests, sorption of nitrogen, potentiometric titration, and thermal analysis. The accelerated laboratory tests indicate that the initial capacity of caustic-impregnated carbons exceeds that of unmodified carbon, but the nature of real-life challenge streams, particularly their lower H{sub 2}S concentrations, nullifies this advantage. As the caustic content of the impregnated carbon is consumed, the situation reverses, and the unmodified carbon becomes more effective. When the concentration of H{sub 2}S is low, the developed surface area and pore volume along with the affinity to retain water create a favorable environment for dissociative adsorption of hydrogen sulfide and its oxidation to elemental sulfur, S{sup 4+}, and S{sup 6+}. In the case of the caustic carbon, the catalytic impact of the carbon surface is limited, and its good performance lasts only while active base is present. The results also show the significant differences in performance of unmodified carbons due to combined effects of their porosity and surface chemistry.

  7. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  8. Hydrogen: Fueling the Future

    International Nuclear Information System (INIS)

    Leisch, Jennifer

    2007-01-01

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  9. Iodide-photocatalyzed reduction of carbon dioxide to formic acid with thiols and hydrogen sulfide

    OpenAIRE

    Berton, Mateo Otao; Mello, Rossella C. C.; González Núñez, María Elena

    2016-01-01

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO2 capture coupled with H2S removal may have been relevant as a prebiotic carbon dioxide fixation.

  10. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  11. Hydrogen storage in carbon nano-materials. Elaboration, characterization and properties

    International Nuclear Information System (INIS)

    Luxembourg, D.

    2004-10-01

    This work deals with hydrogen storage for supplying fuel cells. Hydrogen storage by adsorption in carbon nano-tubes and nano-fibers is a very controversial issue because experimental results are very dispersed and adsorption mechanisms are not yet elucidated. Physi-sorption cannot explain in fact all the experimental results. All the potential adsorption sites, physical and chemical, are discussed as detailed as possible in a state of the art. Experimental works includes the steps of elaboration, characterization, and measurements of the hydrogen storage properties. Nano-fibers are grown using a CVD approach. Single wall carbon nano-tubes (SWNT) synthesis is based on the vaporization/condensation of a carbon/catalysts mixture in a reactor using a fraction of the available concentrated solar energy at the focus of the 1000 kW solar facility of IMP-CNRS at Odeillo. Several samples are produced using different synthesis catalysts (Ni, Co, Y, Ce). SWNT samples are purified using oxidative and acid treatments. Hydrogen storage properties of these materials are carefully investigated using a volumetric technique. The applied pressure is up to 6 MPa and the temperature is 253 K. Hydrogen uptake of the investigated materials are less than 1 % wt. at 253 K and 6 MPa. (author)

  12. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Jian-Hua; He, Jian-Ping; Ji, Ya-Jun; Dang, Wang-Juan; Liu, Xiao-Lei; Zhao, Gui-Wang; Zhang, Chuan-Xiang; Zhao, Ji-Shuang; Fu, Qing-Bin; Hu, Huo-Ping

    2007-01-01

    Mesoporous carbon with ordered hexagonal structure derived from the co-assembly of triblock copolymer F127 and resol was employed as the carbon support of Pt catalysts for hydrogen electro-oxidation. Structural characterizations revealed that the mesoporous carbon exhibited large surface area and uniform mesopores. The Pt nanoparticles supported on the novel mesoporous carbon were fabricated by a facile CTAB assisted microwave synthesis process, wherein CTAB was expected to improve the wettability of carbon support as well as the dispersion of Pt nanoparticles. X-ray diffraction and transmission electron microscopy were applied to characterize the Pt catalysts. It was found that the Pt nanoparticles were uniform in size and highly dispersed on the mesoporous carbon supports. The cyclic voltammograms in sulfuric acid demonstrated that the electrochemical active surface area of Pt catalysts prepared with CTAB was two times than that without CTAB

  13. Synthesis of Cr-MOF derived porous carbon for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-07-01

    Full Text Available Over the recent years, applications of porous metal-organic frameworks (MOFs) in hydrogen storage have received increasing attention in the scientific community. Conversion of organic moiety in MOFs to porous carbon, as well as the use of MOFs as a...

  14. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    Science.gov (United States)

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  15. Carbon, Chlorine, and Hydrogen Isotope Fractionation in Transformation of TCE to Ethene by a Dehalococcoides Culture

    NARCIS (Netherlands)

    Kuder, T.; van Breukelen, B.M.; Vanderford, M.; Philip, P.

    2013-01-01

    Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc.

  16. Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Andersson, Klas Jerker; Nerlov, Jesper

    2008-01-01

    Formate (HCOO) synthesis, decomposition and the hydrogenation of carbonate (CO3) on Cu overlayers deposited on a Pt(111) single crystal are investigated to examine the reactivity of a Cu surface under tensile strain with defects present. Formate is synthesized from a 0.5 bar mixture of 70% CO2...

  17. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  18. Process and reactor for the production of hydrogen and carbon dioxide and a fuel cell system

    NARCIS (Netherlands)

    2006-01-01

    The invention relates to a process for the production of hydrogen and carbon dioxide from a hydrocarbonaceous feedstock, comprising: a) supplying a gaseous hydrocarbonaceous feedstock and steam to a reaction zone comprising a steam reforming catalyst and catalytically reforming the hydrocarbonaceous

  19. Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics

    NARCIS (Netherlands)

    Au, Y.S.; Ponthieu, M.; van Zwienen, M.; Zlotea, C.; Cuevas, F.; de Jong, K.P.; de Jongh, P.E.

    2013-01-01

    The reaction kinetics and reversibility for hydrogen sorption were investigated for supported Mg2Cu nanoparticles on carbon. A new preparation method is proposed to synthesize the supported alloy nanoparticles. The motivation of using a support is to separate the nanoparticles to prevent sintering

  20. Hard graphitelike hydrogenated amorphous carbon grown at high rates by a remote plasma

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Zaharia, T.; Creatore, M.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) deposited from an Ar-C 2H2 expanding thermal plasma chemical vapor deposition (ETP-CVD) is reported. The downstream plasma region of an ETP is characterized by a low electron temperature (∼0.3 eV), which leads to an ion driven chemistry and negligible physical...

  1. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability

    DEFF Research Database (Denmark)

    Laursen, Anders B.; Vesborg, Peter C. K.; Chorkendorff, Ib

    2013-01-01

    This work describes a highly active and stable acid activated carbon fibre and amorphous MoSx composite hydrogen evolution catalyst. The increased electrochemical-surface area is demonstrated to cause increased catalyst electrodeposition and activity. These composite electrodes also show...

  2. Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Pohořelý, Michael; Šyc, Michal

    2013-01-01

    Roč. 52, č. 31 (2013), s. 10619-10626 ISSN 0888-5885 R&D Projects: GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009 Institutional support: RVO:67985858 Keywords : thermal decomposition * sodium hydrogen carbonate * sodium bicarbonate Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.235, year: 2013

  3. Carbon/Hydrogen ratio determination in hydrocarbons and its mixtures by electron backscattering technique

    International Nuclear Information System (INIS)

    Padron, I.; Desdin, L.F.; Navarro, A.; Fuentes, M.

    1996-01-01

    A method carbon/hydrogen ratio (C/H) determination in hydrocarbons and its mixtures was improved using the electron backscattering technique. Besides the hetero atoms (S,O and N) influence in petroleum is studied for being able to determinate the C/H ratio in cuban petroleum with high sulphur contents

  4. Synthesis of templated carbon from nanoclay and its zeolitic derivatives for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-06-01

    Full Text Available materials were thoroughly characterized using XRD, SEM, TGA, TEM, N2-BET and also tested for hydrogen storage capacity. The resulting templated carbons were found to be highly ordered and had mimicked the crystal morphology of the templating materials...

  5. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  6. Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol.

    Science.gov (United States)

    Du, Xian-Long; Jiang, Zheng; Su, Dang Sheng; Wang, Jian-Qiang

    2016-02-19

    Methanol is a sustainable source of liquid fuels and one of the most useful organic chemicals. To date, most of the work in this area has focused on the direct hydrogenation of CO2 to methanol. However, this process requires high operating temperatures (200-250 °C), which limits the theoretical yield of methanol. Thus, it is desirable to find a new strategy for the efficient conversion of CO2 to methanol at relatively low reaction temperatures. This Minireview seeks to outline the recent advances on the indirect hydrogenation of CO2 to methanol. Much emphasis is placed on discussing specific systems, including hydrogenation of CO2 derivatives (organic carbonates, carbamates, formates, cyclic carbonates, etc.) and cascade reactions, with the aim of critically highlighting both the achievements and remaining challenges associated with this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption

    International Nuclear Information System (INIS)

    Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver

    2007-01-01

    The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems

  8. Hydrogen storage in single-walled carbon nanotubes: methods and results

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Cossement, D.; Lafi, L.; Bose, T.K.

    2004-01-01

    We present high sensitivity gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ conditioning under high temperature and high vacuum. These systems, which allow for precise measurements on small samples and thorough degassing, are used for sorption measurements on carbon nanostructures. We developed one volumetric system for the pressure range 0-1 bar, and two gravimetric systems for 0-1 bar and 0-100 bars. The use of both gravimetric and volumetric methods allows for the cross-checking of the results. The accuracy of the systems has been determined from hydrogen absorption measurements on palladium. The accuracies of the 0-1 bar volumetric and gravimetric systems are about 10 μg and 20 μg respectively. The accuracy of the 0-100 bars gravimetric system is about 20 μg. Hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) and metal-incorporated- SWNTs are presented. (author)

  9. Electricity sector reforms in four Latin-American countries and their impact on carbon dioxide emissions and renewable energy

    International Nuclear Information System (INIS)

    Janet Ruiz-Mendoza, Belizza; Sheinbaum-Pardo, Claudia

    2010-01-01

    This paper analyzes carbon dioxide (CO 2 ) emissions related to energy consumption for electricity generation in four Latin-American countries in the context of the liberalization process. From 1990 to 2006, power plants based on renewable energy sources decreased its share in power installed capacity, and the carbon index defined as CO 2 emission by unit of energy for electricity production stayed almost constant for all countries with the exception of Colombia, where the index reduced due to increase in hydroelectricity generation in the last years. The paper also presents a new set of policies to promote renewable energy sources that have been developed in the four countries. The paper concludes that restructuring did not bring about environmental benefits related to a decrease in CO 2 emissions because this depend on the existence of committed policies, and dedicated institutional and regulatory frameworks.

  10. Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

    Science.gov (United States)

    Culebras, Mario; Madroñero, Antonio; Cantarero, Andres; Amo, José Maria; Domingo, Concepción; López, Antonio

    2012-10-01

    Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the results obtained through the correlation between them is the purpose of the present work.

  11. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  12. Promoting effect of active carbons on methanol dehydrogenation on sodium carbonate - hydrogen spillover

    OpenAIRE

    Su, S.; Prairie, M.; Renken, A.

    1993-01-01

    Methanol dehydrogenation to formaldehyde was conducted in a fixed-bed flow reactor with sodium carbonate catalyst mixed with active carbons or transition metals. The additives promoted the reaction rate at 880-970 K without modifying formaldehyde selectivity. This effect increases with increasing carbon content in the carbon-carbonate mixture. Activation energy of methanol conversion is the same for the mixture and the carbonate alone. Temperature-programmed desorption experiments showed that...

  13. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  14. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    Science.gov (United States)

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions.

  15. Overlapping carbon pricing and renewable support schemes under political uncertainty: Global lessons from an Australian case study

    International Nuclear Information System (INIS)

    Shahnazari, Mahdi; McHugh, Adam; Maybee, Bryan; Whale, Jonathan

    2017-01-01

    Highlights: •Uncertainty over overlapping energy and climate policies affects investment choices. •An integrated real options and portfolio optimisation model is used in a case study. •Interacting carbon pricing and renewable supports can create private and social hedge. •Political uncertainty may justify overlapping carbon pricing and renewable supports. -- Abstract: The translation of a greenhouse gas (GHG) emissions reduction policy objective to the required investment in low emissions technologies may be hindered by political contest over the policy instruments employed to achieve it. Political contest may also result in enactment of overlapping policy instruments which, from a ‘policy purist’ perspective, may not appear well calibrated to a shared GHG emissions reduction objective. This paper reports insights gained from an integrated real options and portfolio optimisation model of electricity generation investment behaviour under political uncertainty over the futures of interacting carbon pricing and renewable portfolio standard (RPS) instruments. We compare modelling results and actual outcomes in Australia, where an emission reduction target has had bipartisan support but the means to achieve it has not, to test the assertion that overlapping policy instruments must always increase the social costs of GHG abatement. Results suggest that overlapping a politically contested carbon pricing policy with an RPS may result in a lower risk, renewable energy (RE) investment environment, as the overlap allows investors to hedge their portfolio against political uncertainty through RE additions. Consequently, GHG abatement objectives may be achieved at lower cost than would be the case without the policy interaction. The policies overlap can provide a ‘safety valve’ or ‘hedge’ to both private investors and policymakers when deep uncertainties over the future of energy and climate policies influence investment strategies.

  16. Does Renewable Energy Consumption and Health Expenditure Decrease Carbon Dioxide Emissions? Evidence for sub-Saharan Africa Countries

    OpenAIRE

    Apergis, Nicholas; Ben Jebli, Mehdi

    2015-01-01

    This paper employs a number of panel methodological approaches to explore the link between per capita carbon dioxide emissions, per capita real income, renewable energy consumption and health expenditures for a panel of 42 sub-Saharan African countries, spanning the period 1995-2011. The empirical findings provide supportive of a long-run relationship among the variables. Granger causality reveals the presence of a short-run unidirectional causality running from real GDP to CO2 emissions, a b...

  17. Synthesis of zeolite-templated carbons for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2013-10-01

    Full Text Available in this field. Of the various nanocasting strategies for carbonaceous materials, hard templates such as zeolites have been of key research interest due to the many attractive properties associated with the resulting carbon replicas. Some of these properties are...

  18. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  19. Toward a Low-Carbon Economy : Renewable Energy and Energy Efficiency Portfolio Review

    OpenAIRE

    World Bank

    2013-01-01

    Renewable energy and energy efficiency projects continue to perform strongly in the World Bank Group (WBG) energy portfolio and are increasingly being mainstreamed in the WBG's energy lending. In fiscal 2007 a total of US$1,433 million supported 63 renewable energy and energy efficiency projects in 32 countries. In addition to operational activities, the WBG engages in a variety of economic sector work and technical assistance focused on renewable energy and energy efficiency. This work is an...

  20. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  1. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    International Nuclear Information System (INIS)

    Tian, H Y; Buckley, C E; Mule, S; Paskevicius, M; Dhal, B B

    2008-01-01

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 deg. C was also activated in a carbon dioxide atmosphere at 900 deg. C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of 2 g -1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  2. Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures

    Directory of Open Access Journals (Sweden)

    M. Acosta Gentoiu

    2017-01-01

    Full Text Available Carbon nanostructures were obtained by acetylene injection into an argon plasma jet in the presence of hydrogen. The samples were synthesized in similar conditions, except that the substrate deposition temperatures TD were varied, ranging from 473 to 973 K. A strong dependence of morphology, structure, and graphitization upon TD was found. We obtained vertical aligned carbon nanotubes (VA-CNTs at low temperatures as 473 K, amorphous carbon nanoparticles (CNPs at temperatures from about 573 to 673 K, and carbon nanowalls (CNWs at high temperatures from 773 to 973 K. Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, elastic recoil detection analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to substantiate the differences in these material types. It is known that hydrogen concentration modifies strongly the properties of the materials. Different concentrations of hydrogen-bonded carbon could be identified in amorphous CNP, VA-CNT, and CNW. Also, the H : C ratios along depth were determined for the obtained materials.

  3. Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa.

    Science.gov (United States)

    Hanif, Imran

    2018-05-01

    The present study explores the impact of economic growth; urban expansion; and consumption of fossil fuels, solid fuels, and renewable energy on environmental degradation in developing economies of Sub-Saharan Africa. To demonstrate its findings in detail, the study adopts a system generalized method of moment (GMM) on a panel of 34 emerging economies for the period from 1995 to 2015. The results describe that the consumption of fossil and solid fuels for cooking and expansion of urban areas are significantly contributing to carbon dioxide emissions, on one end, and stimulating air pollution, on the other. The results also exhibit an inverted U-shape relationship between per capita economic growth and carbon emissions. This relation confirms the existence of an environmental Kuznets curve (EKC) in middle- and low-income economies of Sub-Saharan Africa. Furthermore, the findings reveal that the use of renewable energy alternatives improves air quality by controlling carbon emissions and lowering the direct interaction of households with toxic gases. Thus, the use of renewable energy alternatives helps the economies to achieve sustainable development targets.

  4. Hydrogen in energy transition

    International Nuclear Information System (INIS)

    2016-02-01

    This publication proposes a rather brief overview of challenges related to the use of hydrogen as an energy vector in the fields of transports and of energy storage to valorise renewable energies. Processes (steam reforming of natural gas or bio-gas, alkaline or membrane electrolysis, biological production), installation types (centralised or decentralised), raw materials and/or energy (natural gas, water, bio-gas, electricity, light), and their respective industrial maturity are indicated. The role of hydrogen to de-carbonate different types of transports is described (complementary energy for internal combustion as well as electrical vehicles) as well as its role in the valorisation and integration of renewable energies. The main challenges faced by the hydrogen sector are identified and discussed, and actions undertaken by the ADEME are indicated

  5. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    Science.gov (United States)

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  7. Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study

    International Nuclear Information System (INIS)

    Caliskan, Hakan; Dincer, Ibrahim; Hepbasli, Arif

    2013-01-01

    In this study, hybrid renewable energy based hydrogen and electricity production and storage systems are conceptually modeled and analyzed in detail through energy, exergy and sustainability approaches. Several subsystems, namely hybrid geothermal energy-wind turbine-solar photovoltaic (PV) panel, inverter, electrolyzer, hydrogen storage system, Proton Exchange Membrane Fuel Cell (PEMFC), battery and loading system are considered. Also, a case study, based on hybrid wind–solar renewable energy system, is conducted and its results are presented. In addition, the dead state temperatures are considered as 0 °C, 10 °C, 20 °C and 30 °C, while the environment temperature is 30 °C. The maximum efficiencies of the wind turbine, solar PV panel, electrolyzer, PEMFC are calculated as 26.15%, 9.06%, 53.55%, and 33.06% through energy analysis, and 71.70%, 9.74%, 53.60%, and 33.02% through exergy analysis, respectively. Also, the overall exergy efficiency, ranging from 5.838% to 5.865%, is directly proportional to the dead state temperature and becomes higher than the corresponding energy efficiency of 3.44% for the entire system. -- Highlights: ► Developing a three-hybrid renewable energy (geothermal–wind–solar)-based system. ► Undertaking a parametric study at various dead state temperatures. ► Investigating the effect of dead state temperatures on exergy efficiency

  8. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Cai, Kun, E-mail: caikun1978@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Wan, Jing [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Gao, Zhaoliang, E-mail: coopcg@163.com [Institute of Soil and Water Conservation, Northwest A& F University, Yangling, 712100 (China); Chen, Zhen [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The rotational transmission performance of a rotational transmission system (RTS) with different types of C−H bonding layouts on the edge of motor and rotor is investigated using MD simulation method. • The L–J interaction between covalently bonded hydrogen atoms and sp1 carbon atoms is too weak to support a stable rotational transmission when only the motor or rotor has bonded hydrogen atoms. • When both the motor and rotor have the same C−H bonding layout on their adjacent ends, a stable output rotational speed of rotor can be obtained. • A low input rotational speed (e.g., 100 GHz) would lead to a synchronous rotational transmission if the system has (+0.5H) C−H bonding layout. - Abstract: In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (C−H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same C−H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has C−H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp{sup 1} bonded carbon atoms on the other

  9. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  10. (Carbon and hydrogen metabolism of green algae in light and dark)

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  11. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  12. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  13. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  14. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    International Nuclear Information System (INIS)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V.; Grigorieva, Anastasia V.

    2016-01-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm -1 , a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  15. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Grigorieva, Anastasia V. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science

    2016-11-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm{sup -1}, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  16. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Corradetti, A.; Desideri, U.

    2007-01-01

    The production of hydrogen combined with carbon capture represents a possible option for reducing CO 2 emissions in atmosphere and anthropogenic greenhouse effect. Nowadays the worldwide hydrogen production is based mainly on natural gas reforming, but the attention of the scientific community is focused also on other gas mixtures with significant methane content. In particular mixtures constituted mainly by methane and carbon dioxide are extensively used in energy conversion applications, as they include land-fill gas, digester gas and natural gas. The present paper addresses the development of an innovative system for hydrogen production and CO 2 capture starting from these mixtures. The plant is based on steam methane reforming, coupled with the carbonation and calcination reactions for CO 2 absorption and desorption, respectively. A thermodynamic approach is proposed to investigate the plant performance in relation to the CH 4 content in the feeding gas. The results suggest that, in order to optimize the hydrogen purity and the efficiency, two different methodologies can be adopted involving both the system layout and operating parameters. In particular such methodologies are suitable for a methane content, respectively, higher and lower than 65%

  18. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  19. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  20. European transition to a low carbon electricity system using a mix of variable renewable energies: carbon saving trajectories as functions of production and storage capacity.

    Science.gov (United States)

    Francois, Baptiste; Creutin, Jean-Dominique

    2016-04-01

    Today, most of the produced energy is generated from fossil energy sources (i.e. coal, petroleum). As a result, the energy sector is still the main source of greenhouse gas in the atmosphere. For limiting greenhouse gas emission, a transition from fossil to renewable energy is required, increasing gradually the fraction energy coming from variable renewable energy (i.e. solar power, wind power and run-of-the river hydropower, hereafter denoted as VRE). VRE penetration, i.e. the percentage of demand satisfied by variable renewables assuming no storage capacity, is hampered by their variable and un-controllable features. Many studies show that combining different VRE over space smoothes their variability and increases their global penetration by a better match of demand fluctuations. When the demand is not fully supplied by the VRE generation, backup generation is required from stored energy (mostly from dams) or fossil sources, the latter being associated with high greenhouse gas emission. Thus the VRE penetration is a direct indicator of carbon savings and basically depends on the VRE installed capacity, its mix features, and on the installed storage capacity. In this study we analyze the European transition to a low carbon electricity system. Over a selection of representative regions we analyze carbon saving trajectories as functions of VRE production and storage capacities for different scenarios mixing one to three VRE with non-renewables. We show substantial differences between trajectories when the mix of sources is far from the local optimums, when the storage capacity evolves. We bring new elements of reflection about the effect of transport grid features from local independent systems to a European "copper plate". This work is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).

  1. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen

    International Nuclear Information System (INIS)

    Anderson, Dennis; Leach, Matthew

    2004-01-01

    If intermittent renewable energy technologies such as those based on solar, wind, wave and tidal resources are eventually to supply significant shares of total energy supplies, it is crucial that the energy storage problem is solved. There are several (long-recognised) possibilities ahead including compressed air, pumped storage, further developments in batteries, regenerable fuel cells, 'super-capacitors' and so forth. But one that is being revisited extensively by industry and research establishments is the production and storage of hydrogen from electricity at off-peak times, and in times when there would be a surplus of renewable energy, for reuse in the electricity, gas and transport markets; short-term and even seasonal and longer-term storage is technically feasible with this option. This paper looks at the costs of the option both in the near-term and the long-term relative to the current costs of electricity and natural gas supplies. While the costs of hydrogen would necessarily be greater than those of natural gas (though not disruptively so), when used in conjunction with emerging technologies for decentralised generation and combined heat and power there is scope for appreciable economies in electricity supply. A lot will depend on innovation at the systems level, and on how we operate our electricity and gas grids and regulate our electricity and gas industries. We have also suggested that we now need to experiment more, at the commercial level, and in the laboratories, with the hydrogen option

  2. Trace detection of hydrogen peroxide vapor using a carbon-nanotube-based chemical sensor.

    Science.gov (United States)

    Lu, Yijiang; Meyyappan, M; Li, Jing

    2011-06-20

    The sensitive detection of hydrogen peroxide in the vapor phase is achieved using a nanochemical sensor consisting of single-walled carbon nanotubes as the sensing material. The interdigitated electrode-based sensor is constructed using a simple and standard microfabrication approach. The test results indicate a sensing capability of 25 ppm and response and recovery times in seconds. The sensor array consisting of 32 sensor elements with variations in sensing materials is capable of discriminating hydrogen peroxide from water and methanol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of Hydrogen Adsorption on the Stone-Wales Transformation in Small-Diameter Carbon Nanotubes

    Science.gov (United States)

    Openov, L. A.; Podlivaev, A. I.

    2018-04-01

    The effect of hydrogenation of (4, 0) and (3, 0) carbon nanotubes on the Stone-Wales transformation is studied in the framework of the nonorthogonal tight-binding model. It is shown that the atomic hydrogen adsorption can lead to both a decrease and an increase in the barriers for the direct and inverse transformations depending on the orientation of a rotating C-C bond with respect to the nanotube axis. The characteristic times of formation and annealing the Stone-Wales defects have been estimated. The Young's moduli have been calculated.

  4. The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons

    International Nuclear Information System (INIS)

    Bhat, V V; Contescu, C I; Gallego, N C

    2009-01-01

    This paper reports on differences in stability of Pd hydride phases in palladium particles with various degrees of contact with microporous carbon supports. A sample containing Pd embedded in activated carbon fibre (2 wt% Pd) was compared with commercial Pd nanoparticles deposited on microporous activated carbon (3 wt% Pd) and with support-free nanocrystalline palladium. The morphology of the materials was characterized by electron microscopy, and the phase transformations were analysed over a large range of hydrogen partial pressures (0.003-10 bar) and at several temperatures using in situ x-ray diffraction. The results were verified with volumetric hydrogen uptake measurements. Results indicate that higher degrees of Pd-carbon contacts for Pd particles embedded in a microporous carbon matrix induce efficient 'pumping' of hydrogen out of β- PdH x . It was also found that thermal cleaning of carbon surface groups prior to exposure to hydrogen further enhances the hydrogen pumping power of the microporous carbon support. In brief, this study highlights that the stability of β- PdH x phase supported on carbon depends on the degree of contact between Pd and carbon and on the nature of the carbon surface.

  5. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  6. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-01-01

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted

  7. A study on hydrogen adsorption behaviors of open-tip carbon nanocones

    International Nuclear Information System (INIS)

    Liao Mingliang

    2012-01-01

    Hydrogen adsorption behaviors of single-walled open-tip (tip-truncated) carbon nanocones (CNCs) with apex angles of 19.2° at temperatures of 77 and 300 K were investigated by the molecular dynamics simulations. Four nanomaterials (including three CNCs with different dimensions and a reference CNT) were analyzed to examine the hydrogen adsorption behaviors and influences of cone sharpness on the behaviors of the CNCs. Physisorption of hydrogen molecules could be observed from the distribution pattern of the hydrogen molecules adsorbed on the nanomaterials. Because of the cone geometry effect, the open-tip CNCs could have larger storage weight percentage and less desorption of hydrogen molecules (caused by the temperature growth) on their outer surfaces, as compared with those of the reference CNT. The hydrogen molecules inside the CNCs and the reference CNT, however, were noted to have similar desorption behaviors owing to the confinement effects from the structures of the nanomaterials. In addition, the sharper CNC could have higher storage weight percentage but the cone sharpness does not have evident enhancement in the average adsorption energy of the CNC. Combination of confinement and repulsion effects existing near the tip region of the CNC would be responsible for the non-enhancement feature.

  8. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S; Hengne, Amol Mahalingappa; Huang, Kuo-Wei; Chikate, Rajeev C.; Rode, C. V.

    2018-01-01

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  9. Single Pot Selective Hydrogenation of Furfural to 2-Methylfuran Over Carbon Supported Iridium Catalysts

    KAUST Repository

    Date, Nandan S

    2018-03-20

    Various iridium supported carbon catalysts were prepared and screened for direct hydrogenation of furfural (FFR) to 2-methyl furan (2-MF). Amongest these, 5% Ir/C showed excellent results with complete FFR conversion and highest selectivity of 95% to 2-MF at very low H2 pressure of 100 psig. Metallic (Iro) and oxide ( IrO2) phases of Ir catalyzed first step hydrogenation involving FFR to FAL and subsequent hydrogenation to 2-MF,respecively. This was confirmed by XPS analysis and some controlled experiments. At low temperature of 140 oC, almost equal selectivities of FAL (42%) and 2-MF (43%) were observed, while higher temperature (220oC) favored selective hydrodeoxygenation. At optimized temperature, 2-MF formed selectively while higher pressure and higher catalyst loading favored ring hydrogenation of furfural rather than side chain hydrogenation. With combination of several control experimental results and detailed catalyst characterization, a plausible reaction pathway has been proposed for selective formation of 2-MF. The selectivity to various other products in FFR hydrogenation can be manipulated by tailoring the reaction conditions over the same catalyst.

  10. Low hydrogen containing amorphous carbon films - Growth and electrochemical properties as lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, V.; Masarapu, Charan; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, 130 Academy Street, Newark, DE 19716 (United States); Karabacak, Tansel [Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Teki, Ranganath [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2010-04-02

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of {proportional_to}810 mAh g{sup -1}, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed. (author)

  11. Low hydrogen containing amorphous carbon films-Growth and electrochemical properties as lithium battery anodes

    Science.gov (United States)

    Subramanian, V.; Karabacak, Tansel; Masarapu, Charan; Teki, Ranganath; Lu, Toh-Ming; Wei, Bingqing

    Amorphous carbon films were deposited successfully on Cu foils by DC magnetron sputtering technique. Electrochemical performance of the film as lithium battery anode was evaluated across Li metal at 0.2 C rate in a non-aqueous electrolyte. The discharge curves showed unusually low irreversible capacity in the first cycle with a reversible capacity of ∼810 mAh g -1, which is at least 2 times higher than that of graphitic carbon. For the first time we report here an amorphous carbon showing such a high reversibility in the first cycle, which is very much limited to the graphitic carbon. The deposited films were extensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and step profilometer for the structural and surface properties. The hydrogen content of the synthesized films was studied using residual gas analysis (RGA). The low hydrogen content and the low specific surface area of the synthesized amorphous carbon film are considered responsible for such a high first cycle columbic efficiency. The growth mechanism and the reasons for enhanced electrochemical performance of the carbon films are discussed.

  12. Analysis of hydrogen, carbon, sulfur and volatile compounds in (U3Si2 - Al) nuclear fuel

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Redigolo, Marcelo M.; Amaral, Priscila O.; Leao, Claudio; Oliveira, Glaucia A.C. de; Bustillos, Oscar V.

    2015-01-01

    Uranium silicide U 3 Si 2 is used as nuclear fuel in the research nuclear reactor IEA-R1 at IPEN/CNEN, Sao Paulo, Brazil. The U 3 Si 2 is dispersed in aluminum reaching high densities of uranium in the nucleus of the fuel, up to 4.8 gU cm -3 . This nuclear fuel must comply with a quality control, which includes analysis of hydrogen, carbon and sulfur for the U 3 Si 2 and volatile compound for the aluminum. Hydrogen, carbon and sulfur are analyzed by the method of Radio Frequency gas extraction combustion coupled with Infrared detector. Volatile compounds are analyzed by the method of heated gas extraction coupled with gravimetric measurement. These methods are recommended by the American Society for Testing Materials (ASTM) for nuclear materials. The average carbon and sulfur measurements are 30 μg g -1 and 3 μg g -1 , respectively, and 40 μg g -1 for volatile compounds. The hydrogen analyzer is a TCHEN 600 LECO, carbon and sulfur analyzer is a CS 244 LECO and the volatile compounds analyzer is a home-made apparatus that use a resistant furnace, a gas pipe measurement and a glove-box with controlled atmosphere where an analytical balance has been installed, this analyzer was made at IPEN laboratory. (author)

  13. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-01-01

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co 3 O 4 . • Incorporating Co 3 O 4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co 3 O 4 /MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co 3 O 4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co 3 O 4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10 −7 –1.9 × 10 −5 M with a detection limit of 7.4 × 10 −7 . The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  14. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation

    International Nuclear Information System (INIS)

    Sims, R.E.H.; Rogner, H.-H.; Gregory, Ken

    2003-01-01

    A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation

  15. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    Science.gov (United States)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are

  16. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  17. Hydrogen storage in microwave-treated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hong-Zhang [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Kim, Tae Hyung; Lim, Seong Chu; Jeong, Hae-Kyung; Jin, Mei Hua; Jo, Young Woo; Lee, Young Hee [BK21 Physics Division, Department of Energy Science, Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea)

    2010-03-15

    Multiwalled carbon nanotubes (MWCNTs) treated by microwave and heat treatment were used for hydrogen storage. Their storage capacity was measured using a quadruple quartz crystal microbalance in a moisture-free chamber at room temperature and at relatively low pressure (0.5 MPa). Deuterium was also used to monitor the presence of moisture. The hydrogen storage capacity of the microwave-treated MWCNTs was increased to nearly 0.35 wt% over 0.1 wt% for the pristine sample and increased further to 0.4 wt%, with improved stability after subsequent heat-treatment. The increase in the storage capacity by the microwave treatment was mostly attributed to the introduction of micropore surfaces, while the stability improvement after the subsequent heat treatment was related to the removal of functional groups. We also propose a measurement method that eliminates the moisture effect by measuring the storage capacity with hydrogen and deuterium gas. (author)

  18. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  19. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    Science.gov (United States)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  20. In situ TEM study of the coarsening of carbon black supported Pt nanoparticles in hydrogen

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wang, Yan; Jensen, Jens Oluf

    2017-01-01

    The control of sizes and shapes of nanostructures is of tremendous importance for the catalytic activity in electrochemistry and in catalysis more generally. However, due to relatively large surface free energies, nanostructures often sinter to form coarser and more stable structures that may...... not have the intended physicochemical properties. Pt is known to be a very active catalyst in several chemical reactions and for example as carbon supported nanoparticles in fuel cells. The presentation focusses on coarsening mechanisms of Pt nanoparticles supported on carbon black during exposure...... to hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20 % H2/Ar while ramping up the temperature to ca. 900 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in the pure hydrogen environment...

  1. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko Matsumoto; Kazumasa Yamamoto; Tomoyuki Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues, nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption micro-calorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micro-pore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity. The

  2. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  3. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  4. Direct measurements of adsorption heats of hydrogen on nano-porous carbons

    International Nuclear Information System (INIS)

    Akihiko, Matsumoto; Kazumasa, Yamamoto; Tomoyuki, Miyata

    2005-01-01

    Since a exciting report of hydrogen storage in single-walled carbon nano-tubes by Dillon and his colleagues [1], nano-porous carbon materials, such as carbon nano-tubes, carbon nano-horns and micro-porous activated carbon, have attracted considerable attention as hydrogen storage materials. Adsorption plays a predominating role in the hydrogen storage process on solid surfaces. The adsorption is a spontaneous process, which is caused by interaction between gas molecules and surface, hence, it is always exothermic process and observed as adsorption heats. For this reason, direct measurement of the adsorption heats by adsorption microcalorimetry would provide quantitative information on the strength of adsorption interaction and the adsorption mechanism. However, the adsorption amounts of hydrogen on carbon materials are far less than those of condensable vapors near room temperature due to low critical temperature of hydrogen (33.2 K), therefore, the adsorption heats can not be determined accurately at conventional measurement conditions near room temperature and the atmospheric pressure. This contribution reports the calorimetric characterization of hydrogen adsorption on nano-porous carbon materials at low temperature and high-pressure conditions. The high-pressure adsorption apparatus consists of a volumetric adsorption line connected to a twin-conduction type microcalorimeter. Activated carbon fibers (ACF, Ad'all Co.) of different micropore sizes (Table 1) were used as model adsorbents. Each ACF has slit-shaped micropores of uniform size [2]. The adsorption isotherms and differential heats of adsorption at high-pressure region from 0 to 10 MPa were simultaneously measured at isothermal condition from 203 to 298 K. The adsorption isotherms on ACF were of Henry type regardless of adsorption temperature and pore width; the uptakes increased linearly with equilibrium pressure. The adsorption isotherm at lower sorption temperature tended to show higher sorptivity

  5. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  6. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    Science.gov (United States)

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  7. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  8. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  9. Progresses in hydrogen production and application for establishment of low‐carbon society in Japan

    International Nuclear Information System (INIS)

    Kato, Yukitaka

    2014-01-01

    Conclusion: • H2 has high‐potential as an energy carrier for future energy system in Japan. • HTGR is reliable candidate as a primary energy source for H_2 production because of its stability and abundance of amount. • Nuclear heat usage for fuel reforming are efficient utilization way. • Fuel cell vehicle is developing as a H_2 usage market. • Hydrogen reduction of CO_2 has possibility for establishment of carbon recycling industrial systems in low‐carbon society. • Choice of rational H_2 pass is important.

  10. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    Science.gov (United States)

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  12. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  13. Nitrogen-Rich Polyacrylonitrile-Based Graphitic Carbons for Hydrogen Peroxide Sensing

    Directory of Open Access Journals (Sweden)

    Brandon Pollack

    2017-10-01

    Full Text Available Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2, reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD 0.609 µM and sensitivity of 2.54 µA cm−2 mM−1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

  14. Applying life-cycle assessment to low carbon fuel standards-How allocation choices influence carbon intensity for renewable transportation fuels

    International Nuclear Information System (INIS)

    Kaufman, Andrew S.; Meier, Paul J.; Sinistore, Julie C.; Reinemann, Douglas J.

    2010-01-01

    The Energy Independence and Security Act (EISA) of 2007 requires life-cycle assessment (LCA) for quantifying greenhouse gas emissions (GHGs) from expanded U.S. biofuel production. To qualify under the Renewable Fuel Standard, cellulosic ethanol and new corn ethanol must demonstrate 60% and 20% lower emissions than petroleum fuels, respectively. A combined corn-grain and corn-stover ethanol system could potentially satisfy a major portion of renewable fuel production goals. This work examines multiple LCA allocation procedures for a hypothetical system producing ethanol from both corn grain and corn stover. Allocation choice is known to strongly influence GHG emission results for corn-ethanol. Stover-derived ethanol production further complicates allocation practices because additional products result from the same corn production system. This study measures the carbon intensity of ethanol fuels against EISA limits using multiple allocation approaches. Allocation decisions are shown to be paramount. Under varying approaches, carbon intensity for corn ethanol was 36-79% that of gasoline, while carbon intensity for stover-derived ethanol was -10% to 44% that of gasoline. Producing corn-stover ethanol dramatically reduced carbon intensity for corn-grain ethanol, because substantially more ethanol is produced with only minor increases in emissions. Regulatory considerations for applying LCA are discussed.

  15. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  16. In vivo measurements of nitrogen, hydrogen, carbon and potassium in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.P.; Mersmann, H.J.; Pond, W.G.

    1991-01-01

    Characteristic gamma rays are emitted promptly by elements during exposure to neutrons. Gamma ray emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), fat (carbon), and muscle (natural 40 K). The authors have used this method in vivo to detect changes in the body composition of obese and lean pigs (10-20 kg body wt) in response to an altered cholesterol diet

  17. In vivo measurements of nitrogen, hydrogen, and carbon in genetically obese and lean pigs

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.; Sheng, H.-P.; Pond, W.G.

    1992-01-01

    Characteristic gamma-rays are emitted promptly by elements during exposure to neutrons. These emissions enable a radioanalytical analysis of the body's composition of protein (nitrogen), water (hydrogen), and fat (carbon). We have used this method in vivo to determine the body composition of obese and lean pigs (10 to 20 kg body wt) fed an altered cholesterol diet. (author) 10 refs.; 5 figs.; 1 tab

  18. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  19. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  20. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  1. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.

    Science.gov (United States)

    Cabria, I; López, M J; Alonso, J A

    2008-04-14

    Density functional calculations are reported for the adsorption of molecular hydrogen on carbon nanopores. Two models for the pores have been considered: (i) The inner walls of (7,7) carbon nanotubes and (ii) the highly curved inner surface of nanotubes capped on one end. The effect of Li doping is investigated in all cases. The hydrogen physisorption energies increase due to the concavity effect inside the clean nanotubes and on the bottom of the capped nanotubes. Li doping also enhances the physisorption energies. The sum of those two effects leads to an increase by a factor of almost 3 with respect to the physisorption in the outer wall of undoped nanotubes and in flat graphene. Application of a quantum-thermodynamical model to clean cylindrical pores of diameter 9.5 A, the diameter of the (7,7) tube, indicates that cylindrical pores of this size can store enough hydrogen to reach the volumetric and gravimetric goals of the Department of Energy at 77 K and low pressures, although not at 300 K. The results are useful to explain the experiments on porous carbons. Optimizations of the pore size, concavity, and doping appear as promising alternatives for achieving the goals at room temperature.

  2. Clinical findings and effect of sodium hydrogen carbonate in patients with glutathione synthetase deficiency.

    Science.gov (United States)

    Gündüz, Mehmet; Ünal, Özlem; Kavurt, Sumru; Türk, Emrecan; Mungan, Neslihan Önenli

    2016-04-01

    Glutathione synthetase (GS) deficiency is a rare inborn error of glutathione (GSH) metabolism manifested by severe metabolic acidosis, hemolytic anemia, neurological problems and massive excretion of pyroglutamic acid (5-oxoproline) in the urine. The disorder has mild, moderate, and severe clinical variants. We aimed to report clinical and laboratory findings of four patients, effect of sodium hydrogen carbonate treatment and long-term follow up of three patients. Urine organic acid analysis was performed with gas chromatography-mass spectrometry. Molecular genetic analysis was performed in three patients, mutation was found in two of them. Enzyme analysis was performed in one patient. Clinical and laboratory findings of four patients were evaluated. One patient died at 4 months old, one patient's growth and development are normal, two patients have developed intellectual disability and seizures in the long term follow up period. Three patients benefited from sodium hydrogen carbonate treatment. The clinical picture varies from patient to patient, so it is difficult to predict the prognosis and the effectiveness of treatment protocols. We reported long term follow up of four patients and demonstrated that sodium hydrogen carbonate is effective for treatment of chronic metabolic acidosis in GS deficieny.

  3. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  4. Toxicity of carbon monoxide hydrogen cyanide gas mixtures : exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide parameters.

    Science.gov (United States)

    1994-04-01

    During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments...

  5. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  6. Redox Control and Hydrogen Production in Sediment Caps Using Carbon Cloth Electrodes

    Science.gov (United States)

    Sun, Mei; Yan, Fei; Zhang, Ruiling; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2010-01-01

    Sediment caps that degrade contaminants can improve their ability to contain contaminants relative to sand and sorbent-amended caps, but few methods to enhance contaminant degradation in sediment caps are available. The objective of this study was to determine if, carbon electrodes emplaced within a sediment cap at poised potential could create a redox gradient and provide electron donor for the potential degradation of contaminants. In a simulated sediment cap overlying sediment from the Anacostia River (Washington, DC), electrochemically induced redox gradients were developed within 3 days and maintained over the period of the test (~100 days). Hydrogen and oxygen were produced by water electrolysis at the electrode surfaces and may serve as electron donor and acceptor for contaminant degradation. Electrochemical and geochemical factors that may influence hydrogen production were studied. Hydrogen production displayed zero order kinetics with ~75% coulombic efficiency and rates were proportional to the applied potential between 2.5V to 5V and not greatly affected by pH. Hydrogen production was promoted by increasing ionic strength and in the presence of natural organic matter. Graphite electrode-stimulated degradation of tetrachlorobenzene in a batch reactor was dependent on applied voltage and production of hydrogen to a concentration above the threshold for biological dechlorination. These findings suggest that electrochemical reactive capping can potentially be used to create “reactive” sediments caps capable of promoting chemical or biological transformations of contaminants within the cap. PMID:20879761

  7. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  8. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  9. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  10. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  11. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  12. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  13. Hydrogen adsorption on activated carbon nanotubes with an atomic-sized vanadium catalyst investigated by electrical resistance measurements

    International Nuclear Information System (INIS)

    Im, Ji Sun; Yun, Jumi; Kang, Seok Chang; Lee, Sung Kyu; Lee, Young-Seak

    2012-01-01

    Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V 8 C 7 . The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.

  14. Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate?

    Science.gov (United States)

    Swenson, Erik R

    2018-05-01

    Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid-base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this "facilitated diffusion of carbon dioxide" leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.

  15. Low-cost metal oxide activated carbon prepared and modified by microwave heating method for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, S. E. [Islamic Azad University, Sari (Iran, Islamic Republic of)

    2014-09-15

    Novel microporous activated carbon (MAC) with high surface area and pore volume has been synthesized by microwave heating. Iron oxide nanoparticles were loaded into MAC by using Fe(NO{sub 3}){sub 3}·9H{sub 2}O followed by microwave irradiation for up to five minutes. The surface modified microporous activated carbon was characterized by BET, XRD, SEM and thermogravimetric examinations. Adsorption data of H{sub 2} on the unmodified and modified MACs were collected with PCT method for a pressure range up to 120 bar at 303 K. Greater hydrogen adsorption was observed on the carbon adsorbents doped with 1.45 wt% of iron oxide nanoparticle loaded due to the joint properties of hydrogen adsorption on the carbon surface and the spill-over of hydrogen molecules into carbon structures.

  16. Technology status review and carbon abatement potential of renewable transport fuels in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J; Bauen, A

    2003-07-01

    The document reviews the technology for the production of renewable transport fuels (RTFs) and includes a discussion on the costs of the different RTF options and the role they might play in helping reduce emissions of greenhouse gases. The motivation for using RTFs in the UK are (1) to reduce transport sector costs; (2) reduce greenhouse gas emissions; (3) improve air quality; (4) improve energy security in the transport sector and (5) assist rural development through domestic production of biomass-based fuels. The RTFs of most interest at present are ethanol produced in the fermentation of sugar and starchy crops, and biodiesel from oil crops. Figures for the UK potential for RTFs are given. It is pointed out however that given the finite availability of renewable sources and the competition for other applications, the use of RTFs will need to be efficient for sustainability. The report was prepared by Imperial College London as part of the DTI New and Renewable Energy Programme.

  17. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  18. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  19. Innovative Promotion of Renewable Energy Development for Challenging Sustainable Low-Carbon Society: Case Study of Pingtung County, Taiwan